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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL MEMORANDUM NO. 827

HELICOPTER PROBLEMS*

By H., G, Kissner

The present report deals with a number of the main
problems requiring solution in the development of heli-
copters and concerning the lift, flying performance, sta-—
bility, and drive,

A complete solution is given for the stability of
the helicopter with rigid blades and control surfaces,
With a2 view to making a direct-1lift propeller sufficient
without the addition of auxiliary propellers, the "flap-
ping drive" is assessed and its efficiency calculated.

I. INTRODUCTION

The idea of the helicopter is as old as aviation it-
self. Leonardo da Vinci designed a helicopter, but the
first air-borne models did not appear until the 19th cen-
tury, and the development of the airplane at the begin-
ning of the 20th century ran parallel with the helicopter
until the.former gradually pushed the latter into the
background. The first man~carrying helicopters were never
able to pass beyond the stage of air jumps at best, since
they were unstable in flight and mechanically extremely
sensitive. But now that sufficient experience in light
design and in aerodynamics is available, the prospects of
helicopter development are much more promising; and this
is in no small measure due to de la Cierva's pioneering
labor. A notable historical outline of helicopter devel~
opment is found in Lamé's book (reference 1).

The autogiro is the first successful aircraft on
which the momentum for overcoming the gravity is produced
by the downwash of an airfoil system which, apart from
the translatory motion, executes an additional rotatory
motion about a fixed body axis.

*"Probleme des Hubschraubers." ILuftfahrtforschung, vol,
14, no. 1, January 20, 1937, pp. 1-13.
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The autogiro has solved the problem of horizontal
flight of helicopters up to such a low speed that one is
even tempted to forego the floating vower at v = O,
since the freguently prevailing wind velocity still en-
ables the autogiro to hover over a certain point and to
land as well. Besides, a real helicopter should be capa=-
ble of rising and landing with horizontal speed in gusty
weather. Lastly, de la Cierva developed the jump-start
method which allows the forcing of the autogiro several
meters straight up in the air - which, properly handled,
suffices for reaching stalling speed without a second
ground contact (reference 2)., So the autogiro has come
quite close to the vperformances which originally had been
commonly accepted as being reserved for the helicopter
alone., On the other hand, it also has its limitations
both as to appnlication and to drawbacks: The comparatively
small climbing angle makes a free space necessary for the
take=off. The handling in side wind is difficult, and so
is the stalled landing. At high flying speed the longi-
tudinal control is very sensitive. Besides, the rotor
may get out of step.

Thus, one logical trend in development would be to
give the autogiro the still lacking helicopter properties:
vertical stationary ascent and descent, and hovering with-
out, however, depnriving it of any of its developed good
characteristics. Severzl new, successful helicopter de-
signs are along these lines. Right now the helicopter is
best situated far catching up with the technical advan-
tages of the airplane and for ovening up new possibilities
of use through its unique floating power.

Just as the airplane enjoys its present state of de-
velopment 28 o result of the intensive theoretical and
experimental exploration of all problems arising with the
airplane, so the further development of the helicopter is
in need of clearness regarding the typical helicopter
problems which are unknown to the airplane.

The following arguments are a contribution in partic-
ular to the elucidation of the problems of stability and
of the power of the 1lifting propeller in sustained flight
(hovering)., Further, the .creation of lifting force and
the expected flight performances are treated In light of
the present state of research,
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II. NOTATION

a “(m) radius of prdpellef disk.
A (kg) - motive pommest 7(’0(‘@2»
B amplitﬁde of rotation of blade.
c- (m/s) velocfty of flow.
r (m2) control surface.
Fg=mra® (m?) proﬁellef disk area.
Fo (m2) equivalent flat-plate area.
Foa (m2) equivalent flat«plate area of propeller
o blade.
G (kg) gross welght.
h (m) 1) distance of cege from the plane of
the propeller disk,

2) coefficient of power loss.

H (m kg/e) power loss.
_7“ ar wewm gntum

J (m kghs) ﬁ*ee—hs&a:a&—m&#*en-of the rotor.
K, (kg) ‘ thrust.
1 m) semiwing chord.
L (m kg/s) power input.
M (m kg) moment[%wrzwé)
m (kg s®/m) 1) mass of the helicopter.

2) moment coefficient.
N (n kg/s) transmitted effective power.
sz,Pyz(m kg) ﬁoment of'ﬁredeséién.'
r=,j;§:;§_ 1) radius vector.

2) coordinate in proneller radius 4i-
rection,
. %. root of the characteristic equation.
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(m)

(mn/s)
(m/s)
(m/s)
(m/s)

(kg)

(m kg/s?)

(1/s)

(kg s2/m*)

(1/s)

wall distance of the propeller disk area.
tip speed.

flying speed.

rate of c¢limb.

axial velocity.

draé.

coordinates.

angle between the z-axis and the thrust
axis projected on planes xz and Xxy.

1) criterion for rolling moment.
2) flapping angle.

lift-drag ratio.

coefficient of propeller reactions.

1) angle between the z-axis and the ra-
dius vector.

2) anfle of antirotation.

mass moment of inertia of the helicop-

ter with respect to the c.g. of the

blades.

criterion of helical motion,

coefficient of advance.

slipstream contraction factor.

vibration frequency.

air density.

characteristic of wall distance.

phase angle.
velocity potential.

angular velocity.
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ITI. CREATION OF LIFTING FORCE

The symmetrical axial ideal flow around a sustained
lift propeller was originally treated by H. Kimmel in his
thesis of 1912 at Munich (reference 3). Even though his
solution had been reached on the basis of various simpli-
fying premises which do not occur in reality, it is never-
. theless desirable, when designing a helicopter, to be able
to predict, at least roughly, the air motions to be ex-
pected - whether to afford a control of their effect on
any stabilizing surface or a check on the mutual interfer-
ence of several rotors. For this reason, a brief summary
of Kimmel'!s results should be of interest. '

The symmetrical axial ideal flow on a sustained lift-
ing propeller may be visualized by superposition of sev-
eral potentials. Let us assume that the axial velocity
of flow through the propeller disk area is constant. Dis-
posing vortex sources on the disk area from which the air

with the constant axial velocities i% flows out at both

sides, and denoting with ©P,(cos §) the zonal harmonic

spherical functions of the first type, the potential for
the propeller disk radius a =1 1is, according to Kimmel
(fige 1, left):

2
- P, +r P =~-I-pP

5
A
o
(S)
®
I
rold

+ % p L 1x3xrS p 4 . ..
oxd 4 2x4x%6

(1)
SxZ 13

1x3 Py ]

\ .
r > 13 ®a=§["%-1;9-+ 1 Pg

2X4%x6 1T

Prescribing a constant axial velocity + % through the

propeller disk area affords the potential (fig. 1, right-
hend side):
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r<l:@c=§[—Po+%rpl_raPa 3
+£j —2"6- T o .,
3 Py 5 Ps }...(2)
w 1P 1P
>l ¢°=ﬁ["3;%+3;%
1 Py
=8+ - ...
\ s ]
/

Supervosition of the two potentials o, and @, re-

sults in a flow whose axial velocity has, at one side of

the propeller disk area, the constant value % + % = w

and at the other side, the value zero.

This flow corresponds to the rotor inflow. TFor a
rough computation of tlhe outflow, we consider the zone 3B,
which is assumed to be bounded by the propeller dicsk area
and the cylindrical surface r = 1, and extending to in-
finity toward the z—-axis. We then assume in this zone a
stream of constant axial velocity 2w having a potential

by, = 2w z

On forming the potentinl,

Py ~ O, - O
in the zone B we find on the propeller disk area the con-
stant axial velocity 2w - w = w, whereas at infinity the
axial velocity 2w prevails. The slipstream contraction
factor is p = 4. In addition, there is a constant pres-
sure jump along the entire propeller disk area to the amount

of
Ap = 2p w?

This assumption is contained in all propeller theo-
ries and is evidently valid so long as the axial velocity
of flow through the gswept disk area remains roughly con-
stant. This is the case for propellers having low pitch
and multiple blades; hence, especiclly appropriate for
direct-1ift propellers.
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At the edge of the plane of passage the streamlines
are = theoretically - qubstantially curved, according to

- figure -2, Thus, in Fe&lity a Vortex ring forms around the

border line which can be observed occasionally even in .
tqrque—stand tests of regular propellers.

If two coaxial propellers are . disposed closelg~over
one another, they can bde anproxlmptely substituted hy
propeller disk area,s If the distance of the propeller,
planes is o'reater the bottom nropeller draws in an addi-
tional quantity of air which %5% given stream energy, am-
plifies the impulse. However, the attainable gain is much
less than afforded by mounting the two propellers side by
side.

The impulse produced by the stream is always followed
by a loss of power. Consider a stream with the asymptotic
end section F, and constant stream velocity wy 1n this
section.s The normal force produced by this stream is equal
to the impulee per unit time of fluld quantity passing
through the jet. That is, it is

A = —d" (m WO) = p Fo Wog (3)

w,2 Wol
__-.:.-pFo-—-g—— (4:)

Eliminating w, from (3) and (4) leaves:

A = 4 ¥ p 7, (5)

To compute the vower from this (5), we introduce an
assumption concerning the asymptotic end cross section F,
of the jet in ideal flow. For in real viscous fluid the
Jet is in a continuous process of dissolution while form-
ing a2 mixing gzone, so in that case there can be no ques-—
tion about an asymptotic end cross section. In conformity
with the above, we introduce for a free cylindrical jet
the c¢ontraction factor u = %, so that

FO= . 'FS ' % -FS' : (6)

We further introduco, for abbreviation, the thrust coeffi-
cient and the mems®™t cocfficient:

%AFSW&
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A M

ky = E~—————: kg =”E*——————— (7)
a .
5 uw? Fy 5 W Fqy a

Writing (6) and (?7) in (5) gives the Bendemann equation:

kg =% kg2 - (8)

tv

It is presumed that the blades are controllable, as
in the majority of modern helicopters. For a helicopter
with fixed blades is comparable to an airplane which can
only fly at a certain angle of attack and is therefore
difficult to manage.

Plotting kg against kg for a predetermined direct
1ift propeller affords a set of curves resemdbling in sig-
nificance the profile polars of an airplane. The kd/ks
ratio is a measure for the quality of the rotor and reaches

its optinum value at a certain thrust coefficient kso’

similar to the airplapgq lift/drag ratio. Bendemann's
curve (8), shown iﬁiadéhes in figure 3, has in this repre-
sentation a significance similar to the induced-drag par-
abola in profile polar curves. The real helicopter polar
is shifted a certain amount to the right to allow for the
frictional drag of the blades.

For propellers with low thrust coefficient and small
coefficient of advance - that ig, for helicopter propel-
lers in particular - the propeller theory can be linear-
ized conformable to airfoil theory. The circulation de-
crease at the blade tip can be allowed for conformably to
the screen-flow theory, as employed by 0. Walchner (ref-
erence 4) for cylindrical, nontwisted propeller blades and
definite bplade number to improve Bendemann's equation.

The improved parabola is the dashed curve in figure 3. It
will be seen that theory and experiment are in agreement
up to & profile friction drag, which in itself increases
somewhat with the angle of attack.

Bringing a constant-speed helicopter propeller closer
to a parallel flat wall results in a different thrust as
well as torque. If s 1is the wall distance, these
changes are properly represented as function of the para-
meter

q
i}
o
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These changes were investigated by the writer with a model

propeller of 1 meter diameter which had four blades of op-
“timum twist-and a constant chord of 50 millimeters., Its

thrust coefficient k is shown plotted against g in
figure 4; its moment coefficient kg 1in figure 5.

. From this it may be deduced that for finite wall dis~-
tarice the moment is smaller or only slightly greater than
in unlimited flow because the quantity of fluid passing

through it becomes less as the wall is approached. In ac-

.ecord with it, the thrust also decreases with decreasing o

somewhat in the same ratio, at ‘first, as the moment. This
decrease is, as proved.by the measurements, markedly in-
fluenced by the characteristic value. On further decrease
of ¢ the passing fluid quantity decreases still more, so
that the moment drops very substantially. The smaller the
velocity of discharge, the more the angle of attack of a
blade element approaches its angle of inclination rela-
tive to the wall, at which the blade circulation and con-
sequently, the thrust is increased. This increase is lit-
tle dependent on the characteristic value and is almost
linear with ¢ in the range of o = O to 0.8. In the ex-

treme case g = 0, the thrust would be approximately
double if the blade chord were sufficiently small. The
point o = 1 1is worthy of notice as the point where all

measuremnents of thrust and moment are apnroximately the
same as in unlimited fluid. For this reason helicopter
propeller measurements should be made at ground distances
either in excess of 5 times the propeller radius or else
about equal to the propeller radius in order to simulate
the conditions in free atmosphere.

For ¢ > 1 the ground effect is small and hardly al-
ters the kd/ks ratio. In the zone of ¢ < 1 this ratio

drops very considerably and fairly suddenly. At constant
power this means a rise in thrust. On landing, this acts
like a springy cushion; that is, it reduces the landing
shock, nrovided the propeller can approach the ground

closely enough.. Otherwise, it may happen that 2z helicopter

with insufficient engine power is able to float on this
air cushion without being able to rise any higher. 1In ad-
dition, this air cushion produccs a stabilizing moment

_which tends to bring the propeller disk arca parallel with

the ground if the distance is s < a3 +that is,” o< l.’
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IV. FLIGHT PERFORMANCES OF THE HELICOPTER

The power loading of the helicopter while being sus-
tained in free a2ir is:

N kd
G- E; n/s (9)

On a model 1lifting propeller, with rectangular nontwisted
blades, for example, the following optimum values were obw
tained:

Number of blades kg kd/ks
z = 2 0.005 0.087
z = 4 ' «008 .109

By very low thrust loading kg and given tip speed
u, the two—~blade helicopter proneller is - as regards
power regquired - superior to the four-blade one. But in or-
der to avoid abnormal dimensions, higher kg values are
much preferred, On the other hand, the thrust loading is
upwardly limited by the regquirement to be able to make a
forced glide landing with autorotating propeller in case
of engine failure - a2 stipulation so very natural and justi-
Tfied that 1t already serves as the correct method in heli-
copter development. JActually built helicopters of this
kind, with three to four blades tapered toward the tip,
have:

kg ~ 0,013 to 0.015; Xkag/kg =~ 0,09

Admittedly, helicopters with kg = 0.032 have also been
built, but for special reasons which are assoclated with
stabilization. Then the kg/kg ratio probably amounts to
at lenst 0.12. The autorotation of such highly loaded
propellers with comparastively high pitch, couses difficul-
ties, especially if coaxially arranged. 3But, asidc from
all tuaat, the rate of decscent in an emergency landing
would be inadmissibly high.

To invoke o comparison, it may be cdded that for on
autorotating propeller in horigontal flight, the thrust
coefficient referred to tip speed amounts to kg =~ 0.015
and that the best horizontal € ig:
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€min ~ 0.1l for A ~ 0.4 to 0.5

" The position of the optimum tip speed decisive for
the power required of helicopters, must be defined by com-—
rlete mathematical analysis of comparative designs. The
greater the taper of the blades, the higher the optimum

of u will be. 4As a rule, values of u < 100 m/s lead

to uneconomical enlargement of the size of the propellers;
hence modern helicopters fly like the autogiro with

u ~ 110 to 130 m/s
11

@ (=
u

Writing these values into (9) gives an average of

n/s.

The regulatlons of the DLA stipulate that every air-
plane at take-~off must have an excess power so that its
rate of climb is w = 2.5 m/s. This readlly suggested
utilizing this minimum for the vertical take-off of a hel-
icopter as well. An average ranges around

11 + 2,5 = 13.5 n/s

5.55 kg/hp.

o o=

This mower loading is reached by the latest helicopters -

although seldom - it usually falling a little lower. The

constructional difficulties are at present still too great
to assure a helicopter with much lower power loading capa-
ble, with its excess power, of developing a high speed of

climb, '

According to a previous statement, the jet velocity
of the helicopter in ideal flow is at infinlty wy, = 2w
where 1w 1s the rate of flow through the propeller dlsk
area. Then, according to (3) the 1ift is

. am .
A = it 2w (10)

The air mass per second sharing in the impulse creation
is, in the case of the helicopter, the product of propel-
ler disk area m a®, the rate of flow w, and the air
density pse In the case of the airplane wing with small
angle of attack, it leads to an equation similar to (10),
with w denoting the vertical .velocity at the place of
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the wing, and 2w the velocity far downstream from it.
The air mass per second contributing to the impulse cre-
ation of wings with elliptical span-—load distribution and
gspan b 1is the product of section nb2/4 of a tube of
flow, the rate of flow ¢ through this sectian, and the
air density.

Visualizing the propeller disk area of the helicop-
ter propeller as wing area, the section of the tube of
flow is:

2
F = iiél— = 1 ab

that is, again equal to the propeller disk area. This in-
terpretation has proved itself in the theory of the auto-
rotating propeller with small angle of attack. The ap=-
pearing flow loss merely serves to cover the friction
losses of the wing, but does not reduce the air mass shar-
ing in the impulse creation (cf. reference 4a).

It is very natural now to generalize these two re-~
sults, which for the moment are valid only for two limit=-
ing cases, to include any flow direction of the propeller.
We assume that the contributing air mass is always ob-
tained as guantity of flow through a sphere circumscribed
about the lifting propeller. Of course, this assumption is
only roughly correct, aside from the fact that corrections
due to finite blade number must be made. The precise theo-
retical treatment of this quite difficult problem is still
lacking.,

This assumption allows the calculation of the power
required for impulse creation by any helicopter motion.
The impulse always acts against the direction of the abso-
lute velocity with respect to the fluid at rest at infin-
ity. Suppose the direction of the flying speed v of the
helicopter inclines toward this direction at an angle 3.
Then the rate of flow through the circumscribed sphere af=
ter vectorial addition of v and w is:

c = v/v2 - 2v w cos 3 + w® o (11)
We finally obtain as impulse force and power

A

p Fg ¢ 2w } -(12)

N. A w

1

1
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For the special case of & = 909, equations (11) and (12},
we obtain the equations already reported by Margoulis (ref-

.erence 5)., -Now the two fo llowing extreme cases obtained

from (12) by eliminating w are important:

® = 2p P4 N;° C(13)

v—>0: A
w—>0: A% = 2p Fg, v N3 (14)

Equation (13) is identical with Bendémann's.equation (8),
while (14) contains the known approximation formula for
the induced drag of a circular airfoil.

The friction power of a helicopter in arbitrary flow
direction is only roughly approximative, because the inside
blade elements are occasionally under high angles of at-
tack and are attacked from the trailing edge. For such
cases it is hardly possible to give exact friction factors.
Besides, even if these values were known, the integration -
ise., - the formulation -~ of a2 mean friction power value with
respect to time, is quite tedious. TFor that reason, we
shall simplify the present problem step by step.

First, we assume the blades to be so formed and con-
trolled that all blade profiles remain within an angle of
attack range below burbling. For this range a constant
mean value Ty of the friction factor for all blade pro-
files is assumed. If ¢ 1is, as before, the rate of flow,
the relative velocity at the place of any wing element in
symmetrical axial stationary flow is:

1/2
v = (ca+ ra wa)

The profile friction produces a frictional moment
about the propeller axis as well as a drag of the whole
propeller in axial direction. It is a widely spread mis-—
take to assume that the circulation of the blades would
have to disappear at gero thrust and that therefore in
this operating condition, one could measure the fricti onal
moment of the propeller alone. This erroneous deduction
is avoided by a vigorous assumption which contains the ro-
tatory and translatory share of the friction power entire
(undivided), . The total friction power of-the vropeller
with 2 TDblades is: '

a
NR = p z Gy J. 1{(r) v3 dr (15)

. | . -
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In the most elementary case of wing chord 21 = constant,

the friction power with A = c/u becomes:
Ng = p u® z1 a3 £ (A)° ‘
=E'U.3F f1(7\)
2 Vs **(16)
. 2

= 1 5 2 2 3 (4 1 + 1 + A

f = (= + = 1+ 3 + = 1

2 () <4 ) A g N T A

Numerical values for function f; (A) are given in table I.
As second limiting case, we select the flight direc-
tion perpendicular to the propeller axis. Then,

1/2
v = (¢® = 2¢ v w cos o + 2 ?)

whereby o is the position angle of the peripheral direc-—
tion relative to the flight direction. PFirst we determine

v3 for one revolution; that is o = O to 2m. This is ac-
complished with the aid of the defined integral:
2T
1 23/8
=— 1 -2 +
- I« X cos o + x?) do
o
5 2 g 4 1 6
=1 + = + = + = + «... Tor =x 1 e (17
tF T T16 ¥ < (17)

= %3 ¥ 5 x + 9. x—1 3 1 x~3 + ... Tor x >1
4 16

obtainable by development of the integrand according to
spherical functions.

Introducing (17) into (15) and vosing 21 = constant
and A % 1, gives the friction power:
Ng =p u® 21 a8y f2(N) )
- P w3 ¥ £, (N) (18)
=5 wg L2 y
) =24+ 82 L a%E L L ). 2N -l
2 4 8 8 64 /32
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Numerical values of the f,(A) function are given in

.table I, In the second case the friction power is con-

sistently severdal percent lower than in the stationary
case. Admittedly, our assumption of a constant mean value

¢, 1is fairly rough. If we considered the actual flow on

the inside parts of the blades, the friction power of the
second case would be higher. Then the lowest possible
friction power would probably be about the same in both
cases. Again, it is natural to generalize these. two re-
sults representing extreme cases to include any flight d4i-
rection of the helicopter propeller. We assume that by
proper control and blade twist the friction power is inde-
pendent of the direction of flow. To compute the power
the approximate assumption

£(N) ~21;+>\2 (19)

valid for A < 0e6 suffices in most casese.

TABLE I
A T2 (N) £z (A) £(N)
0 0.250 0.250 0.250
.1 .258 .256 .260
.2 .282 .276 .290
.3 .325 .313 . 340
4 .293 .369 .410
.5 .489 .451 .500
.6 .616 .564 .610
.7 .783 .714
.8 . 994 .909
.9 1.253 1,155
1.0 1.569 1,458

When summing up the foregoing results, we can expect
that the properly designed propeller in yaw is favorable
both as regards the air mass engaged in producing the im-
pulse and the friction power, and therefore constitutes a
suitable and economical means for impulse.creation.

Through the two foregoing assumptions, the impulse
power and the friction power of the helicopter propeller
have become independent of the direction of flow, thus mak-
ing it possible to compute the power required for level
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. flight of this proéeller approximately independent of the
direction of flight. 1If ©F, denotes the equivalent flat-
plate area of the airplane fuselage, the total power re-

quired for sustained flight for the impulse force 4 is,
according to (12), (18), and’(19):

Aa . p u3 p A
= —————— + = F — + 2y + = F 3
2p Fg o 2 Wg & T % ° ) g v °
Assuming the tip speed u = constant, we obtain the

minimum of N Dby derivation, according to ¢ and equat-
ing to zero:

an A®
2 = e R F +
) p Wsuc

= c.2 =0 (20)
dae 2p FS Cq

[»]

ol
o
=

The optimum value ¢, of the rate of flow is readily com-
putable from (20). From (12) follows:

Now we assume the drag of the helicopter to be low
and the impulse acting against the gravity.  Then A ~ G.
If the speed of climb v, of the helicopter is given, the
optimum angle of c¢limb, according to figure 6, is:
v
tan @ = ___z (21)
3 2
Jco? = (v, + W)

Equation (21) is applicable only when v, < ¢, - w, that
is, for a helicopter with small excess of power., In this
case, a dlagonal climb with @y < 90° gives the highest
speed of climbd, But, if v, > €4 = W, a case not real-

ized as yet with existing helicopters, the vertical climb
of @ = 920° 1is the best.

As the airplane body of the helicopter usually pre-
sents its smallest equivalent flat-plate area in the hori-
zontal direction, the optimum climbing angle tends toward
lower values than are to be expected according to equation
(21).

As an illustrative example, let us study a helicopter
with the following characteristics:
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G = 490 kg Fg = 14,40 m?
e g E“.IE“EgiEE"' “ng = . .,03 m% .
. m
u = 130 n/s Py = .10 n?

We obtain from (20):
co = 39,0 m/s w = 3.63 m/s

Even if stipulatiﬁg the fairly high c¢limbing speed of

v, = 15 m/s from this helicopter, the best climbing an-—
gle amounts to only oy = 23.6°, according to equation
(21).

So, as regards climbing flight, the conditions for
the helicopter are very nearly those of the conventional
airplane. By given power the greatest climbing speed is
practically in no case reached by vertical ascent, 2s a
superficial analysis of the helicopter might probadbly lezd
one to expect. Vertical ascent and hovering are quite
uneconomical operating conditions of the helicopter and
require a comparatively high specific horsepower. This
maximum power is, however, presumably necessary only for
a short period at take-off and landing. The airplene it-
self develops its maximum power mostly at take-off only.

The total propeller power can always be divided into
the power N, absorbed by the drive of the helicopter
rotor and the power v W absorbed by the drag of the
whole helicopter rotor in flight direction. It is

N = Ns + v W

Now, there are two important limiting cases of hori-
zontal flight: :

1) Autogiro with auxiliary propeller: The autorotat-
ing propeller is driven only by its drag W through a
special tractor propeller in the nose of the fuselage. At
high speed -~ that is, for high values of A, the propeller

.axls is almost exactly perpendicular to the flight direc-
tion, since only a very small angle of attack of the pro-

peller-disk area acting as wing surface, is needed for im-
pulse generation. Then there is the hazard of propeller
failure, which may result in a crash.
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This type of motive power is subject to considerable
losses. At best the efficiency of the small tractor pro-
peller is 0.70. Besides, vortex losses by the partial con-—
version of drag W of the propeller in a torque are to be
expected. :

2) Helicopter without auxiliary propeller: The pro-
peller, driven solely by the initiation of a torque in the
thrust axis, must therefore in horizontal flight yield in
addition a traction in flight direction for overcoming the
frictional drag of the airplane body. The angle beitween
thrust axis and flight direction must in consequence be
@ < 90° ~ that is, so much smaller as A 1is greater. The
danger of propeller failure does not exist. Contrasted
with the autogiro the weight, friction power, and the
higher nower loss of impulse of the tractor promneller is
saved. If the forward tilt of the rotor axis for a large
enough angle and the balancing of the torgue of the heli-
copter propeller can be solved constructionally, the sec—
ond case of horizontal flight is preferable. TLongitudinal
stability is readily obtainable in this flight condition
by conventional horigzontal controls even for helicopters
unstable when hovering. The Bréguet-Dorand helicopter de-—
veloped in thisg manner a horizontal speed of 100 kilometers
per hour in test flights held in December 1935 (reference 6).

The preliminary calculation of flight performances of
helicopters fails at the present time for lack of suffi-
ciently diversified six-component measurements on helicop—
terss This lack is also apparent in the stability calcula-
tion of the helicopter.

V. STABILITY OF THE HELICOPTER

Everyone is familiar with the toys consisting of a
small propeller which is thrown in the air with a helical
motion. Given énough hked¥x, these miniature helicopters
4re entirely stable. And still the technical solution of
the stability problem of the helicopter has presented the
greatest of all difficulties. The majority of helicopter
projects heretofore have been wrecked by this very problem.

wed [ A R

Apparently the stability makes a certain free-heldix
of the helicopter a necessity. On the other hand, the
floating of a person at one place requires a balancing of
the torque of the helicopter rotor, which in most cases
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was effected by vairsg of propellers running in opposite

~@irectionss. . If, as frequently done, the two opp331tely

rotating prooellerc are of the same size, their hediX“be-
comes neutralized, thus leaving no free heliCal motion

for the stabil1zation. The alternative, to make these
propellers of different slze, produces as a rule not
enough free helicanl motion for stabilization unless other
precautions are taken. Up to a few years ago, even six-—
component measurements of propellers in yaw were entirely
nonexistent in literature, although they are indispensable
for the theoretical study of the stability and for comput~
ing the necessary amount of free helical motion.

Curious to relate, this lasted for some time - until
it occurred to someone to obtain the stability of the heli-
copter by mounting a control surface in the slipstream as
suggested by the example of the airplane. The first de—-
signer to »nursue this idea successfully by mounting the
control surfaces sufficiently distant below a comparative-
1y heavily loaded propeller, was O. Asboth. His designs,
developed Trom 1928 to 1930, seem to have been the first

man—-carrying helicopters to hover for some time and at
considerable height with perfect stability.

Jow does the étability of the helicopter with rigid
propeller and control surfaces come about?

Assume that the helicopter is stable against vertical
motions, and executing small motions only in the horigzon-
tal xy plane. The propeller center P may move toward

P! with the coordinates x,y,, the center of gravity S

toward S! with the coordinates =xpys, (fig. 7).

_Fe =% = Y2 = Y3
* g P h
are to represent thé angles between the z-axis and tho pro-
jeetions of the thrust ayls on the xz planc end the yz
vlane,

Limiting the study to small equilibrium disturbances,

we may assume in first approximation that the thrust is

' Xp = mg = constant

and that the othor acrodynamic londs and moments are pro-
portional to the intcrfercncc velocities xl and yl. On

the premisces of small interferencc vclocity Av, we ob-
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tain for the normal force acting against the direction of
motion: ' . : .

Av
Kn = o Ko 3
for the lateral force acting at right angles to it:

Av
K = K 2V
bs Ko 3

for the yawing moment acting in the plane rotor axis direc=
tion of motion: .

My = Cy Ky a &F

and for the yawing moment acting at right angles to it:

My = Ly Xp a,%}
The nondimensional ¢ coefficients appended in table II
are those for two propellers, according to Flachsbart's
measurements (reference 7); Ao 1s the axial coefficien't
of advance at which the thrust disappears. It serves to
mark the propeller pitch., It will be seen that the ¢
coefficients with the exception of {,., appear to be lit-
tle dependent on the propeller form.

TABLE II. Air Load and Moment Coefficients
of Two Propellers

7\‘o Cn ' Es gh Cr
010 0.27 0.12 1.08 0,77
« 23 « 30 «1l3 1.00 W43

We further make the simplifying assumption that the
control surface is a coaxial ring so disposed that its
center of pressure coincides with the center of gravity S
of the helicopter (fig. 7). The control surface could, of
course, be mounted at some other place, and if necessary,
could consist of a flat surface, since the motions are
coupled perpendicular and parallel to the surface through
the precession moments. The motion resistance of the co=
axinl control surface lying in the slipstream is:
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'/ s

‘: ‘)

wFc, ! Av = »p F Av

W = a

nio

that 1s, it is linearly dependent on the interference ve-
locity, like the lift of an airplane wing. The control
surface therefore affords, within certain llmits, a sta-
blllzation. :

The positive direction of rotation of the propeller
is to correspond with the peripheral direction from + x-
axis toward the + y-axis (fig. 7). Then the turning of
the thrust axis produces the precession moments.

Pyz=onc; sz=JwB_

Expressing the angular changes and interference velocities
by the coordinates =x;, y1, Xz, Y2 and their derivations

in time rate, we finally obtain for the equilibrium of the
forces and the moments referred to center P the follow-

ing equations:

X .
a ° ta
X + §s u I

g

m X, +pF xy + {p

HH&
]
o

K, o Ky o
w Bt g N

[+

mYa'*‘PF.';’z"'cs

+ (y, - y;)

bl
‘o
1
O

frot ot (22)
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+ gh w P f (Xz -

‘This system of linear differentiél equations are resolved

by the known formulas:
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rt

X3 = A e ”, vy, =6 eTt

_ s e e .- - (23)
B eTt, y, =D Tt

which, written in (22) finally give four homogeneous lin-
ear equations for the constants A, B, €, and D. These
constants have no final values unless the denominator de-
terminant of this system of equations disapvears.

Writing, for abbreviation:

ay = {n %é r - %é, b, = gé + pFr+mrd

8 = gs.%‘a—' r, b2 = 0O - oa)
az = {n %é r+ 8 r2%, by =—-p Fhor =9 r2
a4=ri—{§‘r-%&’“—)r,b4=lgr

h )

The denoninator determinant takes the following form:

a;y b, as b2
az by a3 by a; ba az by
A = = e 2 [
ag by a, by as Dp a, by,
3-4 b4 a,s bs . poeor (25)
ay byf? a; byl az Dba|? az ba|®
- + + -

The lateral force Ky being, as a rule, small rela-
tive to the other forces, a, may be approximately put
at a5 = 0. In fact, this is exactly correct for opposite-
ly rotating propellers, for which the lateral forces can-
cel out. In addition, Dbz = 0. Then the corresponding
subdeterminants of equation (25) disappear, and the re-
maining equation A = 0 may be divided into two equations,
of which, however, only one has a physical sense. This
reads?

= a; by + az by + a; by, — ay, b, =0 (26)
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Writing the values of equation (24) into (26) and ar-
ranging according to the powers of r, leaves, after seg-
regating the minor root, ¥ =0; 7 ' W

X pF X Jw
3 2 a -
AT I:gn'ﬁﬁ""ﬁ""(gh Er)mﬁ"“@s]

Jw K, pF
+r['ﬁ€ (ta 52+ 55

bt (27)
cH (G -t 3)]

@ =

a pE K, X
= * Bm (Qh - {p) m

Olp

=0
: y

"Stability exists when only roots r with negative real
parts occur. This is with an equation of the form of

r3+ g r2+ Dbr+ ¢ =0

the case only then, according to Hurwitz, when all coeffi-
-cients are positive and when, in addition:

ab-¢ >0 (28)

Since a and b are alwpys positive, according to equa-
tion (27), it is only necessary to observe that:

e >0 (29)

Equations (28) and (29) are therefore the desired
stability conditions. Special importance attaches to the
stability limits which are reached when putting either
ab = ¢ =0 or ¢ = 0., Then these equations should bve
used only for computing the requisite control surface or
the required helical motion. The numerical calculation
can be simplified by neglecting small terms, after which

the equations for the control surface from (28) and (29)
reads . - :

I F o> i Y es eg = K ) ega(e1+Y etk e4)
. -~ )
P es + k(eyr~eg) eg +(e1+Y egtk ey)
. o..--.<30)
11, F < Y 82 fe
P es

The abbreviations hereby'are:
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\
K
@ = n 7y < es = 3
K K s & 4 e s 2
Yoo = (bn ~ L) 5B, o5 = 2 | (31)
hX X
°s = tn 55 ° = in

J

The factors Y and K are nondimensional criteria for
the difference of yawing moment and rolling moment and for
the free helical motion of the helicopter propellers. At
Y =1 +the rolling moment M, =0 at Kk =1, the free
helical motion equals the helix of a certain helicopter
problem,

The following is an illustrative example, patterned
somewhat after the Asboth helicopter. This helicopter has
two coaxial rotors running in opposite directions, rigid
blades, and is characterized by small dimensions. We put:

a = 2,14 m N = 100 hp. tn = 0.30

h = 1.0 m w = 20 m/s ty, = 1.00

k = 1.0 m u = 130 m/s e = .50

G = 490 kg J = 10mkg s® cp' = 4.0
h6= 100 m kg s?

and obtain for the control surface as function of % and
Y the values plotted in figure 8., BHaving to observe two
stability criteria, the sige of the control surface must
not fall below a minimum value nor exceed a maximum if
stability is to be maintained. Figure 8, therefore, shows
the stability range by predetermined Y "~ bounded by two
lines, which start almost from the same pcint of the ordi-
nate axis. At K = 0, that is, propeller entirely free
from helical motion, the stability range shrinks almost

to zero, In this case, even a control surface can at

best assure only neutral stability.

In practice, however, a certain gmount of residual
helix of the oppositely rotating propellers will always be
available. Then a suitably dimensioned control surface
will give stability. Assuming for Asboth's helicopter =
20-percent difference in helix, that is K = 0,2 and -
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Y = 1.0, figure 8 gives as possible control surface F =
1,13 to l.61 m2, which amounts to about’ 10 percent of
the rotor disk area. Its actual control surface is prob-
ably of the same order of magnitude. The permissible
range in control surface size becomes so much larger as K
is higher; i.e., as the helix is greater. Once the helix

. reaches a certain value (g = 0.7 at ¥ = 0.5 in fig. 8),

stability may be. attained even without control. surface.

To iender the curves intelligiblé, we also plotted
in figure 8, negative values of P &t higher values bf
K, which, however, have no physical significance.

The greater the rolling moment, i.e., the smaller Y
is, that much less is the required helix or the necessary
control surface. In other words, the rolling moment has a
stabilizing effect, Unfortunately, it is impossible, in
practice, to raise the rolling moment beyond a certain
amount. It can even disappear altogether for oppositely
running propellers if they are of the same size and speed.

"How great must the helical metion of a helicopter be
to be stable without control surface? Nbviously, then,
when the numerator in (30)I disappears. Neglecting p*o-
gressively e; + Y ez with respect to K eq,. the intro--
duction of (31) gives as stability condition of the single
rotor-~helicopter -

J> = Eh—z—gr G a® 9 h

or, using the figures of our example:

1 05 4; 3 a
J —_ = N . = 6,58 k .
> 755 V//O.S 450 x 2,14 x 100 m kg s
For a radius of inertia of =~ 0.55 a, this inertia

moment would correspond to a rotor weight of at least 50
kilograms. It consequently requires a falrly enormous in-
ertia moment for stabilization without control surface.

The conditions become a2 little more favorable as a result

of the greater diameter on a lightly loaded autoglro rotor.
We assume for this:

0.27

1.08

tp = .77




26 N.A.C.A. Technical Memorandum No. 827

the other values to remain as before. Then the moment of
inertia becomes;

1 0.31 3 _ ' 2
J > 130 J/O.27 X 490 x 4.9 x 100 = 19.8 m kg s
This corresponds to a rotor weight of at least 28 kilo-
grams. The actual rotor of a corresponding autogiro is
somewhat lighter, so that it would fall short for stabil-
igzation, even with fixed blades. Substantially more un-
favorable is the case of oppositely rotating rotors.
Then, cr = O,

J > 37.0mkg s°

This helix could be assured by lodging a balance weight of
about 15 kilograms in the blade tips of a rotor.

The majority of the newer helicopters have lightly
loaded rotors with small articulated blades, on the order
of the autogiro. ZEvery blade hinge introdluces a new de-
gree of freedom, The flexural flexibility of the small
blades has, in principle, a similar effect. This renders
the theoretical investigation of the stability extraordi-
narily difficult. '

Even the autogiro, with its known light rotor, becomes
unstable at low flying speed, but the oscillation period
is so great that controlled stability is possible, at
which the pilot corrects the yawing motions by appropriate

control deflections. All helicopters having two opposing-
ly running rotors of this kind are known to be even less
stable when hovering. If the oscillation period is long

enough a skilled pilot is, however, as a rule, able to
rigse approximately vertically and to hover for a short
time, so as to attain the horizontal speed as soon as pos—
sible, where the relative wind and horigzontal control es-
tablish longitudinal stability.

Controlled stabilization is facilitated in a certain
respect if the two oppositely rotating rotors are side by
side. Then the pilot needs only to control the rotation
about the line connecting both rotors, because the rota-.
tion about the axis perpendicular to it is largely damped
by the opposingly directed 1ift change of the two rotorse.
Controlled stabilization with two coaxial rotors is prob-
ably much more difficult. Then it does not involve the
complete solution of the helicopter problem but rather an-
other transition stage from autogiro to helicopter,
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"The ecaptive helicopter has always clalimed a certain
amount of interest in regard to its applicabillty to mil-
itary, meteorological, and radiotelegraphic purposes.

"The’ flrst man-carrying captive helicopter was built in

Austria in 1918 (reference 9), It had two coaxial propel-
lers running in opposite directions, and was raised and
lowered by three cables and winches. The helicopter then
has the static stability of the three-point support.
Mooring a helicopter by one cable only would remove the
rrinciple of the dynamie stability, namely, the constant
direction of the extraneoue force applied at the center of
gravitye. Then the gravity could combine itself with the
cable force into a resultant -~ to a certain extent - in
any direction. This case has been elaborated by von
Kédrmidn (reference 10).

It is, to be sure, conceivable that controlled sta—-
bility can be attained in this case also, whereby the hel-
lcopter executes certain pendulous motions of moderate
size, such as occur on captive balloons by wind changes.
The pilot might be relieved of this control labor by prop-
er instruments which respond to inclinations of the air-
craft with respect to an artificial horizon or to rotary
accelerations, such as already have attained to a certain
stage of development for the gutomatic control of the
conventional airplane. Stability in free flight is prob-
ably a necessary requisite for the controlled stabiliza-
tion of a helicopter moored by a cable.

Vi, HELICOPTER DRIVE

One of the most difficult problems in helicopter de-
sign is the drive of the rotor without reaction on the
airplane body. Owing to its naturally large rotor diame-~
ter, the torque itself is unusually high compared to the
usual airplane power plants. Its gears must therefore
also be comparatively large. Added to this, the necessity
of torque balance to assure hovering without rotation of
the airplane body - it is not surprising that a series of
clumsy helicopter designs made their appearance which up
to now have caused the professional airplane designer to
steer clear of .the subject. -The energies of the designer
were exhausted on the drive problem, so that the stability
problem generally received no adequate treatment. The
results were not very satisfactory, and it was these very
difficulties that decided de la Cierva to make an autogiro
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driven by air speed out of the helicopter propeller driven
by turning moments.

A brief summary of the constructive means resorted to
heretofore to balance the torque (turning moment) may be
of interest.

Most builders of helicopters obtained this balance by
resorting to rotors in vpairs, driven by initiation of
turning moments in the thrust axis. The most important
arrangements in this category are:

1. Coaxial, oppositely rotating, 16 types. 7

. . /

2. Side by side, with parallel axes, oppositely roi
tating, 9 types.

3. Side by side, with +tilted axes, rotating in the
same direction, 2 types.

A single rotor is sufficient if the balance of its
turning moment is effected by auxiliary propellers with
horizontal axes. The possible arrangements are:

v

4, Auxiliary propellers on body, 2 types..

5. Auxiliary propellers on the rotor'bladesg 4 de~
sign tyves.

This list is essentially that of Lamé (reference 1),
brought up to date as much as possible. Construciionally
clearest and consequently most popular is arrangement 1.
Successful designerg of this type are Asboth, D'Ascanio,
and Breguet-Dorand. Next in popularity came Oemichen's
"helicopter of the first kilometer," in category 2, The-
advantage of this class lies in the smaller, higher-speed
rotors, and in its more easily attainadle controlled sta-
bility than with arrangement 1. Its objectlionable fea-
tures are the bulky booms on which the rotors are mounted.

Quite recently Platt (reference 11) investigated a
limiting case of arrangement l: The "ecountervane" attains
a considerably greater area and dces not turn dut is rig-
idly meounted to the airplane, For & disk area loading of

%— ~ 10 kg/m®, as found on modern autogiros and helicop~

8
ters, the fairly large surface F ~ 0.2 Fg 1is necessary,
and is located parallel to the direction of flight. This
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arrangement should be little suited for high-speed flight.
For s > a the effect of the ground on the moment bal-

ance 1is insignificant. . .

Particular interest attaches to Florine'!s arrange-
ment, 3, which may be called partly birotatory, because
the two rotor axes are set obliguely to produce through
the horizontal component of the rotor thrust a couple bal-

" ancing the driving moments of the two rotors. The free

helical motion of the rotors is only partly neutralilzed,
leaving a large remainder for stabilization.

Inasmuch as accevtable horizontal speeds as well as
autorotation of rotors in case of engine fallure, are ex-
pected from a modern helicopter, arrangements 4 and 5 are
probably ruled out in the future development of free-
flying helicopters. In point of fact, comparatively few
have ever been built on account of the enormous construc-
tional difficulties. To be sure, the possibility of necd—
ing only one rotor is so tempting that Glauért considered
arrangement 5 as "the most promising form of ecnergy trans-—
mission to the blades of a rotor" (reference 12).

Let us see if this ideal - that is, the helicopter
with a singlc rotor - is not attainable in some other way.
The most frequently built coaxial, oppositely rotating
rotor pair comprises two rotors whose angular velocity
vectors differ by 29 = 180° in the direction, With ar-
ticulated blades this angle changes in turning. Unless
the two rotor hubs are far enough apart, there is danger
of collision of the oppositely rotating blades when making
a turn. This distonce must in any case be greater than 10

percent of the rotor diameter as experience has demonstrat-

ed with the Bréguet-Dorand helicopter. This results in an
undesirably high location of the upper rotor hub. There
1s 2lso an absence of the free helical motion needed for
stability, if 29 = 180°, ©Now, however, arrangement 3
shows that moment balancing is equally attainadble with.
comparatively small §.; that is to say, partly contraro-
tation, :

For articulated blades, the vector of the angular ve-
locity can, Dby proper periodical motion of the blade hinge,

.very well form an angle with the '"metallic' propeller axis.

Modern design types generally make use of this fact for the
servo control of helicopters. So, if we utilize a control
of this kind, we can visualize two rotors rotating oppo-
sitely at an angle of 2¢ as being combined on one hub,
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wherein the blades of the first rotor revolve between the
blades of the second rotor.

For simplicity, we assume each propeller as consist-
ing of one blade only. The two blades of the two propel-
lers, cased in one another, are disposed diametrically.
Then the blade axes vary their angle relative to the me-=
tallic proveller axis periodically; that is, by =3,
Assuming the described blade motion to be positive, we can,
on the other hand, produce a periodic moment about the .
blade hinge by means of periodical blade-angle control.
If this moment ig in phase with the periodic change of
angle, we can transmit power on our propeller by means of
the hinge. Having two diametral blades, the two hinge
moments neutralize each other without causing a reaction
on the propeller axis or the airplane body. Only the ro-
tor blade is stressed in bending. 3By varying angle 9,
of blade~bending moment and phase angle, we can regulate
the transmitted power at will within certain limits and
fit it -to the amount needed to produce the thrust. We
have, in fact, a partially oppositely rotating propeller
arrangement with only one hub and only one metallic pro-
peller axis, which induces no torque reaction on the air-
plane body.

The basic idea of this type of drive was published

by Passat in 1921 (reference 13), and merits recall from
oblivion. Passat built a helicopter model with one rotor,
having four "bird-shaped" blades, which flap and rotate.
A 1ift of 90 kilograms with 10 horsepower was claimed for
it. Further details are unknown to the writer. The Dblades
probably rotated about their hinge axes, so that 3§ = B.
In that case, only a comparatively little power can be
transmitted because the angular amplitude B 1is limited to
about 10° as a result of the burbling of the flow at the
blade profiles.
e

' Each pair of diametral blades produces, during up-
and-down flapping, a periodical, axially directed mass (or
inertia) force, conformable to its own mass. In order to
neutralize this disturbing mass force, which would shake
the airplane body, we must have another mass going through
a similar but opposite motion. This might be 2 second pair
of blades disposed in peripheral direction, thus giving us
a four-blade rotor.,. However, this is not fundamentally
necessary. The essential factor is the paired diametral
blade arrangenent.
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It should perhaps be added that one frequently finds

in patent literature an arrangement whereby the rotor as
.a whole executes an oscillating motion in axial direc—
tion. From the aerodynamic point of view, this method
can also be used to transmit flapping power. The balanc-
ing of the mass forces would require two oppositely swing-
ing rotor hubs, through which the unity of the rotor is
lost again. Aside from that, the bending moments in the
rotor blades caused by the mass forces make the construc-
tional execution of such full-size rotors impossible.

For that reason, we shall take only the flapping drive of
the above~mentioned method into consideration.

An observer, turning with the rotor axis, sees the
‘blades make one up-and-down flapping motion during each
revolution. We may therefore speak of a flapping drive
of the blades, but with one provision. To an observer:
standing still, each blade appears to move in a certain
plane; that is, on a conical surface by rotor-thrust load-
ing. The movement of both blade axes therefore is alto-
gether like the movement of two normal one-~blade rotors
so fitting into each other that they receive one common
hub and are partly oppositely rotating.

The blades resist the deflection from their natural
surface of motion energetically. In consequence, the flap-
ping frequency cannot be raised at will in order to trans-
mit as much power as possible, but is strictly bound to
the rotation speed. Otherwise, the mass forces would set
up a "blind moment" which would more than offset the "act-
ive motion," and so render the construction of a suffi-
ciently strong rotor blade an impossibility.

In the following, this flapping drive of the rotor
is analyzed theoretically.

Assume a rotor with one blade rotating in a plane E
at constant speed w = v (fig. 9), while at the same
time this blade executes rotary oscillations about its
neutral axis with the same circular frequency v and the
amplitude B. Assume further that the rate of flow through
the rotor is negligibly small with respect to the tip
speed. By means of the nonstationary airfoil theory, the
moment of the rotor blade with respect to an assumed axis
lying in the plare of motion and meeting the rotor axis at
right ang%es,'Can be readily determined. Using the nota-
tion of Kussner from his report on nonstationary 1ift
(reference 14), and assuming plane flow - a condition
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closely met by the small rotor blades ~ the moment is:

M=o va.B eivt'c{a[(l + 3 %) (1 + 7 (%))

2

s L 3
+ i E ] 1 r° dr (32)

(T is & complex funetion tabulated in reference 14.)
The evaluation of this integral calls for assumptions re-

garding the blade chord 21. We analyze three blade forms:
L )

1. 1’ = 03068 o - OIO5O r
2. 1/ = -OSO (2%
3. 1 = .050 a

The blade tips arc half round.

As v = w, according to assumption, the moment at the
blade hinge is:
M=p ke Fg 2 B m oIVt 4 kg (33)

-The complex moment coefficient m 1is obtained by graph-
ical integration and shown in table III for the three blade
formsg; m' and m" denote the real and the imaginary parts;
m the absolute amount of this coefficient.

The periodic circulation wvariation of the blade pro-
duces a vortex loss which is also computable accordlng to
Kissner (reference 14). In that manner a resisting moment
about the axis of rotation D is created; its mean loss
of power ig:

[t}

a 2
B, = % npv? B2 ! [1 - T %)J 1+ ;a]-l r® ar

° (34)

p u® Fy B2 h m kg s

The real coefficient h 1s given in table III for the three
blade forms.
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TABLE III. Coefficients of the Flapping Drive

.IBlade. B Moment coefficients .. ..|] Drag coefficients
form .m! ol o - h -y

1 0.0128 0;0020 0.0130 0.000417 0.00221

2 . 0140 .0025 0142 .000394 .00233

3 .0214 . 0045 .0218 . 000992 .00381

The choice of form and curvature of a blade section
is, as a rule, for gmallest possible frictional drag of
the section by a given 1ift coefficient, which corresponds
to an angle of incidence for the most frequent running con-
ditione For small angular variations the drag coefficient
is approximated by means of the power series:

ol n
c,, = ¢ - )
w % Wn (8 Bo
Posing B - B, = B eiUt, the entire mean friction power

of the blade with assumedly constant profile, becomes:

s 3 1 3 2

The first term of this equation represents the inevi-
table friction loss produced by stationary flow and already
contained in equation (16)., The other terms must be
ascribed to the flapping drive. We write for the friction
loss:

1 s, 3
5 Cwy B+ g ow

Hyr = p u® Fgy hy Lcwo + .

B* + ...] (35)

The coefficient h, is also included in table III.
The departures from the stationary flow of the analyzed
blade forms amount to a few percent only. Therefore the

friction lossg H. exceeds the vortex loss Hm substan—

tially. The movement of the blade hinge bveing in a plane
E with constant angular velocity, according to our assump-
tion, the flapping angle is, according to figure 9:

sin ¥ = sin d cos v (36)

The blade~bending moment M, whose axis of reference
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in plane E 1lies verpendicular to the blade axis, can be
divided into two components. The component transmitting
flapping power must have a moment axls vpervendicular to
the rotor axis SS and therefore amounts to

Mg = M £05.8 (37)

If 4 1is the phase angle between the time period of
the maximum bending moment of the first order of the blade
and the passage of the blade axis through the vposition
perpendicular to the rotor axis, the mean flapping power
is, according to equations (32), (36), and (37):

\

1
L = - pt
V cos ® En.ﬁ Mg 4aY
by STV 3 4y
= . g €08 ¥ 4T 44
v cos @ o5 J Mocos v at @
=puw Fqy BT coscop sin § cos 9 Tttt (38)
< TT
1 r sin2 «
I . 2 2 do
T o 1 - sin® § cos® «
L=pud Fy B cos ® cos 3 tan 3
s o )

With given tip speed u the power losses are only
dependent on the amplitude of rotation B of the blade,
according to eguations (3Z) and (35). In order to trans-
mit as much flapping power I as possible by predetermined
losses and thereby attain a high drive efficiency, the an-
gles o® and 9 must be chosen propitiously. It involves
no difficulties to so control the blade angle B that the
phase angle becomegs @ = 0. Then <coso = 1. For given
phase zngle, the power becomes maximum if

cos® § - 2 cos § + 1 =0

cos & = 0.619; ¢ = b1~ 45

Admittedly, this optimum angle of opposite rotation
ig excessively great. Besldes, the congtructive optimum
lies at a smaller angle since the rotor is to produce a
thrust in the direction of the "metallic" rotor axis 88
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contrary to the force of gravity. If the motion planes of .

~ " the rotor blades-diverge materially from the normal plane

to SS, the thrust coefficient may decrease. It may
therefore be presumed that § ~ 30° is about the upper
1imit of the practically permisscible angle of opposite ro-
tation. -

For the purpose of a comparative computation, let us
assume that a blade requires o moment coefficient of

kg, = 0.00025

for impulse generation, which would approximately corre-
spond to the thrust coefficient of

ks = 0.0134:

for a four~blade rotor in hovering condition.

Now, let us see how great the total rotor power Te—
quired with flapping drive is, under this assumption, for
our three particular blade forms.

: The writer's own measurements on model rotors with
Joukowski profiles of small thickness and curvature, gave
the following drag coefficients:

CWO = 0,011
2 1 for B S 0.15
Cw, = o 7

In accord with the previous assumptions, we obtain from
equations (34), (35), and (38) the moment coefficient on.
the one hand, as transmitted, and on the other hand, as
absorbed power: .

kg = kq, + 2h 3% + hy (2cq, *+ oy, B7) (39)

kg ?ﬁ cos 84 tan % B _ (40)

Then the required antirotation angle and the moment
coefficient ky can be computed for different blade rota~
tion amplitudes B from (39) and (40). The results are
shown in table IV.. The ratio- € = kd/ks' is computed
with a thrust proportion for one blade at
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kg! = = kg = 3.35 x 1073
s T gz s T 9

. If the previously made "sphere!" assumption of the
quantity of flow holds true, the thrust would have to be
independent of the antirotation angle 4. In experi-
ments - to be published later, in detail - the thrust re-
mained practically constant within the test range 34 = 0
to 10°, according to which the efficiency of the flapping
drive is:

kg

N =

TABLE IV. Rotor Blade with Flapping Drive

No. B 0,05 0.10 0.15
kg x 10° 0.207 0.331 0.372
1 n .973 .901 .802
¢ . 092 .099 111

5 30.7 15.0" 11l.1
kg x 10° 0.310 0.335 0.377
> N .973 .900 .803
c .092 .100 113

§° 27.6 13,8 9.7
kg x 10° 0.349 0.396 0.473
3 n . 956 .843 .705
€ .104 .118 .141

5° 19.2 10.5 8.3

Unless the antirotation angle ¢ 1ig too small, good
rotor € and good efficiencies of the flapping drive are .
obtainable, according to table IV - superior to the drive
by autorotation in the relative wind. Moreover, it is de-
sirable for mechanical reasons to keep the rotation ampli-
tude B, which governs the losses, to a minimum in order
to keep the flexural stresses of the rotor blades and con-
sequently the structural weight, to a minimum. With re-
gard to the separaticn of flow, it must be B < 0.17, cor-
responding to 10° in degrees of angle. In the full size
this limit will, moreover, not te attainable for reasons
of strength. At 4 = 30°, +the highest value of the peri-
odic bending moment is of the same order of magnitude as
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the bending moment of the rotor blade under statlsanary
normal thrust 1oad that is, of controllable ocrder of mag-—

‘mitude,

The decisive advantage of this flapping drive is the
unity of the rotor which assumes:

1) a compact helicopter design;

2) sufficient free helical mation for stabilization;

3) a low drag at high speed.

Danger that the rotor blades may flap simultaneously,
does not exist. Aurctation is possible after stopping or
failure of the flapping drive, since the blade form is not
substantially different from that of the autogiro, and the

tlades are likewise hinged at the hub.

On the other hand, we must not forget its disadvan-
tages, These are:

1) stronger and heavier rotor blades capatle of with-
standing the high bending stress are required;

2) additional losses because of the mechanical trans-
mission of the flapping power from the engine to
the blades.

The purpose of these expositions was to show that,

~ from the aerodynamic point of view the flapping drive ap-

pears practical, and contains no secondary conditions
which from the very beginning would militate against their
being constructionally feasible. .

The flapping drive of the rotor is a mechanical analo-
€y to the electric alternating-current. synchronous motor.
The blade moment «» B corresvonds to the amperage J and
the angle of antirotation § to the voltage ZE. The phase
angle o he 5 the game significance in both cases. The
loss Hp o BZ corresponds to the copper loss wJ2 the

loss Hy 1is comparable to the iron loss, since in neither
case does a simple relation exist between B - and J. '

The rotor with pure flapping drive is just as little
capable of starting by itself as is the electric synchro-
nous moter. It is therefore proper to actuate the rotor
shaft normally by initiating 2 torque and then effecting
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the change into flapping power at the rotor shaft itself
by wobble plates. Then starting presents no difficulty
and. more than that, one is in vosition to control the de-
gree of equaligzation at will and to induce free positive
or negative moments which allow the aircraft to turn in
any desired direction while hovering.

Horizontal high-speed flight of the helicopter does
not necessarily demand an absolutely moment-free rotor
drive. It might be that in thiis case the balancing of the
driving moment by a force couple is more economical; this
is produced through the reactions of the relative wind at
two suitably distant control surfaces. Ag is known, pur-—
suit airplanes with very light power loading can climb
vertically like a helicopter by neutralizing the propeller
driving moment through aileron deflection; that is, through
a couple at the wing tips.

VII. OUTLOOK

Heretofore the propeller has been almost exclusively
known as 2 machine for creating a stationary thrust in
axlially symmetrical stationary flow. The discovery that,
with suitable form and control of blades, it can also de-
velop valuable gqualities in other than axially symmetrical
stationary flow - which, to be sure, are difficult to treat
theoretically, although practically provable - has brought
us considerably closer to the complete solution of the hel-
icopter problem. In order to continue in this direction,
,these gqualities of the rotor must be theoretically and ex-
perimentally explored and in the same detall a2s in respect
to the nxially symmetrical flow. For with the real heli-
copter we always have to count on departures from the ax-
ially symmetrical flow, whether in stability investigations
or in computing flight performance or flapping drive.

Translation by J. Vanier,
National Advisory Committee
for Aeronszutics.
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Figure 2.- Axially synmetrical
ideal flow about a

rotor,
Figure 1.~ Components of the air-
flow through the rotor
disk area,
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Figure 4.~ Thrust coefficient
Figure 3.- Polar of a rotor. . of rotor at differ-
ent wall distance.
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Figure 8.~ Stability of the Asboth
helicopter.

Figure 7.- Helicopter
with control
surface (diagrammetical).

Figure 9.~ Perspective drawing of
" rotor blade movement,







