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HELICOPTER PROBLEMS’*

FOR AERONAUTICS

No. 827

By H: G. K~ssner

The present report deals with a number of the main
problems requiring solufion in the development of heli-
copters and concerning the lift, flying performance, sta-
bility, and drive.

A complete solution is given for the stability of
the helicopter with rigid blades and control surfaces.
With a view to making a direct-lift propeller sufficient
without the addition of auxiliary propellers, the ‘flapp-
ing drivelt is assessed and its efficiency calculated.

I. INTRODUCTION

The idea of the helicopter is as old as aviation it-
self. Leonardo d.a Vinci designed a helicopter, but the
first air-borne models did not appear Uiltil the 19th cen-
tury, and the development of the airplane at the begin-
ning of the 20th century ran parallel with the helicopter
until the.former gradually pushed the latter into the
background. The first man-carrying helicopters were never
able to pass beyond the stage of air jumps at best, since
they mere unstable in flight and mechanically extremely
sensitive. But now that sufficient experience in light
design and. in aerodynamics is available, the prospects Of
helicopter development are much more promising; and this
is in no small measllre due to de la Cierva!s pioneering
labor. A notable historical outline of helicopter devel-
opment is found in Lam61s book (reference l).

The autogiro is the first successful aircraft on
which the momentum for overcoming the gravity is produced
by the downwash of an airfoil system which, apart from
the trailslatory motion, executes an additional rotatory
motion ,about e.fixed body axis.

*llprobleme des Hubschraubers. “ Luftfahrtforschung, vol.
14, no. 1, January 20, 1937, pp. 1-13.
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The autogi,ro has ~olved ’tlieproblem of horizontal
flight of helicopters up to such a low speed that one is
even tempted ~to forego the floating power at v = O,
since the frequently prevailing wind velocity still en-
ables the autogiro to hover over a certain point and to
land as tvell. Besides, a real helicopter should be capa-
ble of rising and landing with horizontal speed in gusty
weather. Lastly, de la Cierva developed the jump-start
method which allows the forcing of the autogiro several
meters straight up in the air - which, properly handled,
suffices for reaching stalling speed without a second
ground contact (reference 2). So the autogiro has come
quite close” to the performances which originally had been
commonly accepted as being reserved for the helicopter
alone. On the other hand, it also has its limitations
both as to application and to drawbacks: The comparatively
smal’1 climbing angle makes a free space necessary for the
take-off. The handling in side wind is difficult, and so
is the stalled landing. At high flying speed the longi-
tudinal control is very sensitive. Besides, the rotor
may get out of step.

Thus , one logical trend in development would be to
give the autogiro the still lacking helicopter properties:
vertical stationary ascent and descent, and hovering with-
out , ho~.vever, depriving it of any of its developed good
characteristics. Several new, successful helicopter de-
signs are along .these lines. Right now the helicopter is
%est situated far catching up with the technical advan-
tages of the airplane and for omening up new possibilities
of use through its unique floating power.

Just as the airplane enjoys its present state of de-
velopment P.S n result of the intensive theoretical and
experimental explore.tion of all problems arising with the
airpltaue, so the further development of the helicopter is
in need of clearness regarding the typical helicopter
problems which are unknown to the airplane.

The following arguments are a contribution in partic-
ular to the elucidation of the problems of stability and
of the power of the lifting propeller in sustained flight
(hovering). l?urther, the,creation of lifting force and
the expected flight performances are treated in light of
the present state of research.
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radius of propeller disk.

motive - 9
—P
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amplitude of rotation of blade.
.,

velocity of flo?.

control surface.

propeller disk area. ,,

equivalent flat-plate area.

equivalent flat-plate area of propeller
blade.

gross weight.

1) distance of e.g. from the plane of
the propeller disk,

2) coefficient of power loss.

power loss.
&,\j* i&r YY.9mt?wl.m

.
~-of the rotor.

thrust.

semi%’ing chord.

pover input.

1) mass of the helicopter.
2) moment coefficient.

transmitted. effective power.

.“.
moment of precession.

1) radius vector.
2) coordinate in propeller radius di-

rection.
7.O root of the characteristic equation.
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(m) wall distance of the propeller disk area.

(m/s) tip speed.

(!n/s) flying speed.

(m/s) rate of clim%.

(m/s) axial velocity.

(kg ) drag.

coordinates.

angle between the z-axis and the thrust
axis projected on planes xz and Xy ●

1) criterion for rolling moment.
2) flapping angle.

lift-drag ratio.

coefficient of propeller reactions.

1) angle between the z-axis and the ra-
?.ius vector.

2) anfle of antirotation.

(m kg/s2) mass moment of inertia of the helicop-
,.

ter with respect to the e.g. of the
%lades.

criterion of helical motion.

coefficient of advance.

slipstream contraction factor.

(1/s) vi%ration frequency.

(kg s2/m4) air density. ‘

JT~=sa characteristic of wall distance.

v phase angle.

@ velocity potential.
.

w (1/s) angular velocity.
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III. CREATION OF LIFTING FORCE

The symmetrical axial ideal flow around a sustained
lift propeller was originally treated by H. Kirnmel in his
thesis of 1912 at Munich (reference 3). Even though his
solution had been reached on the lasis of various simpli-
fying premises which do not occur in reality, it is never-
theless desira%le, when designing a helicopter , to be able
to,predict, ,at least roughly, the air motions to be ex-
pected - whether to afford a control of their effect on
any stabilizing surface or a check on the mutual interfer-
ence of several rotors. For this reason, a brief summary
of Kimmells results should be of interest.

The symmetrical axial ideal flow on a sustained lift-
ing propeller may be visualized by superposition of sev-
eral potentials. Let us assume that the axial velocity
of flow” through the propeller disk area is constant. Dis-
posing vortex sources on the disk area from which the air

with the constant axial velocities
+: flows out at both

sides, and denotiilg with Pn(cos d) the zonal harmonic
spherical functions of the first type, the potential for
the propeller disk radius a =“1 is, according to Kimmel
(fig. 1, left):

I
+ –i! p4 - MKM: F’6 + - . .

2X4 2x4x6 1
\

}“””(1)

r > 1“: @a =
[

l~o+ ~_ .g~
Z!

.2F–
2x4 rs

1X3 P* +
———-

- 2x4x6 ~s ““’II
Prescribing a constant axial velocity + ~ through the

ioropeller disk area affords the potential (fig. 1, right-
han.d ,s>de) :..,,
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Superposition of the two potentials @a and Qc re-

sults in a flow whose axial velocity has, at one side of

the propeller disk area, the constant value a ~ = tvE+Y

and at the other side, the value zero.

This flow corresponds to the rotor inflow. For a
rough computation of tlie outflow, we consider the zone 2,
which is assumed to be bounded %y the propeller disk area
and the cylindricr,l surface r = 1, and extending to in-
finity tow,ard the z-axis, We then assume in this zone a
stream of constant axial velocity 2W having a potential

Ob = 2w

On forning the potential,

@~-.oa-

in the “zone ~ we find on the
stant axial velocity 2W - m =
axial velocity 2W prevails.
factor is W = +. In addition,

z

@c

propeller disk area the con-
V7, whereas at infinity the
The slipstream contraction
there is a constant pres-=

sure jump a}.ong the entire propeller disk area to the amount
of

Ap = 2p W2

This assumption is contained in all propeller theo-
ries and is evidently valid so long as the axial velocity
of flow through the slvept disk area remains roughly con-
stant. This is the case for propellers having low pitch
r,nd multiple blades; hence, especi~.lly appropriate for
direct-lift propellers.



N.A.C.A. Technical Memorandum No. 827 ‘7.

At the edge of the plane of pas,sage the streamlines
are - theoretically - substantially curved, according to

*J. figure -2. Thu S , in ietiI-ity”a-50rtex iing””forms ar”ound the
border line which can %e observed occasionally even in
torque-stand tests of,regular propellers.

If two coaxial,propellers are disposed closel~over
one another, they can be ambroximately substituted~~~a
propeller disk areas If th~ distance of the propeller ~
planes is greater, the bottom nropeller.draws in an addi-

%tional quantity of air which, -. given stream energy, am-
plifies the impulse. However, the attainable gain is much
less than afforded %y mounting the two propellers side by
side.

The impulse produced by the stream is always followed
by a loss of power. Consider a stream with the asymptotic
end section F. and constant stream velocity m. in this
section. T~ie normal force produced by this stream is equal
to the impulse per unit time of f].uid quantity passing
through the jet. That is, it is

A= ~+ (m Wo) = p F. ‘ivo2

The power absorbed to produce the impulse is:

(3)

(4)

Eliminating W. from (3) and (4) leaves:

A3 = 4 N2 P F. (5)

To compute the power from this (5), we introduce an
assumption concerning the asymptotic end cross section F.
of the jet in ideal flow. For in real viscous fluid the
jet is in a continuous Process of dissolution while form-
ing a mixing zone, so in that case t’here can be no ques-
tion about an asymptotic end cross section. In conformity
with the above, we introduce for a free cylindrical jet
the contraction factor v = ~, so that

,,. , ,,, ,.,,
Fe””’=l.KFs’=+”Fs (6)”-”

We further introduco, for abbreviation, the thrust coeffi-
cient and the coefficient:
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.A ~ M
k~ = --–—-* kd=. ——.- ___

p 2 ~~’ ~u2F~a-u
2 2

(7)

Writing (6) and (7) in (5) gives the Bendemann equation:

kd =,~- kssi2 (8)
:,

It is presumed that the %lades are controllable, as
in the majority of modern helicopters. For a helicopter
with fixed hades is comparable to an airplane which can
only fly at a certain angle of attack and is therefore
difficult to manage.

. Plotting ks against kd for a predetermined direct
lift propeller affords a set of curves resembling in sig-
nificance the profile polars of an airplane. The ‘d/ks
ratio is a measure for the quality of the rotor and reaches
its optimum value at a certain thrust coefficient kso ,
similar to the airnla
curve (8), shown

Aft/drag ratio. Bendemann lS
in figure 3, has in this repre-

sentation a significance similar to the induced-drag par-
abola in profile polar curves. The real helicopter polar
is shifted a certain amount to the right to allow for the
frictional drag of the blades.

For propellers with low thrust coefficient and small
coefficient of advance - that is, for helicopter propel-
lers in particular - the mropeller theory can be linear-
ized conformable to airfoil theory. The circulation de-
crease at the blade tip can be allowed for conformably to
the screen-flow theory, as employed by 0. Talchner (ref-
erence 4) for cylindrical, nontwisted propeller blades and
definite llade number to improve Bendemannts equation.
The improved paralola is the dashed curve in figure 3. It
will be seen that theory and experiment are in agreement
up to a profile friction drag, which in itself increases
somewhat with the angle of attack.

Bringing a constant-speed helicopter propeller closer
to a parallel flat wall results in a different thrust as
well as torque. If s is the wall distance, these
changes are properly represented as function of the para-
meter

u= r=a
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I These changes were investigated by the writer with. a model
propeller of 1 meter diameter which had four blades of op-

W, timum twist and a constant chord of 50 millimeters.
\

Its
/ thrust coefficient ks is shown plotted against ~ in
; figure 4; its moment coefficient kd in figure 5.
:[
[

I?rom this it may be deduced that for finite wall dis-
tance the moment is smaller or only slightly greater than
in unlimited flow because the quantity of fluid passing
through it betiomes less as the wall is approached. In ac-
cord with it, the thrust also decreases with decreasing a
somewhat in ,th~ same ratio, at first, as the moment. This
decrease is, as proved.by the measurements, markedly in-
fluenced by the characteristic va,lue. On further decrease
of (J the passing fluid quantity decreases still more, so
that the moment drops very substantially. The smaller the .
velocity of discharge, the more the angle of attack of a
blfi.deelement approaches its angle of inclination rela-
tive to the mall, at which the %lade circulation and con-
sequently, the thrust is increased. This increase is lit-
tle dependent on the characteristic value and is almost
linear with ~ in the range of G = O to 0.8. In the ex-
treme case u = O, the thrust would be approximately
double if the blade chord ~~ere sufficiently small. The
point o = 1 is worthy of notice as the point where all
measurements of thrust and moment are approximately the
same as in unlimited fluid. For this reason helicopter
propeller measurements should be made at ground distances
either in excess of 5 times the propeller radius or else
about equal to the proneller radius in order to simulate
the conditions in free-atmosphere.

For Ci>l the ground effect is small and hardly al-
ters the kd/k~ ratio. In the zone of 0<1 this ratio
drops very considerably and fairly suddenly. At constant
power this means a rise in thrust. On landing, this acts
like a s:pringy cushion; that is, it reduces the landing
shock, ‘Provided” the proPeller can approach the ground
closely enough. Otherwise, it may happen that a helicopter
with insufficient engine power is able to float on this
air cushion without being ~.%le to rise any higher. In ad-
dition, this air cushion produces a stabilizing moment
,which tends to bring the p“rop~ller disk area parallel with
the ground if the distance is s’<“r!.: that-is,- (J<l.”
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IV. FLIGHT PERFORMANCES OF THE HELICOPTER

The power loading of the helicopter while being sus-
tained in free ~.ir is:

(9)

On a model lifting propeller, with rectangular nontwisted
blades , for example, the following optimum values were ob-
tained:

Num3er of hades ks kd/ks
————— __________ _ ..— ——.—.. .—-———..— —

z e 2 0,005 0.08?

z =4 .008 .109
——————-——_——___—_________--_——_ ——-————— 4

By very low thrust loading ks and given tip speed
u, the two-blade helicopter propeller is - as regards
mower required - superior to the four-llade one. But in or-
~er to avoid abnormal dimensions, higher k~ values are
much preferred. On the other hand, the thrust loading is
upwardly limited by the requirement to be able to make a
forced glide landing with autorotating propeller in case
of engine failure - a stipulation so very natural and justi-
fied that it already serves as the correct method in heli-
copter development. Actually hilt helicopters of this
kind, with three to four blades tapered toward the tip,
have :

ks - 0.013 to 0.015; k~L/k~ - 0.09

Admittedly, helicopters with ks = 0.032 have also been
}uilt, lmt for special reasons which are associated with
stabilization. Then the kd/ks ratio probably amounts to
at ler.st 0.12. The autorotation of such highly loaded
propellers with comparatively, high pitch, causes difficul-
ties, especio,lly if coa.xi~ally arranged. But , aside from
all that, the rate of descent in an emergency landing
~ould be inadmissibly high.

To invoke o, com~~r.risen, it nay hc r,dded
autorotatiilg propeller in horizontal flight,
coefficient referred to tip speed amounts to
and that the best horizontal c is:

thr.t for an
the thrust
k~ - 0.015
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cmin - 0.11 for A - 0.4 to 0.5

,.. ‘The yosition of t“he optimum tip speed decisive for
~ the power required of helicopters,

~

must be defined 3Y com-
plete mathematical anal”ysis of comyarat~ve designs. The
greater th”e taper of the blades, the higher the optimum

i of u will be. As a rule, values of u< 100 m/s lead
! to uneconomical enlargement of the size of the propellers;

I hence modern helicopters fly like the autogiro with

u - 110 to 130 m/s

Writing these values into (9) gives an average of ~ = 11
In/s.

The regulations of the DLA stipulate that e’very air-
plane at take=ofi? must have an excess power so that its
rate of clim’b is w > 2.5 m/s. This readily suggested
utilizing this minimum for the vertical take-off of a hel-
icopter as veil. An average ranges around

E= 11 + 2.5 = 13.5 m/s
G

G75-.
N

5.55 kg/hp.

This yower loading is reached by the latest helicopters +
although seldom - it usually falling a little lower. The
constructional difficulties are at present still too great
to assure a helicopter with much lower power loading capa-
ble, Trith its excess power, of developing a high speed of
climb.

According to a previous statement, the jet velocity
bf the helicopter in ideal flow is at infinity W. = 2W
where, tv is the rate of flow through the prop”eller.disk
area. Then , according to (3) the lift is

Q! 2WA=dt (lo)

The air mass per second sha,ring in the impulse creation
is, in the case of the”h”elicopte”r, the product of propel-
ler disk area IV a2, the rate of flow w ,
density p.

and the air
In the case of the airplane wing with small

angle of attack, it leads to an equation similar to (10),
with w denoting the vertical velocity at the place of

I ----



12 N.A.C.A. Technical Memorandum No. 827

the wing, and 2W the velocity far downstream from it.
The air mass per second contributing to the impulse cre-
ation of wings with elliptical span-load distribution and
span b is the product of section nb2/4 of a tube of
flow, the rate of flow c through this sectian, and the
air density.

Visualizing the propeller disk area of the helicop-
ter propeller as wing area, the section of the tube of
flow is:

F . ~ 4:QJ: =ma2

that is, again equal to the propeller disk area. This in-
terpretation has proved itself in the theory of the auto-
rotating propeller with small angle of attack. The ap-
pearing flow loss merely serves to cover the friction
losses of the wing, but does not reduce the air mass s&ar-
ing in the impulse creation (cf. reference 4a).

It is very natural now to generalize these two re-
sults, which for the moment are valid only for two limit-
ing cases, to include any flow direction of the propeller.
We assume that the contributing air mass is always ob-
tained as quantity of flow through a sphere circumscribed
about the lifting propeller. Of course, this assumption is
only roughly correct, aside from the fact that corrections
due to finite bla,de number must be made. The precise theo-
retical treatment of this quite difficult problem is still
lacking.

This assumption allows the calculation of the power
required for impulse creation by any helicopter motion.
The impulse always acts against the direction of the abso-
lute velocity with respect to the fluid at rest at infin-
ity. Suppose the direction of the flying speed v of the
helicopter inclines toward this direction at an angle O.
Then the rate of flow through the circumscribed sphere af-
ter vectorial addition of v and w is:

c J v 2= - 2V w Cos a + W2

We finally obtain as impulse force and power

(11)

A = p Fs c 2W

}
“(12)

N’i =Aw



.
N.A.C.A. Technical Memorandum No, 827 13

For the special case of O = 900, equations (11) and (12),
we obtain the equations already reported by Margoulis (ref-

,,erence 5)-. Now the two following extreme cases obtained
from (12) by eliminating m are important:

v—>0: A= = 2p F~ Nia (13)

w—>0 : A2 = 2P Fs V ~i (14)

Equation (13) is identical with Bendemannls equation (8),
while (14) contains the known approximation formula for
the induced drag of a circular airfoil.

The friction power of a helicopter in arbitrary flow
direction is only roughly approximative, because the inside
%lade elements are occasionally under high angles of at-
tack and are attacked from the trailing edge. For such
cases it is hardly possible to give exact friction factors.
Besides, even if these values were known, the integration -
i.e.,. the formulation - of a mean friction power value with
respect to time, is quite tedious. For that reason, we
shall “s”i”mplifythe present problem step by step.

First, we assume the blades to be so formed and con-
trolled that all blade profiles remain within an angle of

~attack range below burbling. For this range a constant
mean value r= of the friction factor for all blade pro-
files is assumed. If c is, as before, the rate of flow,
the relative velocity at the place of any wing element in
symmetrical axial stationary flow is:

v= (C2 + r2 ~2)1/2

The profile friction produces a frictional moment
about the propeller axis as well as a drag of the whole
propeller in axial direction. It is 2.widely spread mis-
take to assume that the circulation of the blades would
have to disappear at zero thrust and that therefore in
this operating condition, one could measure the fricti onal
mo,ment of the propeller alone. This erroneous deduction
is avoided by a vigorous :Lssumntion which contains the ro-
tatory and translator sh~’.re -of the friction power entire
(undivided). ..The tot~.1 friction power of.-the propeller
with z blades is:

NR .Pzz;fa t(r) v-s dr
o

(15)
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In the most elementary case of wing chord 22 = constant,
the friction power with A = c/u becomes:

Numerical values for function f~ (A) are given in talle I.

As second limiting case, we select the flight direc-
tion perpendicular to the propeller axis. Then ,

(C2 --
1/2

v= 2c r w cos a,+ r’ w2)

whereby a is the position angle of the peripheral direc-
tion relative to the flight direction. First we determine
V3 for one revolution; that is CYJ= o to 21T. This is ac-
complished with the aid of the defined integral:

;; j’nl --
3/2

2X Cos a,+ X2) da
o

= 1 + ~ X2+ & X4 + ~ X6 + .*..
4

for
16

X<l

1

“ “(17)

=x3+ ~x+-&x-l+jl-- x-3+. .. forx>l
I,.

obtainable by development of the integrand according to
spherics.1 functions.

Introducing (17) into (15) and posing 21 = constant

and A S 1, gives the friction power:

1 (18)

.——
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I

t
Numerical values of the fa(~) function are given in

+, ,..— table I. In, the-second case the friction power is con-
sist.entl~ severtil perc”ent “lower than in the stationary

I case. Admittedly, our assumption of a constant mean value

1%””
is fairly rough. If we considered the actual flow on

! the inside parts of the blades, the friction power of the
\ second case would he higher. Then the lowest possible

friction power would probably be about the same in both
cases. Again, it is natural to generalize these two re-
sults representing extreme cases to include any flight di-
rection of the helicopter propeller. We assume that hy
proper control and blade twist the friction power is inde-=
pendent of the direction of flow. To compute the power
the approximate assumption

f(h) “~+hz

valid for h ~ 0.6 suffices in most cases.

TABLE I
.—____

h
-———___

o
.1
.2
.3
●4
.5
.6
.7
,8
*9

1,0
.———__

-—————-——-..
f~ (~)

-———— ..———

0.250
.258
● 282
.325
●393
.489
.616
.783
,994

1.253
1.569

-——— .——___

f2(A)
————————-

0:250
.256
.276
.313
.369
.451
.564
,“714
,909

1.155
1.458

_————__—— .

-———————
f(~)

-——————-

0.250
.260
290

:340
.410
.500
.610

.————-

(19)

When summing up the foregoing results, me
that the properly designed propeller in yaw is
both as regards the air mass engaged in producing the im-
pulse end the friction power, and therefore constitutes a

can expect
favorable

suitable and economical means for impulse. creation.

Through the two foregoing assumptions, the impulse
power and the friction power of the helicopter propeller
have become independent of the direction of flow, thus mak-
ing it possible to compute the power required for level
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flight of this propeller approximately independent of the
direction of flight. If Fw denotes the equivalent flat-
plate area of the airplane fuselage, the total power re-
quired for sustained flight for the impulse force A is,
according to (12), “(18), and’ (19):

Assuming the tip speed u = constant, we obtain the
minimum of N by derivation, according to c and equat-
ing to zero:

m=- A2 ~
-–--—–w + P %’vs u CQ + 2 P ~Jy C02 = odc 2p Fs co

(20)

The optimum value co of the rate of flow is readily com-
putable from (20). From (12) follows:

A
w= ———— -—

2P Fs Co

Now we assume the drag of the helicopter to be low
and the i’mpulse acting against the gravity. Then A - G.
If the speed of climb Vz of the helicopter is given, the
optimum angle of climb, according to figure 6, is:

Vz
tan ~ = ——_._.—————.———

J
—-——-—..———— (21)
co2.- (Vz + w)’

Equation (21) is applicable only when Vz < co - w, that

is, for a helicopter with small excess of power. In this
case, a diagonal climb with q)o < 900 gives the highest
speed of climb. But, if Vz > co - ~, a case not real-
ized as yet with existing helicopters, the vertical climb
of Q) = 5’00 is the best.

As the airplane body of the helicopter usually pre-
sents its smallest equivalent flat-plate area in the hori-
zontal direction, the optimum climbing angle tends toward
lower values th~~n are to “le expected according to equation
(21).

As an illustrative example, let us study a helicopter
with the following characteristics :

—-l—- ■ml— mll-lml mm-ml I Ire-II
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,., ,,

We obtain

G = 490: kg F~ = 14*4O ma

f’ ‘“
,1.2 .ggsz

m 4--
Fw.~ = ,.03 m2 .

u= 130 m/s Fw = .10 m2

co = 39.0 m/s w = 3.63 m/s

Even if stipulating the fairly high clim%ing s-peed of
v= 15 m/sz from this helicopter, the best climbing an-
gle amounts to only ~. = 23.6°,
(21).

according to equation

so, as regards climbing; flight, the conditions for
the helicopter are very nearly those of the conventional
airplane. By given power the greatest climbing speed is
practically in no case reached by vertical ascent, 2.s a
superficial analysis of the helicopter might probably le~d
one to expect. Vertical ascent and hovering are quite
uneconoinic~.1 operating conditions of the helicopter and
require a, comparatively high specific horsepower. This
maximum po~7er is, ‘however, presumably necessary only for
a short period at take-off and landing. The airplane it-
self develops its maximum po~per mostly at take-off only.

The total propeller power can always be divided into
the power Ns absorbed by the drive of the helicopter
rotor and the power v W absorbed by the drag of the
whole helicopter rotor in flight direction. It is

N = Ns + VT

Now, there are two important limiting cases of hori-
zontal flight:

11 Autogiro with auxiliary propeller:— ——__ ——___ _____ ________ Thd autorotat-
ing propeller is driven only by its drag W through a-
special tractor propeller in the nose of the fuselage. At
high speed -- that is, for high values of A, the propeller
axis is almost exactly perpendicular to the flight direc-,..
tion,’ since only & very” sm~ll angle of attack of the pro-
peller-disk area acting as wing surface, is needed for im-
pulse generation. Then there is the hazard of propeller
failure, which may result in a crash.

.
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This type of motive power is su%ject to considerable
losses. At best the efficiency of the small tractor pro-
peller is 0.70. Besides, vortex losses by the partial con-
version of drag W of the propeller in a torque are to be
expected.

2_)_Helico~er without -uxiliary nrop~ller: The pro- ,.———-— —_________________ _—. ———
peller, driven solely by the initiation of a torque in the
thrust axis, must therefore in horizontal flight yield in
addition a traction in flight direction for overcoming the
frictional drag of the airplane body. The angle between
thrust axis and flight direction must in consequence he
cp< 90° - that is, so much smaller as A is greater. The
danger of propeller failure does not exist. Contrasted
with the autogiro the weight, friction power, and the
higher -oower 10SS of impulse of the tractor propeller is...
saved. If the forward tilt of the rotor axis for a large “
enough e.ngle and the balancing of the torque of the heli-
copter propeller can he solved constructionally, the see- ‘
ond case of horizontal flight is preferable. Longitudinal
stability is readily obtainable in this flight condition
by conventional horizontal controls even for helicopters
unstable when hovering. The Br6guet-Dorand helicopter de-
veloped in this manner a horizontal sneed of 100 kilometer:
per hour in test flights held in Dece~%er 1935 (reference 6).

The preliminary calculation of flight performances of
helicopters fails at the present time for lack of suffi-
ciently diversified six-component measurements on helicop-
ters. This lack is also apparent in the stability calcula-
tion of the helicopter.

V. STABILITY OF THEI HELICOPTER

Xveryone is familiar with the toys consisting of a
small propeller which is thrown in the air with a helical

OA ~l~c motion. Given enough .&e+&&, these miniature helicopters

‘“d‘“i>‘.~’’’areent%rkly stable. And still the technical solution of
the stability problem of the helicopter has presented the
greatest of all difficulties. The majority of helicopter
projects heretofore have been wrecked by this very problem.

~~+ r\+k@i, $(,$.-.,
Apparently the stability makes a certain &a!%%-A@J&-x

of the helicopter a necessity. On the other hand, the
floating of a person at, one place requires a balancing of
the torque of the helicopter rotor, which in most cases
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was effect~d by pairs of propellers running in” opposite
.d.irec.tion~.,, If, as f,re.que.ntlydone, the two opp$S-Y
rotating propellers are of the same size, the~r .h&!&fA~be-
comes neutralized, thus leaving no free helical motion
for the stabilization. The alternative, to make” these
propellers of different size, produces as a rule not
enough free helical motion for stabilization unless other
precautions are taken. Up to a few years ago, even six-
component measurements of propellers in yaw were entirely
nonexistent in literature, although they are indispensable
for the theoretical, study of the sta%ility and for comput-
ing the necessary amount of free helical motion.

Curious to relate, this lasted for some time - until
it occurred to someone to o“btain the stability of the heli-
copter ly mounting a control surface in the slipstream as
suggested ‘Dy the exa,mple of the airplane. The first de-
signer to yursue this idea successfully by mounting the
control surfaces sufficiently distant below a comparative-
ly heavily loaded propeller, was O. Asboth. His designs,
developed ~rom 1928 to 1930, seem to have %een the first
man-carrying helicopters to hover for ‘some time and at

considerable height with perfect stability.

gorr does the stability of the helicopter with rigid
propeller and control surfaces come about?

Assume that the helicopter is stable against vertical
motions, and executing small motions only in the horizon-
tal xy ylane. The propeller center
p!

P may move toward
with the coordinates Xlyl, the center of gravity S

toward S1 with the coordinates Xzyz , (fig. 7).

X2 - xl
a= $ = Z2.-—-ya-—_____

h’ h

are to represent thd angles betwem the ‘z-axis and tho pro-
jections of the thrust axi,s on the xz piano and the yz
plane.

Limiting the study to small equilibrium disturbances,
we may assume in first approximation that the thrust” is,.,. ,, ,,, ,.. ,.

KCa = mg = constant

and that the other o.crodynr,mic loads and m~ments ar~ pro-
portional to the intcrfercncc velocities xl and yl. On
the prcm”ises of small interfereilcc velocity ~v, Wo Ob-
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tain for the normal force acting against the direction of ,
motion:

for the lateral force acting at right angles to it”:

for the yawing moment acting in the plane rotor axis direc-
tion of motion:

Mh = chKaa&

and for the yawing moment acting at right angles to it:

.

The nondimensional ~ coefficients appended in table II
are those for two propellers, according to Flachslart’s
measurements (reference 7); A. is the axial coefficient
of advance at vhich the thrust disa~pears. It serves to
mark the propeller pitch. It will be seen that ”the c
coefficients with the exception of ~r, appear to %e lit-
tLe dependent on the propeller form. -

TABLX 11. Air Load and Moment Coefficients
of Two Propellers

~-~:--~3~Ff?
——-.———-.———.————————————- —-———

We further make the simplifying assumption that the
control surface is a coaxial-ring so disposed that its
center of ~ressure coincides with the center of gravity S
of the helicopter (fig. 7). The control surface could, of
course, be mounted at some other place, and if necessary,
could consist of a flat surface, since the motions are
coupled perpendicular and parallel to the surface through
the precession moments. The motion resistance of the co-
axial control surface lying in the slipstream is:
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w=; wFcaf Av=p I’Av

. ,

.....— . ... .
that is, it is linearly dependent on the interference ve-
locity, like the lift of an airplane wing. The control
surface th.e”refore affordsf within certain limits, a sta-
bilization.

The positive direction of rotation of the propeller
is to correspond ~Vith the peripheral direction from ‘“+X-
axis toward the + y-axis (fig. ‘7). Then the turning of
the thrust axis produces the precession moments:

..

P = J W;; Pxz = J w ~
yz

Expressing the angtilar changes and interference velocities
by the coordinates xl, y~, X2, y~ and their derivations
iil time rate, we finally obtain ,for the equilibrium of the
forces and the moments referred to center P the follow-

,.. (22)

This system of linear differential equations are resolved
by the known formulas:

..
/’
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xl =Aert, yl = C ert

1

. . . . . . (23)

X2 =B ert, y2 =D ert

which, written in (22) finally give four homogeneous lins
ear equations for the constants A, B, C, and D. These
constants have no final values unless the denominator de-
terminant of this system of equations disappears.

Writing, for abbreviation:

J
The denominator determinant takes the following form:

A=

al bl a2 b2

a2 b2 al bl

a3 b3 a4 b4

b4 as b=

da’ I I

al bl 2 al
+

a3 b~ v “a4

=- 2

The lateral force Ks being, as a rule, small rela-
tive to the other forces, aa may be approximately put

at .22 = O. In fact, this is exactly correct for opposite-
ly rotating propellers, for which the lateral forces can-
cel out. In addition, %2 = O. Then the corresponding
su%determinants of equation (25) disappears and the re-
maining equation A=O may be divided into two equations,
of which, however, only one has a physical sense. This
reads:

- al b3 + as bl + al b4 - a4 bl =0 (26)
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.

.

Writing the values of equation (24) into (26) an,d ar-
ranging according to the -powers of r, leaves, after seg-
rega”%”in”gthe” m-inor root, r’= O: ““’““”’

\

J
Stability exists when only roots r with negative real
part-s occur. This is with an equation of the form of

the case only then, according to Hurwitz, when all coeffi-
cients are positive and when, in addition:

ah- C>o (28)

Since a and % are alwcnys positive, according to equa-
tion (27), it is only necessary to observe that:

C>o (29)

Equations (28) and (29) are therefore the desired
stability conditions. Special importance attaches to the
stability Iimit.s which are reached when putting either
ba-c= o ore= o. Then these equations should be

used. only for computing the requisite control surface or
the required helical motion. The numerical calculation
can be simplified by neglecting small terms, after which
the equations for the control surface from (28)’ arid (29)
read:

1 “Y e~ e6 -
I. F~ K el e4(el+Y e2+~ e4)- ———— ______ _____.____.-_.— ——

p es + K(el-e3) ea+(el+~ ea+l$ e4)2

.1

. . . ..
~<Ye2e6

(30)

11; ——- —
‘Fe5

The abbreviations hereby are:
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Ka
es = ‘-

hm.
J

The factors Y and K are nondimensional criteria for
the difference of yawing moment and rolling moment and for
the free helical motion of the helicopter propellers. At
Y = 1 the rolling moment Mr = O at K=l, the free
helical motion equals the helix of a certain helicopter
prollem.

The following is an illustrative example, patterned
somewhat after the Asboth helicopter. This helicopter has
two coaxial rotors running in opposite directions, rigid
blafies, and is characterized hy small dimensions. We put:

a = 2.14 m N = 100 hp. [n = 0,30

h = 1.0 m w= 20 m/s [h = 1.00

k = 1.0 m u = 130 m/s Lr = .50

G = 490 kg J= 10 mkg S2 cat =4.0

he=100mkgs2

and obtain for the control surface as function of K and
Y the values plotted in figure 8. Having to observe two
stability criteria, the size of the control surface must
not fall below a minimum valne nor exceed a maximum if
stability is to be maintained. Figure 8, therefore, shows
the stability range by predetermined Y ‘bounded by two
lines, which start almost from the same point of the ordi-
nate axis. At ~ = O, that is, propeller entirely free
from helical motion, the stability range shrinks almost
to zero. In this case, even a control surface can at
best assure only neutral stability.

In practice, however, a certain amount of residual
helix of the oppositely rotating propellers will always be
available. Then a suitably dimensioned control surface
mill give stability. Assuming for Asbothfs helicopter a
20-percent difference in helix, that is K = 0.2 and “
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Y = 1.0, figure 8 gives as possible control surface F =
1.13 .to 1.61. m2, _.which amounts to,,about; 10 percent of
the rotor disk area. Its actual control: surface is pro%-
ably of the same order of magnitude. The permissible
range in control surface size becomes so much larger as K
is higher; i.e.,. as the helix is greate:. Once the helix
reaches a certain value (K = 0.7 at = 0.5 in fig. 8),
sta%ility may %e. “a”ttained even without contro,l. surface.

To render the curves intelligible, we also plotted
in figure 8, negative values of F at higher valu,es 6f
K, which, however, have no physical significance: “

The greater the rolling moment, i.e., the smaller ~
is, that much less is the required helix or the’ necessary
control surface. In other words, the rolling moment has a
stabilizing effect. Unfortunately, it is impossible, in
practice, to raise the rolling moment beyond a certain
amount. It can even disappear altogether for oppositely
running propellers if they are of the same size and speed..

HOW great must the hel’ical metion of a helicopter be
to be stable without control surface? Obviously, then.,
when the numerator in (30)1 disappears. Neglecting pfo- ~~
gressively el + Y ea with respect to K e4,. the intro-

duction of (31) gives as stability c~ndition of the single
rotor-helicopter

J>:m~$
. .

or, using the figures of our example:
-.

“ W=-TX 100=‘*58m“ ‘:
For a radius of inertia of -. 0.55 a, this inertia

moment would correspond to a roto”r weight of at least 5,0
kilograms. It consequently requires a fairly enormous in-
ertia moment for stabilization Without control surface.
The conditions become a little more favorable as a result
of the greater diameter on a lightly loaded autogiro rotor.
We assume for this: . .

a= 4.9 m (n = 0.27 : ;

Cr= ●77
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the other values to remain as “oefore. Then the moment of
inertia %ecomes:

1
-.—

1 “3—
——— :+$ x 490 x 4.9

‘>130 .
x 100 = 19.8 m kg S2

This corresponds to a rotor weight of at least 28 kilo-
grams. The actual rotor of a corresponding autogiro is
somewhat lighter, so that it would fall short for stabil-
ization, even with fixed blades. Substantially more un-
favorable is the case of oppositely rotating rotors.
Then , ~r = O,

J > 37.0 m kg S2

This helix could %e assured by lodging a balance weight of
shout 15 kilograms in the blade tips of a rotor.

The majority of the newer helicopters have lightly
loaded rotors with small articulated blades, on the order
of the autogiro. Every blade hinge introduces a new de-
gree of freedom. The flexural flexibility of the small
blades has, in principle, a similar effect. This renders
the theoretical investigation of the stability extraordi-
narily difficult,

Even the autogiro, with its known light rotor, becomes
unstable at low flying speed, hut the oscillation period
is so great that controlled stabilitv is possible, at———————————— .-——————t.
which the pilot corrects the yawing motions by appropriate
control deflections. All helicopters having two opposing-
ly running rotors of this kind are known to le even less
stalle when hovering. If the oscillation period is long
enough a skilled pilot is, however, as a rule, able to
rise ammroximately vertically and to hover for a short
time, ““-so as to attain the horizontal speed as soon as pos-
sille, where the relative wind and horizontal control es-
ta%lish longitudinal stability.

Controlled stabilization is facilitated in a certain
respect if the two oppositely rotating rotors are side by
side. Then the pilot needs only to control the rotation
about the line connecting loth rotors, because the rota-.
tion stout the axis perpendicular to it is largely damped
by the opposingly directed lift change of the two rotors.
Controlled stabilization with two coaxial rotors is prob-
ably much more difficult. Then it does not involve the
complete solution of the helicopter problem but rather an-
other transition stage from autogiro to helicopter.
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\
I
~ The captive helicopter has always claimed a certain\.;,
P amount of interest in regard to its applicability to mil-
{
~, itary,, meteorological,., and radiotelegraphic purposes.

f-
The’ first man-carrying captive helicopter was built in
Austria in 1918 (reference 9), It had two coaxial propel-

\!,.

1

~,, lers running in opposite directions. and was raised and
j:’,, lowered IJy three cables and winches. The helicopter then1,
i, has the static stability of the three-point support.
~
!1 Mooring a helicopter by one cable only would remove the
~ principle of the dynamic stability namely, the constant
1?

t
direction of the extraneous force applied at the center of

I gravity. Then the gravity could combine itself tiith the
cable force into a resultant - to a certain extent - in
any direction. This case has been elaborated by von
K~rm6n (reference 10).

It is, to be sure, conceivable that controlled sta-
bilit~ can be attained in this case also, whereby the hel-——-_
icopter executes certain pendulous motions of moderate
size, such as occur on captive balloons %y wind changes.
The pilot might be relieved of this control labor by prop-
er instruments which respond to inclinations of the air-
craft with respect to an artificial horizon or to rotary
accelerations, such as already have attained to a certain
stage of development for the automatic control of the
conventional ~.irplane. Stability in free flight is prob-
ably a necessary reauisite for the controlled stabiliza-
tion of a helicopter moored by a cable.

VI. HEIJICOPTER DRIVE

One of the most difficult problems in helicopter dp-
sign is the drive of the rotor without reaction on the
airplane body. Owing to its naturally large rotor diame-
ter, the torque itself is unusually high compared to the
usual airplane power plants. Its gears must therefore
also he comparatively large. Added to this, the necessity
of torque balance to assure hovering without rotation of
the airplane tody - it is not-surprising that a series .of
clumsy helicopter designs made their appearance which Up
to now have caused the professional airplane designer to
steer, clear of the subject.,> The energies’ of the designer
were exhausted on the drive problem, so ,that the stability
“proble”m generally received no adequate treatment. ‘The
results were not very satisfactory, and it was these very
difficulties that decided de la Cierva to make an autogiro
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driven by air speed out of the helicopter propeller driven
by turning moments.

A brief summary hf the constructive means resorted to
heretofore to balance the torque (turning moment) may be
of intere5t.-

Most builders of helicopters obtained this balance by
resorting to rotors in pairs, driven by initiation of
turning moments in the thrust axis. The most important
arrangements in this category are:

1. Coaxial, oppositely rotating, 16 types. ,J,,
)

2. Side by side, i
with parallel axes, oppositely ro-

tating, 9 types.

3. Side by side, with tilted axes, rotating in the
same direction, 2 types.

A single rotor is sufficient if the balance of its
turning moment is effected by auxiliary propellers with
horizontal axes. The possible arrangements are:,

4. Auxiliary propellers

5. Auxiliary propellers
sign types.

This list is essentially
brought up to date as much as

$
on body, 2 ty?es. .

(/on the rotor blades, 4 de-

that of Lam6 (reference 1),
nossible. Constructionally

clearest and. consequently most popular is arrangement 1.
Successful d.esigner$ of this type are Asboth, DIAscanio,
and Breguet-Dorand. Next in popularity came Oemichenls
tlheli~opter of the first kilometer” in category 2, The
advantage of this class lies in the smaller, higher-speed
rotors, and in its more easily attainable controlled sta-
bility than with arrangement 1. Its objectionable fea-
tures are the bulky 30~s on which the rotors are mounted.

Quite recently Platt (reference 11) investigated a
limiting case of arrangement 1: The ‘fcountervanet’ attains
a considerably greater area and dces not turn but is rig-
idly meunted to the airplane. For a disk area loading of
A—— .
Fs

10 kg/m2, as found on modern autogiros and helicop-

ters, the fairly large surface F - 0.2 Fs is necessary,
and is locate?L parallel to the direction of flight. This
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;)

arrangemenl$ should be little suited for high-speed flight.

j I’or s>a the effect of the ground on the moment bal=
\ ancg is insignificant..,..&. ~~ .,. ....

j
,) Particular interest attaches to Florinels arrange-.
\
j] ment, 3, which may be called partly %irotatory, because
[1 the two rotor axes are set obliquely to produce through
j} the horizontal component of the rotor thrust a couple bal-

ancing the driving moments of the two rotors. l?he free
!
I helical .rnotion of the rotors is only partly neutralized,

leaving a large remainder for stabilization.I

Inasmuch as acceptable horizontal speeds as well as
autorotation of rotors in case of engine failure, are ex-
pected from a modern helicopter, arrangements 4 and 5 are
probably ruled out in the future development of free- “
flying helicopters. In point of fact, comparatively few
have ever been built on account of the enormous construc-
tional difficulties. To be sure, the possibility of need-
ing only one rotor is so tempting that Glauert considered
arrangetient 5 as llthe most nromising form of energy ‘ra~ls-

mission to the blades of ~.~otorff (reference 12).
#

Let us see if this ideal - tll~t is, the helicopter
with a single rotor - is not attainable in some other way.
!The most freq”o~ently built coaxial, oppositely rotating
rotor pair comprises two rotors whose angular velocity
vectors differ %y 2$ = 180° in the direction, With ar-
ticulated blades this angle changes in turning. Unless
t,he two rotor hubs are far enough apart, there is danger
of collision of the oppositely rotating %lo,des when making
a ,turn. Th-is distance must in any case be greater than LO
percent of the roto,r diameter as experience ‘has demonstrat-
ed with the 3r~guet-Dorand helicopter”. Thie results in an’
undesirably high lo,cation of the upper rotor hub. There
is also an absence of the free helical motion needed for.
sta%ility, if .2$= 180°, Now, however, arrangement 3.
shows that moment balancing ig equally attainable with.
comparatively small $-: that is to say, partly Contraro- .
tation. ,.

.
For articulated %lades, the vector of the angular ve-

locity can, by proper periodical motiofi of the blade hinge,
very well form an angle with the .I;metallicllpropeller axis.->
Modern design types generally make use ,of this fact for the
servo control of helicopters. So, if -we utilize a control
of this kind, we can visualize two rotors rotating oppo~
sitely at an m.gle of 2* as being combined on one hu’b,

,.,,..,,
1 mll I , ,,..
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wherein the blades of the first rotor revolve between the
hades of the second rotor.

For simplicity, we assume each propeller as consist-
ing of one blade only. The two blades of the two propell-
ers, cased in one another, are disposed diametrically.
Then the blade axes vary their angle relative to the me-
tallic propeller axis periodically; that is, by +$.
Assuming the described blade motion to be positive, we can,
on the other hand, produce a periodic moment about the
blade hinge by means of periodical blade-angle control.
If this moment is in phase with the periodic change of
angle, we can transmit power on our propeller by means of
the hinge. Having two diametral blades, the two hinge
moments neutralize each other without causing a reaction
on the propeller axis or the airplane body. Only the ro-
tor blade is stressed in bending. 3y varying angle d,
of blade-bending moment and phase angle, me can regulate
the transmitted power at will within certain limits and
fit it to the amount needed to produce the thrust. We
have, in fact, a partially oppositely rotating propeller
arrangement with only one hub and only one metallic pro-
peller axis, which induces no torque reaction on the air-
plane body.

The basic idea of this type of drive &as published
by Passat in 1921 (reference 13), and merits recall from
oblivion. Passat built a helicopter model with one rotor,
having four l*bird-shapedll blade,s, which flap and rotate.
A lift of 90 kilograms with 10 horsepower was claimed for
it. Further details are unknown to the writer. The blades
probably rotated about their hinge axes, so that $ = B.
In that case, only a comparatively little power can be
transmitted because the angular amplitude B is limited to
about 10° as a result of the bur%ling of the’ flow at the
blade profiles.
./’

Each pair of diametral blades produces, during up-
and-down flapping, a periodical, axially directed mass (or
inertia) force, conformable to its own mass. In order to
neutralize this disturbing mass force, which would shake
the airplane body, we must have another mass going through
a similar but opposite motion. This might be a second pair
of blades. disposed in peripher~.1 direction, thus giving us
a four-blade rotor. However, this is “not fundamentally
necessary. The essential factor is the paired diametral
blade arrangement.
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It should perhaps be added that one frequently finds
in patent literature an arrangement whereby the rotor as
a w.ho,.l.e,execu.tes an oscillating motion in axial direc-
tion. l?rom the aerodynamic point of view, this method
can also be used to transmit flapping power. The balanc-
ing of the mass forces would require two oppositely swing-
ing rotor hubs, through which the unity of the rotor is
lost again. Aside from that, the bending moments in the
rotor 31ades caused by the mass forces make the construc-
tional execution of such full-size rotors impossible.
For that reason, we shall take only the flapping drive of
the above-mentioned method into consideration.

An observer, turning with the rotor axis, sees the
‘%lades make one up-and-down flapping motion during each
revolution. We may therefore speak of a flapping drive
of the blades, but with one provision. To an observer
standing still, each blade appears to move in a certain
plane; that is , on a conical surface by rotor-thrust load-
ing. The movement of both blade axes therefore is alto-
gether like the movement of two normal one-blade rotors
so fitting into each other that they receive one common
hub and are partly oppositely rotating.

The blades resist the deflection from their natural
surface of motion energetically. In consequence, the flap-
ping frequency cannot be ‘raised at will in order to trans-
mit as much power as possible, but is strictly bound to
the rotation” speed. Otherwise, the mass forces would set
Up a ‘fblind momentll which would more than offset the lfact-
ive motion, lland so render the construction of a suffi-
ciently strong rotor blade an impossibility.

In the following, this flapping drive of the rotor
is analyzed theoretically.

Assume a rotor” with one blade rotating in a plane II
at constant speed w = u (fig. 9), while at the same
time this blade executes rotary oscillations a%out its
neutral axis with the same circular frequency v and the
amplitude B. Assume further that the rate of flow through
the rotor is negligibly small with respect to the tip
speed. By means of the nonstationary airfoil theory, the
moment of the rotor- blade with respect to an assumed axis
lying in the plane of motion and meeting the rbtor axis at
right ang~es, can be readily determined. Using the nota-
tion of Kussner from his report on nonstationary lift
(reference 14), and assuming plane flow - a condition

..—...—. —
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closely met %y the small rotor blades - the moment is:

E!

+i~-—~= 1 I r= dr
.r 2rJ,

(32)

(T is a complex function tabulated in reference 14. )
The evaluation of this integral calls for assumptions re-
garding the blade chord 2T. We analyze three blade forms:

●

1. T = 0.069 a - 0.050 r

2.2= .030 5,

The blade tips arc half round.

ASU=W, according to assumption, the moment at the
blade hinge is:

~j =pu2 Fs a B m eivt m kg (33)

The complex moment coefficient m is obtained by graph-
ical integration and shown in table III for the three blade
forms; ml and m“ denote the real and. the imaginary parts;
iii the alsolute amount of this coefficient.

The periodic circulation variation of the blade pro-
dfices a vortex loss which is also computable according to
Kussner (reference 14). In that manner a resisting moment
about the axis of rotation D is “created; its mean loss
of ~omer is:.

a

[

-s(%]rl+~$ .tr3dr
Hm =, ~mpv2B2JP1- T

1@J~ .0

I

. . . (34)

= p U3 F~ B2 h m kg s

The real coefficient h is given in table 111 for the three
blade forms.
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TABLE 111”. Coefficients of the Flapping Drive

FEFrnf’E:E7!ii

The choice of form and curvature of a blade section
is, as a rule, for smallest possible frictional drag of
the section by a given lift coefficient, which corresponds
to an angle of incidence for the most frequent runriing con-
dition. For small angular variations the drag coefficient
is approximated by me~.ns of the power series:

n
cm = ; Cwn (P- Bo)

o

Posing @ - PO = B eiUt, the entire mean friction power

of the blade with assumedly constant profile, becomes:

Hr = pv3Ja~r3dr [ %. +~cw Ba+~cw4B4 +...
o L 2 1

The first term of this equation represents the inevi-
table friction 10SS produced by stationary flow and already
contained in equation (16). The other terms must be
ascribed to the flapping drive. We write for the friction
loss:

?& = p us l’s
r

‘rlcwo+2 ~ CW2 B2 + ; Cw B4 + ...
1

(35)
L 4

The coefficient hr is also included in table III.
The departures from the stationary flow of the an’alyzed
blade forms amount to a feti percent only. Therefore the
friction loss TIr exceeds the vortex loss Hm substan-
tially, The movement of the blade hinge being in a plane
E with constant angular velocity,
tion,

according to our assump-
the flapping angle is, according to figure 9:

sin Y = sin $ cos v t (36)

The blade-bending moment M, whose axis of reference
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in ~lane E lies perpendicular to the blade axis, can be
div~ded into two components. The component transmitting
flapping power must have a moment axis perpendicular to
the rotor axis SS and therefore amounts to

(37)

If J is the phase angle between the time period of
the maximum bending moment of the first order of the %lade
and the passage of the blade axis through the position
perpendicular to the rotor axis, the mean flapping power
is, according to equations (32), (36), and (37):

=pus FsBficos~sin~co sO I . . . . (38)

2Tr
1 sins a,—- Jr

..——.—— —–––––—–– da
211 0 1. - sin2 75 Cosa a

L = ~ U3 Fs B = cos cp cos $ tan ~ J
With given tip soeed u the power losses are only

dependent on the amplitude of rotation B of the blade,
according to equations (33) and (35). In order to trans-
mit as much flapping poner L as possible by predetermined
losses and. tlhereby c,ttain a high drive efficiency, the an-
g,les 9 and 4 must be chosen propitiously. It involves
no difficulties to so control the blade angle B that the
phase augle becomes p = O. Then Coso = 1. For given
phase [tingle,the power becomes maximum if

COS3 d - 2 Cos $+ 1 =0

COS 3 = 0.619; *=51°451

Admittedly, this optimum angle of opposite rotation
is excessivel~ great. Zlesideg, the constructive optimum
lies at a smaller angle since the rotor is to produce a
thrust in the ~.irection of”the lJmet,allicllrotor axis SS
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contrary to the force of gravity. If the motion planes of-.
the rotor blades diverge materially from,,the normal plane
to Ss, the thrust coefficient may decrease. It may
therefore be presumed that d - 30° is about the upper
limit of the practically permissible angle of opposite ro-

1 tation.

For the purpose of a comp:l,rative computation, let US
assume that a blade requires a moment coefficient. of

kdo = 0.00025

for impulse generation, which would approximately corre-
spond to the thrust coefficient of

k s = 0.0134

for a four-blade rotor in hovering condition.

, Nom-, let IIS see how great the total rotor power re-
quired with fla,pping drive is, under this assumption, for
our three particular blade forms.

The writcr!s own measurements on model rotors with
Joukowski mrofiles of small thickness and curvature, gave
the follom~ng drag coefficieilts:

cm = 0.0110

cm = 1.1
2

) for B 5 0.15
%V4 ,= 0’

In accord with the vrevious assumptions, we o%tain from
equations (34), (~~>, and (38) the moment coefficient on
the one hand, as transmitted, and on the other hand, as
absorbed power:

kd = kdo + 2h B2 + hr (2cwo + cw2 B2) (39)

(40)

Then the required antirotation angle and the moment
coefficient kd can he computed for different blade rota-
tion amplitudes 3 from (39) and (40). The results are
shown in table I’J. The ratio. e = kd/ks ! is computed
with a thrust proportion for one blade at
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k~f +S = 3.35 x 10-3

If the previously made IIsnherelfassumption of the
quantity of flow holds true, tie thrust would have to be
independent of the antirotation angle $. In experi-
ments - to be published later, in detail - the thrust re- -
mained. practically constant within the test range 73=0
to 10°, according to which the efficiency of the flapping
drive is:

kd + 2CW0
l-l= --~---ii---::

TABLX IV. Rotor Blade with Flapping Drive
———.

No.
————

1

———.

2

——.—

3

————

—-—-.——.——_

B

kd X 103

n
c
COd

—.-..——————

kd X 103

7

———————_

.———-..—_————.

O*O5
-————.———-———.

0.Z07
.’973
.092

30.7
-—----—————————

0.310
.973
.092

27.6
-————————————

0.349
.956.
.104

19.2
—____——+____

.—————.————-

0,10_—._ ———————-
0.331

.901

.099
15.0”

-—__————————-

0.335

.900

.100
13T8

0.396
*843
.118

10.5
-————————————.

———————

0.15
——————

0.372

.802

.111
11.1

0.377
.803
.113

9.7
.————._—

0.473
,705
.141

8.3
————————— -

Unless the antirotation angle * is too small, good
rotor c and good efficiencies of the flapping drive are
obtainable, according to table IV - superior to the drive
by autorotation in tb.e relative wind. Moreover, it is de-
sirable for mechanical reasons to keep the rotation ampli-
tude B, which governs the losses, to a minimum in order
to keep the flexural stresses of the rotor blades and con-
sequently the structural weight, to a minimum. With re-
gard to the separation of flow, it must be B< 0.17, cor-
responding to 10° in degrees of angle. In the full size
this limit will, moreover, not I.e attainallle for reasons
of strength. At d = 30°, the highest value of the peri-
odic bending moment is of the same order of magnitude as
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the bending moment of. the rotor blade under statT’nnary
normal thrust load; that is,,.- of controllable crder of mag-
nitude. ,.. ,..,,

The decisive advantage of this flajping drive is the
unity ‘of the rotor, which assumes:

1) a compact helicopter design;

2) sufficient free helical mntion for stabilization;

3) a low drag at high speed.

Danger that the rotor blades may flap simultaneously,
does not exist. Aurotation is possi%le after stopping or
failure of the flapping drive, since the blade form is not
substantially different from that of the autcgiro, and the
tlades are likewise hinged at the hub.

!3n the other hand, me must not forget its disadvan-
tages. These are:

1) strcnger and heavier rotor blades capable of with-
standing the high bending stress are required;

2) additional losses because of the mechanical trans-
mission of the flapping power from the engine to
the blades.

The purpose of these expositions was to show that,
from the aerodynamic point of view the flapping drive ap-
pears practical, and contains no secondary conditions
which from the very beginning would militate against their
being constructionally feasible.

The flapping drive of the rotor is a mechanical analo-
gY to the electric alternating-current. synchronous motor.
The blade moment ~ B corresponds to the amperage J and
the angle of antirotation $ to the voltage E. The phase
angle cp has the same significance in both cases. The
loss Hm (n-B2 corresponds to the copper l,OSS ‘mJ2; the

loss Hr is comparable to the iron loss, since in neither
case does a simple relation exist between B - and J.

The rotor. with pure flapping drive is just as little
capable of starting by itself as is the electric synchro-
nous motor. It is therefore proper to actuate the rotor
shaft normally by initiating a torque and then effecting

-ml 11111111111111111Iml—al ,1-,,,,,.,,,,, , , , , ,, m .,,-——,,,-—,. ,,.. ,-,,.- .,., , ,----- . . . .
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the change into flapping power at the rotor shaft itself
by wobble plates. Then starting presents no difficulty
and. more than that, one is in position to control the de-
gree of equ.alization at will and. to induce free positive
or negative moments which allow the e,ircraft to turn in
any desired direction while hovering.

Horizontal high-speed flight of the helicopter does
not necessarily demand an absolutely moment-free rotor
drive. It might be that in this case the balancing of the
driving moment ly a force couple is more economical; this
is produced through the reactions of the relative wind at
two suitably distant control surfaces. As is known, pur-
suit a.irpla.nes with very light power loading ce.n clim’b
vertically like a helicopter ty neutralizing the propeller
driving moment through e.ileron deflection; that is, through
a couple at the wing tips.

VII. OUTLOOK

Heretofore the propeller has been almost exclusively
known Z.S ~.mr.chine for creating a stationary thrust in
axially symmetricr.1 stationary flow. The discovery that,
with suitable form and control of blades, it can also de-
velop valuable qualities in other than axially symmetrical
stationary flow - which, to be sure, are difficult to treat
theoretically, although practically -provable - has brought
us considerably closer to the complete solution of the hel-
icopter problem. In order to continue in this direction,
these qualities. of the rotor must be theoretically and ex-
perimentr.lly explored and. in the same detail as in respect
to the r,xic.lly symmetrical flow. For with the real heli-
copter ve ,alwp.yshave to count on departures from the ax-
ially symmetrical flow, l:~hetherin stability inV~StigationS
or in computing flight performance or flapping drive.

Translation by J. Va@+C.,
Nationai Advisory CS5iiiittee
for Acrone.utics.
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Figure 1.-

disk area.

Components of the air-
flow through the rotor

figure 3.- Polar of”a rotor.

Figure 2.- Axially symmetrical
ideal flow about a

rotor.
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Figure 4.- Thrust coefficient
of rotor at differ-

ent wall distance.
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Figure 5.- Moment coefficient of
rotor at different wall

distance.
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Figure 7.- Helicopter
with control
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Figure 9.- Perspective drawing of
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Figura 6.- Angle of climb.
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Figure 8.- Stability of
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