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EVAPORATION, HEAT TRANSFER, AND VELOCTI!YDISTRIBUTION

IN TWO-DIMENSIONAL AND ROTATIONALLY SYMMETRICAL

IAMINAR BOUNDARY-LAYER FLOW*

~ Nils fi&~~

31U!RODU!TION

Aside from the shple case of the plane, no quantitative calcula-
tIons of the evaporation of a body in a mov~ medium exist so fer. The
heat trsnsfer, which under certain circumstances (see p. 4) foll.owsthe
same laws, has been treated theoretically for the cylinder by l&oujiltie
(ref. 1) and Squire (ref. 2). For boundsry-layer flow, KYoujiline used
for the temperature field a power-series method of’the same type which
has been introduced for velocities by Poldhausen (ref. 3). *CSUSe of
this stipulation of the profil.eform, the result must be approximate,
and the eventual agreement with the correct value is rather accidental.
Squire gave en exact treatient of the transfer in the tiediate proximity
of the stagnation point. However, it is of great fmterest to have a
calculation method for heat and mass transfer in the entire boundsry
layer, the error of which depends only on the work expenditure of the
numerical calculation and, therefore, not on possible ap~oximative
formulations. Even thou@ the calculation is time consuming, one has
the advsmtage of being able to check approximate and more rapid methods
with respect to this solution. Her the supposition that the constants
of the problem (shape of body, pressure distribution, etc.) msy possibly
be eltii.natedfrom the equations to be solved, it is also possible in
several cases to use the complete exact solution d.fiectly. The author
of this report perfected, for this reason, the exact solutions for the
temperature end concentration fields. Two dimensional and rotationally
symmetrical steady boundary-layer flows were treated. The latter case
is the more complicated one because of the form of the conttiui~
equation.

*

.

*“Verdunstung, W“&me~bergang umd Geschw5ndigkeitsverteilungbei
zweidimensionaler und rotations

r
etrischer laminarer Grenzschicht-

strdmung.“ Lunds Thiversitets ssldft, N.F. Avd. 2, M. 36, Nr. 4
Kungl. Fysiografiska S&llskapets %ndlingsrj N.F. Ed. 51, Nr. 4-,1%0.
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For the calculation of the transfers, however, the velocity fields
must be known. For the two-dimensional case one has, aside from approx-
Luate methods of solution by Pohlhausen (ref. 3), I&tmfh and Milliksa
(ref. 4), and others, the method of Blasius (ref. ~) and Hiemenz (ref. 6)
which was improved by Howsrth (ref. 7). ~means of this method one msy
solve the equations, without any erbitr~ assumptions regarding velocity
profile and the like, ‘bypower-series development from the stagnation
point up to an arbitr~ petit on the meridian curve. The work expend-
iture depends on the required accuracy and on the position of that petit.
Since the development becomes very rapidly more cumbersome with the
distance from the stagnation point, it is appropriate to use, from a
certain point onward, a continuation method, for instance, according to
Prandtl (ref. 8) and G&tler (ref. 9). Howarth (ref. 7) transfcumed
the functions of Blasius E@ Hiemenz into functions of such a type that
“theconstants disappear from the equations so that the numerical solu-
tions for them may be applied to auy ti-dimensional flow. He treated
the symmetrical as well as the unsymmetrical case, and indicates the
solution of one of these functions. For the present investigation,
Howarth’s functions are used in the two-dimensional case. Since the
accuracy of Howarth[s numerical tables is not sufficient for the cal-
culation of the transfer, a new numerical.calculation was made of certain
functions. For the three-dimensionalrotationally symmetrical case, in
contrast, there exists, so far, no calculation of the functions of the
series development. Because of the modified continuity equation, other
systems of equations must be used, and these systas are established
here. The necessary functions are numerically calculated. Although the
form of the meridian curve takes effect through the continuity eqpation,
one can proceed in the distribution of the functions h such a manner
that the constants of the meridian eqpation disappear, and the solutions
therefore are valid not only for erbitrery pressure distribution but also
for arbitrary shape of the bcdy of revolution. The continuation method,
beginning with the Mnit of validity of the broken-cf’fpower series, has
been perfected also for this case. —.

●

✎

An investigation is carried
stated, for instance, by U1.ssmer
proportional to the cube root of

A few approximation methods
lsyer are discussed.

out regarding the validity of the law,
(ref. 10) that the Nusselt number is
the Rmndtl nmuber. -.

for the calculation of the transfer

Only a brief survey is presented here since amore detailed report
is to be given in a later paper.

;
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TEE FuNDlu4ENmL EQUATIONS

With dimensioned quatities, the boundary-layer equations for flow,
concentration, @ temperature read

au av
—-F— = O two dtiensional
ax &

{

?)(tU?) a(w)
— = O rotationally symmetrical

ax ‘*

Concerning the derivation of the two last equations for the
rotationa~ symmetrical case see p. u-16. The boundary conditions ere

{

Y=o; U=v=o; t’%; c=%;

Y = ~j u ‘u; t =0; c = o.

ti these equations the customary designations of the various
quantities are us~. x = distsnce along the bdy sm?face from the
stagnation point to the base point of the normal to the bcdy surface.
Y= length of that normal. r = distance from base petit to axis of
rotation. u, v = velocity components h the direction of x and y,
respectively. U = the velocity componeut psrallel to the body surface
hnnediately outside of the boundsry lsyer (calculatedfrom the eQeri-
menta13y determined pressure distribution). t = excess of the temper-
ature of the surface over the temperature of the undisturbed fluid.
c = corresponding concentration quantity. v = Mmmatic viscosity,

a ()= temperature cliffusivity ~ . A = cliffusion coefficient. ~= pcp
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u~ is the undisturbed velocity and D a characteristic length of the

body (for instmce, its diameter), one can trsnsfozm the equation into
dimensionless form by dividing the velocities, lengths, temperatures,
and concentrations by the quantities UO, D, to, and cm. These equa-

tions contain as constants, among others, the Reynolds number Re = ~.
v

This nwiber one q eliminate by modifying the scale of the boundary
layer in trsmsverse direction, by multiplying the values of y and ~

by &e. The equations used below with the designation “dtiensionless
equations without Reynolds numbds” are changed h their a~earance,
compared to those mentioned above, only tn that v disaweemj and A

and a are replaced by $ ud $. h the boundary conditions to aRd

cm are replaced by 1. The two quantities $and ~ which are often

irilependentof pressure and temperature, as h the case of ideal gases,
are dependent on the media used. These quantities are called Stanton’s
numbers. FYequentilythetr tiverse values are used, designated as Erandtl
numbers. b an earlier report of the author on the evaporation of drops
(ref. U) the designation u is used for the Stanton number. Since at
present this letter is used mostly for the Prsmdtl numbers, this defini-
tion is employed in the present report to prevent misunderstandtigs.

.L a.Thus u here signifies: u = ~ or, respectively, a =
h

The equations for temperature and concentration are therefore
identical when t and c sre interchsmged. For the temperature-
boundary lsyer it is assumed, however, that the dissipation and the
heat generate&by change in pressure maybe neglected. This assumption
is satisfied for not-too-l=ge velocities (ref. 12). The equations also
presuppose that the velocities be small oompamd to sonic velocity in
order to make the compressibili~ negligible. A further limitation of
the equations is given by the fact that the differences in concentration
and temperature must not be.so large that the constant characteristics .
of the media vary from point to point. Because of the identical form
of the two equations for temperature and concentration,which is thus
satisfied under these presuppositions, both may be treated simultaneously.
In the following equations one may, therefore, humediately interchange
the quantities c and t. 1 ;-

.

.

b the search for a solution which satisfies the accuracy requtie.
ments discussed in the introduction,the method of power-series develop-
ment in x was used. Breaking off the power series after a certain
number of terms one was able to use this solution from the stagnation
point up to a point the position of which was dependent on the accuracy
requirements. Starttig from this point one could then use for the layers ,
of different ty_pesstep-by-step continuationmethods.

.
.
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For the sake of brevity,
%snsf er” boundsry layer for
boundary lsyer.

5

we shall use below the common name
the temperature and for the concentration-

A. TW DIMENSION/iGCASE

a. FTow Eaundsxy ~er

As was mentimed in
by Biasius, Hiemenz, snd
the same designations as
qusntities FV are here

capital letters sre more
boundsry layer.

fi order to replace

1. Symmetrical case

the introduction, this case has been treated
Howarth. This report uses for the most psrt
Howarth. The only clifference is that Howarth’s
replaced by the quantities *V because the

suitable for the functions of the transfer

the two unknown quantities u and v by a

. single one (~), the-foll.owingconditions ;atisfying the continuity
equation sre set up as usual:

. =X

‘&

The first flow equation then
without Reynolds nmbers )

av a2~ w
Saxh-Z

Biasius and Hiemenz

*=

for the symmetrical case

av
v=-— ax

becomes (with dtiensionl.ess

solved this eqyation by means of the

*lx+#+*5x~+. . .

quantities

formula

where the velocity distribution outside of the

boundsry layer follows the formula U= U1X+U3X3+Z5X5 +.. . . *V.

sre functions only of y.

.
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By comparison of the vsrious powers of x the equations for *V

were obtatied. These equations were freed of the constants ~ by
introduction of the functions fv, gv, etc., by means of the following
statements:

—

.

2. U@muetiical

For an unsymmetrical two-dimensional

distribution follows

formulation

was used. Here also

by the expressions

the formula U = Ulx

L

.

.

—

case

body for which the velocity - —.
+ %X2 +%x3 + . . . , the .

W’$lX+W#2+V3X3+.0D

the WV were freed of the cons~amts

VA

b. Transfer Boundsz’yLsyer

1. Symmetrical case

~, this the

The author of this report attemptd in the dtiensionless equations
without Reynolds numbers, aside from-the formulations for V m&tioned
above, a development for c in the following manner

of y only):

(cV sre functions

r 2+a3x3+c4x4+ . . .c = Cvxv = co + Clx + C2X
v=0
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Ealndary Conditions:

{

Y=o C()=l c1 SC2=. ..=0

Y =m co =C1=C2=. ..=O

By substitution one obta~ for the
Ca a ‘%+1

One can easily show that the equations for c~+l are such that

they become identically zero. h the groups of equations mentioned
above which constitute the recursion equations, there occur exclusively

. functions with even or odd subscripts* ~om this one can see that c
is au even function of x which follows, besides, from the nature of
the problem. b order to be free of the const-ts ~, new functions

are titroduced by the following statements:

&jF2

n = Y ~lj *V as above; Co = Fo; c2 =
U1 ;

.

Boundary conditions:

? = o; F. = 1; the remaining functions = O

n = co; all fUnctions = o
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$0 “ =
-flFo ‘
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92” = ‘f1F2‘ + 2f’I’F2- 3f3F0’

%“ = -‘1% ‘ + ‘fl’% - 5~Fo’

1
%%” = ‘f,%’+ 4f~’~ - 5h5Fo’ + ~(2f5,F2 - 3f3F2)

$6” = -f1G6’ + 6f1’G6 - 7g7Fo’

k
II= ‘f1H6‘ +6f ’H-a 16 v (%

o’+34f I
3

“1

)+ 2g5’F2 - 3f3%’ - 5’g#’2’

~“=-f1K6f +6f\fK6~
- 7~o’ +3(4f3’~+~5’F2 -=3f31$’ - Z5F2)

$ J = -f1G8‘
+ 8f1’G8 - 9g#0’

% 8“ = -f% + ‘1’% - ~#’0’ + !$(6f3’G6 + 2g7’F2 - 3’3G6’ -
7T2 ‘)

%8
‘t= -f,K# + 8f<~ - !%$; + y(b.<$ - 5g5%9

k “ = ‘f~~8~+8ffJ-a 8 18 ‘~>o’ + ~@3’E6 + a7’Fa ; 3f3H6’ - a’ +
7’%0

E~*
5(5 % + g5’%) - q%%’ + g5q

% “ = -f~Q8’ +8f1’~ - 9qcfo’ + ~~3’~ + ~’F2 - 3f3K6’ - a’ +
v)

34’5’% - %%’)

- .
These functions are simpler than those for the flow boundary layer
insofar as the equations we only of the second order. The first equa-
tion may be solved by quadrature:

.

,

.

.

.

.
,,:. _

‘

.——.
—
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The rematifig equations do not have explicit solutions smd
be tite~ated by other methods, for tistance, according to
Kutta. (See p. 19.)

9

must therefore
Runge and

2. Unsymmetrical case

With c = 2+ C5X3 +...co + c~x + c@ end the boundsry conditions

{

Y=o; Co=u C1=C2=*. ==0

Y = co; co = c1 SC2=. ..=0

one obtatis for CV

Here none of the functions ~ disappears, and c is therefore,

as had been expected, an even function. The equations here me not
divided into two independent @oups but the functions follow successively
one from the other.

Distribution of

‘7= y/ll;

the CV:

*1 =fl@ etc.; co =FO; c1 =~l;



Boundary conditions:

{

7 = o; FO = 1; the remaining functions = O;
.

~ = =; all functions = 0;

3
,

- O“ =-flFO’

$’1”= -flFll +flJFl -2f2Fo!

9“ = -f1G2’ +2f1’G2 -3g3Fo’

~2~f = -flH2’ i-2f1’H2 - 3h3Fo’ +&2’F1G
1)

- ‘2F1’

33” = -fl~’ + 3fl’~ - 4g4Fo’
—- ....

%3” = ‘fIH3’ +3fl’H3 -
(

4h4Fo’ +& f2’G2+ g3’Fl - 2f2G2’ - 3g3Fl~
1

-fl%’ + 4fl’%- q’o’ —.-

-fl% ‘ ‘hfl’%- (Z5F0’ + :3f2’G3 + g4’F1
- ~2G3’ )

- 4g4Fl‘

-flq’ + 4f1’~ - 5k5%’ + ;@3’G2 -z@

f1J4’ + 4f1’J4 - 5j5Fo‘ + 2(
)

3f2’H3 + % ‘FI - a.#3 ‘ - 4h4F1’ +
.— —

$~3’H2 + h3’G2)- 8(&3H2’
)

+ h3G2‘

‘1%’ + 4fl’% - 5~Fo
(

‘ +~3f2~K3 +~lFl - 2f&r -4~Flj+

(
‘2h’H
3 )

s z -3h3H2’

.

.

.

The first equation is identical with the f~st one,of the s~e~ical ,
case.
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.

.

.

.

B.

For flows about a
direction of the flow,
(ref. 13),

ROTATIONALLY SYMIETRIC CASE

a. Flow Eaandary Layer

blunt body of revolution whose sxis lies in the
the flow equations are, according to Boltze

[

2u+va~f+&
‘$x ay @
a(ur)+~=o

ax by

Ih the trsmsformation to the dimensionless form without Reynolds
number v disappears. The quantity r then must have, for the bodies
of revolution, the mesning, distance of axis of rotation up to the base
point of the normal tistead of up to the Pint (x, Y). A function for
identical solution of
(ref. 13) suggested a

the contin~ity equ;ion ii des&ed. Mltze
function ~ which is defined as follows:

~ the present report another solution ~ also has been examtiti.
Definition

The function ~ has the advsntage that the equtions become some-
what s~ler and that the velocity profile is obtained &ectly. The
functions sre derived h both cases. $ smd fi sre flow functions.

1. Use of the function

Aft= substitution of the expressions for
first boundary-layer equation one obtains

if

u snd v into the
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The power-series developments US~ (Vv f~ction of Y; rV ~

Uv Corlstsmts)

$=

r=

u=

The functions Tv

Y=o; w~=vv’=o;

$2X2 + *4X4 + $6X6 + . . .

rlx + r3x3 + r5x5 + . . .

U1X+U3X3 +5X5+...

.

.

have the following boundsry conditions:

-.——_ _

Y=~; +2 ‘ = rlul; ‘J-4’= rlu=j+ rsul; $6’ = rl~ + r3u3 + r5ul; ● . .

After substitution of the power expressions into the eqyation for
~ one obtains equations for $V by c~partion of the d~ferent coef-

ficients. These eqzations ~ be freed of the letters rv and ~

by the followtig formulations:

n c=Y 2U1; V2 =
‘I”l -f*; *k =

r ()3 ~4 , r3%h
2U1 c 2U1 rlu3 4

3qu5

(

U2 r 2U1
$6=— g6+~6+ ‘k6 + ‘3U3

r
2U1 ‘1U5 %% ‘1U5 )

j6+r+ ;”””

.

The new functions have the boundary conditions

7 ‘j= all functions and theti ftist derivative = O

~ =CO; f2’=l; g4’=h4’=~; g6’=~’=j6’ =$; ~’ ‘% ’= O;”””
—

.
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One obtains the following eq,tions:

13

f2tll=

. E!4’”=

h4’t~=

‘g6n’=

h6’” =

%’” =

36’” =

%’” =

.fafa” +*& - 1)

-f2g4“ + 2f2’g4’ - 2f2”g4 - 1

-f2h4° 12
+ ‘2’h4’ - 2f2’q - &f2 - =2f2’f + 1

1)

‘f2g6° + 3f2’g6’ - 3f2”g6 - 1

-f2h6° + 3f2’h6’ - 3f~”h6 - :p2@
)

- 2fg2*’+ 1

-f2k6“ + 3f2’k6’ - 3f2”k6 + $@g4’2 - 4g4g4”) - ~

‘f2j6”+ 3f2’j6’ - 3f2°j6 + 4gk’h4‘ - ~ $4h4° + h4g4”)+

(
~f3 @4° )‘4f2’g4’ ‘=2”% - 1

-f2%
“ + 3f2’Q’

(
- 3f2”q6 + $34’2 - hh4h4,’)+ 5&h4ii - kf2~h4,)

2. Use of the function ~
.-

One obtains

Power series develqments

J

T= F1X+T3X3+T5X5 +...

r= rlx + r3x3 5+r x+...5

u= up+u3x3+u5x5 +...
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EcIundaryconditions

Y=o; Tv =*V’ =0;

Y ‘m; T..’ =v.v

The functions Tv sre here divided up as folMws:

Boundary conditions —

7 = O; all functions and their first derivative = O;

.

.

E33‘“ = -f& + 2flfg3‘ - 2fl”g> - 1 —

h3 ‘r’= -flh3° + 2f1‘h3‘ - 2f1’ti3- * fIf~“ ——

(35‘“ = -f185“ + 3fl‘g5‘ - 3fl“85 - 1

-. . . ..

h5 !!!

= -flh5 “ + 3f1‘h5‘ - 3f1’?15- ~ f f “3 11
--

k5111= “ -i-3f1’~’ - 3f1”k5 + 2g3‘2
-fl%

- ;g3g3° -$

i15‘“ = -f~J5° + 3fl’J5’ - 3fl”J5 + 4g#h3 ‘
8

( )- ; g3h3° + ’383“ -

( )
g fl”g3 + f~g3“

%’” = -fl%” + 3fl’%’ - jfl”% + a3’2
-;~~ “+Lff”-

3 11

( )
~ f h “ + fl”h33 13

—

. .

. _.- .—
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B the first method, the functions have even subscripts, in the
second odd ones. A $@le relation exists between the two groups of
functions which one may easily obtain by eqyattig the two expressions
deftiing u_ and, respectively,
gives V=*)O

f.2= f~;

fl
q=g5; q=h3+~

fl

g6=g5; ‘6=%+9 %=

the two expressions defining v (which

~; j6=J5+;g3; c16=~5+;h3

b. Trsmsfer Boundsry Layer

The general equation of the temperature smd concentrateion fields
for rotationally symmetrical flow has not been set up before. For the
special case where the body is a sphere, the author (ref. 11.) has shown
that for boundary-layer flow the equation is identical with the one for
the two-dimensional case, at least for points which do not lie directly

. at the stagnation point. W the present report, it is shown that the
ssme boundary-layer equation is valid.also for arbitrsry blunt bodies
of revolution, and that this applies to points directly at tie stagnation

. point as well. The introduction of mass or heat into a volume element
by dflfusion and convection is expressed by the following equation (which
is valid for rotationally symmetrical flow without neglect of the boundary
layer when x and r are counted up to the element instead of to the
base point):

b(clzr) –’AM “wa(cvr)

ax + ay

The derivation becomes the simplest if one chooses as the volume element
an element bounded by two meridian planes, two surfaces x = constsnt,
smd two surfaces y = constsnt. b order to arrive at the boundsry-lsyer
equation, one groups the derivatives



.
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Supposing that a tlxlnboundary lsyer exists, the terms 2 and 3 in
the parenthesis disappew. The first two terms of the left side disappear
because of the appearance of the continuity equation. The last term of

the parenthesis becomes infinite at the stagnation point if & is not ,

here zero. Ik order to avoid discontinufties at the stagnation point,

one must therefore equate there >.00 ~~ the last term be~omes .

dx
everywhere negligible, and one obtains the equation

dx

which thus is identicsl with the

1. Use of

one in tie case of

the function ~

Because of symne~ and of the requirement g
$.

.—

two-dimensional

=0 one uses for

.—.

flow.

c the expression c = co + c# + C4X4 + ... . with tie fo~x

boundary conditions for ~:
—

.

Y =0; Co=l; C2=C4=.. .=(); .~.

Y = 02; co = C2 =C4 = ● ● ● = o

For the CV one obtains equations which contain rV and ~. Ik

order to eliminate these constsmts, one may @ke the following
substitutions:

3U5 33

(

%
C4 = —Q =—(24+ %I@-

U1 U1 rlw ).
u#4+=J4’*%rl~

Boundary condition
—-—

q = O;”F()= 1; remaining functions = O;

~ = W; all functions = O

. ..-.



.

.

NACA TM 1432 17

For the new functions the followhg equations of the second order
sxe obtained:

$%” = -f2G2’ + f2’G2 - 2gkF0’

~ H~” = -f2H# + f21H2 - ~Fot + $ f2F0’
u

:G4”=- ‘2%’ + ‘2’% - 3g6Fo’

$ %“ = -f~’ + 2f2’E$ - 3h6F0’ + ~ f#o’

~ J411= -f2J4‘
+ ‘2*J4 - 3j6Fo’

+!t
( )‘H + ‘4’G2 -3%2

:(%%’ + %%1) - ;(- ‘2G2f + ‘2’G2 - We’)

$ %“ = ~h’-f2Q4’ + ‘2’% - %FO’ + 3 4 % - ;4F2’ -

$
(
-f~’ + f2’E2 - 2h4Fo’ + + f2Fo‘

)

2. Use of the function ~

With the same power development for c and the ssme deftiitions
of the functions Fo, G2, G4, etc., one obtains

~ %“ = -flG2’ + fl’G2 - 2g3Fo’

$ %“ = -flH2’ + ‘1’H2 - %Fo’ - ~flFo’
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1G4’! = -fl~’ i-2fl’~ - 3g5Fo’
o

: %“ =
- $ flFo’

-fl%’ + 2fl’% - 3h5Fo’

$ %“ = ‘ +$g3’G2
-fl% ‘ + ‘1 ‘% - 3%F0

~J”= -f~J-
ak 1 + ‘1 ‘Jk - 3J5F0‘ -I-$(’g3’H2

8
) (~

g3Fo‘ - ~
‘2’ + ‘3G2‘)

$ %“ = ‘ i-}~’H2
-fl%’ + ‘1’% - S%Fo

~fF’
3 10

One can show easily by application of
functions with even and the functions with

NACA TM 1432 ““
.. . ..

.—

8 ~f-~gsz .

+k5’G2)-qf@+ . .

- 93H2’ - 3flH2’ + %Fo)’

the
odd

-- ——
relationships between the
subscripts that the systems

of equations for the cases 1 smd 2 are identical. ,=

The first equations of the two systems are identical with the first
equation for two-dimensional flow and are, therefore, also solves by
quahatures.

C. FINAL EXPRESSIONS FOR

The transfers sre made dtiensionless by

D #m
Nu=——

D 32Q
ACm &X3’r

or, respectively,
z a“

the

.
—

TRANsm

Nusselt number

It is easily shown that

ac() %where c ~ y S2W2k-= .– “dimensionlessand without
a~ Oay’

Reynolds number.” The heat trsnsferr~ by radiation is, of course, not
contained in this expression. For
obtains

two-d~ensional symmetrical bodies one
.-.

H4

)1
‘x!- . . .

ll=o

.
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Corresponding expressions are obtained in the other cases. As one
can see from the equations, one ~ easily calculate the Nusselt nmnber
for ~bitrsry pressure distributions and body shapes which agree with
the formulations, if one has made a numerical calculation of the func-
tions. Unfortunately, the qusntity u is left over and one must there-
fore make different solutions for different media. As is shown h a
section below, however, one can free the eqwtions of u, too, if u
is large.

D. NUMERICAL CAIJXUXTIONS

For the two-dimensional symmetrical case smd for rotationally
symmetrical bodies the author has numerically calculated various func-
tions, corresponding to the three first terms of the power-series devel-
opments in x. The method of Runge and Kutta (ref. 14) was used for
this purpose. This method is rather time consmni.ngbut one has good
possibilities of determining the errors. The first function fl of
the two-dimensional case has been calculated by IH_emenzand Howarth with
an accuracy sufficient for this tivestigation; Howarth’s values are
directly used here. For fl W the rotationally symmetrical case there

exists a table by Hartree (ref. 15) which was set up by using a mechanical
differential analyzer. The accuracy @ here not sufficient and the first
two derivatives also sxe required; for this reason the function is cal-
culated here anew. Since the equation for fl is not Iinesr szxlone

therefore cannot find the solution by combintig two particular solutions,
it was valuable to have approximate information on fl” for q = O.
The functions were solved mostlyby steps of q = 0.2. Since the values
with q-interval 0.1 must be known for the successive calculations, the
values lying between were titerpolated by means of a ~aylor series. For
the trsnsfer boundary layer the calculations for the u-value of the ah
(0.7) were performed in the two-dimensional symmetrical case because
experimental results for the heat trsnsfer of a circular cylimder in ah
exist (see, for instance,

()

the compilation by I&oujiline (ref. 1). For
FO° 0 one may obtain values from a table given by Goldstein and cal-

culated by Squtie (ref. 2) also in the case of other a-values. Squire
indicated en analogous expression for the heat trmsfer at the stagnation
point. For the rotationally symmetrical case calculations have been

carried out for u = —0.;95 because the only experimental result for the

transfer distribution has been found for the evaporation of naphthalene
spheres (ref. n), naphthalene has this value of U. H one wants to
calculate the higher terms of the power-series development h x for a
special case, one may combine the sepsrate functions in a single term in
order to save work e~enditure; but the generality of the solution is lost
thereby. This has been done for the bamdary layer of the body of revolution
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1
—

for u = —.
0.395

The parenthesis h the defintig equation for ~, 1$

etc., has been combined into a single function ~ and calculated for

the sphere for the pressure distribution of J?age. (See below.)

The tables of the calculated functions me printed at the end of
the report with the exception of the higher ones for rotationally sym-

metric boundsry layer.
( o.;95)

Here one has for n=Osnd u=—

G2‘ = 0.3186, ~’ = -0.100~, and ~’ = -0.2118. The error of the

tabulated functions which will be.discussed in more de~ail later is at
most a few units in the last digit.

.

?&om the tables one obtains for air, for the pressure distribution
measured by Hiementi(ref. 6) at Re --190w for the circulsr cylinder

u = 3.6314x - 2.1709x3 - 1.5144x5

—= O*W9
~e

- o.510& - 0.5956X4. . .
.-

m.

The quantity x is here dimensionless (the length dtiension x
divided by the diameter D). Not only h the range @ - 55° where the
series is to apply exactly (see E, 2) but up to the sepsmation point this

.

equation is in good agreement with the compilation of experimental dis-
tribution curves fid.icatedbylCroujiMne (ref. 1). The derivations will.
be discussed later.

.

For the sphere a qualitative agreement with the values obtained for
evaporation of naphthalene at higher Re (refrll) is attained if the
pressure distribution according to Fage (ref. 17) is used which gives

u= 3x - 3.4966x3 + 4 .739Ix5 - 5.4181,x7 for ‘Re = 157200 (ref. 18).
One then obtains

—= 1.8615 -
G

2.1477x2 + 2.4609x4 . . .

The deviations depend, smong other things, on the fact that Fage’s
pressure distribution is possibly not fulfllled for Reynolds numbers as
small as those used here. Later on a more exact comparison will be made
with more recent experimental values obtained by the author at stiu .
higher Reynolds numbers.

—.. .+_
-. -—
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E. D~TIOI? OF THE ERRORS OF TEE

BROKEN-OFF K)WER-SERIES DEVELOPMENTS

One may use vsmious methods: (1) The following term is calculated
and for mot-too-lmge x this 5ndicates the error. (2) H the value
of the errors is not required with a very high accuracy, the coefficient
of the x-terms may be assumed to be of the same order of magnitude. (3)
Use of a continuation method of the profile. (See following section.)
(4) b the$ase of direct differentiation, with respect to y, of the

ax taken from the transfer boundary-layer equation one mayvalue of —

obtain, for transition to y . 0, the first derivative of Nu in x
whereby a centinuation step may be taken directly with respect to Nu.
Later on numerical calculations according to some Qf these methods will
be given.

STEPWISE DEVELOPMENT OF TEE BOUNDARY-LAYER FROFZLE

A. TWO-DIMENSIONAL CASE

a. Flow

fiandtl (ref. 8) indicated
on the fact that one”maY obtati

Boundary

for this
from the

& containing only u with derivatives

layer

case a method which is based
equations sn expressio_nfor

for a prescribed x. g becomes

with dimensionlesssqusntities without Reynolds numbers

e=$~~ydy+%~
When two adjacent profiles (at x - Ax snd x) were known, for

instance, by ap@ication of the methd of Biasius and Hiemenz, it was
possible to calculate a third for x + Ax. With the u-values at x - L.x

the 2Ax ~ values for x were used. One could then continue in the

same manner with the profiles at x end x + Ax. ~ order to gusrsntee
the convergence of the expression, one was not to use the original numer-
ical profile at x but had to replace it by another which satisfied
certain requirements. h order to calculate those> u was developed
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into a power series tith respect to y: u = w WYv
z —---- For the ~ one
v=~ v!

obtained certain conditions by substitution into the flow equation whereby
only some of them could be chosen arbitrsri2y. Zbese latter were deter-

.

mined by comparison with the given profile. G6rtler (ref. 9.)perfected
the method practically smd used it in Hiemenzt pressure distribution over
the circular cylinder. Tn the present report corresponding ideas are

.

used for bodies of revolution and for the transfer boundary layer, and
the necessm?y expressions are added and discussed.

b. Transfer ~undary hyer

lb?omthe basic equation one obtains directly

(ac llapc )
.--—

G=;uayz-v $
!Ihiseqution may therefore be used directly for step-by-step

continuation of the vapor and temperature boundsry layer. Conditions
become here shpler insofar as no integration is necesssry. However,
here also the danger exists that the expression becomes uncertain at the

acwall (because of u occurring in the denominator). Moreover, ~ must

become identically zero at the wall. Ih order to satisfy the require- .
ments, one resolves here also the quantity c into a power-series devel-
opment with respect to y(bv function of x only):

—

mbvyv
c = 1 -Z———

— -.

V=l v!

~ substitution one obtains

By comparison of terms of the same degree, one ~_ives at the
relation between the bv. For the first nine bv there applies (with”.
f= -m’) ....

—

.

-.
.—
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bl free; b2 = b3=0

bu
—=
a

EL=
a

b8
—=
a

bg
—=
G

2albl’ 3- ~’bl free; ~= 3fb1’ - f’bl;

r
10a12crb1°+ 5~al’(1 - 3a)bl’ + al’2(10a

4~of’bl°
[al 1+2 2 f’(s - 7cI) - 15a1’fcybl’

f’a#35u - 2~ bl;

23

b6=0

+ ~aqfi’( 3cT+ 1)- 15fal’’cT+

63f2dq” -t-7ff’(2 - 9u)b1’ + ~’2(35u - 2) - ff’’(2la+ 2~ bl

The free coefficients sre calculated as before by comparison with
the given profile, and the c-values developed in power series we sti-

ac
stituted into the above eqyation for

Z*

B. ROTATIONAHY SYMMETRICAL

a. Flow Iknmdary Layer

CASE

The equations read

Uau+v a#=wl +&#
ax

Here r signifies, as before, for a blunt bdy of revolution the
distance between the axis of rotation and the base point of the normal
to the surface.

au
— one obtains a linear equation of the first order

W ‘ltitit@ ax
in v with solution
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By forming the derivative from v with respect to y and us@
the continuity equation one obtains

.-+—..—— -—
.* --— .—.-—

,
.-

.

—.

For given u-profile, one msy therefore use an eqwtion for the
continuation of the boundsry-layer profile which differs from the equa-
tion for the two-dimensional case only with respect to the last term.
Ih order to establish the convergence at the
series development in y becomes necessary

r
qYv

u=—
1

v!

wall, here sd.soa power-

-- —

. .-.
—.--

since

w
Z( )

~w-l
v=-. aJ+a/:

(V+l)! “-
,-

1

(Ey substitution into the basic equations one obtains with f = -UTJ’;

)
g=r;

al free; a2 = f; a~ = O;

a4 = alal’ - a12g free; a5 = 2alf’ - 4a1fg;
a6 = 2ff’ - 4f2g

. . . . . . . . . . . ..*. . . . . . . . . . . . ...* . .

As before, one determines the free coefficients. .

b. Transfer Boundary

With the same expression as above for
obtains for the bv

Layer —

the two-dimensional case one

—

-=.
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bl free; =b =0;b2 3

25

& a~bl! .
b5

u
~’bl - ~blg free; ~ = 3fbl’ - f’bl - fblg; b6 = O;

. . . . . . . ...0. . .. *O. ● . . . . . . . . . . . . . . . .

The practical execution in the last three cases will be discussed
h a later report together with numerical.calculations. The methods of
continuation discussed yield results the accuracy of tiich depends
exclusively on the work expenditure and is therefore not limited by
postulating approximation functions. The methods may also be used for
determining the accuracy of the aforementioned power-series developments
in x in the case of breaking-off after a certain number of terms at a
certain point. One then starts the continuation method at sn x so
small that the error is”certainly small, and compsres the result then
obtained at a lsrger x with the one directly calculated from the power-
series development in x.

DEPENDENCE OF TEE EVAPORATION AND THE KEAT TRANSFER ON a

A. GENERALITIES

Pohlhausen (ref. 16) has shown for the plane that Nu is approxi-

mately proportional to the q~tity ~. b the approximate cal.cul.a-
tions of fioujiline (ref. 1) the same was shown for the circular cylinder.
U1.samer(ref. 10) demonstrated that the law may be approximately selected
from vsrious experimental investigations on the heat transfer of a
circular cylinder. The author of this report has confhned the law at
least approximately in the case of evaporation of drops (ref. 11).

From the equations of the section on power-series developments in
x one sees that u csn probably not be el~ted from them by simple
transformations. Thus one caunot expect a relation as simple as the
aforementioned to apply exactly. For the case where u is very lage
and the transfer boundary layer therefore thti compared to the flow

bcnmdary layer, the author of this report found the v a-law to be exact.
k this case the curvature of the velocity profile msy be neglected in
the entire transfer boundary layer, and one msy replace u w (u’)@
and v by L(v”)&2 in the general boundsry-layer equation, with the

2
apostrophes indicating derivatives with respect to y.
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JThe variable ~ = y 3 a is introduced for c (not for u and v)

Boundary conditions: 1 = O; c = 1. ~ = ~; c

Thus one has obtained an equation free of

becomes c =
(

f x,y’~~; hence follows that for
.?

—

= o.

a. For this reason, c

large o the quantity

I?u is proportional to the quantity ya. on the entire surface in the
tmundary layer. That the same law has been found experimentally also
for a u that is not lsrge, is based on the fact that the quantity

/Nu & does not vary greatly with IS smd msy therefore be found to be
approximately constant in a stil region.

B. TW-DIMENSIONAL

hto the equations

functions and vsriables

‘“w;

for FO, F2,

SYME!IIRICALCASE

q,q... the following

are irrtroduced:

F. (TI) =130(g); F2(7) = ()‘3:;Q@2(g)

()fl o

EWndsxy conditions:

E=oj Qo = 1; remaining functions = O;

5 = CO;all functions = O. .
....

—.

-..-
---

.

.
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Taking into account that for large u the equation ~ = *(V’’)W2

is valid, one obtains

@ol~= -3#oo’

~2,1
= -3E24# + 12E@2 - 9&@o’

z“ = -3@4’ -I-2@4 - 15~~0’

.()[8flt2

‘4“
s -3~2e4’ + 24~e4 - 15g200’ + 1

(fl’’)oi5:)o4’02-3E202’

. . . . . . . . . . . . . . .

For the pressure distribution

● ✎ ✎ ✎ ✎ ● ✎✎✎☛ ✎

according to Hiemenz

. . . . .

(see p. 20)

one obtains in the case of a circular cylinder <d
=1.259 -

a Re
0.7583x2. . . ; for the case calculated above u = 0.7 one obtains for

the corresponding q.mntity 1.0642 - 0.5744x2 - o.6708# . . . . Here
x signifies the dimensionless abscissa which is obtained from the length
dimension through division by the diameter D.

02 are given numerica~ in table 6.

C. ROTATIONALLY SYM4ETRJJXL

me following functions sre now introduced:

The equations become

The functions 00 and

r2(~); %!
(~)“ o=— 92(E)

()‘l” o

r2° = - 6@o’m2r2’ + 6~r2 -

1321! = 3 (fl”)o ~200,-3~2e2’ + 6ge2 - 6E%0’ -z h ,,

() 30
. . . . . . . . . . . . . . . . . . . . . . . .



28

one

u=

As in the previous case, the solution of the first equation is

rk -X3
e dx

For the pressure distribution according to Fage (ref. 17) (see p. 20)

obtatis for the sphere

m

.)x2+ . . .; for
3: ~e

= 1.4723 - (. .

.
L

—, one obtains 1.3658 - . . . .
0.395-

DISCUSSION OFliPFROXIMATEMETHODS

As has been mentioned above, Pohlhausen (ref. 3) gave sm approxi-
mate method for the solution of the boundary-lsyer equation for the flow
about a circular cylinder. Tomotika (ref. 18) applied this method to
the sphere. fiou~oultie used a similar method for the trsnsfer for the
cylinder, ap@y@ a broken-off series development in y which was
detemined with utilization of the integral condition of the transfer
boundary layer. For the flow boundsry layer he used a parabolic profile
whereby the a~eement may be assumed to be bad particularly in the case
of pressure increase. Probably better approximations could have been
obtained with the use of polynomials of the fourth degree. These
statements are valid only when the transfer boundary lqyer is thinner
than the flow bounda?y layer. Here a brief description is given
concerning some considerations of the author of this re~ort concerning
a body of revolution, for vsrious relative magnitudes of the two layers.

The integral condition formerly not set up for bodies of revolution
becomes (see p. 4)

which may be derived, for instance, by integration of the orig~
equation. Here 5 is the thiclmess of the transition boudsry layer.
Using dimensi~less quantities without Reynolds numbers only, A is

replaced by –. This is assumed below.a

--

—

.—

.

.—

.. -- ---

-.

-.. .—
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H for the two profiles the deftiitions

are used, one obtatns for 5 < 81 the equation

2rd [( a z3 3. 24
= — r~l

alza dx. ]
ag+*+*+2g

Here 51 is the thickness of the flow boundsry

For 5 >51, the integration is perfo?mmd, with

condition, first from O to 51 snd tien from 51

4

lqfer and z = ~.
al

use of the integral

to 5. Result

J

The two equations have the ssme form when the parentheses after
51 are &enoted.,for instmce, by the letter P. From the first of the

two equations one sees that, for a a 60 lsxge and a z therefore so
small that only the first term of the parenthesis must be consider~,
this z is, for a given
3

x, inversely proportional to the quantity

J
u. Since the Nusselt number Nu equals ~ Re, Nu is, for a

b~z r

large u, proportional to 3
<

a also accord- to this a~roxhnate
theory.

Since r, u, ~, and 51 sre tiown functions of x, we have in
sny case an equation of the first order with z and x which can be
solved with customary methods (for ~tance, with the isocline method
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or according to Runge and Kutta). The only boundary condition required
for this is the z-value at x = O. This value is calculated from the

2 is identical Wi-tithe parameter– 1equation AzaP = 1
-.

mere.. A =“U’81

used by Pohlhausen amll?omotika. For the sphere where U’ = 3 ~ -
A = 4.716, one obtains in the proximity of the stagnation point

.

1—= 0.8759z3 - 0.2648z4 + 0.01809z5 + 0.00561z6 or, respectively,
o

~. 104.148Z2- 1.22$Y5z + 0.50’j2 - QTK +..0”;89
G 22

For a given z and therefore a“lsogiven Nu on= msy easily
calculate the corresponding” a. For . —

z =0.0 0.1 0.4 0.7 1.1 1.6 2.0 3.0 4.o, one obtains
.

Nu/@e ~=1.526 1.511 1.464 1.418 1.356 1.284 1.232 1.128
—.

1.C49 and =
,.

1/ $;= o 0.095003670.6220.9351.2881.%=52.121 2~631- C

The
constant

lineexly

The
vu iable

quantity Nu/ &e ~ is therefore, for a lexge
.—

u, almost ,.

and varies k the proximity of the stagnation petit about

J

...
with 1/ 3 a.

reason for choosing, above, z instesd of ,5 as the depend=t
—

was that z probably varies little with x _(compsreKroujouline
—

(ref. 1)) and cm therefore be calculated exactly more easily.

In the later more detailed report on the investigations,the rmmer-
.-

ical results of this formulation as well as of others will be discussed.
It was shown that the choice of the profile formhsd a great effect on
the result.

sulmluw
--

A preliminary report is given of a theoretical investigation of the
boundary-layer flow for two-dimensional and rotationally symmetrical
bodies. The evaporation, the heat-transfer, and the velocity ere cal-
culated by power-series develo~ents with respect to the meridian length.

.-

..—-

-..

. .
—

.

— . ..—
—

.
-.&...
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The coefficient functions which were calculated numerically in some cases
have been chosen so that the calculation is valid for all pressure distri-
butions snd body shapes. The methods for determination of the errors tn.
breaking off the series sre briefly treated. Methods of continuation sre
discussed. It is shown, for lsrge Prsndtl nmbers, that the Nusselt
number is exactly propo&tional ti–the cube root.
Finally, approximate meth~s of calculation are

EPIZOGuE

of-the Rrandtl
discussed.
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TAEGE 1. TWO-DIMENSIONAL~CAL

L?LowmJNDARY IAYER
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.42fl
.4587
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.%26
.%98
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.@@2
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.7010
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.7520
●m
.8027
.8279
.8531
.8782
● 9033
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.f185
1.0035
L.0285
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L.0785

!5’
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.(%75
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.1754
.21.29
.2444
.2688
.2869
.2997
.3080
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.3~2
.3107
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.3526
.3724
.3%8
.4103
.4293
.ti76
.4655
.4832
;%

.5352

.5522

.5692

.5861

.6030

.6199

.6365

.633

.67cm

.6857

.7034

.7201

.736!3

.7535

.7701

:E
.8201
.8368

%’

3

.1072

.1778

.2W

.2367

.2399

.2342

.2239

.2J23

.2012

.1916

.1839

.1781

.1740

.171.2

.16g4

.1682

.1676

.1672

.1669

.1668

.1667

%“

3.6348

.4402

.-7

.1408

.0483

-.0106

-.0431

-.0567

-.oy%

-.0522

-.C&32

-.0335

-.0245

-.0171.

-.ol.L4

-.oq2

-.(X2=43

-.0026

-.0015

-.0010

-.00C4

-.0001

-.0001

-.ccmo

o
.m5
.0017
.0032
.0045
.0055
.m57
.0052
.0039
.0017
-.0012
-.0349
-.oogo
-.0136
-.0185
-.0236
-.0286
-.0336
-.03&
-.0430
-.0k72
-.Vlo
---
-.0577
-.06C4
-.0628
-.0649
-.0666
-.c%81
-.0693
-.0703
-*W
-.0717
-.0722
-.q26
-.0730
-.0732
-.W
-.0735
-.0736
-.0737
-.0738
-.0738
-.0758
-.0738
-.0739

hp’

o

.0141

.0117

-.0010

-.0176

-.0330

-.&l

-.0495

-.0503

-.0468

-.C406

-.0331

-.0257

-.0189

-.o133

-.0089

-. m58

-.0036

-.oo21

-.oo12

-.0306

-.0003

-.0001

-.0000

‘5”
3.lJ-g2

.0249

-.c436

-.0783

-.0833

-.06eo

-.ch23

-.0149

.0088

.02%

.0351

.0380

.0361

.0312

.0249

.0187

.0132

.0089

.0057

.0036

.0022

.oo12

●W

.0003

.OcOl

●m
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TABLE 2. TWO-DIMENSIONAL SYMMETRIC~

TRANSITION KXINDARY-LAYER
.-—.

F2

o
-.0224
-.0443
-.O@
-.0835
-.0983
-.1087
-.1141
-.1143
-.1099
-.1015
-.0904
-.0777
-.0645
-.0518
-.0403
- ● 0303
- ● 0221
-.0156
-.0107
-.0071
-.0046
-.0029
-.0018
-.CQ1O
-.0036
-.0003
-.0002
-.0001
-.0000

Q)
o
-.0195
-.0386
-.0365
-.0721
-.0843
-.0926
-=0964
-.0958
-.0913
-.0838
-● 0741
-.0633
-.0522
-.0417
-.0323
-.0242
-.0176
-.0124
-.0084
-.0056
-.0036
-.0022
-.OQ14
-.0008
-.0005
- ● 0003
-.0002
-.0001
-.0000

~

0.0

::
.6
.8

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

;::
4.8

;::
5.4
5.6
5.8
6.0
6.2
6.4

2:;

%’
0.0318
.0320
.0338
.0378
.0433
.0490
.0529
.0530
.0480
.0376
.0228
.(@$

-.0123
-.0281
-.C404
-.0481
-.051.1
-.o~o
-.0b58
-.0396
-.0325
- ● 0254
-.0191
-.0137
~:~;

-.0040
-.0025
-.0015
-.0009
-.oO@
-.0002
-.0001
-.0031
-.00C0

-Fe”’ F2 ‘

o
.0991
.1979
.2954
.3904
.48u
.5666
.6447
.~46
.7755
.8273
.8701
● 9045
.9315
.9520
.9672
.9781
.9858
.%uo
*9f%4
.9966
.9*O
● 9959
● 9994
● 9996
● 999
● 9999
1.0000

0.4959
.4953
.4917
.4825
.4660
.4416
.4095
.3708
.3275
.2818
.2360
.1924
.1526
.1177
.0883
.0644
.0457
.0315
.0211
.0138
.0088
.O@
.0032
.0019
.0011
.0006
.0003
.0002
.0001
● 0000

-0.lug
-.1113
-.1077
-,0988
-.0841
-.0638
-.0397
-.0138
.0111
.0328
.04%
.0605
.05y5
.0654
.0610
:g$

.0366

.0283

.0211

.ol~l

.0104

.0070

.#45

.0028

.0017
● 0010
.0006
.0003
.0002
.0001
.Oooo

-0.0977
-. Ono
-.0932
-.0846

0
.0064
.0129
.0200

-.0704
-●0517
-.0301

.0281

.0374

.0476
-.0678.o@3
.0131-.0685
.0307.0771
.0440.0832
.0521
.0554
.O*
.0502
.0440
.0368

. 0%1

.0854

.08*

.0744

.06*

.0555
.0295
.0227
.0168
.0119
.0082
.0055
.0035
.0021
● 0013
.0008
.0005
.0003
.0002
.0000

.C453

.0356

.0271
::::

.0097

:%!
.0026
.0015
.0009
.mo5
. m3
.Omn
.Cx)Ol
.0000

.
.-.

-—
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TAELE3. ROTMCIOMAUXsYMmmIcALFLOW

BWNDARY LAYER

35

n fl f1‘ fl” 133 gz‘ g3“ h3 h3‘ h3“

0.0 0 0 0.92T o 0 1.0475 0 0 0.0448
.1 .oc46 .0SQ3 .8777 .0051 .Ogga .s477 .- .- :%
.2 .0179 .1755 .8277 .0196 .1896 .848s .0309 .Cu)go
.3 .0395 .259 .lqq@ .&27 .26s6 .7=7 .0020 .01.33 .*34
.4 .0689 .3311 .7282 .0732 .34m .65* .0036 .0176 .0416

.1056 .4014 .6788 .1104 .40M .%66 .0055 s)21J :03$
:2 .14sQ .466$3 .63cQ .1532 .4535 .4802 .0079
.7 .1988 W17; .5819 :2 .4974 .3986 .0106 .0288 .0314
.8 .2544 .5348 .5334 .3227 .0136 .0316 .0265
.9 .3153 .6345 .4888 .3~2 .5621 .2528 .0169 .0340 .Oao
1.0 .38u .6811 .4443 .3646 :% .1895 .0204 .035$3 .0152
1.1 .451k .7234 .4014 .4239 .v28 .@l .0370 .0091
1.2 .5255 .7614 .36cA .4tk5 .613.0 .0832 .0278 .0377 .0032
1.3 .6035 .7954 .3215 :~;: $11 .0403 l:$; .0377 ::%
1.4 .6%6 .8258 .2850 .0044 .0372
1.5 .7686 .8526 .2!509 .6696 .6u32 -.0251 .0390 1:3$ -.OI-27
1.6 .85~ .876I. .21g2 .m13 .6144 -.0483 .@25 -.0168
1.7 .*37 .8966 .1901 .7925 .6067 -.C%57 .0459 .0327 -.m2
1.8 1.0342 .942 .1637 .8530 .6015 -.oqtlo.tigl .0306 -.0228
1.9 1.1264 .9294 .1398 .9327 .5932 -.085’j’.0520 .0282
2.0 1.22cm

-.0244
.*22 .u85 .9TL6 .%45 -.08% .0547 ~~ -.0254

2.1 1.3148 .9530 .ogg6 1.0296 .5m -.0899 .0572 -.02%
2.2 1.41C% .9622 .0831 1.0%7 .5566 -.ct176 .05s4 .0207 -.0252
2.3 1.5072 .9698 .0688 1.1430 .5580 -.0834 .0613 .0182 -.0243
2.4 1.60$5 .g@ .O* 1.19S4 .55ao -.0776 .0630 .0158 -.0229
2.5 1.7024 .*U .0458 1.2530 .*25 -.0709 .0545 .o136 -*0212
2.6 l.aocq’ .9953 .0370 1.3069 .5358 -.0637 .06m .0U6 -.0193
2.7 1.895A .%86 .0256 1.3602 .5298 -.0%3 .0668 .m -.01*
2.8 1.gg84 .9912 .0234 1.4129 .5245 -.0490 .06m .0081 -.0153
2.9 2.0977 .9932 .0184 1.4651 .5200 -.C420 .0684 .m67 -.0133
3.0 2.1571 .!3549 .0143 1.5169 .5161 -.0375 .069 .c@ -.01.14
3.1 2.2566 .9*2 .0110 1.5683 .5u28 -.0297 .06% .0044 -.cx)n
3.2 2.3963 .9972 ;~ ;.61g .5102 -.o#$5 ,06gg .0035 -.0082
3.3 2.4@l .9979 .Y79 -.0200 .0702 .0028 -.0067
3.4 2.5959 .9985 .0048 1:7211 .*1 -.0161

● W05 :% ::%
3.5 2.6958 .m9 .0036 1.7716 .5047 -.0128 .O’@
3.6 2.7957 .9992 .0026 1.8220 .n% -.0101 .U@3 .0013 -.m35
3.7 2.8956 .9995 .0020 1.8723
3.8 2.9956 .9996

.5027 -.0078 .0709 .0010 -.0028
.m14 1.9226 .5020 -.0060 .O’p.o :3 ~:$mo

3.9 3.0955 .9997 .0010 L 9727 .5015 -.0046 .0711
4.0 3.1955 .9998 .000-/2.0229 .5011 -.0034 .Op.l .fxQ4 -.0013
4.1 3.2955 .gggg .00052.0730 .yx18 -.0026 .0711 .0002 -.0009
4.2 3.3955 ;= .oo@ 2.1230 .5006 -.0019 .0712 .0002 ;:~7
4.3 3.4955 .cno3 2.1731 .50C4 -.0014 .O’p2 .0002
4.4 3.554 .9999 .0002 2.2231 .5003 -.0010 .- .0002 -.0304
4.5 3.6954 1.OWO .mol 2.2731 .5002 -.0007 .Oooo -.0002
4.6 .cool 2.3231 .5001 -.0005 -.0002
4.7 .Oooo 2.3~2 .5001 -.0004 -.0001
4.8 .5000 -.0002 -.0001
4.9 -.0001 -.0000

-.0001
;:; -.occll
5.2 -.om



n 135

0.0 0
.2 .o168
.4 .0619
.6 .1279
.8 .2i182

1.0 .2971

;.: .39X
. .

1.6 .5751
1.8 .6637
2.0 .W
2.2 .8293

2.4 .%6
2.6 .9810
2.8 1.0530

3.0 1.U31
3.2 1.1920
3.4 1 .26Q1
3.6 1.3275

3.8 1.354.7
4.0 1A616
4.2 1.52&
4.4 1.5951
4.6 1.6618
4.8 1.7285
5.0 1.7952
5.2 1.8518
5.4 l.p~
5.6

~~ r ~ II

0.9?5+
.163-2.7075
.2838 .5210

.3709 .39+1

.4270 .2123

.h576 .09LM

.4693 .0128

.4f?+5 -.0459

.4515 -.0W3

.4335 -.0%

.41,39 -.09-/4

.3952 -.m

.3787-.~

.3652 -.059

.3549 -.0445

.34n -.0317

.3420 -.0215
;;;g -.OU;

-.

.3350 -.~l

.3$2 -.0029

.3338, -.0016

;;;g -.c&xJ

.3334 lx102
.3334 -ml
.3334 -.CQOO
.3333 -.(MM

TAmE 4. Rcmmow smmEucAL

Im3w ImmDARY

% l%’ l%” l%+’
o 0.05Q6

. auo .0101 ,LyKK)

.m40 .0U8 .cJt67

.cck99 .0285 .0396

.0153 .0354 .0289

.0229 .0399 .0159

.0311 .0!17 .&J@+

.039 .W39 -.0099

.&n .0379 -.ol~

.cywt .0334 -.02$

.06C4 .0279 -.0282

.0S56 . ce23 -.0277

.0695 .ol~ -.02s

.07’24 .olE4 -.0209

.~k5 .Oo&i -.0165

.0760 .c@3 -.0322

.v6g .0037 -.cx386

.0775 .m23 -.0058

.0778 .Ca3 -. IX)37

L@& .~ -Ax&.

,.0782 ,:0002 ::cxq
.0782 .OcOl -.ood
.0(82 .OocQ -.cKlo2
.0783 .0030 -.ci)ol
.0783 .CQcx2 -.ccoo
.0783 .Owo -.caxl
.0783 .cKm -.axlo

o 0
.CX129 .02~
.cxyxl .0324
.(IM8 .0241

.0179 .0051

.0165 -.0195

.0101 -.0447
-.ax.l. -.c%65
-.0161 -.0919
-.0334 -X$97
-.0515 -.c@9
-.(%89 -.0938
-.C847 -.0733
-.0$+!31 -.!%05
-.10!39 .X)4*
-.lln -.0352
-. I&l -.0249
-.12j’2-.ola
-.l.xxl-.o1o9
::~~ -.%7

-.1334::=
-.1.337-.amz
-.U39 -.Oo@
-.U40 -.m~
-.U40 -.axn
-.1340-.(YXO
-.@la -.0300

, 1 I I

%“

.1768

.0750

.0068

.O@l

.1132

.UX?4

.1204

.0$8

.0585

. 01s4

.Olti

.dt32

.0599

. &.62

.&42

.0565

.dko

.0350

.c&51

.0170

.0109

.0366

.a)39

.0cQ2

.Wr12

.0026

.0003

.0001

.Ooco

35 j5 ‘

1
.0005 0.w8
.0022 . 01.o’(
.fxA7 .0137

.0075 .03.34

.co$g .0096

. Ou.1 .0025

.0108 -.c$a

.0085 -.0156

.od+6 -.c@.k

-.ca% -.0287
-.0367 -.0310

-.01.29 -. om4
- .olEq -.~
-.0238 -.0232

-.oqg -.0184
-.03U. -.o137
-.0354 -.lx)~

-.0351 -.ti5
-.0361 -.od+2
-.0368 -.(M25
-.0372 - .(%15

-.0374 -.0008
-.0375 -.oa14
-.0376 -.0002
-.0376 -.CQO1
-.0376 -.(XQO
-.0376 -.00CQ

I I

s5n @j Eirj’

. 02% o

.0278 -.CKK13 U349

.On.o -. cm9 -.c@6
:3 -.00$3 -.0140

-.0075 -.0176
.0280 -.01J3 -.0204
.0412 -.0156 -.W2?
.&67 -.0201 -.0229
.C437 -.0247 -.0226
.0336 -.0291 -.oaz
.0191 -.0331 - .Olp
.0037 -.0367 -. cn67
.co~ -.0356 -.o139
.o187 -. 0k23 -.oul
.0234 -.C442 -.0085
.0241 - .d+57 -.0062
.0219 -.0467 -.o@4
.Om - .0!74 -.0029
.oI.38 - .&79 - .mlg
.W -.0W32 -.00I.2
.0057 ..0484 -.cxlq’
.0d+2 -.0485 -.0034
.0026 -.&&i -.0CQ2
.@)14 -.0486 -.0001
.0338 -.&% -.occo
.0004 -.0486 -.0000
.mo2 -.0486 -.c030
.0001
.Omo

%“

0.0244
-.0242

-.0230
- .02Q3
- .ol@+
-.o1.15
-.0?52
-.mo8

.0043

.(XI85

.o117

. 0E56

. aL42

.0V6

.01.22

.0103

.0382

. C061

.odA

.mo

.003.9

.0012

.W

.Cd

.0022

.Ooo1

.moc

I
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NACA TM 1432

!I!ABLE5. ROTATIONALLY SYB31CTRICAL

TMNSFER muNDARY LAYER

E

o I -(FO’)0

0.5 0
●7

:/0.395
10 1
100 2

.4129

.4705
● 539Q
.7599
.2389
.7365

TABLE 6. TWO-DIMENSIONAL SYMMETRICAL TRANSFER

EWNDARY LAYER. tT LARGE

0.0
.1
.2

::
.5
.6
.7
.8
.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

1- ‘%3

0
.U.20
.2235
.3337
.4409
.5430
.6378
.7228
.7962
:8&6’

.9396

.gal
;980380

● 9951
● 9979
.9992
.9997
● 9999
1.Oom

1.1198
1.1187
1.hog
l.ogoo
1.0504
.9883
.9023
.797
.67u
.+02
.4120
.2959
.1989
.1245
XJ7zg

.0186

.0082

.c033

.0012

.0004

.0001

.0000

0
-.0479
-.0952
-.1401
-.1801
-.2118
-.2320
-.2384
-.2301
-.2083
-.1765
-.1395
-.1023
-.693
-.0k32
-.0246
-.0128
-.0(%0
-.0026
-.0010
-.0003
-.0001
-.Oooa

-0.4799
-.4780
-.4647
-.4295
-.3637
-.2647
-.1361
.0099
.1541
.2747
.3530
.37%
.3565
.2981
.2232
.1500
.Ogch
.C488
.0236
.0102
.Ocko
.0014
.Cm4
.0001
.0000

37
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