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IN TWO-DIMENSTONATL AND ROTATIONATLY SYMMETRICAL
LAMTINAR BOUNDARY-IAYER FLOW¥

By Nils Frossling

INTRODUCTION

Aside from the simple case of the plane, no quantitative calcula-
tilons of the evaporatlon of a body 1n s moving medium exist so far. The
heat transfer, which under certain circumstances (see p. 4) follows the
same laws, has been treated theoretically for the cylinder by Kroujiline
(ref. 1) and Squire (ref. 2). For boundary-lsyer flow, Kroujiline used
for the tempersture field a power-series method of the same type which
has been introduced for velocities by Pohlhausen (ref. 3). Because of
this stipulation of the profile form, the result must be approximste,
and the eventusl agreement with the correct value is rather accidental.
Squire gave an exact treatment of the transfer in the immediate proximity
of the stagnation point. However, it 1s of great interest to have a
calculation method for heat and mass transfer in the entire boundary
layer, the error of which depends only on the work expenditure of the
numerical calculation and, therefore, not on possible approximative
formulations. Even though the calculation is time consuming, one has
the advantage of being sble to check spproximate and more rapid methods
with respect to this solution. Under the supposition that the constants
of the problem (shape of body, pressure distribution, etec.) may possibly
be eliminated from the equations to be solved, it is also possible in
several cases to use the complete exact solution directly. The author
of this report perfected, for this reesson, the exact solutions for the
tempersture and concentration fields. Two dimensional and rotationally
symmetrical steady boundery-leyer flows were treated., The latter case

is the more compllicated one because of the form of the continulty
equation.

*"Verdunstung, Wermelbergang und Geschwindigkeitsverteilung beil
zweldimensionaler und rotations etrischer laminasrer Grenzschicht-
strémung.” ILunds Universitets Arsskrift, N.F. Avd. 2, Bd. 36, Nr. b4
Kungl. Fysiografisks Sdéllskspets Hanmdlingar, N.F. Bd. 51, Nr. L4, 1940,
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For the calculation of the transfers, however, the velocity flelds
must be known. For the two-dimensilonal case one has, aside from approx-
imste methods of solution by Pohlhausen (ref. 3), Kfrmdn and Milliken
(ref. %), and others, the method of Blasius (ref. 5) and Hiemenz (ref, 6)
which was lmproved by Howarth (ref. 7). By means of this method one may
solve the equations, without any arbitrary assumptions regarding velocity
profile and the like, by power-series development from the stagnation
point up to an arbitrary polnt on the meridian curve. The work expend-
lture depends on the required accuracy and on the position of that point.
Since the development becomes very rapidly more cumbersome wlth the
distance from the stagnetion point, it i1s appropriste to use, from a
certain point onward, a continustion method, for instsnce, according to
Prandtl (ref. 8) and Gortler (ref. 9). Howarth (ref. 7) transformed
the functions of Blasius and Hlemenz into functions of such a type that
‘the constants disappesr from the equations so that the numerical solu-
tions for them may be applied to any two-dimensional flow. He treated
the symmetrical as well as the unsymmetrical case, snd indicates the
solution of one of these functions. For the present investigation,
Howerth's functions are used in the two-dimensional case. Since the
accuracy of Howarth's mmerilcal tebles 1s not sufficient for the cal-
culetlon of the transfer, & new nmumerical calculation was made of certain
functions. For the three-dimensional rotetionally symmetrical case, in
contrast, there exlsts, so far, no calculation of the functions of the
series development. Because of the modified continulty equetion, other
systems of equations must be used, and these systems are established
here. The necessary functions are numericelly calculated. Although the
form of the meridien curve takes effect through the continuity equation,
one can proceed in the distribution of the functions in such a manner
that the constants of the meridlaen equation dissppesr, and the solutions
therefore are valild not only for arbitrery pressure dlstribution but also
for arblitrary shape of the body of revolution. The continuation method,
beginning with the 1limit of valildity of the broken~off power series, has
been perfected also for this case. - -

An investlgatilion is carried out regerding the validity of the law,
stated, for instance, by Ulsamer (ref. 10) that the Nusselt number is
proportlonal to the cube root of the Prandtl number. : —

A few approximastion methods for the calculation of the transfer
layer are discussed.

Only a brief survey is presented here since & more detalled report
is to be given in a later paper.
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THE FUNDAMENTAL EQUATTIONS

With dimensioned gquantities, the boundary-layer equations for flow,
concentration, and temperature read

1 2
u ou + v ou _ g’ + v B_;
ox oy Sy’
;311_ + _B_\: = 0 two dimensional
ox oy
dur) d(vr)
< = 0 rotetionslly symmetrical
dx Jy
d . _d _,
— — = A —
u -~ + v - 52
2

Concerning the derivation of the two last equations for the
rotationally symmetrical case see p. 15-16. The boundery conditions are

y=0; u
{y =« u
In these equations the customary designations of the verious
quantities are used., x = distance along the body surface from the
stagnation point to the base polnt of the normal to the body surface.
¥y = length of thet normsl, = distance from base point to axis of
rotaetion. wu, v = veloclty components in the direction of x and ¥,
respectively., U = the velocity component perallel to the body surface
immediately outside of the boundary layer (calculated from the experi-
mentally determined pressure distributlon). t = excess of the temper-

ature of the surface over the temperature of the undisturbed fluid.
¢ = corresponding concentration quentity. v = kinemetic viscosity,
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a = temperasture diffusivity (= b—é—) A = diffusion coefficient. If
P
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Uy 1s the undisturbed velocity end D & characteristic length of the

body (for instence, its diameter), one can transform the equation into
dimensionless form by dividing the veloclties, lengths, temperatures,
and concentrations by the quentities Up, D, +0, end cp. These equa-
tions contain as constants, emong others, the Reynolds number Re = %?.
This number one msy eliminste by modifying the scale of the boundary
layer in transverse direction, by multiplying the values of y and ¥

by ‘JRe. The equations used below with the designation "dimensionless
equations without Reynolds numbers” are changed in their sppesrance,
compared to those mentioned above, only in that v disappears, and A

and a are replaced by e' and %.' In the boundary conditions +tg and

¢y &are replaced by 1. The two quantities % and % which are often
independent of pressure and temperature, as In The case of ldesl gases,
are dependent on the medis used. These quantities are called Stanton's
numbers. Frequently their inverse values are used, deslgnated as Prandtl
numbers. In an earlier report of the author on the evaporation of drops
(ref. 11) the designation o is used for the Stenton number. Since at
present this letter is used mostly for the Prandtl numbers, this defini-
tion is employed in the present report to prevent misunderstandings.

ve
Thus o here signifies: o =‘£ or, respectively, = §'= —;?1.

The equationse for temperature end concentration ere therefore
ldentical when + and c¢ s&are interchanged. ZFor the temperature~
boundary layer it 1s assumed, however, that the dissipation and the
heat generated by change in pressure mey be neglected., ' This assumption
is satisfied for not-too-laerge velocities (ref. 12). The equations also
presuppose that the velocitles be sgmall compared to sonlc veloclty in
order to make the compressibilility negligible. A further limitation of
the equations 1s given by the fact that the differences in concentration
end tempersture must not be go large that the constant cheracteristics
of the media vary from point to point. Because of the identical form
of the two equations for temperature end concentration, which is thus
satisfied under these presuppositions, both msy be treated simultaneously.
In the following eguations one may, therefore, immediately interchange
the quantitlies ¢ and +. |

In the search for & solution which satisfles the accuracy require-
ments discussed in the introduction, the method of power-series develop-
ment. in x was used. Breaking off the power serles after a certain
number of terms one was able to use this solution from the stagnation
point up to a point the positlon of which was dependent on the accuracy
requirements. Starting from this polnt one could then use for the layers
of different types step-by~-step continuation methods.
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For the sake of brevity, we shall use below the common name
"transfer"” boundary layer for the temperature and for the concentration-
boundery layer.

POWER~SERIES DEVELOPMENTS IN x

A, TWO DIMENSIONAT, CASE
a. Flow Boundsry Layer

l. Symmetrical case

As was menticned In the introduction, this case has been treated
by Blasius, Hiemenz, and Howerth. This report uses for the most part
the same designations as Howarth. The only difference is that Howarth's
quantities F, sare here replaced by the quantities 1V, because the

capital letters are more sultable for the functions of the transfer
boundary layer.

In order to replace the two unkunown quantities u and v by a

single one (I), the following conditions satisfying the continuity
equation are set up as usual:

%
u—ay vo=-3

The first flow equation then becomes (with dimensionless quentities
without Reynolds numbers)

étﬁ._ﬂ.ﬂ:{]‘[]‘.pii
dy My Ox 332 35

Blasius and Hiemenz solved this equation by means of the formula

‘¥=1lflx+\l,r5x3+xy5x5+. . .

for the symmetrical case where the velocity distribution outside of the

boundary layer follows the formula U = upx + u5x5 + u5x5 e oo Y,

are functions only of y.
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By comparison of the verious powers of x the equations for ¥,
were obtained. These equations were freed of the constents u, by
introduction of the functions fy, gy, ete., by means of the following
statements: B

by,
£
Vs weagE e .

2

5

¥ ———h +
5 \/——l u_lu5 \/u_l 7 ulu-( T u12u7
e T SO S A M

2, Unsymmetrical case

For an unsymmetricsl two-dimensional body for which the velocity

distribution follows the formula U = u)X + u2x2 + u5x3 + o 0wy the
formulation ' - )

ﬂf:ﬂflx+ﬂf2x2+1y3x5+o DY

was used. Here also the 4V, were freed of the consbants uw,, this time

by the expressions

3
n =y ¥y = 3\fug w2=—Tu2f2 ete.
1

b. Transfer Boundary Lsyer
1. Symmetrical case
The author of this report attempted in the dimensionless equations

without Reynolds numbers, aslde from the formulations for ¥ mentioned
above, a development for ¢ in the following memmer (¢, are functlons

of y only):

c = zf% c XV = cg + egx + c2x2 + c3x5 + chxh + ..
V=
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Boundery conditions:

d
n
o
[¢]

o
1
I_J
[¢]
l—l
I
0
o
1
"
o

y:m c0=cl=c2=...=o

By substitution one obtains for the oy and Conel

Al

n
= ]‘gom'&+l-2k°2k - % (2n + 1 - 2k)¥pnyq okt ' ok

a e
(¢}

n n
l 1" — 1 - - !
E ¢ onel T kZ=o(2k * V¥ o1 ok 20:(211 1= 2o ok o

o

One can easily show that the equations for cony; are such that

they become identically zero. In the groupe of equetions mentioned
above which constitute the recursion equations, there occur exclusively
functions with even or odd subscripts: From this one can see that c¢
is an even function of x which follows, besides, from the nature of
the problem. In order to be free of the constants 1U,, new functions

are Introduced by the following statements:

Yy T,
2
1=y ,[ul; \irv as above; cg = Fos co = .Tl.z_;

8 u3u 1153
%(G)-L'Fulu‘jﬂ') c6=%G6+ulu?(H6+u12u7K6>

o R wte
c8 = —U.-I- ul:; H8 ulu9 K8 + 2‘19

Boundary conditions:

0; ¥y = 1; the remaining functions =0

=3
il

n = o} all functions =0
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%‘-Fo" = 5%’

?2" = ~T1Fp' + 201 'Fp - 3857y’

" =210, #5116, - SeFy

]E_Hu" = -fyB,' + bE 'R, - SnF §(2f5 'F, - 3f3F2')

Logn - -f1Gg" + 6£1'Gg - Te7Fo’ |

+

6fl'H6 - 'Th,TFO' + 3<1l-f3'6'1!_ + 235’F2 - 3f3G,+' - 5g5F2)

1% 6f1"K6 ThFo' + 3(4£5'H, + 2n,'F, - St - 5h5F29J

1
= -T1Hg

I
||-
F
™~
r

"= -f1Gg" + 82;'Gg - 9agF,'
TH" - -f£,8g" + 88 'Hy - SR, + 356-<6f5'e6 + 28, 'F, - 32:0," - 7g7F2')
" - g’ + 8 'Ky - Ok gF,' + 15_8(”35'% - 555G1+')
Lyg" = £,35" + 82, 'Tg - 9, + 15—6(633'3'36 + 2 'F, ¢ SE.H - 71173-2')+ f
Ses'a + e5'%) - 18(ns6," + a5,
208" = -£,0g" + 8, '9g - 9aF," + 15—6(6f'5‘K6 + 2K UFy - 3EK T - 71:73'2')+
DCEEEEY ]

These functions are simpler than those for the flow boundery layer
insofar as the equations are only of the second order. The first equa-
tion may be solved by quaedratures: :
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The remaining equations do not have explieclt solutions and must therefore
be integrated by other methods, for instance, according to Runge and
Kutta. (See p. 19.)

2. Unsymmetrical case

With © = cg + 09X + cox2 + ¢5%0 + . . . end the boundsry conditions

¥=0 cg=1; ¢c3=cy=...=0
Yy=% cg=¢cy=¢cg=...=0
one obtains for Cy
Lo, = 3 >
no_ t - - . 1
v k‘éoqu Lk K 5 (v+1 k)'¢’1z+l-k°']s

Here none of the functions ¢, disappears, and c¢ 1s therefore,

as had been expected, an even function. The equations here are not
divided into two independent groups but the functions follow successively
one from the other.

Distribution of the cy:

3u

=Y\ fus ¥y = fifan ete; oo =Fo3 ey =

by 2 3
_ ruz up oz B - )
2ty @2 " s 2) 63 TN uluh- u12“1+ ; ’

c4=6_“5_<%+“2%+ MTEJU )
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Boundery conditions: -

®@; all fumections = O

3
]

{n =0; Fo=1; the remaining functions = 0;

%—FO" = ~f1Fp’

> —'—lel' + fl!Fi - 2f2Fo'
no_ 1 1 - 1

S2" = -1y, + 28 G, 2&sF,

lg v _ 1 1 - 1 2 t - )
o' = -niEy' 4 2f) H, - SnE 0+ l;( o'Fy 2f2F1)

no_ 'flG3 v- + 3fllG3 - )'I'Q-I-FO' - -

= -leB' + Bfl'Hs - 4h4F0' + %%w?fe'Gz + g3'Fl - 2f2G2' - BgBFljr

=Tt o+ 3K, - Mg F Lt + 152(26@2 + b3'Fy - 2fo8y" - 3h5Fl> ]

"no__ 1 1 1 T
= 0G" + G, - SeF, L

ix

o 5

1

ot

. ' \ o 5fra .

By = B v be R, - Sh F," + §<3f2 o +fh T - 2?2_(;3, __lpguFl')

no_ _fllﬁ+'_+ )-I-fl'IC)+ - 5k5FQ' + 38-(2g3'G-2 -_333(;2')
%JL" = Tyt ey - SuF + §<3f2'35 by 'Fy - 2 H - uhuplv)ﬁuf
%é(% 'y + By - 8(3335' + 136y )
Q" = -£,Q, " + hfl'Q,+ - 5q_5FO' + g(sfa'l% + I 'F - 2f2K3' - hkhFl')+

§(2h5 'H, - 5h3H2')

J

The first equation is identical with the first one of the symmetrical
case,
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B. ROTATIONALLY SYMMETRIC CASE

a. Flow Boundary Leyer

For f£lows about 2 blunt body of revolutlion whose axlis lies in the

cz.irection of the flow, the flow equations are, according to Boltze
ref. 13),

u§13+ v—a-E=UU' +vé

3 dy?
dur) | Aw) _
&x oy

In the transformation toc the dimensionless form without Reynolds
number Vv disappears. The quantity » +then must have, for the bodies
of revolution, the meaning, distance of exis of rotation up to the base
point of the normal instead of up to the point (x, y). A function for
identical solution of the conbinuitbty equation is desired.

Boltze
(ref. 13) suggested a function ¥ which 1s defined as follows:
Wold L 1¥
In the present report another solution \Tr also has been examined.
Definition
oy r Oy ox rdx r Ox

The function ¥ has the advantage that the equations become some-
what simpler and thet the veloclty profile is obtained directly. The
functions are derived in both cases. ¥ and ¥Yr are flow functions.

1. Use of the function

After substitution of the expressions for u and v into the
first boundary-layer equation one obtains

2

QW “ar dy Py Y %Y 3 o Py
() = - 2L Y _ Louge &y
()dx+r6yax8y eraya * T

3y,
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The power-series developments used (wv function of y; r, and
u, constants )

¥ = wexg + whxu + ¢6x6 + ... -
r=r1x+r5x5+r5x5+ . s e
U=ulx+u5x5+u5x5+...

The functions v, have the followlng boundary conditions:

y=0; Il{v.—.lb’v‘=0;

¥ = o ’1’2' = riuy; \hl_' = rquz + rzuy; Yg' = TU5 + rzUz + Y5y . . .

After substitution of the power expressions into the equation for
¥ one obtains equations for ¥, by comparison of the different coef-~

ficients. These equations may be freed of the letters r, and u,
by the following formulatioms: e

Y\/éTu-ls Yo = \/.2_u—§-f2: ¥y, = \/-——]-<8 +—ﬁ’h)+

Brqu T=U 2 rzu Tz2Uu
ve = TLS 5]‘36+ us. | T5Ruy

6 + 36 + qu 5 o e o
\’2111 1 5 ulu5 rlu5 rl 5

The new functions have the boundary conditions

0; all functions and their f£irst derivative = O

—l' g6'=h6'=d6'=%; k6'=q6’=0;..o

=
1

M= ' =15 gt =hy
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f2 1131
g)_l_ i

h).l-lll
'g6'”

h6"l

k6"l

361"

q-6 1y

One obtains the following equations:

= -£ofp" + %(fa'g -9

= Tag "+ 20" - 200, -1

- - " 1 '
= f2hll- + 2f2 h}+

1 1 12 1
2f2 'h"-l- - E(Bfa - 2fEf2 + l)

= "f2g6 n + 5f2 1 86 t 3f2|lg6 - l

_ n 1 1 1 1 12 1

= -fohg" + 3fp'hg' - 3fp'hg - g(5f2 - 288" + l)
n H ) 12 n

= -fplg" + 3E5'3g" - 3f"Jg + kg byt - % R huglkn) ¥
2 1 1 t "
E(f'eglp - byt + 20,7, - l) _
1" 1 1 n 2 12 n g_ no_ f 1
~£pa." + Bf,'ag" - 3P, "qg + 3<5hh - by by ) + 3(fehlL b,y )+

1 2 1
2f, "y + %(5f2‘ - 2:E'2f2)

2. Use of the function ¥

One obtains
FA W re B P
Jy dxdy Ox 3y r ax Py 3>
Power seriles developments
¥=Elx+$3x3+§5x5+ . ..
3 Z . o e

r = rlx + 1‘5}{ + r5x

U=ulx+u3x3+u5x5+. .« .
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Boundaxry conditions

1

J O; ’va="lfv' = 03

Yy = o ‘l'v""uv__

— u 2u 2u; rzuy
n=y\Ba; ¥y = 2= 3 V5 = ——== £3 = 3-<g3+ h5)

\/2ul ,/2u1 3" ,/2ul U3z
3u 3 2 2
¢5=__5._f5= u5g5+1_'§ﬂh5+53__ +13335+1%15q5
\/Eﬁi \/2ul Ty Us Uy Us rqUs T4 2us

Boundery conditions

n = 0; all functions and their first derivative = O;

1= f1'=1; g3’ =%~; gs' =%; hs' = bg' = kg' = J5' = g5’ =_0,
g3"' = -f183" + 2f7'gs’ - 2f; "g5 -~ 1 -

hs'" = -fihz" + 2f;'hs’ - 2f "hz - Jé-flfl“

gs"' = -f1g85" + 3f1'g5" - 3f1"g5 - 1

B = <£,hS" + 32 ! - 3£, "y - %flfl" ) )
R A A L) '_%

35" = -£15" + 3£ 15" - 3805 + bes'hs' - D(eshs” + hses”) -

2 1 L]
3(f1 g5 + f183)
mo_ _p "y Fp_1g ' - 3P " +2h.'2-§ "+lff"_
% 1% TR 1% BT 3 Bty 3T

%(flh5" + fl"h3)
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In the first method, the functions have even subscripts, in the
second odd ones. A slmple relation exists between the two groups of
functions which one may easily obtain by equating the two expressions
defining u and, respectively, the two expressions defining v (which
gives ¥ = ¥r).

= . = h fl-
&, = &3 Wy =hs+ 75
2
B -8 bg-hs 3 K-k K-l rSEn -5

b. Transfer Boundary Layer

The general equetion of the temperature and concentration fields

for rotetionally symmetrical flow has not been set up before. For the
special case where the body is a sphere, the author (ref. 11) has shown
that for boundery-layer flow the equation is ldentical with the one for
the two-dimensional case, at least for points which do not lie directly
at the stagnaetion point. Imn the present report, it is shown that the
same boundary-leyer equation is velid also for arbitrery blunt bodies

of revolution, and that this applies to polnts directly at the stagnation
point as well. The introduction of mass or heat into a volume element
by diffusion and convection is expressed by the following equation (which
is valid for rotationally symmetrical flow without neglect of the boundary
layer when x and r eare counted up to the element instead of to the

base point):
d(cur) dfcvr) (9 2 3
Sw + ay = A(};{- '&I) + A Sy—(% I)

The derivation becomes the simplest 1f one chooses as the volume element
an element bounded by two meridien plemnes, two surfaces x = constant,
and two surfeces ¥y = constant. In order to arrive at the boundary-layer
equation, one groups the derivatives

¢ O(ur) ,eo(wr) , ,% , 8 Bc aclgg +L0or e
T oox r Oy ox oy Bya dy r oy Bx2 r Ox Ox
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Supposing that a thin boundary lesyer exists, the terms 2 and 3 in
the parenthesis disappear. The first two terms of the left side disappear
because of the sppearance of the continuity equation. The last term of

the parenthesis becomes infinite at the stagnation point if %ﬁ is not

here zero. 1In order to avold discontinuities at the stegnation point,
one must therefore equate there g - 0. Then the last term becomes

ox
everywhere negligible, and one obtains the equation

u %% + v §§ = A.SE%

which thus 1s identical with the one in the case of two-dimensional flow.

1. Use of the function V¥

Because of symmetry and of the requirement gﬁ = 0 one uses for
X

¢ the expression ¢ = c¢cg + c2x2 + cuxh + . . . with the following

boundary conditions for cy;:
y=0; ¢cg=1; co=¢ =. . .=0;
y=% cp=cp=cp=...=0

For the ¢, one obtains equations which contain r, and u,. In

order to eliminate these constants, one may make the following
substitutions:

2u Tzl
=y /2ul; ¥y = as before; cqg = Fg; cp = 5(G + 21 H2)

uy rlu5
Su 3 T 2 : 2u
cu:-é&:—tbj_%+_5_lﬂ'.ﬂ"+ u3 Kh...,.r5u3,]' +1‘3
ul U.l r1u5 ulu5 l I‘lells

Boundery condition : =-

1 = 0; Fo = 1; remaining functions = O;

N = «; all functions = O
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N

For the new functions the followlng equations of the second order

are obtalined:

1 ]
g FO

S Lo
£

Q|

aft

8 1 1 2 1
5(5432 + hi;Ge) - 3(‘ £,8y" + £,7G, - 2ghFo)

g - 1 1 - 1 1—_ 1
3( EHy' + £,0H, - 2y F +2f2Fo)

-£oFg’

~£p' + £'Gp - 2g,Fp'

Tyt £p'Ey - BTyt + L 2Ry

a4t + 255G, - SegFy

£, + 2E,'H, - 3hcF,' + % £,F,'

-£oK ' + 285'Ky - 3k6Fo' + % g,+'G2 - %gh_Gz'

£, "+ 2E,NT, - BiF, + %‘-(gh'ﬂz + hh‘Gz) -

t H 1 ll' 8 1
Q" F 255 - 3qFy' + 3y 'H, - Iy H,

2. Use of the function :\;

With the same power development for ¢ and the same definitions
of the funcitions

a j=

alrr al~

Fp, Go, Gy, ete., one obtains

FOII

-f31Fo’

—flG2’ + fl'G’z - 2831‘10'

Gp
1
n i 1 1 - t = t
Hp" = -£1H,' + 2", - BhsF' - 5 £,F
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';I;G)_‘_" = —flGil-’ + 2fl'G1|. . BgsFol _ -

1 no_ ' ' 2 1 -

oo = 0B+ an'E, - 3hFy - 5 5%,

L no_ t 1 - J H’. t - .&

o By = TR AR - SRy 4 3 850, - 3 850
.];J"=_fJ"+2f'J'-3,j '+L—I'3'H+ 'G-%fG"l‘

i 19 1 9 570 5(32 h32) (12

&sF, ') - -g-(g}He' + hyG, ')

- U P R o] (GLARL

1
= £.F,!
5

al-

10

-

One can show easily by application of the rela'bioz—zships between the
functions with even end the functions with odd subscripts that the systems
of equations for the cases 1 and 2 sre identical.

-
-

The first equations of the two systems asre identical with the first
equation for two-dimensionsl flow and are, therefore, also solved, by
quadratures. _

C. FINAL EXPRESSIONS FOR THE TRANSFER

The transfers are made dimensionless by the Nusselt number

D 9°m ] D %9

—~— —— Oor, respectiv —— ——, - It 18 easi shown that
Ao Ssor OF» respectively, O Seor by

Nu =

\I}I_u_ = (— ge) o vhere ¢ and y eare "dimensionless and without

Re :

Reynolds number." The heat transferred by rediation is, of course, not
contalned in this expression. For two-dimensional symmetrical bodles one
obtains -

huF,! 6u Uz,
Nu_ _ ' 52 2 p) xli-
= = R - - ———— + == H, -
/Re oV T A Nz 3 uus | |
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Corresponding expressions are obtained in the other cases. As one
can see from the equations, one may easily calculate the Nusselt number
for arbitrary pressure distributlions snd body shapes which agree with
the formulastions, if one has made a numerical calculation of the func-
tions. Unfortunately, the quantity o is left over and one must there-
fore make dlfferent solutions for different media. As 1s shown in s
section below, however, one can free the equations of o, too, if «
is large.

D. NUMERICAL CATCULATIONS

For the two-dimensional symmetrical case and for rotationally
symmetrical bodles the suthor has numerically calculated various fune-
tlons, corresponding to the three f£irst terms of the power-series devel-
opments in x. The method of Runge and Kutta (ref. 14) was used for
this purpose. This method is rather time consuming but one has good
possibllities of determining the errors. The first function £ of
the two-dimensionsal case has been calculated by Hiemenz and Howsrth with
an accuracy sufficient for this investigation; Howarth's values sare
directly used here. For £3 iIin the rotationally symmetrical case there

exists a table by Hsrtree (ref. 15) which was set up by using a mechanical
differential enalyzer. The accuracy is here not sufficient and the first
two derivatives also are required; for this reason the function is cal-
culated here anew. Since the equation for £7 is not linear and one

therefore cannot find the solution by combining two particular solutions,
it wes valuable to have approximate information on fl“ for 17 = O.

The functions were solved mostly by steps of 1 = 0.2. Since the values
with n-interval 0.1 must be known for the successive calculations, the
values lying between were interpolated by means of s Taylor series. TFor
the transfer boundary layer the celculations for the o-value of the air
(0.7) were performed in the two-dimensional symmetrical case because
experimentel resulits for the heat transfer of a circulsr cylinder in sir
exist (see, for instance, the compilstion by Kroujiline (ref. 1). For
(Fo")o one may obtaln values from e table given by Goldstein and cal-

culated by Squire (ref. 2) also in the case of other o-values. Squire
Indicated an analogous expression for the heat transfer at the stagnation
point. For the rotetionally symmetrical case calculations have been

ﬁg—f because the only experimental result for the

transfer distribution has been found for the evsporation of naphthalene
spheres (ref. 11), naphthalene has thie value of o. If one wents to
calculate the higher terms of the power-series development in x for a
special case, one msy combine the separate functions in a single term in
order to save work expenditure; but the generality of the solution is lost
thereby. This has been done for the boundary layer of the body of revolution

carried out for o =
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1 -
—, The parenthesis in the defining equation for
035 P g egq Gy, H

etc., has been combined into a single functlion F) and calculated for
the sphere for the pressure distribution of Fage. (See below.)

for o =

The tables of the caleulated functions are printed at the end of
the report with the exception of the higher ones for rotationally sym-

metric boundery layer. Here one has for n = O(a.nd g = 5 ;—95

Go' = 0.3186, Hy' = -0.1005, and Fy' = -0.2118. The error of the

tabulated functions which will be dlscussed in more detail later is at
most a few units in the last digilt.

From the tebles one obtains for air, for the pressure distribution
measured by Hiemenz (ref. 6) at Re ~ 19000 for the circular cylinder

= 3.631kx - 2.1709x° - 1.51k4x>

N _ 0.9449 - 0.5100x2 - 0.5956xF. . .

JRe ,

The quantity x 1s here dimensionless (the length dimension x
divided by the diameter D). Not only in the range 0° ~ 55° where the
series 1s to apply exactly (see E, 2) but up to the separation point this
equation is in good agreement with the compilation of experimental dis-
tribution curves indicated by Kroujiline (ref. 1). The derivations will
be discussed later.

For the sphere & qualitative agreement with the values obtained for
evaporation of naphthalene et higher Re (ref 11) is attained if the
pressure distribution according to Fage (ref. 17) is used which gives

= 3x - 3.4966x7 + h.7391x° - 5.4181x! for Re = 157200 (ref. 18).
One +then obtains

u

Ve

The deviations depend, among other things, on the fact that Fage's
pressure distribution is possibly not fulfilled for Reynolds numbers as
small as those used here. ILater on a more exact comparison will be mede
with more recent experimental values obtained by the author at still
higher Reynolds numbers., '

- 1.8615 - 2.1477x2 + 2.4609x% . . .
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E. DETERMINATTON OF THE ERRORS OF THE

EROKEN-OFF POWER-SERIES DEVELOPMENTS

One may use various methods: (1) The following term is calculated
and for mot-too-large x this indicates the error. (2) If the value
of the errors is not required with a very high accuracy, the coefficient
of the x-terms msy be assumed to be of the same order of magnitude. (3)
Use of a continuation method of the profile. (See following section.)
(k) Tn the case of direct differentiation, with respect to y, of the
value of %’i— taken from the +4ransfer boundary-layer equation one mey
obtain, for tramsition to y = 0, the first derivative of Nu in x
whereby a continustion step mey be taken directly with respect to HKNu.
Later on numerical calculations sccording to some of these methods will
be gilven.

STEPWISE DEVELOPMENT OF THE BOUNDARY-LAYER PROFILE

A. TWO-DIMENSIONATL, CASE

a. Flow Boundery Layer

Prandtl (ref. 8) indicated for this case a method which is based

on the fact that one may obtain from the equations an expression for

%% containing only u with derivatives for a prescribed x. g_u_ becomes
X

with dimensionless quantities without Reynolds numbers

du _ d fyl %y
= . = =y + L=
ox Oy b 0 u2< ¥ By2>dy

When two adjacent profiles (at x - Ax and x) were known, for
Instance, by epplication of the method of Blasius and Hiemenz, 1t was
possible to calculate a third for x + Ax. With the u-values at x - Ax

the 2Ax %{1- values for x were used. One could then continue in the

same manner with the profiles at x and x + Ax. In order to gusrantee
the convergence of the expression, one was not to use the original numer-

ical profile et x Dbut had to replace 1t by another which satlsfied
certaln requirements. In order to calculate those, u was developed
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© v
into a power series with respect to y: u = z::azf

v=1 “°
obtained certsin conditions by substitutlon into the flow equatlion whereby
only some of them could be chosen erbitrerily. These latter were deter-
mined by comparison with the given profile. GOrtler (ref. 9) perfected
the method practically and used it in Hiemenz' pressure distribution over
the circular cylinder. In the present report corresponding ideas are.
used for bodies of revolution and for the transfer boundary layer, and
the necessary expressions asre added and discussed.

+«— For the &, one

b. Transfer Boundary Layer

From the basic equation one obtains directly

This equation may therefore be used directly for step-by-step
continuation of the vapor and temperature boundary layer. Conditions
become here simpler insofar as no integration 1s necessary. However,
here slso the danger exists that the expression becomes uncertain at the
wall (because of u occurring in the denominator). Moreover, %&- must
become identically zero at the wall. In order to satisfy the require-
ments, one resolves here also the quantity ¢ into a power-series devel-
opment with respect to y(by function of x only):

oo-byV
C=l—zv -
v=1 V!

By substitution one obtains

e‘Vy.v bv:yv ) &v'yv'H' bvyv-l _ }- bvyv—2
Z v.‘z v! Z(v+l)!Z‘(v - 1)! o'Z:(v-e)l

By comparison of terms of the same degree, one arrives at the .
relation between the ©b,. For the first nine b, there applies (with

£ = -UU")
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b3 free; bo = bz =0

b

—#— = 2a7bq' - &q'by free; b—cs- = 3fby' - £'b7; bg =0 _

EUI = 1Oa12crbl" + 5a1al'(l - Ba)bl' + El'e(lOO' -1) - ala.l"(‘jc + l)]bl free

b u 1 1 1 1 n .

?8 = 48a, ofb, " + 2[25.1:\? (3 - 7o) - 158y fti]bl + [-281£" (30 + 1) - 15fay "o +
f'all(35d - aﬂbl;

b9 = 65f20'bl" + TEE'(2 - 90)by ' + Ee'2(350 - 2) - £ (210 + 2ﬂ by

g

The free coefficients are calculeted as before by comparison with
the given profile, and the c-values developed 1n power series are sub-

stituted into the above equation for _82

ox’

B. ROTATIONALLY SYMMETRICAL. CASE

a. Flow Boundary Leyer
The equations read

uég+va—u==UU'+§y—2"2l

ox Sy
S(ur) . 3lve) _
ox oy

Heré r signifies, as before, for a blunt body of revolution the
distence between the axis of rotation and the base point of the normal
to the surface.

By eliminating g_u one obtains a linear equatlon of the first order
X

in v with solution

; 2%
SRNCEE S

L B0 )
15
4
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By forming the derivative from v with respect to ¥y and using
the continuity equation one obtains _ z :

du _al [T ; du
Slf‘ayufafi( *i,%é*) ey

For given u~profile, one mey therefore use an eQuation for the
conbinuation of the boundary-leyer profile which differs from the equa-
tion for the two-dimensional case only with respect to the last term.
In order to establish the convergence at the wall, here also a power-
serles development in ¥y becomes necessary

il
_g :

since

(v + 1)

X t +1
v E:GW' +a, L ) Y

By substitution into the basic equations one obtains (with £ = -UU";

rl
g = ?F)

ay free; a, =1; 8z =

ay = ajey' - 3128 free; a5 = 2a9f' - La)fg; ag = 2ff' - 4£lg

As before, one determines the free coefficients.

b. Transfer Boundary layer -

With the same expresslon as sbove for the two-dimensional case one
obtains for the b,

e
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by free; b2=b5 = 0;
Bh_pg bt -8 b, - abg free; -2 = 36 ¢ - £'b, - Fbg; by = O;
PR LT A R i g 1 1 18 g = %3

The practical execution in the last three cases wlll be discussed
in a later report together with numerical calculations. The methods of
continuation discussed yield resulits the accuracy of which depends
exclusively on the work expenditure snd is therefore not limited by
postulating spproximstion functions. The methods may also be used for
determining the accuracy of the aforementioned power-series developments
in x in the case of breaking-off after a certain number of terms at a
certain point. One then starts the continuation method at an x so
small that the error is-certainly small, and comperes the result then

obtained at a lerger x with the one d::cectly calculated from the power-
series development In x.

DEFENDENCE OF THE EVAPORATION AND THE HEAT TRANSFER ON o
A. GENERALITTES

Pohlhsusen (ref. 16) has shown for the plane that Nu is gpproxi-

mately proportional to the quantity \/—cr_. In the approximate calcula-
tions of Kroujiline (ref. 1) the same was shown for the circular cylinder.
Ulsamer (ref. 10) demonstrated that the law mey be approximately selected
from various experimentael investigations on the heat transfer of a
circuler cylinder. The author of this report has confirmed the law at
least approximately in the case of evaporation of drops (ref. 11).

From the equations of the section on power-series developments in
X one sees that o can probably not be eliminated from them by simple
transformations. Thus one camnot expect a relation as simple as the
aforementioned to spply exactly. For the case where o 1is very large
and the transfer boundary layer therefore thin compared to the f£low

boundary lsyer, the suthor of this report found the ‘;'/ o-law to be exsct.
In this case the curvature of the veloclity profile may be neglected in
the entire transfer boundery layer, and one may replace u by (u! Yoy

and Vv by l(v")oye in the genersal boundsry-layer equation, with the
epostrophes indicating derivetives with respect to y.



26 NACA T™ 1432

o de, Mo 23 _ 122
(w)gy §& + — y%"y‘-cg;g-

The variable § =y 3 /5 is introduced for c (not for u and v)

(V")o

. o ____28_c_=82c
(u)oCax"' 5 ¢

% &2

0.

Boundary conditions: { =0; c =1l. ¢ = co_; c

Thus one has obtained an equation free of o. For this reason, c¢
becomes ¢ = f<x,y‘ 3/?); hence follows that for lerge o the quantity
Nu is proportional to the gquentity 5 0. on the entire surface in the

boundary layer. That the same law has been found experimentally also
for & o +that is not large, is based on the fact that the quantity

Nu / J o dces not vary greatly with ‘0 =and may therefore be found to be
approximately constant in a small region.

B. TWO-DIMENSTIONAL: SYMMETRICAL: CASE

Into the equations for Fg, Fo, Gy, Hy . . . the following
functions and varisbles asre introduced: )

(f3::) Q @2@)
(F2")o

£ =n 33( 1")05 Fo(n) = 0o(t); Foln) =

&

o L o LY,
mrh(ﬁ), By = (ﬁn)—o 6y (t); ete

Boundsry conditions:

= 0; &g = 1; remaining functions = O;
«; all functions = O.

yw oy
1l



NACA T 1432 a7

Taking into account that for large o the equation ¥ = —;—(ﬂf")oy2
is valid, one obtailns

2
(bolt = _3§ q)ox

¢2" = _3§2¢21 + l2§¢2 - 9§2¢01

0" = =38y + 2kt - 15620,

8 f 11 2
0
15t%4" + (5 ) E"E'Dg - 35%2]

(1"o(ts")o

" 2 1
8," = -3E7e " + 2hegy

For the pressure distribution according to Hiemenz (see p. 20)
Nu

one obtains in the case of a clrcular cylinder ——— = 1.2592 -
%—\/Re

0.7585::2. . « 3§ for the case celculated gbove o = 0.7 one obtalns for

the corresponding quantity 1.0642 - 0.57hhx® - 0.6708x)+ « « . . Here

x signifies the dimensionless absclssa which i1s obtained from the length
dimension through division by the dismeter D. The functions ¢p and

®5 are given numerically in table 6.
C. ROTATIONALLY SYMMETRICAI. CASE

The following functions are now introduced:

5 m . _ . _ (33")0 . _
E =1 5g(fl )O’ FO("]) —‘I’O(g): G2(11) = (fl")o I'2(§), H2 B (fJ_'I)O 62(§)

The equations become

oo" = —3§2¢0'
R -5_5,21‘2' + 6ETp - 6§2¢0'
" 2. 4 .3 (81" 2
8" = 36505 + 688 - 68200 - 5 Eh ")o £ %0
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As in the previous case, the solution of the first equation is

For the pressure distribution sccording to Fage (ref. 17) (see p. 20)

one obtains for the sphere 71“"3_: =1.4723 - (. . O)x2 + . . .; for
o\JRe

, one obtains 1.3658 - . . . .

g =

0.395

DISCUSSION OF APPROXTIMATE METHODS

As has been mentioned sbove, Pohlhausen (ref. 3) gave an approxi-
mate method for the solutlon of the boundary-layer equation for the flow
about e circular cylinder. Tomotika (ref. 18) applied this method to
the sphere. KrouJouline used a simllar method for the transfer for the
cylinder, spplying a broken-off series development in ¥y which was
determined with utilizetion of the Integral condition of the transfer .
boundery layer. For the flow boundery lsyer he used a parabolic profile
whereby the agreement may be assumed to be bad particularly in the case
of pressure increase. Probably better approximastions could have been
obtelned with the use of polynominasls of the fourth degree. These '
statements are valid only when the transfer boundary layer is thinner
than the flow boundery layer. Here a brief descriptlon is given
concerning some considerstions of the author of this report concerning
& body of revolution, for various relative magnitudes of the two layers.

The integral condition formerly not set up for bodies of revolution
becomes (see p. %)

B
14 _ _afoe
; r\/; ucdy| = A(—-—E )o

vhich mey be derived, for instence, by integration of the originsl
equatlion., Here & 1s the thickness of the transition boundery layer.
Using dimensionless quantities without Reynolds numbers only, A is

replaced by _%. This is assumed below.
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If for the two profiles the definitions
u_ oy, (2, Y, o (W
T~ 51 3] 2(51) 53(81) & (51)
and

3 b
=1 oL LY (¥
c 1 2 5 + 2(8) (8)

are used, one obtains for & < 37 the equation

T ax 15 2 280 180

2 3 L 5
O a U8y a2 N 8oZ N 3azz 8), 2 )
6yz0 dx|

Here ©®y 1is the thickness of the flow boundary leyer and z =

=1

For & > 81, the integration is performed, with use of the integral
condition, first from O %o &7 and then from B; to 5. Result

The two equations have ‘the same form when the parentheses after
53 sere denoted, for instance, by the letbter P. From the first of the
two equations one sees that, for a o so large and a 2z therefore so
small that only the first term of the parenthesis must be considered,
this 2z 1s, for a given x, inversely proportionsl to the quanbtity
\5/-&. Since the Nusselt number Nu equals 5—%‘; Re, Ku is, for a

large o, proportional to 3/; also according to this approximste
theory.

Since r, U, s&,, and 8; are known fumctions of x, we have in

any case an equation of the first order with 2z and x which can be
solved with customary methods (for instance, with the isocline method
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or according to Runge and Kutta). The only boundary condition required
for this is the z-value at x = 0. This value is calculated from the

equation AzoP = 1 vwhere A ='UP812 1s identical with the paramgterj A

used by Pohlhausen and Tomotika. For the sphere where U' =3 and
A = 4.716, one obtains in the proximity of the stagnation point

% = 0.8759z7 - 0.2648zh + 0.01809z5 + O.OO56lz6 or, respectively,_

0.0746 , 0.0189

L 3.41482° - 1.22952 + 0.5052 -
o) Z2 23

For a given 2z and therefore aslsc given Nu one mey eesily
calculate the corresponding o. For . - _ —

z = 0.0 0.1 OB+ 0.7 1.1 1.6 2.0 3.0 k4.0, one obtains

Nu/\/Eé 3/3 - 1.526 1.511 1.h6% 1.418 1.356 1.28% 1.232 1.128

1.049 eand _ - —
1/ 575'= 0 0.095 0.367 0.622 0.955 1.288 1.5%5 2.121 2.631

The quantity Nu/‘/ﬁé ;/c is therefore, for a large o, almost
constant and varies in the proximity of the stagnation point sbout

linearly with 1/{3f§.

The reason for choosing, above, 2z Iinstead of & as the dependent
varlable was that 2z probably varies little with x _(compare Kroujouline
(ref. 1)) and can therefore be cslculated exactly more easily.

In the later more detailed report on the investigetions, the numer-
ical results of this formulstion as well as of others will be discussed.
It was shown that the choice of the profile form had a great effect on
the result.

SUMMARY

A preliminary report 1s given of a theoretical investigation of the
boundery-layer flow for two-dimensional and rotationally symmetrical
bodies. The evaporation, the heat transfer, snd the velocity are cal-
culated by power-series developments with respect to the meridian length.
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The coefficient functions which were calculsted numerically in some cases
have been chosen so that the calculstion is valld for all pressure distri-
butions and body shapes. The methods for determinetion of the errors in
breaking off the series are briefly treated. Methods of continuation are
discussed. Tt is shown, for large Prandtl numbers, that the Nusselt
number is exactly proportionsl to the cube root of the Rra.nd'tl nunbexr.
Finally, approximate methods of calculation are discussed.
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TARLE 1. TWO-DIMENSIONAL SYMMETRICAL
FLOW BOUNDARY LAYER

n f5 5! 5 & g' g by hs' by
0.0{0 0 0.724k [ O 0 0.6348 | 0 0 0.1192
1t 00351 0675 | .62k9 | .0030 .0005

2| .0132| .1251| .5286 | .o | .1072| Jho2 | .001T | .o1kl | 0249
3. .02821 LAk | k375 | L02k2 .0032

A4l .ou76| L2129 | 3539 .0h05 | 1778 | .2717 | 0045 | .011T7 | -.O436
.51 o105 .ouh | L2780 | .0595 L0055

61 0962 .2688 | .2112| .0806| .218% | .1408| .0057 | -.0010 |-.0783
1 .12ko] 2869 | L1530 | .1030 .0052

81 1534 | .2997 | 1037 | .1264 ) .2367| .OM83 | .0Q039 | -.0L76 |-.0833
.91 .1838| .3080 1 .0626| .1is502 L0017

1.0 .21k9| 3125} .0292 | .1l7h2| .2399 | -.0106 | -.0012 | ~.0330 | -.0680
1.1 .2k62| 3140 .0028 | .1981 -.0049

l.2]| .2776 3132 | -.0175 | .2218 ] .23L42 | - 0431 | -.0090 | ~. Okl | -.0423
1.3| .3088| .3107 [-.0320 | .2449 -.0136

1.k .3397| .3070 {-.0420 | .2676| .2239 | -.056T7 | -.0185 | -.0498 | -.0149
1.5 3702 .3025 {-.0482 | .2897 -.0236

1.6 hooz | .2974 |-.0513 | .3112 | .2125 | -.0580 | -.0286 | -.0503 0088
1.7 hoor| .2925 |-.0518 | .3322 -.0336

1.8 .Ls87 2871 | -.0506 | .3526 | .2012 ;-.0522 | -.0384 | -.0468 | .0256
1.9| .uW871| .2822 | -.0480 | .37k -.0430

2.0{ .5151| .2775 |-.0kkh | .3918 | .1916 | -.0k32 | -.Ok72 ] -~.0406 | .0351
2.1 Sh26 | 2733 | -.0h02 | 4108 -.0510

2.2 5698 | .2695 |-.0358 | 4293 .1839 | -.0335 | -.0546 | -.0331 | .0380
2.3 5966 | .2662 | -.0314 | 476 -.057T

2.4 6230 | .2632 j-.0271 ) 4655 .1781 [ -.0245 | -.0604 | -.0257 | .0361
2.5 6492 | .2607 |-.0230 L 832 -.0628

2.6 | 67521 .2586 ;-.019% | .5007| .174O | -.0L7L | -.0649 |-.0189 | .0312
2.7 T010| .2568 |-.0160 | .5180 -.0666

2.8 7266 | 2554 |-.0131| .5352| .1712 |-.011k | -.0681 | -.0133 | .o2h9
2.9 7520 | 2542 |-.0106 | .5522 -.0693

3.0 2533 | -.0085 | .5692 | .1694 |-.0072 |-.0703 |-.0089 | .0187
3.1 80271 .2525 |-.006T7 | .586L -.0711

3.2 8279| .2519 |-.0052 | .6030| .1682 j-.0043 | -.07LT7 | -.0058 | .0132
3.3 8531| .2515 |-.0041 | .6198 -.0722

3.0 87682 .2511 [-.0032 | .6365 | .1676 |-.0026 | -.0726 | -.0036 | .0089
3.5 9033 | .2508 |-.002%F | .6533 -.0730

3.6 9284 | .2506 |-.0019 | .6700| .1672 (-.0015 | -.0732 | -.0021 | .0057
3.7 o53h | .o50k §-.001k | L6867 -. 0734

3.8 9785} .2503 |-.0011 | .703% | .1669 |-.0010 | -.0735 | -.0012 | .0O36
3.9 |1.0035 | .2502 |-.0008 | .7201 -.0736

4.0 |1.0285| .2502 {-.0006 | .7%368 | .1668 | -.0004 | -.073T | -.0006 0022
4.1 }1.0535| .2501 |-.000% | .7535 -.0738

.o l1.0185| .2501 {-.0003 | .T701| .1667 |-.0001 | -.0738 | -.0003 | 0012
k.3 .2500 |-.0002 { .7868 -.0738

k.4 -.000L | .8035 -.000L | -.0738 | -.000L | .00OT
k.5 -.0000 | .8201 -.0739

t.s .8368 -.0000 -.0000 | .0003
.7

4.8 .000L
k.9

5.0 0000
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TABLE 2. TWO-DIMENSIONAT, SYMMETRICAT

TRANSTTION PBOUNDARY LAYER

ni{l-F| -Fo Fo Fo! Gy Gy ' B, H,'
0.0} O 0.4959 | 0 -0.1119 {0 -0.0977 | O 0.0318
2| .0991| .4953 | -.022h | -.1113|-.0195| -.0970| .0C064 | .0320
A .1979] .ho17 | -.043| -.1077 | -.0386 | -.0932 | .0129| .0338
b 2954 | 4825 -~.0651| -.0988 | -.0565 | -.0846 | .0200| .0378
81 .3904] .h4660}-.0835| -.0841|-.0721L| -.0704 | .028L| .0OL433
1.0 4813 | .4416|-.0985| -.0638 | -.0843 | -.0517 | .O37hH | .049O
1.2 .5666 .4095|-.1087| -.0397 |-.0926 | -.0301 | .0476 | .0529
1.4 .esk7| 3708 | -.11h1 | -.0138 | -:.0964 | -.0078 | .0583 | .0530
1.6 7146 .3275 | -.1143 .0111 | -.0958 .0131] .0685| .0k80
1.8] .7755| .2818| -.1099 .0328 | -.0913 0307 | .Oo7T7L| .0376
2.0 .8273| .2360| -.1015 L0496 | -.0838 LOko | 0832 .0228
2.2 .8701{| .1924 | -.0904 L0605 | -.0Th1 0521 | .0861| .005k4
2.4 o045 | .1526 | -.077T L0656 | -.0633 .0554 | .0854 | -.0123
2.6 .9315| .1177 | -.0645 L0654 | -.0522 0544 | .0813 | -.0281
2.8 .9520{ .0883 | -.0518 .0610 | ~.0k1T7 L0502 | .OThb | -.OhOk
3.0 .9672| .064k4 | -.0403 L0540 | ~.0323 LOoko | L0654 | -.048L
3.2 .9781| .0457| -.0303 LOobshk | -,0242 .0368 | .0555 | -.0511
3.4 .9858| .0315 | -.0221 .0366 | -.0176 .0295 | .0453 | ~.0500
3.6 .9910| .0211 | -.0156 .0283 | -.0124 0227 | .0356 | -.0458
3.8] .9944 | .0138 | -.0107 .0211 | -.008% L0168 | .027L | -.0396
.ol .9966| .0088 | -.007L .0151 | -.0056 L0119 | .0199| -.0325
h.2t .9980| .0054 | -.00L6 .010k | ~.0036 .0082 | .01kl | ~.0254
by .9989! .0032 | -.0029 .0070 | -.0022 .0055:|] .0097 | -.0191
6| .9994| .0019 | -.0018 L0045 | -.0014 .0035 | .0064 | -.0137
Y. 81 .9996| .0011 | -.0010 .0028 | -.0008 .0021 | .0041 | -.0095
5.0 .9998 | .0006 | -.0006 .0017 | -.0005 .0013 | .0026 | -.0063
5.21 .9999| .0003 | -.0003 .0010 | -.0003 .0008 | .0015 | -.0040
5.4 11.0000| .0002 } -.0002 .0006 | -.0002 L0005 | .0009 | -.0025
5.6 .0001 | -.0001 .0003 | -.0001 .0003 | .0005 | -.0015
5.8 .0000 | ~.0000 .0002 | -.0000 .0002 | .0003 | -.0009
6.0 .0001 .0000 | .0001 | -.0005
6.2 .0000 .0001 | -.0002
6.4 .0000 | -.0001
6.6 -.0001
6.8 -.0000
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TABLE 3. ROTATTIONALIY SYMMETRICAL FLOW
BOUNDARY TAYER

np o |n | nt | s &' | e | B | Bt | BsT
0.0 |0 0 0.92771 0 0 1.0475 0 0.0448
1| .oou6 | .0903 | .8777] .0051 0998 | 77| .0002 | .OOM4 | .OukB
2| 0179} .1155 | 8277 .0196 .1896 8488 .0009 | .0090 | .ouhl
31 0395 | .2558 | 7778 .oseT | .2696| 75T | .0020 | .0135 | .OL3L
Bl 068 | 3311 | .7282| .op32| 3400 65TH | L0036 | .OLT6 | .OMLE
S1o.1056 | JMo1k | L6788 110k | o012 5666 ] L0055 0217 | .0391
b koo | he69| 6300 1532 | 4535 4802 L0079 | .025% | L0356
71 .1988 | 5275 | 58190 2008 | JAho7h | 3986 | L0106 .0288 | .031hk
B8] .osuh | 5833 | .53u8| .252h | 5334 | 3227 0136 .0316 | .0265
90 3155 | 6345 | 4888 .3ore | 5621 | .2528 | 0169 .0340 | .0210
1.0| .3811 ] .6811| 43| 366 5842 .1895| .0204 [ .0358 | .0152
1.1 Jbsihk | .7e3h | o1k | 4239 | L6002 1328 | .02h1 0370 | .0091
1.2] 5256 | 761k | 360k ABW5 ) .6110] .0832 | .0278 | 0377 | .0032
.34 .6035 | .79%% | .3215( o599 | .6rTL| .o0k03 | L0316 | .03TT | -.0026
1.4 | 6846 | .8258 | .2850| .6078 | .6195 | .oouk | .0353 | .0372 |-.0080
1.5| .7686 | .8526 | .2508| .6696| .6182)}-.0251| .0390 | .0361 |-.0127
1.6| .8550 | .8761| .2192| .7313 | .6ahk|-.0u83 | .okes5 | .03h6 | -.0168
1.7| %37 .8966| .190L} .7925| .6087|-.065T | .ou59 | .0327 | -.0202
1.8 1.03k2 | .oho | .1637| .8530| .6015|-.0780 | .04 0306 | -.0228
1.9|1.126+ | .929% | .1398| .9127| .5932 | -.0857 | .0520 | .0282 | -.024k
2.0 |1.2200 | .She2| .1185| .9716 | .5845 | -.08¢k | .05hT | .0258 | -.0254
2.1]1.3148 | .9530] .0096| 1.0206 | 5755 | -.0868 | .0572 | .0233 | -.0256
2.2 |1.h106 § 9622} .,0831|1.087| .5666|-.0876 | .0594 | .0207 |-.0252
2.311.5072 | .9698 | .0688| 1.1430| .5580 | -.0834 | .0613 | .01B2 |-.0243
2.k [1.6045 | .9760 | .056%) 1.198% | .5500 | -.0TT6 | .0630 | .0158 |-.0229
2.5 |1.702k | .9811 | .o458)| 1.2530 ) 5425 | -.0709 | 0645 | .0136 |-.0212
2.6 [1.8007 | .9853| .0370} 1.3069 | .5358 | -.063T7 | .0657 | .0116 |-.0193
2.7]1.809% | .9886 | .0296| 1.3602 | .5208 | -.0563 | .0668 | .0097 | -.OLTh
2.811.998% | .9012 | .0234 | 1.4129 | 5245 | -.090 | 0677 | .0081 |-.0153
2.9|2.0977 | .9932 | .0184:|1.k651| .5200 ) -.0420 | .068% | .006T |-.0133
3.012.197L | .9949| .0143{ 1.5169| .5161|-.0356 | 0690 | .0O5L |-.011k
3.1 |2.2966 | .9962 | .0110| 1.5683 | .5128 | -.0297 | .0695 | .OoOuk | -.0097
3.2|2.3963 | .9972| .0085| 1.6195| .5102|-.0245 | .0693 | .0035 |-.0082
3.3 |2.4961 | 9979 .006k| 1.670k | .5079 | -.0200 | .OTO2 | .0028 |-.0067
3.4 2.5959 | .9985| .oou8] 1.7211| .5061|-.0161 ) .0705 | .0022 | -.0054
3.512.6958 | .9989 | .0036| 1.T716| .5047 |-.0128 | .0706 | .0016 |-.OOuhk
3.6 {2.7957 | .9992 | .0026| 1.8220| .5036 | -.0101L | .0708 | .00L3 |-.0035
3.7 12.8956 | .9995!| .0020]1.8723| .5027 | -.0078 | .0709 | .00LO |-.0028
3.8 12.9956 | .9996 | .0014 | 1.9226 | .5020|-.0060| .OT1O | .0OOT |~-.0021
3.9|3.0955 | .9997| .0010| 1.9727 | .5015 |-.0046 | .O71L | .0006 |-.0016
k.o|3.1955 | .9998 | .000T7| 2.0229 | .5011 | -.0034 | .o711 | .0OOW |-.00L3
b.113.2955 | .9999| .0005|2.0730| .5008 |-.0026 | .OT1L | .0002 |-.0009
h.213.3955 | .9999 ] .000k| 2.1230 | .5006 |-.0019 | .0O712 | ,0002 j-.0007
4.3 134955 | .9999 | .0003 | 2.1731 | .500% |[-.001k | .o712 | .0002 |-.0006
Yy 3.5 .9999 | .0002| 2.2231 | .5003 |-.0010 | .0712 [ .0002 |-.000k
L.5{3.695% |1.0000 | .000L|2.27311{ .5002 |-.0007 .0000 [ ~.0002
4.6 L0001 | 2.3231 | .5001 | -.0005 ~.0002
L. L0000 | 2.3732 | 5001 | -.000% -.0001
4.8 .5000 | -.0002 ~.0001
4.9 -.0001 -.0000
5.0 -.0001

5.1 -.0001

5.2 -.0000
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TAELE 4. ROTATIONALLY SYMMETRICAL

FLOW BOUNDARY
r T n 1 n ] " H n []
n| & | &' (& | b5 [bs' [hs" | ks { k5T | k" | d5 | d57 |57 | a5 g5
0.0(0 0 0.9054 |0 0 0.0506 (0 0 0.1768 |0 0 0.0291[0 0
2| .0168| .1612| .7075| .0010| .0101| .0500] .0029| .0255| .0790| .0006| .0058| .0278[-.0005(-.00%9
Al L0619 .2838( .5210] .ooko| L0198 .Ou6T| .0090| .032k|-.00668| .0022] .0LOT7( .0210(-.0019|-.009
.6| .1279] .3709] .354%1| .0089| .0285| .0396| .0148| .02%1|-.0724%| .004T| .0L3T7| .QOTH|-.0043|~.01k0
.8| .2082| .hevol .2123; 0155 .035%| .0289{ .0179| .0051|-.1132| .0075} .O13%4 |-.0104|-.0075(-.0176
1.0| .2971| .4576| 0984 | .0229| .0399| .0159| .0165|~.0195|-.1284| .0099| .0096|~.0280|~.0113|-.0204
1.2| .3899| .k683| .0128] .0311| .obl7| .002k| .0101|-.04hT[-.1204 | 0111 .0025(-.0k12]-.0156]|-.0222
1.4 b834| L4645 |-.0459| 0394 | .0409(-.0099|-.0011|-.0665(-.0048 | .0108|-.006k {~.0L6T |~.0201|-.0229
1.6| .5751| .4515(-.0808| 0473 | .0379|-.0195(-.0161|-.0819(-.0585( .0085 -.0156 |-.043T |~.02kT|-.0206
1.8] .6637| 4335]-.096: | 0544 | 033k |-.0256(-.033 | -.0807 [-.019% | .COUE (-.023k |~.0336|-.0201 |~.0212
2.0| 84| 413g|-.097k| .0606] .0279|-.0282|~.0515|-.0899| .0161]-.0006 |-.0287 {-.0191|-.03531 |-.0162
2.2] .8293| .3952|-.0888| .0656| .0223[-.0277|-.0689]-.0838] .0432|-.0067|-.0310 [-.0037|~-.0367 |~.0167
2.4 ,9066] .3787|-.0750| .0695] .0170|-.0250|-.0847]-.0T33] .0599]-.0129|-.0504 | .0095]-.0398-.0139
2.6 .9810| .3652(-.059k | .o72h | 0124 (~-.0209|-.0981|-.0605| .0662|-.0187 |-.0275! .0187|~.0825 (-.0111,
2.8|1.0530| .3549|-.0lk5| .o7h5| 0086 |-.0165(-.1089]-.ObTh| 0642 [-.0238 |-.0232| .023% |~.0kk2 |-.0085
3.0]1.1251| .3473|-.0317| .O760| .0058(-.0122]-.1171|-.0352| ,0565 |-.0279|~.0184 | .02k1|-.0k57 |-.0062
13.211.1920| .3420|-.0215| .0769| .0037T[~.0086|-.1231|-.0249] 0460 |-.0511|-.0137 | .0219]-~.0k6T |-. 00k,
3.441.2601( .3385(-.0139| 0775 (0023 |-. -.1272|~.0168| .0350 |-.0334 |~.0097 | .OL8L(-.O%7h |~.0029
3.6|1.3275( .3363 |-.0086 | .O778| .0OL3 |-.0037 [-.1300(-.0109| -0251 |-.0351 [-.0065 | .OL38(-.0k79|~.0019
3.8(1.3907| .3350|-.0051| .0780| .0008|-.0022|-.131T!-.006T| .0270 |-.0361 |-.00k2 | .0099|-.0482|-.0012
4.0|1L.4616| .3342-.0029] .0781| .000k |~.0013 |-.1328|-.0040| .0109 |-.0368 |-.0025| .006T|-.0k8Y4 |-.0007
h-.EJl 5204 | .3338-.0016 | .0782] .0002|-.0007|-.1334 [-.0022| .0066 |-.0372[-.0015| 0042 |-.0k85{-.000k
L 411,591 -3336-.0008| .o782( .000L|-.000% |-.1337|-.0002| .0039 |-.0374 |-.0008 | .0026|-.0486(-.0002
h.6|1.6618] .3334 [-.0004 | .0782| .0000|-.0002|-.1339|-.0006 | .0022{~.0375 |-.0004 | .00k |-.0%86-.000L
5.6]1.7285| 3334 [-.0002 | .0T35| .0000 (-.000L |~.1340[-.0003 | .0012 |-.037T6 |-.0002 | .0008|-.0486(-.0000
5.0%1.7952| 3334 |-.0001 | .0783 | .0000 (-.0000|-.1340{-.000L| .0006 |-.0376 |-.0001 | .000k |-.0486{-.0000
5.2(1.8618 | .3334 [-.0000 | .0783 | .0000{-.0000{-.1340|-,0000( .0003 |-.0376 [-.0000] .0002|-.0h86]-.0000
g.lg 1.9285| .3%33 {-.0000| .0T83 | .0000 |-.0000]-.1340[-.0000| .000L |-,0376 {~.0000| .000L

9¢
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TABLE 5. ROTATTIONALLY SYMMETRICAL
TRANSFER BOUNDARY ILAYER
o -(Fs"o
0.5 0.k129
T L4705
1 .5390
1/0.395 7599
10 1.2389
100 2.7365
TABLE 6. TWO-DIMENSIONAT. SYMMETRICAL TRANSFER
BOUNDARY IAYER. o LARGE
£ 1 - a9 -f0" ) &'
0.0 0 1.1198 0 -0.%799
.1 .1120 1.1187 -.0479 -780
.2 .2235 1.1109 -.0952 -.h6ehT
.3 3337 1.0900 -.1k01 -.k2g93
is L1409 1.0504 -.1801 -.3637
.5 5430 .9883 -.2118 - . 2647
.6 6378 .9023 -.2320 -.1361
T .T7228 Rrde g -.2384 .0099
.8 . 7962 6711 -.2301 L1541
.9 .8567 402 -.2083 L2ThT
1.0 L9043 14120 -.1765 3530
1.1 .9396 .2959 -.1395 3T
1.2 L9641 .1989 -.1023 .3565
1.3 .9801 1245 -.0693 .2981
1.k .9897 L0720 -.0432 2232
1.5 .9951 .0383 -.0246 .1500
1.6 .9979 .0186 -.0128 .0904
1.7 .9992 .0082 -.0060 .0488
1.8 .9997 .0033 -.0026 .0236
1.9 .9999 .0012 -.0010 .0102
2.0 1.0000 . 0004 -.0003 .00k0
2.1 .0001 -.0001 .001k
2.2 .0000 -.0000 000k
2.3 0001
2.4 0000

NACA - Langley Field, Va.



