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STABILITY OF CYIZNDRICAL AND CONICAL SHELLS OF CIRCULAR

CROSS SECTION, WITH SIMULTANEOUS ACTION OF AXIAL

COMPRESSION AND EXTERNAL NORMAL PRESSUR&

By Kh. M. Mushtsri and A. V. Sachenkov

We consider in this report the determination of the upper limit of
critical loads in the case of simultaneous action of a compressive force,
uniformly distributed over plane cross sections, and of isotropic external
normal pressure on cylindrical or conical shells of circular cross sec-
tion. As a starting point we use the differential equations for neutral

* equilibrium of conical shells (ref. 1) which have been used for the solu-
tion of the problem of stability of conical shells under torsion and under

w axial compression (ref. 2); upon solution of the problem it i.spossible
to satisfy all boundary conditions, in contrast to the report (ref. 3)
where no attention is paid to the fulfillment of the boundary conditions
and to the report (ref. 4) where only part of the boundsry conditions are
satisfied by solution of the problem according to Galerkin’s method.
Approximate formulas are used for the determination of the critical
external normal pressure with simultaneous action of longitudinal com-
pression. Let us note that the formulas suggested in reference 5 me
not well founded and may lead, in a number of cases, to a substantial
mistake

We

2y

r

‘o

in the ma~itude of &e critical load. -

shall use the

angle of

1. SYMBOLS

following symbols:

taper

distance, along the generatrix, between the vertex of the
cone and a point on the median surface

distance to the smaller one of the bases

*
“Ob usto~chivosti tsi13ndricheski~ i konlcheskikh obolochek

krugovogo cecheniia pri sovmestnom de?stvii osevogo szhatiia i vneshnego*
normalnogo davleniia.” Prikladnaia Matematika i Mekhsnika, vol. 18,
no. 6, November-December 1954, pp. 667-674.
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length of the shell along the generatrix

thickness of the shell

mgle between the axial plane and the plane under
consideration — ..

number of waves forming along the periphery when the shelJ.
buckles

normal displacement of the point on the median surface
during buckling

external normal pressure, acting both on the lateral surface
and on the bases of the shell section considered

additional compressive force applied to the sma~er of the
end cross sections

13near menibraneforces up to buckling, determined according
to the momentless theory

additional membrane forces appearing during buckling

additimal annular expansion

modulus of elasticity

lateral-expansioncoefficient
.-

1

K=~
2~3

1-U2 ‘=m
(rigiditiesof the shell)

T = 1+~ t=~T ml. % (m - integer)
‘o

~= rotany ,== ~l=l+,a
2

P2 = V2 - 3V4 cp~ = ~~n(psiny- nl=—
sin y

:

(1.1)

(1.2)
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(#/h21 - T2V-2) D’ =
(1 + 2v)Iml(T2v- 1)

3r02cot2 y(l - #)(1 - v)(T2V - 1)
[
W() t~3 7(4 WV) - 1)]

\

A=

(1.3)

(TO(l +2v) 1 - T
(2V-1)

) Al = 0.5 + $lf + 0.25(1 + 2V)2]

2V)(T(1=V) - 1)
2

P*(1 - ml /

2.

( ) 4~2 m12 + V2 rnl
~2 =

[ 1[ 1m12 + (1 - v)2 mlh + w1m12 + V2

1

[ 1D! m12 + 0.25(1 + 2V)2 (m14 4-vlm12 +*
K’ =

)!

[( )]

(1.4)
m14 m12 + V2

FULFI_ OF THE BOUNDARY CONDITIONS AND INTJK23ATION

OF THE EQUATION OF COMBINED DEFORMATION

The differential equations after introduction of the stress function
will be (ref. 1)

rMf+2Ehcot7~=0
Zh2
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where

(2.2)

pOr tan 7
—

Tlo = - ‘Oxo
2

T20 =
r

-pOr tan 7 (2.3)

If the ends of the shell are simply supported, the conditions

W.cl a2w ()+gcr+la2w-—= o
SF r & r aT12

(2.4)

. . . . .
,=-- ------

‘1 =0 ‘2 =0

-. —
must be satisfied

We introduce

on the edges

the folJmwing

r.r
o andr= r. + L.

substitutions:

w = ev%l cos nlcpl
()

~t = M 1 +roz =1.n~ f=r.

(2”5 ).. .-*,,—

Then, taking equatims (2.3) into consideration,weln?ing equations (2.1)
into the form .=

4,

[

p(l+v)z.~+ (2V - 1)2+ (V2 )

dz 1
-Vwl=o—2E&~ cot

——

——.
.-;.
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[

,( V-4)Z ~ - 4(1 - d3w d%
V)~+Kk-+K&~ +

dz3 dzp

[(7-@+ ’o:m7r*’e3z@

‘“ cot 7 ‘(1-V)Z d2F

D

[

%Y02 ‘z d% dwl

D ( )1}+(2v.-l)=+v2- Vwl =0
~

where

The

We shall
shape of

Thereby,

)

K~ = 6V2 - 1.2v+4 - 2n12

%n = 4V3 - EV2 + 8V +4n12(l - v)

.

5

K3nw1 -

() 1+V+~~-K4nw1 +

K3n = # -
(4V3 + 4V2 - n12 4 - 4V + 2V2)

4+ nl

%n 2-$ V-$V2= nl
/

boundary conditions (2.4) assume the form

Wl=o
d%l
—= o
dz2

J

(2.6)

(2.7)

(2.8)

–-n~?F=O ~-~=OFOr ‘=0 ‘dz=tm
dz dz

(2.9)

seek the solution of the boundary-value problem, assuming the
the wave formation

WI . ~ sin mlz (2.10)

the boundsry conditions (2.8) will be satisfied.
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From the first equation of the system (2.6) we find

where

@m =

%n=

%m=

*- =

Alenlz + ~e
-rqz + ~le(n~+2)z.+ B2e(2-n~)z +

2A@hrOcotye(’+V)z(~si nm~z+~cosm~z) (2.11)

Bl) B2 we arbitrary constants

~ )m12+v-v2&-4(v- 12#’)m12*m :

ml
[
b - )]( )[

2v)~ +4v(m12 + v - V2 Vm : %2 + 16m12v2~m2

h

.-
.-

(m<+ nf)2 -:(1+ #’)nf +2(1 - 3v2)mf + (V2 - 1)2 .

ml2+nl 2 +1-V 2 J , .... .
.,..

— (2. U3

Satisfying the conditions (2.9), we arrive at the system of equa-
tions for determining Al, ~, Bl, and ~.

As has been shown in reference 1, the initial equations assumed werq
used only in the case of a thin shell of small length, the buckling of
which occurs with the formation of a considerablenumber of waves along
the circtierence.

For the approximate determination of the hyperbolic terms in the
e~ression (2.l_l)we can take

sinh nlt = cosh nlt . - ..—
=.. —.

especially since, as tilJ.be shown later, those terms affect the magnitude
of the critical load only insignificantly. In this manner, we find

@6 + n~~
A1m- e(l+v)t ~ ~ 06- ‘1°

2(nla J- n sinh nlt n12 + nl

-1

(2.13)
#5 e(v-l)t 05

Bl = 52”—
2(nl + l)sinhnlt ‘1-1

*

_ ..-—.—

.,.. —.
-— _



N%CAm 1433

%)I (2.14)

3. THE CHKRACTEKCSTIC EQUATION

Substituting equations (2. 10) snd (2. 11) into the second equation of
system (2.6), we integrate that equation according to the method of

Bubncrv4al.erkin,multipl@ng it by e(2+V)‘sin mlz da.

In this manner, we s.rriveat the characteristic equation

P -Q- R+T=O (3.1)

where

P =

Q.

R=

T=.

*

[
24

mlc ml + 4(v - l)2m12 - %mlh+(l- 1v)% + K3n

m12 + (1 - F)

[
Ppl 0.5m12 - 1.5v(l + v) - 0.25 + n12 1A[m12 + 3v(1 - v) - 0.5]

+
D, L m12 + 0.25(1 + 2V)2

4V

[(

06 +n~@5)e2vt

(~2v - 1) - m12 (+nl+v- 1)2

m12 + 0.25(1 -

+ (Q6-n1@5)
2

+

(
m12+n1+ v-1)

, Q5e2vt III+ 2 05(n1 - 2
+

m12 + (nl + 1 + V)2 m12 (+nl -l-v
)
2‘1

ml 01 - 03) +v(~ - ’32)

2+Vml 2

2V)2
_l

.
(3.2)
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This equation may he greatly simplified for the wide range of thin
shells which satisfy the condition

k
.—

t ()=Inl+ $$1 L ~ 1.72ro
—

Thenwe have according to equations (1.2), m12 >#@ In addition,

2 is much greater than 1. Therebyfor thin shelJs of small length nl

we have,
ties (2.

retaining only the main terms in the expressions of
12), (2.14), and (3.2)

R [
4V 0n14 - 2~13 - m12n12 + 2(1 - u)m14

-s

+ l\211_m12+-(nl + v - 1)2]T d[mr+(nl+v ,,,. ,.

the quanti-

0

Calculations according to this formula, which take-into account the
expression P and the solution obtained further on, show that the quan-
tity R in equation (3.1) may be neglected if we permit am error in the

e

_itude of the critical 10~ of 2 to 3 per~nt in th~-~rection of . _
increased load. In the remaining terms of the equation we can also
neglect the quantities of the order one in comparison with n12. This
givee an additional error of 1 to 2 percent.

Let us note that the maximum error is admitted on the boundary of
the region where the shell becomes rather long and, for stability,
require8 transverse reinforcements. With the reduction of t the per-
missible error rapidly drops to 1 to 2 percent. Thus, we shall determine
the critical load from the approximate equation

Po

(

nlz + 0.X12 ?&

m
-f-

‘)

=

m12 +0.25(1 +2v)2 m12 + 0.25(1 - 2V)2

(~2 2ml + nl )
22 m14 + p~m~2 + pa

+
m12 + (1 - V)2 (m12 + n12)2(m12 + v2)

-.

(3*3)

.. .

. .
‘2 iS much greaterIn the special case of longittiinal compression ml

than 1 and taking the designations (1.3)and (1.4) for P. = O into
consideration,we find

To(1 ;2V)(1 - T(2V-1)) = e2(m12 +n12)2

D’(1 - 2V)(T(l+2v) - ~) m~” + (m~m~n~)2

a

:. s

.-.

.—
. ... —-—
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Consequently, the critical compressive force is equal to

9

The
spending
cent for

deviation of
exact formula
tsl.

d( )(~l-~2’T2v- 1)(1 - +V-2))
(3.4)

RO(l - T(2V-1))

TO
obtained by Shtaermsn does

given by the above formula from the corre-

4. DETERMINATION OF TIE CRITICAL

Using the notation (1.4) and, in addition

we bring equation (3.3) into the form

not exceed h to 5 per-

LOAD

(4.1)

(4.2)

J!Yomthe condition apolab= O we find

By means of simple, but rather tedious calculations we can show
that apol~ml is greater than O.

Such a monotonic increase of the quantity p. with increasing ml
can be explained by the fact that the qusmtities K’, Al, and 72 are
chsmged very little by the increase of ml, owing to the fact that, as

can be seen from equation
reached at the lergest or
conditions. Therefore

(4.2), for eve~ fixed b the minimum PO is
the values 5/ml, permitted by the boundsry

m= 1 ‘1 = x/t (4.4)
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From Al = 1 in equation (4.3] we find
—. .

If m12 >> 1, this solution holds in the case where the prebuckling

stress is equal to the ring stress.

In the general case

51
5 =—

l+p

.-

-..

(4.6)

—-

where ~ satisfies the equation

2(1 - AJml

al

Hence it follows that

[1-(1+ ,+j

= (1 + 13)[1- *(1 + 13)4]
(4*7)

.

—-.
.

Thus we may assume for J3 the smaller (with regard to
root of the equatfon

.,---~ =—
..—

(4.8)

the modulus)

[

p29..4(l-
1[

Al): +p6-2(1- 1Al)~+2(1 - il)~ = o (4.9)

and the approximate value of the critical pressure is equal to

Po,k = 1.31K’~3/2ml(l.33 + 2~2) :
[
I-+ ~(~1 - 1)(1+ PI (4.10) -

. .. .,-

In the neighborhood of its minimum, the value P. ch%es sl~gj

therefore, the critical value of the pressure determined for ~ (which
was found from (4.9)) differs even on the boundaries of the region (4.8)
from its value for ~ which satisfies the condition of minimizing (4.7) -
by less than 0.6 percent, although the error in the magnitude of B
attains 13 percent.

—.—
,3 c. .,”,.=_

w

—
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For shells which satisfy the condition

0.49 22(1 - ‘1 > .o.83Al)q .

XL

(4.11)

that is, for -0.I ~ ~ ~0.1, admitting a conservative error of about
1 percent, we may put !3= O in equation (4.10). In this manner, we
arrive at the simple formula

1.74Ktm1~3/2
P(),k=

1 + (m~bl)(hl - 1)
(4.12)

Here smd in equation (4.10), the quantities K’, ml, q, 51, and

Xl sre determined accordingto formulas (4.4),

For 1= 0, Al = 0.5 we obtain therefore

b for the case of isotropic pressure

1.74Klm1q3/2
‘O,k= ~. -0.>1/51

In the special case of a cylindrical shell
have

(4.5), aid (1.1) io (1.4).

the following formula

(4.13)

with the radius R we

70
t=Lsiny e= ml=— K! 2Eh

R

1

=—
L sin 7 R sin2y

Al =
To

0.5+A A=— = h sin2y
poR “ R&j

According to formula (4.12) we find the magnitude of the critical
isotropic pressure in the case of simultaneous action of the axial com-
pressive force To:

‘0= *ES’2
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whereby the condition

0.265> (I - 2A)9 ;“--o.k~ ““-: (4.15)

●

✎✍ �

.

.

must be fulfilled.

Let us note that equation (4.14) is equivalent to the equation -
—

T + Po _=

‘O,m ‘O,m
.— (4.16)

,m=-*{y’2 :[ -*]
(4.17)

This last equation is approximately satisfied only under condi-
tion (4.15). Moreover, it is necessary to take into consideration the
case where the shell may lose its stability “with a bang” due to axidl
compression. Therefore, our formulas ought to be used only when the

total axial force To +-$@ is smaller than the lower-limit of the

critical axial force T~ which, as is known (ref. 6), is determined
according to the formula

(4.18)

Let, furthermore, To +-&@ be less than or equal to O.781h2/R

Then, according to equation (~.16)

Consequently,

1- %~z..
poR

o. 78m2
Rr&

) ()ptiR
: l-—

mm

1.56Eh2(l- P()$/2Tti _

p@2(I -0. 78Eh2/RTom)

(4.19)

—.
—

—

*

8
—

. .
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.
or, taking equations (4.17) into consideration,
neglecting in the second-order terms hR/L2 in

. we have

(l - 2A)@ ~ 2.78@
L L

- 0.42 >

that is, condition (4.15) is fulfilled.

13

assuming u = 0.3 and
comparison with unity,

-0.45

Formula (~.12) which determines the critical normal pressure in
the case of simultaneous action of axial compression, canbe greatly
simplified under the condition ml ~ n. For 0.25s u~O.33 (as is

usually the case with metals), taking into account new notation,
formula (4.12) after easy calculations and neglect of second-order
terms, csn be put in the form

( (1-~) -~)1/4(1- 7-(1+~))3p Et~y(h~)5/2
POk =

4.85 (2 - u) T

JG(l - 2)(.(2-”) - l)ln T [I + e(A - 0.5)]

where

(4.20)

(4.21)

Let us note that in the change from formula (4.12) to the simplified
formula (4.20) we reduced the critical pressure at most by 5 percent .

(for t= 1); but formula (4.12), in turn, was derived from the character-
istic eqm.tion (3.1), by w~ of simplifications,which increased the
pressure we had been seeking by 2 to 3 percent. In this mmner, formula
(4.20) ultimately gives the upper Mmlt of the critical pressure, reduced
by less than 3 percent.

Moreover we must not forget that formula (4.12) and notably, also,
formti (4.20\ are derived for the range of vsrirableshell parameters

.

.
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determined by the inequalities (k.11) which, after simplification,
assume the form:

. *

0.49 2 (1 - 2?J0 Z -0.83 (4.22)

Translated by Mary L. Mahler .—

National Adtisory Committee . ...

for Aeronautics —
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