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EXTREME SPEEDS AND THERMODYNAMIC STATES IN

SUPERSONIC FLIGHT*

By Klaus Oswatitsch

suMMARY

The increasing importance of high-speed flow leads to similar prob-
lems in various fields of research which are summsrized in what foll.ows.
Typical of all cases is the conversion of high kinetic energy into extreme
thermodynamic states with temperatures of several thousand degrees, fre-
quently connected with dissociation and ionization of the gas involved.
There is also a characteristic small sensitivity to the processes dis-
cussed in the case of gases of low molecular weight (light gases).

The penetration of meteors into the atmosphere of the earth at
astronomical speeds results in temperatmes higher than those of the
surface of the sun. Such temperatures may be produced in shock tubes,
with light gases used as the driving gas. For supersonic fighters the
problem of propulsion is less difficult to solve than the problem of
large heating, on the surface and in the combustion chamber. Finally,
for the space-travel rocket, astronomical speeds have to be reached which
require the lightest possible gases as propellants. Here againJ dissocia-
tion processes in the-

If science deals
glance, as though the
of serious research.
cannot and should not

combustion chamber are of considerable importance.

1. INTRODUCTION

with extreme conditions, it may appear, at first
record-crazy present is penetrating into the domain
On the one hand, this is actua~y the case= Rese~ch “-
keep aloof from the problems of extreme technical

questions, and the following expositions are meant to be a critical evalua-
tion of publicly discussed related plans. On the other hand, the study of

*“Extreme Geschwindigkeiten und thermische ZustHnde beim
~erschallflug .“ Zeitschrift fiirFlugwissenschaften, vol. 4, issue 3~4,
1956, PP. 95-108. Friedx. Vieweg & Sohn, Braunschweig, Germany, Publisher.
(Synopsis of the lectures given at the Foreign Institutes of the Technical
Universities of Vienna and Graz in June 1955 and of the lecture at the
main meeting of the DVL in Munich on September ~, 1555.)
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extreme conditions holds a special lure for.research ~ecause it leads to .

new and unexpected effects. Regions are reached which, at first, chal- .
lenge engineering and physical intuition born of expetiience. Obstacles
appear in unexpected places while expected..difficultiesoften vanish.
The arrogance which makes qs push on into hitherto untouched fields turns
into humility in the face of the unknown and the unexplored.

.- —

In the following discussions we attempt a maximum of clarity with a
minimum of mathematical and physical complexity. The-results given can
be found in various reports in various issues of the international
scientific literature. Only a few papers are quoted explicitly. A ‘-
specialist in this field will gain in what follows - aside from a new
compilation - at most a few new approximation formulas. However, the
author hopes to find his most appreciative readers among the experts in
neighboring fields and among interested novices. Exact derivations have
frequently been added in small.print.

2. ASTRONOMICAL SPEEDS MD

Table 1 shows, in addition to the

THERMODYNAMIC!

..-.— —
●

STATES
.

—
velocity of sound c and the

velocity of propagation of light, approximate values for astronomical
speeds. In order to have a relationship to the custcmary velocity scale
of modern engineering, the velocity of sound is given also in kilcuneters
per hour (km/h).

Compared to technologically realized speedsj we deal in the ~iverse ““
actually with “astronomical”numbers. Modetinpursuit planes attain sonic
velocity and will.be considerably faster within the next few years. Rifle
projectiles, antitank and antiaircraft shells as well as naval-gun pro-
jectiles have initial speeds of about three times the velocity of sound,
and modern liquid-fuel rockets reach seven times, perhaps even ten times
sonic velocity. However, when the earth, on its path around the sun,
encounters a piece of matter, this latter enters the earth’s atmosphere
with a velocity of n km/see or about MO times the speed of sound. A
shooting star or a meteor results. The air is not capable of avoiding
it in time, since a small presmre disturbance is propagated only with
sonic velocity which is far exceeded by the meteor flying at high super-
sonic speed. The meteor pushes the air in front of it.in a cushion of
high density. Ahead of the meteor, density, temperature, and pressure
dump, Shocklike, in a bow wave (fig. 1) to a multiple of their initial
values. We speak of a compression shock or, abbreviately, of a shock.

Here the importance of the ratio of the velocity W and the veloc-
ity of sound c becomes clear.

●

This ratio IS generally designated as -
Mach number M, after the Viennese physicist and philosopher Ernst Mach .—. .

—. -,. a.-..
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(1)

E. Mach was one of the first to recognize the significance of this pro-
portionality factor for flow problems.

The pressure increase in the perpendicular part of the bow wate can
be easily determined approximately. We visualize ourselves placed on the
meteor as observers. The pressure increase in the bow wave originates by
the air, flowing against the meteor with enormous power, being suddenly
brought to an almost cmuplete stop. The momentum per unit volume is
pw (p = density). A momentum stresm pW x W flows through a unit area
per unit time. The rate of loss of this momentum is equal to the static
pressure 6 immediately behind the front of the bow wave

PW2 . 5 (2)

● It is true that static pressure exists also ahead of the bow wave, and a
small momentum stream is present also behind the bow wave since the air
must flow off around the body. However, both quantities nsmed are much

. smaller than the effects included in (2). -

For ideal gases, there exist the following

(T = absolute temperature, K = cp/cv ratio of
constant pressure Cp and constant volume %>
R= universal gas constant)

speed-of-sound formulas:
the specific heats for
m = molar weight,

(3)

Ahead of the shock, the air is certainly to be regarded as an ideal gas.
Hence there follows frcm equation (2) with eqmtions (1) and (3) the
following formula for the pressure rise in the bow wave for high Mach
number

(4)

Formula (4)
it iS valid
speeds - it
state after

shows clearly the tiportance of the Mach number; even though
only for higher supersonic speeds - the so-called hypersonic
has the advantage of not containing an assumption on the gas
the compression. This is hnportant, for in the case of the

meteor flying at Ma~h number 100 there results (IC is the value for air
ahead of the bow wave: K = 1.4) a pressure increase of

●

1 = 14,000
P

0 thus an extremely high value.
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h exect calculation leads to the fol.lowlngfonmii.a: Since an ew mm flown in ahhad of the shock
front as flows cff behind the shock front (see, for instence (ref. 1), p. 20), t!iecontinuity condition

6U. PW (5)

app~es. The exact mcmentum equetion reads

$+pkw. p+P@ (6)

mom equationa (5) and (6) fo~owa .

()
~-*&g) +l’ A-:+1P

(7)

Uhereae the laet tezm hae no siguificence uhetsoever for high speeds, the parenthesis in equaticm (7) in
the given exemple leadE, according to table 2, to a comection of about 10 percexitmmpe.redto equation (4).

. .. . —

In order to form now also an opinion about the temperature increase
occurring in the bow wave, we shall go back - as in all temperature
problems - to the energy theorem. Let us consider the unit mass of a
gas particle which passes through the front of the bow wave (fig. 2).

The kinetic energy W2/2, and also the internal energy of the unit
mass e are released; furthermore, the gas flowing out at the pres-
sure p per@kms work of the magnitude p/p by displacement of the
volume l/p per unit mass. On the other side of the
corresponding energy increases have to be considered;
the energy balance

bow-wave front
hence there results
—

This is valid under the assumption made here and always made later,
that no energy radiates toward the sides; however, at very high tem-
peratures, this is probably only conditionally true and will probably
require a correction. In equation (8), the kinetic ener~ behind the
bow wave 02/2 is, in practice, quite insignificant.--Ifthe energy
consideration is set up, instead of for the.state behind
front, for the state at the
(with the subscript O for

P = P())

‘o

stagnation point, there even
the state of rest W = O: e

+P()=
Po

,+2+$ ““”
P

(8)

the bow-wave
applies exactly
=eo, p=po}

.-

For an ideal gas there applies, furthermore, the equation of state,

~= RT
-k

—=
Pm (

Cp -~)T
——

(9)

(lo)
—

and it will be shown that, in ~at fofiows, the gases may very well be
regarded.as “ideal.” —

“NACA reviewer’s note: Although the first equality of eqyation (10),

P ~T, is applicable in the general case of varying molecular weight, the -.—=—
P

second equality, % = (~ - CV)T, is not.
—

.—.

*.

.

—
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Furthermore, if we assume, in order to arrive at numerical values,
that we are dealing with an ideal gas of constant specific heat, there
applies for the internal energy, aside from an additive constant, e = CVT.
Hence it follows, together with e@ation (10), that

or, introducing the velocity of sound with equation (3) and the Mach num-
ber with equation”(1)

To
—=1+—
T

K;1M2 (n)

Hence, for air (K = 1.4) at a meteor Mach number M = 100, it follows
that the temperature ratio TO/T = 2,000; for an absolute temperature
of 225° as prevails, for instance, in the stratosphere, this would cor-
respond to a rest or stagnation-point temperature of To = 450,000°.
At such a temperature, however, the air has certainly been dissociated
or ionized long before. The assumption of the air as being a gas of
constant specific heat, which forms the basis of equation (ll)j has cer-
tainly been grossly violated. This is equally true for the state imme-
diately behind the shock front where the air also has come almost to a
standstill and where, therefore, almost stagnation conditions exist.

Whereas the momentum considerations with equation (4) lead, there-
fore, to a quite serviceable estimate for the pressure increase in the
bow wave, a more exact lmowledge of the gas state is necessary in order
to arrive at results for the temperature. Figme 3 shows the composi-
tion of the air as a function of the temperature for normal density
according to quantum-theory calculations of Burkhardt (ref. 2).* According
to these calculations, the composition of the air of the normal state of
approximately 20 percent 02 and 80 percent N2 is maintained up to
beyond T = 2,000° absolute. Aside from a slight formation of NO, N2 “

and 02 start dissociating to N and O at about 3,~0, and at 10,000°
the air is a monatanic mixture of nitrogen and oxygen. The mean molar .
weight m has varied inversely as the number of molecules and has at
10,000°, therefore, only half the magnitude of the normal state. In
cases of heating beyond 10,000°, the gas is ionized. Due to the forma-
tion of electrons, the molar weight decreases further. Figure 4 shows
the internal energy of m = 29g air. This is, therefore, the internal
energy of a mole at low temperatures and, according to the kinetic gas
theory for molecules with five degrees of freedcm, thus for air of low
temperatures,

me = 5T

iS valid.

*NACA reviewers note: Since the calculations of Burkhardt are now
outmoded, figures 3 and 4 are only approximately correct.
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Sine-ethe”molar weight decreases at higher temperatures, me is,
at higher temperatures, no longer the internal energy o? a mole. Fig- “-- ““”=”
ure 4 shows that the internal energy increases considerablymore than
for the “ideal gas of constant molar weight.” This is caused by the
large energies required to first split the molecules into atoms and then
to separate electrons from the atoms; such energies we.Comparable to .. ..
those of intensive chemical reactions.

In the entire range considered, the air is to be regarded as an
“ideal gas” in the sense that the equation of state (lO~applies with
substitution of the particular molar weight m, which is a function of
the temperature and also of the density. From the standpoint of gas
kinetics, this means that the volume of the molecules is always small
compared to the volume of the space in betweefiand that-the forces of
mutual attraction are insignificant. The dependence of the internal
energy on the density is only a result of the dependence of the decompo-
sition of the gas on the density. The potential energy arising from the
mutual attraction of the molecules, in contrast, does not play any role,
just as in the case of the ideal gas. —

For calculating the change of state in the shock m~ve, we shall use” “-
a relationship between the thermo@mmic state variables which is known
as “dynamic adiabatic.” W and W can be eliminated from the three equa-
tions (5), (6), and (8) which are valid for all media, and

(11@-e=—--
2p

results. For the efireme states here
to figure 4, likewise 6>> e, whence
of good approximation:

E-l=
P

$)‘f+‘) (12)

treated, ~>> p and, according
we obtain the following equation,

. .—

2e6 L _..

T

and, with use of the equation of state of ideal gafies(10) the appro-tion

- “(13)
-.

The difficulty lies in the fact that the state alter the compres~ion is
desired but tfiatthere the internal energy ~ is dependent
in a ~omplicated manner. Therefore, we shall simply assume
and T and calculate the Mach number of the “meteoras well
altitude, thus the air density P in which it is flying.

—.

the state P
as its flight

—

-=

● ✍
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The second column of table 2 gives the assumed temperature $’
multiplied by the absolute gas constant. We put there R = 2 cal/degree,
not 2 cal/g x degree, because the molar weight has been introduced with
the dimension g (gram) in figure .4. Columns 3 and 4 follow from fig-
ures 4 and 3, column 5 from formula (13). It is remarkable here that the
density in the bow wave increases only by a factor of 6 to 13. This is
of course not surprising since it is known that the density in the com-
pression shock of an ideal gas of constant specific heat of K = 1.4, in
the limiting case of high Mach number, increases only to 6 times the
initial value. The dissociation and ionization of the gas thus causes an
increased compression and a decreased rise in temperature - as will be
shown later - and has no important influence on the pressure rise.

As a result of the slight compression of the gas, an-ideal gas may
still be regarded as “ideal” even after the compression shock - however,
with variable molar weight m, dependent on the state.

Since 6 was assumed as the normal density, column 5 also determines
the density ahead of the bow wave and thus the flight altitude of the
body. It is represented with the assumption of the so-called “standard
atmosphere” (ref. 3). In every case, we are dealing with flight altitudes
in the stratosphere, thus with altitudes which are of interest not only
for meteors but also for missiles flying at very high speeds. There a
temperature of approximately T = 223° absolute prevails. Thereby the
temperature ratio also is fixed. With the equation of state of ideal
gases (10) ahead of and behind the front of the bow wave there then fol-
lows the pressure ratio

(14)

and with equation (7) (or with the less accurate equation (4)) the Mach
number. Because of lack of the m-values for T = 30,000°, the calculation
in table 2 is limited.to Mach numbers M= 44. On the other hand, a
meteor in the upper stratosphere is strongly decelerated so that table 2
is of interest for this astronomical phenomenon, too. We shall encounter
the Mach-number range between 15 and 30 below also in the problem of
satellites. For this reason, the results are of technical interest as
well. Of course, they are of importance only for the pressure region
behind the bow wave. Considerably weaker effects would occur on pro-
jectl.leswith conical points.

As mentioned before, the pressure rise depends in practice only on
the Mach number. From M = 30 (line before last in table 2) there fol-
lows with equation (4) @/p = 1,260. In equation (14) the left side is
thus fixed with M. The compression is approximately twice as high as
for an ideal gas with K = 1.40 and the molar weight only half that in
the initial state. Hence the temperature rise in this case is only about
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1/4 of that calculated
@/T=TO/T = 180, 0~

this means, instead of
the bow wave - a value
ture of the surface of
pletely in this case.

—
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with eqwtion (11); thus, instead of
45. For an apprfich-flow temperature of T = 2230, n
a temperature of T = 40,0000, gnly 10,000° behind ~ _
which, of course, is “stillfar above the tempera-
te sun. !Fheair is practically dissociated com-

It is true that we make here the assumption thst the time intervals durisg whic~the gss stsys in the
state cmidered u sufficient for adjuat,mentof the thermdynsmic equilibrium,the diSSOCi8t.bn tllldiOIliZa-
thn equilibrium on which figwes 3 and 4 are be.sed. ~riments with the shock tube treated in section 4
have shown that rel.axetlonphenomena do appear. 5%s finel state is therefore attained, scmethes, not imm-
ediatelybehind the shock front but only sfter pesBing through a trsnaitional zone. R met be tsken into con.”
sideration,though, that 8 deley in the disintegretisnc&the mal.eculks-6s a“mpsrelevstfon of the tem-
perature. The tendency of the g@E twrerd dle.eociationand ionization is therefore greatly heightened in this
tre.nsltlme.l.state which mekes the gas there tend toward thermodynamic equilibrium the more rspidly.

3. DRAG PROBIZM

The drag of bodies flying at such high speeds is governed exclusively
by the extraordinarilyhigh pressures in the neighborhood of the stagna-
tion point. These pressures amount to a multiple of the approach-flow
pressure. In the face of these facts, even a complete vacuum behind the
maximum thickness of the body cannot produce a noticeab-lesuction. Fr\c-
tion forces can exert a certain amount of in$luence only in the case of
very slender bodies which will not be considered here.

Since the pressure at the stagnation point lies above the pressure 6
behind the perpendicular part of the bow wave (the pressure at the maximum
body thickness, however, is considerably smaller than P) the drag D _will
be equal to the cross-sectionalarea F times a mean pressure J = C@
where C is of the order of magnitude of unity. Hence, there follows with
equation (2)

D=~=CFfi= Ci’pws. (15)

Thus the drag coefficient CD referred to the ‘!fronta~area~’F is

CD D“Z”-=— =
FpW2/2

(16j -

This result is noteworthy. It indicates that, in the range of very
high Mach numbers, the drag coefficient becomes independent of M, The
author generally proved this result (ref. 4) for ideal gases of constant-
specific heat where it was shown that, for blunt bodies, the independence
of M appears for M2 >> 1. The tests (ref. 5) show indeed that the

—

.-

.

.-

.
—..
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coefficients for a.
as early as for M
CD = O.% for the

sphere and for a
= 3, approach an

9

cylinder in an axial approach flow,
asymptotic final value which lies at

sphere and at CD = 1.65 for the cylinder (fig. 5).
The corresponding factors C = fi/fi‘are C =0.k8 and C = 0.82. Another
conclusion Is surely permissible here. Since the pressure increase in the
perpendicular psrt of the shock depends only on the Mach nuniber M and is
only insignificantly influenced by the dissociation of the gas, the effect
of dissociation and ionization on the drag coefficient of the gas certainly
is also slight. This must apply all the more, ,the slenderer the body,
because then the gas also deviates less from the state of constsmt specific
heat. The influence of K on cD, too, can only be slight, i3CCOZ’di~ to
equation (16).

At this point we want to discuss briefly the problem of drag of a
meteor where the pure kinetic energy is compared, on the one hand, to the
work done against drag in penetrating the atmosphere, and on the other
hand, to the heat of fusion of iron, the chief constituent of most meteors..
Referred to the unit mass, the kinetic energy is simply W2/2 (table 3).
With equation (16), the resistance work in a distance L, at the den-

. sity p, for a
approximately,

The resistance
iron

sphere of the radius r (a meteor is to be regarded,
as such a sphere), is

work for a unit mass then is, with ~ as the density of

DL .O.71LQN?
(4/3)r3fi~ r~2

The height of the (“constant-density atmosphere!’-p = 1.293 x 10-3 g/cm3 Is
8 km. Since the product pL is not dependent on the assumption of p
(the weight loading per unit area of the ground is the same in any case) we
may assume the estimate with a mean constant density to be quite usable.
With ~ = 7.8 g/& there then follows the second value of table 3.
The radius of the meteor r, expressed in cm, is to be substituted into
the formula.

Third in the table, finally, we find the heat of fusion of iron. As
a quntity having the dimension cal/g, it may just as well be given in the
form of a kinetic ener~ perunit mass. Here and later on, heats of trans-

. formtion are thus expressed mostly in the dimensions [1/2(lan/sec)~,
that is, they.correspond to the kinetic ehergy per unit mass of a body
when its velocity is counted in km/see. Thus*
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[

=

~

0.4186 x 1o-2 ~h/sec)2] (17)

[ 1=0.091502 $(lan/sec)2

1 cal/g corresponds, therefore, to the kinetic ener”~per unit mass “of
a body flying with a velocity of 0.09150 hi/see. This at first unusual
manner of expression will prove advantageous for energy considerations
in the field of rockets. .

..

For a meteor of a radius of r = 9 cm or a dismeter of 2m, the
kinetic energy and the resistance work are about the same, that is, the
boundary where the meteor is brought to a complete stop by the earth?s
atmosphere lies at this dismeter. It is true that t% pull of gravity
has not been taken into consideration here, but in the case of a meteor

.

it is of Mttle importance. The kinetic energy of a meteor flying in at
30 lan/secis approximately 2,000 times (s02/o.41 = 2,2oo) its heat of
fusion.
earth’s
impact.
phere -
of this
that at

A spherical body-measuring many reekerswill-”thuspenetrate the “
atmosphere but will not only melt but also evaporate at the
A small spherical body generates on its way through the atmos-
due to its resistance work - so much heat that even a small part
heat is sufficient to melt it. It”is therefore not surprising
least the point of maximum temperature rise - the head of the

meteor - must Melt:

The considerations on resistance work are associated especially ylth
conditions f’ormeteors; thus they do not permit imnediate conclusions as
to the processes in tk case of projectiles
the drag

The

tilues per unit mass”are sometk-s

4. SHOCKTUBES

considerations following next will
producing extreme states in the laboratory.

or rockets. For these latter,
considerably smaller.

-.

..-
-—

be devoted to the problem of
For the various custcmary

types of supersonic wind tunnels, one encounters many difficulties in the
attempt to achieve hypersonic velocities. The problem of the energy
required is not so difficult. Considerable pressure gradients also can
be achieved; however, the appearance of very high temperatures poses
technical problems which are very hard to solve. In recent years, a
test arrangement which, in English, is called “shock tube” has attained
importance. We deal here with the production of a one-dimensional *

explosion in the laboratory so that the instrument shfild perhaps best
.

be called an “explosion tube” in German. .
*

-..- .-
—

-—.

..—.
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First, let us consider the unsteady propagation of a two-dimensional
sound wave (fig. 6). If we deal not with a wave-shaped but with a step-
shaped disturbance, the sound wave produces a small disturbance of the
thermodynamic state and of the velocity of sound c and causes a change
in the flow velocity W. In the reference system of the sound wave, the
connection between temperature variation and variation of kinetic energy
was previously indicated in the derivation of equation (lI). This con-
nection applies for any stationary disturbances, compressions or expansions

wdw=cPdT*
or, with introduction of the velocity of sound with equation (3)

WdW=-~ C dc (18)
lc- 1

However, we now deal with the disturbance in a sound wave. In order to
keep the latter stationary in figure 6, the flow velocity must be chosen
eqml to the velocity of sound. Hence, for the change of state in a
sound wave there applies in the coefficients of equation (18): W = c.
The change of state in a sound wave of an ideal gas of constant specific
heat is given exactly by

dW=-~dc (19)
K-1

Thus, the velocity varies in a sound wave in the case of air (K = 1.40)
five times as much as the velocity of sound. For equation (19) it no
longer matters whether the sound wave is considered in a coordinate
system fixed to the wave step or in an arbitrarily moved coordinate sys-
tem, whether the wave step travels on or remains stationary; a velocity
difference dW is independent of the selection of the coordinate system.
A wave crest, for instance like the one sketched in figure 7, with a
state of rest (W = 0, c = co) on the left side, may be regarded as a
superposition of sound waves, each of which travels in the state created
by the preceding wave. In figure 7, for instance, the first wave,
situated farthest to the left, runs tith the velocity of sound of the
state of re6t co. The decrease of the velocity of sound in the first
“partial wave” - which is only an expression of the drop in pressure and
density - leads, according to eq~tion (19), to the gas beginning to
flow slightly to the right. Om this gas flowing to the right, the next
sound-wave.step now moves to the left, etc. Thereby we also obtain
immediately a picture of the deformation with time of the sound wave.
The absolute velocity of a sound wave moving to the left is W - c. For

*NACA reviewer’s note: This equation should read W dW =
-% ‘T”
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a etate of rest, W = 0, it runs with the velocity -c; for W = c, it
remains stationary. By integration of equation (19),the flow velocity .

of the gas is readily expressed by c. Tak@ c = co for W = O there
applies

w

Whereas thus the velocity of
decreases, the flow velocity

=
-+(CO - ‘)tc-

.—

(20)
.—

sound in the wave of finite amplitude
increases. With equation (20), there

applies for the absolute velocity of the sound wave -

w -c 2
(

It+l
=—co- c)-c=-co+— (co - c) (21)
K-l K- 1

—

For very strong expansion, that is, for very low temperature and
a very small value of c, the part of the..ws.vesituated on the right 1s
carried off to the right by the gas flow; that is, the wave flattens
with time.

—

:..
-.
.-.

. -

.
.

In the consideration of an “explosion” in a tube, this appears self-
-evident. Iet us start frcm an initial state in which on the left side of
a membrane set into a tube (fig. 8) high pressuxe exists while the other
side is pumped out. Shortly after the membrane is burst, a pressure di&-
tribution similar to the one sketched and a c-mrespond@ sonic-velocity
distribution exist. The further variation with time is that which was
discussed with the aid of figure 7. Whereas the pressure on the left
side is reduced by the progressing expansion wave, the_~igh-pressuregas
flows, explosively, into the low-pressure side. The attainable nmximum
velocity corresponds to a camplete expansion p +0, P~O, T+O,
c ~O; therefore, according to equation (20)

w-=---c.
K -1

(22)

It is true that a pressure gradient sufficient forattaining this
maximum value is hard to achieve so that we must limit ourselves to con-
siderably smaller values. The gas expands isentropica~y (adiabatically).
For this there applies, at K = const

(23)

or for the velocity to be attained for a pressure ratio p/pO with
equation (20)

.

*
. . .

—
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[1
K-l

w [12~c _ 2 ~- P~—=—
co K-l

-q
K- 1 ()g

(24)

According to equation (24), a high velocity of sound at rest is no
less hportant for a high flow velocity W than a large pressure drop.
This rest velocity cannot be too greatly increased by heating since a
doubling of c requires, according to equation (3), a quadrupling of
the absolute temperature. However, precisely this equation (3) shows
that gases of smaller molar weight have a considerably higher c. For

equal temperature, hydrogen (H2: K = 1.40, m = 2) has ~~- = 3.8 times

the sonic velocity of air (air: K = 1.40, m = 29); this phenomenon is
explained, from the standpoint of gas kinetics, by the considerably higher
flight velocity of the molecules of smaller mass.

If the high-pressure side of the shock tube is filled with H2 and
the low-pressure side with very highly rarefied air, the hydrogen rushes,
after bursting of the membrane, with great speed into the low-pressure
side, displacing the air which is compressed in a shock. Due to the
large pressure differences, the process can be sketched only with a dis-
torted pressure scale in figure 9. The state of rest of the air is
designated by the subscript 1 in order to distinguish it from the
state of rest of the hydrogen. At the surface of contact of the two
gases, pressure and velocity must be identical. For H2, the connection
between W and p is givenby equation (24). For a moving shock, how-
ever, it stilJ has to be derived. So as not to lose any clarity, the
consideration will.be limited to the case of strong shocks treated here.
For the stationary flow there applies eqyation (2), with the flow veloc-
ity behind the shock H being rather small, compared to W.

The shock front need only be considered from a coordinate system
fixed to the approaching gas in order to arrive at the case of a shock
moving into a gas at rest, as in figure 9. The shock front then has the
velocity W, and - in the case of a strong shock - the gas behind the
shock front also has approximately the same velocity. Since the values
ahead of the shock are written with the subscript 1, and those behind
the shock without subscript, there applies therefore for the moving
strong shock

(25)
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For judging the rmrlt of equatica (3), m shall briafly derive the emmt fc?m&. It la easy to derive,
fran the exact equaticms (5) end (6), the equation (26) for statim flew

,m~~ Q=/~”- +“’ (ti~= - ““-’;

.- .=

Hence follows

w-i.{- _-

.—
~aj “:: :

.-.

The velocity difference W - 0 is the same for all reference.s@tems ubved pe~endlcil.arly to the .sh~~ ““ ““—”
front, and is hence equal to the velocity W atthecontact surface in figure 8. With the de.eignatiom used
there, we have therefore exactly:

—

9“:(4(+).2 “ (P - P,)(* -,
—

(z%) .-

Equt ions (24) and (25) may be interpreted as two rel.ationships
for the unknown state at the contact surface, W and _p/pl. W can be

easily eliminated, and we obtain
—.—

—

(29)
—,.; -..=

which is an equation for the required sonic-velocityratio of low-pres~tie -
+

and high-pressure gas in the initial state when the correspondingpressure
ratio pl/pO are given.and the pressure ratio in the shock p/p& The

two ratios of the specific heats in the initial state, K1 and K, also “-- “

enter into equation (29). It is assumed that the high-pressure gas e~nds
like an ideal gas of constant specific heat; the compression shock, how-
ever, may be connected with dissociation, ionization, or merely with varia-
tions of the specific heats if it is only stificiently strong.

Since the pressure sharply decreases even in the K@h-pressure gas~
a pressure ratio pofpl as large as possible is necessary to guarantee .—

sufficient pressure rise in the shock. A pressure of p. = 300 atm on

the high-pressure side and a vacuum of pl = 0.03 atm on the low-pressure

side are not hard to achieve in the laboratory for small tube dimensions.
If we provide, furthermore, a pressure ratio in the shock of p/pi = 280,

which according ,totable 2 corresponds to a Mach number M = 14.8, and
assume ‘l=K = 1.40, we can calculate from equation (29) —

—.

.
—

--
.

. —

—. ,.—
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If we use H9 as the propellant for the compression of air, the
required temperat~e ratio then is, tith equation

To m.oco?
—=— —= —
T1 mlc2

*; 72 = 3.4

1

\3)

If, therefore, the air is maintained at room temperature T1 = 288°, a
heating of the hydrogen to .TO . 980° (=6ct)0 C) is necessary, to pro-

duce the conditions of table 2 at M = 14.8. These are not particularly
large demands on test technique.

The calculation contains three further inaccuracies which could
slightly modify the result. A heating of hydrogen leads to a small
decrease of K, which could become noticeable in equation (29) became
K - 1 enters. Furthermore, according to table 2, the air is compressed
from 0.03 times to 0.30 times normal density. This leads to a somewhat
higher dissociation and a scmewhat lower temperature but not to any
essential changes. Finally, the absolute temperature ahead of the shock
is assumed to be 288°, thus 30 percent higher than in table 2, which
results in a higher temperature behind the shock and correspondingly
higher dissociation. This effect probably overbalances those nsmed
first.

Therefore we produce, in the present case, a temperature of more
th~ 5,000° abs in the shock tube, thus appromtelY the temPerat~e
of the surface of the sun. In contrast, the temperature in the adja-
cent H2 is very low, namely

This reproduces a quite general property of explosions. In chemical
combustion, as occurs for instance in powder> the temperature does not
rise beyond 2,500° to 3~CXX1°)since then, as in the case of hydrogen
and ~gen, the dissociation becomes so strong t~t it cons-s ~
further avaibble energy. The strong pressure drop in the explosion
leads to a considerable cooling of the powder gas; the dissociation need
by no means find the time to recombine. The air, in contrast, shocklike
compressed by the explosion, is etiraordinarily heated up and represents,
further along, the hot part of the process.

The possibilities for producing high temperatures in the shock tube
. are not exhausted with what we have described above. When the shock,

in figure 9, finally arrives at the right end of the tube, the thermo-
dynamic state is further pushed up by reflection. A narrowing of the

.
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tube toward the right likewise leads to ener~ concentration and to
increases of temperature and pressure. Reg~ding these facts, or the -
use of other gases,~we refer for inst&nce to the reports of Kantrowitz
(ref. 6).

The achievement of such extreme states with relatively small effort
must of course be paid for with a disadvantage: the transient nature of
the phencxnenon. The phenomenon which is of interest extends only from
the front of the shock to the surface of contact with the high-pressure
gas, >hus only over a fraction of the entire shock tube, and it races by
witha speedof (eq. (~))

---

..
—

+“”

..

—.

If we succeed, therefore, in etiending the observed state to 0.50 m in
a shock tube of 5 m length, it lasts at one ~oint l/10,00U sec.

.—
This

is sufficient for photographic recording. ~bjective observation is of
course impossible.

>. .

5. lWVU7!ITPOWERPLANI
—

In the face of the unusual conditions encountered at high speeds,
there comes to mind the question as to what speeds are -altogetherattain-
able with airplanes or other flying bodies. We choose -asthe starting
point the thrust equation for a free-fl@g body. As the loss of momen-
tum leads, on a surface, to a pressure rise, to a force.in the flow
direction and, in the case of a body, in the””lastanalygis to a drag
(shown for instance in eq. (15)), so the production of yomentum leads to
a thrust S. In what follows, we shall consider the sipplest and most
important case in practice: that the production of momentum occurs in
a region of constant pressure (fig. 10). It is Unimpohant whether pres-
sure differences appear on the thrust body itself. Let”the pressure be.
constant only in a certain region characterizedby the rectangular bound-
ary of the body. IA us consider there the entering jet with the cross
section fmj the velocity W., and the qpantity G. flowing through yer
unit time, and the exhaust jet with the corresponding quantities without
subscript.

.
The-loss of momentum in a certain direction, either-by stopping or

by rectangular deflection, produces a force K = pWf X W = GW; the pro-
duction of mcznentumgenerates the correspondingthrust.- Thus there
results for the total thrust

s = GW - G@W@ (30)

....

m
—.

“

-—. .. --: ,- ---

—.-. . ,, .._.
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In many cases a definite inflowing mass is used for increasing the veloc-
ity; this applies exactly for ald propellers and with very good approxima-
tion for all jet power plants. Then G is equal to the quantity G.
coaxingfrcxnthe infinite approach-flow region and

s = Gm(W - Wm) (3U

iS valid.

In the case of the rocket, however, which will be treated in the
next section, the momentum is imparted to a mass which is carried along,
G. = O, and

s =Gw (32)

iS valid.

The ramjet power plant operates as follows: A part G of the
approaching air is given an increased pressure by being stopped. In
this state of rest the air is heated whereby its density greatly decreases.
The heated air finally is expanded again to the initial pressure. The
velocity W attained by the air in the pressure gradient is larger than
the velocity Wm lost by the air during the pressure rise of the stop-
ping because the air density during the expansion is smaller. For the
lighter the air, the greater is its acceleration in a given pressure
gradient.

This type of propulsion was discovered by the Frenchman Lorin at a
time when flying was still done at low subsonic speeds. For supersonic
velocities, this type of propulsion was rediscovered by Trormnsdorffin
the early years of the last war. As will be shown directly, this type
of propulsion is of eminent importance precisely for supersonic speeds.
In order to understand this, one has only to start from the principle
that the efficiency qc of an ideal thermodynamic engine is given,

according to Carnotj by the ratio of temperature rise between heat input
and heat exhaust to the temperature of the heat input. The heat input
takes place at the stagnation temperature To. Here as well as for the
gasoline engine, the cooling of the working gas is replaced by an exchange
of the hot air blown off in favor of newly supplied cold fresh air. With
the equation (n), applied to the approach-flow state Tm, ~, there
follows thus for Carnot’s efficiency

Vc = ‘\;=./[++$) - (33)
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The approximation of an ideal gas of constant specific heat-,assumed
for equation (11), is sufficiently satisfied for the following considers- - -
tions. Table 4 gives a few results.

—
.—

Whereas, therefore, the efficiency of the ideal ramjet power plant
is still low for flights at the speed of sound, it equals, for ~ = j,
a diesel engine working ideally with a pressure of 37 atml With increasing
flight Mach number ~ the efficiency improves still further. Thereby
this type of propulsion proves to be the ideal engine for steady super=
sonic flight. Of course, some losses are to be expected for this type of
propulsion, too; among them, the kinetic energy being lost with the thrust
jet is by far the most important. Thus only part of the ”performancegiven
by Carnot~s efficiency is used “profitably.” To an observer standing on
the ground and considering the body flying at

—
W., the work performed per

unit time against the drag forces or against gravity is

Wms = GWm(W - Wm)

The exhaust jet, however, discharges an amount
time givenby

~ (w-wmp
2

—

(34) ““ ~’ “o-

f kinetic energy per unit
.

The discharged heat energy need no longer be taken int6

(35)

—
consideration.

This energy-has already ~een represented by Carnot’s efficiency. The
ratio of the desired mechanical output and the sum of the two actually
achieved mechanical outputs yields the jet efficiency

—.

...

Vst =
Zwm(w - w.) !2T&

2wm(w”- Wm) + (w - WJ2 ‘W+wm
(36) -

—.
The product of the two efficiencies qet and VC then gives rather

accurately the efficiency which has to be taken into ac”countin practice.
.

An exemple will clarify the possibilities. .. .

With assumption of isentropic (adiabatic)expansion it is easy to
derive from equation (11) the generalized Bernoulli equation .

- w2=25Top-&]=2cpTo[l:(&)7- (37)

which is similar to equation

At a certain pressure ratio

(24), yet essentially different from it.

P/PO) W is proportional to ~ which is .
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a ,square-root
forms● If in

relationship
the case ~

by heating, which leads to
ity is doubled: W = 2Wm.

19 ●

between W, c, and T appearing in different
= 3 the stagnation temperature is quadrupled
a temperature of 2,536° abs, the exhaust veloc-
We then arrive at efficiencies of

2/3 fI‘qcq~t ‘o.43

thus at very promising values. Of course, the jet efficiency could be
improved by less heating. However, the thermodynamic efficiency alone
is not the governing factor for the designer. Above all, a certain
thrust S is necessary.

If the problem consists, for instance, in flying at constant speed,
in steady flight, for a long distance, say across the Atlantic Ocean,
the thrust S is equal to the drag D or with equations (31) and (16)

Gm(W - Wcu)= f~mwm(w - Wm) = c#Pmw2J2

Thereby the ratio of the cross-sectional area of the oncoming jet fm
and the frontal area of the body F is

fm CD Wm
.=— —
F 2W-WW

(38)

of

to
or

The drag coefficient cD of a flying vehicle kkS far below that

blunt bodies (fig. 5). If it is assumed to be CD = 0.30 (referred

the frontal area, not, as in the case of airplanes~ to the wiw area
the like), 15 percent of the frontal area is required for the oncoming

Jet at W = ~m; this appeers reasonable.

It is true that a reduction of the difference W - Wm would lead
to an increase of qst; but at the same time it WOuld ~creas@ the Set

area fm required according to equation (38), which is undesirable.
The designer therefore demands a certain “thrust concentration” and fore-
goes an excessive increase of the Jet efficiency.

.
It ls one of the smll inaccuracIes of the present representationthat we aMays speak of heating but

that, in practice, this heatx takes place by combustion of a hy&oc&xm. Am ln@ of IIL9aSoccurs which iS,
however, rather insignificant. For instance, the wmbustinn of gasoline and benzol in air under ccmstsnt
pressure in the mass ratio 1:100 yields a temperature rifle~ aPP~tel.Y~O. ~~ f~ t~ rest, a _ of
the smaller neglected effects acts favnrably.
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With the quadrupling of the stagnation temperature at Mm = 3 the
boundary is reached at which the dissociation of the air sets in. There

.

would not be any objection against the storing of energy in the form of
.-

dissociation if this energy would become free again during the cooling
off of the jet in the expansion. This would even have the advantage that
the combustion-chembertemperature would not rise above”a certain limit.
The control of high combustion-chambertemperatures represents, anyway,
one of the serious technical problems. However, the t~e available
during the expansion is too short for recombination of the dissociation ._
and adjustment to the cooler thermodynamic equilibrium state since a “
stronger cooling occurs only at very high speeds. Thereby a considerable
part of the ener~ going into dissociation is lost.

The temperature up to which heating may be continued in the combus-
.

tion chsmber is thus limited at least by the onset of dissociation - –
unless the strength of the combustion-chamberwalls (essentiallya coolimg
problem) imposes lower limits. This means a barrier for the heat supply
which restricts application of the ramjet power plant by a limiting Wch

.

number. Let us assume the temperature of 2,5360 abs - an enormous heat -
to be the upper temperature limit in the combustion cti-ber. Then there .

results for Mm = 5 an exhaust velocity of W =~
—

29536/~,338 Wm = 1.38wm
compared to W = 2Wm for G = 3. This means a considerable increase of
the area ratio f@/F, even though a small reduction of..cD with ~ maY
be assumed.

However, temperature problems do not occur merely in the combusti.ou
chamber but on the entire body of the f~~..vehicle. It iS sh~ t~t
the stagnation temperatures given by equation (lJ.)and calculated in
table 4 are attained not only by ordinary storing but a~so - almost - by
the stopping of the air due to friction at the surface Qf the flying body.
Eventhough these temperatures lie far below the heating temperatures in
the combustion chamber, the related problems are not any smaller since
enormous difficulties are encountered in the cooling ofxger parts of
a flylng body. If the vehicle is manned, a very radica~ cooling of the
cockpit is needed already for Mm = 3. The e-lectroniccomponents of
remotely controlled bodies also are”very sensitive to”temperature; they
must be cooled or strongly heat-insulated. The simplest-solutiondepends
essentially on the length of the flying time. In the case of wing con-
structions, the strength properties of the metals must be ex@oited to
the utmost. The metals greatly vary i’nstre~h with the temperature.
Ahmi.nummelts at 6~0 C. Due to its higher melting point of 1,530° C,
soft iron is harder than steel at high temperatures. In finer construc-
tions, however, not only the general strength must be considered. The
heat transfer to the wing and the heat conduction in the wing may lead ‘“
to a nonuniform temperature distribution and to a warping of the wing.

.
—.

..
— -w

—
—

.— . .
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Still another difficulty must be pointed out which lies in the
appearance of high centrifugal acceleration. If the ktter is designated
by g and the radius of curvatwe of the path by R, the following rela-
tionship, which is known from mechanics, applies:

gR=w2 (39)

For a speed of W = l,O(X)m/see, thus approximately M = 3, and a path

radius of R = 100 km = 105 m, one arrives at a centrifugal acceleration
of 10 m/sec2, thus approximately at the acceleration of gravity. If 4g
is regarded as the maximum admissible acceleration for the human body,
only path radii larger than ~ km are admissible for M = 3. The pilot
must turn in a circle of this radius if he misses his target. For the
wings and control components of a pursuit rocket, the intended path radii
thus are sometimes much more important than the production of lift for
wercoming gravity.

All this shows that the main difficulty in supersonic flight does
by no means lie in the production of the required forward thrust, but
in the control of the temperatures and centrifugal forces.

6. ROCKWI!

In a well-known and very good book for young readers, written in
1931, on various philosophical, mathematical, and technical problems
there is the sentence: “It can easily be calculated that the upper
limit to which present fuels can take us, is about kOO h above the sur-
face of the earth . . .l’ The corresponding calculation is not given;
but, doubtlessly, it-is based on the relationship that the energy required
for lifting a mass M (~ for the mass in contrast to M for the Mach
nwber) to the height H can at most be equal to the reaction energy or
combustion energy which this mass may contain. At the anticipated height
of400 km- compared to the size of the earth’s radius of 6,380 km - the
gravitational acceleration g may be regarded as constant. With q as
the reaction energy per unit mass there results, in this manner, the
energy equation: force ~ times distance H equals mass times reac-
tion heat q. The mass may be cancelled from this eqmtion with the
result

- @=!l (40)

A good powder has about q = 1,000 cal/g or, according to equation (17),
~= 4.186 (lau/sec)2. With g = 10m/sec2 =10-2 km/sec2, equation (40)
leads to the height of rise H = 418.6 km.
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As to the reaction energy, one could of course rai8e the objection
that much greater heights could be attained with liqui$=fuel rockets (see .

for instance the oxygen-methanereaction in table 6) and that, more
recently, atomic energies open up completely different possibilities.
However, we shall not enter into details about this since the expression
(40) itself is based ona wrong assumption: that the reaction energy of
a mass is consumed in lifting or else for accelerating one and the same
mass. The processes have been =tificiently discussed in the preceding
section to understand them correctly in what follows.

.—

The thrust of a rocket is given by equation (32); W is the “exhaust
velocity,” the velocity in the rocket jet relative to the rocket body.
After all the propellant has been ejected, the energy balance is such
that the thermal energy of the propellant ha.been uset-”toimpart to the
rocket body a certain kinetic or potential energy. Undesirably, mechani-
cal ener~ (kinetic or potential) has, in addition, been given to the pro-
pellant and possiblyto masses released or left behind in flight. The

—

distribution of the mechanical energy between the masses involved is *

rather nonuniform and may, theoretically, be completely-in favor of the
——

rocket.
.

Let us assume, for exainple,that the acceleration of the rocket
occurs horizontally - or aho vertically but “atsufficiently slight dif-
ferences in height - so that the variations of the pote~tial energy of
the masses under consideration do not play any p~.

..—
IEt us assume,

furthermore, that the e~ust velocity W of the propellant jet can be
regulated and is, in each case, adjusted so that it is equal to the flight
velocity of the rocket; then, the ejected propellant mass is at rest,
relative to the observer. In this ideal case the entire thermal energy
of the propellant mass ~ is used for imparting a kinetic energy to the

rocket end mass ~. –

It is true that the “thermal energy” there is not identical with the
“reaction energ# at a particular temperature, as is usually indicated
in tables (cf. table 6). The variations in the internal energy of the
propellant also play a certain role. For the considerations of this sec-
tion, however, which have only the purpose of orientation, these varia-
tions are unimportant. But if compressed air.is used as the “rocket
propellant,” the “thermal energy’’_consistsexclusively in variations of
“internal energy.” If thus the entire thermal energy per unit mass of _
the propellant which has been released is denoted by q and V isthe
flight velocity of the rocket, there applies ?-n the ideal case

$~=q~ , _ (41)-
...

.
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By selecting ELsufficiently small mass ratio ~fi we can there-

fore impsrt to the rocket an energy far exceeding equation (40). Evidently
equation (41) defines an unattainable ideal case whose value consists,
above all, in establishing a limit for the most favorable conditions.

Stristly speaking, the exbewt velocity Ii must not be set equal.to the glight velcclty, at least at
the beginoing. At the Btart a U, even though a tin- W, m.mt exist eo that a starting thrmet mey be
present. !llmswe deal in this respect, as well, tith a theoretimll.y cmetmcted limiting cnse.

In spite of all the defects inherent in the ideal case investigated,
it teaches clearly a few fundamental principles. Extreme end velocities
require large masses of propellant. Mpty fuel containers will have to
be dropped, wherever possible, in order not to accelerate unnecessary
dead weight. The most favorable exhaust velocity W lies below the end
velocity of the rocket. Thus the rocket jet has, at the start, absolute
velocities which are directed against the flight direction. During the
flight, the absolute velocities of the jet decrease more and more, van-
ish, and are directed in the direction of flight at the end of the com-
bustion time. In this manner a minimum of mechanical energy -y be lost
to the propellant.

The rocket combustion chamber of constant exhaust velocity W repre-
sents the case which is by far the most important in practice. We shall
compare this frequently treated case (ref. 7) with the ideal case. Let
U and ~ be th= velocity and mass
The thrust then imparts to the mass
applies according io

an equation which is
per unit time equals

Elhinating dt

of the rocket during the combustion.
an acceleration dU/dt and there

= GW (42)

in terms of velocities. The propellant mass e~ected
the decrease of the rocket mass

m
-= =G

from equations (42)
variation ~ iirectly to tlievariation-

dU a—=. —
w Fi

(43)

and (43), we can relate the
dU

For W = Constant, this can be easily integrated

u.-= In R + Constant
w
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and since for the beginning and the end of theaccelerat~on

—

U’v: ~=% —

is valid, there”followsfi~lly
—.

-.

The fraction (fi,+ %)/%) that is, the starting mass of the rocket

(44)

divided by its final mass, is denoted as mass ratio. According to equa-
tion (kk), this ratio must assume the value e = 2.718 ‘(ine = 1) if
the rocket is to attain the exhaust velocity W of the propellant,
unimpeded by air tiag or gravity. For determination of the velocity wtth

()the smallest jet losses, the kinetic ener~ of the I“OCket z R~ii V2 would—
have to be related to the kinetic energy of rocket and p~ope~nt in the
final stage. Thus we must sum over the kinetic energy of the various
parts of the Jet. Without demonstrating here this comparatively elemen-
tary calculation,we shall only report that the highest value of the thus
defined jet efficiency qst results for a mass ratio of 5. We obtain
approximately

—

. .

. ..

--:,

.——.

.—

— .-

.-.
—. -

.—

.

—

(RR + ~)/&= 5 V/W = 1.6 1=0.65%t ,

(RR+%)/% =2072 ‘iw=l*O %t:0058

(45)

—

In the second line, the values for V = W are give=. Thus the
ideal case, given by equation (41), is not so very etiraordinary, after ‘“

--

all. With the usual rocket of constant exhaust velocity W and ejec-
tion mass G, more than 50 percent of the ideal case can be attained~
The most serious difficulty lies rather in the achievement of the required
mass ratio. The construction of a rocket, the propellant mass of which
smounts to 63 percent (V/W = 1.0) or even 80 percent (V/W = 1.6), repre-
s~nts an enormous design problem. For the V2, the approximate value

(MR+%)/~R =3.5 isgiven inreference 8. ,Onlythe smallest part of

the end mass % of the rocket, however, consists of the useful load

to be transported; the largest part is occupied by the mass of the fuel. T
tanks, of the rocket-combustion chamber, and of the various necessary
accessories. .—..

,-.. . .......
.-

—
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.
For judging the difficulties of building interplanetary rockets,

we shall first calculate the necessary starting velocities. We assume
that the body is directly shot away from the earth’s surface into a
vacuum. Actually, the rocket is driven cc.mparativelyslowly through
the lower atmosphere, the troposphere, in order to keep the losses by
air drag low. Outside the troposphere, the rocket is then rapidly accel-
erated to the final velocity V. However, since not only the troposphere,
with approximately 10 lanheight as a region.of possible friction losses,
but also the height required to attain V is small cmnpared to the dis-
tances considered, we may calculate as if the body were entering the
vacuw with V directly from the earth’s surface.

The gravitational acceleration g decreases quadratically with the
distance R from the center of the earth. On the surface of the earth,
it is R .% =6,380 km, ~=9.81m/sec2. ‘13ms

P)
2

g.&T (46)

s iS valid. If we now assume that a body rotates asa satellite, at the
distance R from the center of the earth, with the velocity V6, the
relationship (39) between path radius, centrifugal acceleration, and
velocity is-valici,so that-

Table 5 shows numerical values and the Mach numibers
sonic velocity of c = 330 m/see. At such speeds a body

(47)

referred to a
does, there-

fore, not need wings. The @th curvature produces the required “lift.”

If a body is to fly at the distance R with Vs, its starting
velocity V must be so large that the decrease of the kinetic energy is
equal to the work performed against the gravitational puU. All these
quantities are proportional to fi;for this reason, the mass is cancelled
frcm the calculation:

or with equation (47)

V2

( $)
—=g$ol-$
2

(48)
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The kinetic energy required for escaping the field
the earth (R +@) is therefore twice the kinetic ener—~
of equal weight at a small distance from the surface of
the former, we obtain with equation (17)

..

g=eo =63(km/sec)2 = &,000 cal/g

NACA TM 1434

of gravity of
of a satellite ●

the earth. For

.- .

This quantity of energy is not unattainable. The oxy en-methane reaction,

Ffor instance, yields approximately 1/6 of it (table 6 . TIIUSenergies
are concerned which are perfectly producible. Howevefi,the velocities
to be reached are of astronomical dibnensiongas is shgwn by a comparison
of tables 1 and 5 - a hint that the movements of the stars must be traced
back to thermal energy sources in atomic reactions, not to chemical
reactions.

‘I%ble6 shows several reaction heats and the mass ratio for the ideal
case, eqution (41). The melting of a body does not change anything in
its molecular composition and relatively little in its”structure; not even
the density changes essentially. It is therefore understsmdable that the
“reaction heat” connected with melting is generally muih smaller than that
connected with a chemical reaction. The o~gen-hydrocarbon reaction
02-methane, the detonating-gas reaction, and the combination of atomic to
molecdsr hydrogen are given as a representative for the last-named reac-
tion. It corresponds, of course, only to a thermo-chemical equation, not
to a practical process, since the atcznichydrogen is n@ stable under
“normal” thermal conditions. Nevertheless, this hypothetical process is
very useful for the following consideration.

In regard to the structure of matter, chemical reactions are changes
in the shell of the electrons. In the case of light elements and light
molecules where the electron shell surrounds only few protons and neutrons,
such changes may require the same energy as in the case of heavy elements.
Thus, very much higher reaction heats are possible when substances of low
molar weight participate than in the case of substances of high molar
weight m.

Finally we have the heat quantity of an atomic reaction of 5 = 0.005
mass defect which, of course, amounts to an extraordinarily strong atomic
reaction. The heat set free is equal.to the mass defect times the square
of the speed of light. The velocity corresponding to the equivalent
kinetic energy is thus equal to the speed of.light multiplied by 6.
Changing the structure of the atoms leads to enera transformations which
are incomparably larger than those of chemical processes. Of course, for
atomic reactions much more than for chemical reactions, it is always true
that only part of the propellant represents really active reacting sub-
stance while another part is carried along as ‘*deadsubstance.’f Table 6
is not supposed to reflect more than a picture of the possibilities.

.—

.- —

.
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It becomes clear that even the mass ratios of 6.9 and 5.7 calcu-
lated for the ideal case (eq. (41)), required for surmounting the gravity.
pull, are extraordinarily high for a hydrocarbon and a detonating-gas
reaction and pose probably unsolvable problems to the designer. (As WS.S

emphasized before, the reaction heat in table 6 and q in equation (41)
are only approximately equal.) The pertaining energies expressed in
velocity squsres show that these values also lie throughout considerably
below the ~equired values

It is instructive to
for instance, in the case
relationships between the

%

if follows readily that
.

—
of V given in table 5.

look somewhat more closely at the conditions,
of a hydrocarbon reaction. Fran the known
specific heats

-~=R/m
I

cpy=K

.

Since in the 02, CX14 reaction the number

the molar weight is not changed, either, by
m= 27, close to the value of air. With K

(50)

of molecules is maintained,

the process and lies, with
= 1.30, equation (50) leads

with R = 2 Call(g degrees) to a value of appro~t~y

%= 0.32 cal/(g degrees). Thus the reaction would result in a tem-

perature increase of

m=+= 2,560 = 8,0000.
P 0.32

On the one hand, the temperature would be completely intolerable; on the
other, it is never reached, due to dissociation setting in, as shown by
the example for air calculated at the beginning in connection with the
flight of a meteor. These enormous energy transformations in the rocket
combustion chamber are therefore not even desirable and the carrying along
of ‘ideadsubstance’ is quite welcome. The nmximum velocity attainable in
the $et can be easily given from equation (37) under the assumption of
pressure drop to vacum p +0. With equation (3), W- is

(51)
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The m%ximum velocity atteirbeblein the steady pressure gxedient, ~aeed by eqysticn (51), is thue con-
*

aiderably smaller thsn that of an unateedy two-dlmeneionalexplosion,equetion (22). There exinta, also, sn

essential differeme between the two prccesses. Whereas in the ease of the steady p@cmenon every mrticle
isequaland @radue.1.lyass- h the pressure gredient R +0, the veloeity of eqtmtion (51), only a cm.U

.—

psrt c& the ratter involwed is distinguishedby attiinq the ve~ity ~ e~ti~ (~) for P + O in t~ -e
r

d the two-dimensimsl explosion. FWr6hemme, it dmst be noted that the flow velocity in the unsteady two-
dhensional e@.osion exceeds the flow veloeity of the steady flow only in the cese of a high pressure gedient.
Tne pressure @edient for which both velocitiesare equal can be eas~ deternlnedby equsting U/cO eccording

to equation (2k) and acccmding to equetion (37). We obtain

—

—. .-—- -.

or forK = 1.40

-..-.-

3 .17.1 —
P

The speed of sound depends essentially on the molar weight and thus,
for the mixture investigated, does not differ very much from the value
for air at the ssme temperature. If we assume, in considerateion of mate-
rial and dissociation, an absolute temperature of 3,0000 abs, we have ___

approximately co = fix 350m/sec = l.lkm/sec andaccordlng toequa-
tion (51), with K = 1.3, the exhaust velocity W = WH = 2.8 km/see.
This value, however, lies far below the ideal “value. For leaving the
region of the pull of gravity, according to table 5 and equation (45),
w= 0.62x u.2 ~/sec = 7 lan/sec would be desirable. So@what more
than W = 2 km/see was attained with the V2 during the first years.

Hence, it follows that substances of low molar weight are highly
desirable not only as reacting masses but also as dead rocket-jet masses
for extreme speeds of travel. Due to their high sonic velocity, they
also make high exhaust velocities possible, according to equation (51).
The transformation of higher energy quantities in the combustion chamber,
in contrast, does by no means lead to higher temperatures, ccmpared to
heavier substances, because, according to equation (50), the specific
heat is much higher for smaller m. Neither is the tendency toward dis-
sociation at all stronger for gases of small molar weight (Cf.,for
instance, H2 according to reference 9.) =

The application of an atcmic jet, in spite of the-enormous energy
transformations connected with it, does not iinnediately”kadto a solu-
tion of the difficulties: Exhaust velocities far exceeding the flight
velocity mean an enormous waste of energy. However, use of atomic enerfi
as an energy source for the heating of a dead substance-of low molar weight
is to be regarded as a solution promising progress. This dead substance
should, of course, be carried along as a fluid or solid matter in order
to keep the container volumes tolerable. For this reason it is very
regrettable that H2, as the lightest substance by far, has a boiling

point of -253° C and, as a fluid, in addition, has very low density.

—..-
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A possibility of achieving the necessary
. into interstel.bz space or for sending out an

consists in shooting a “daughter rocket” from

mass ratios for a flight
artificial earth satellite
a “mother rocket!’and pos-

sibly repeating this procedure In several stages. It is evident that
the greatest part of the propellant energy utilized must be used to
accelerate the entire vehicle and only a small part can be used to the
advantage of the basic purpose. Thus, it will have to be regarded as
an efiraordinary technical performance if we succeed, within the next
few years, in shooting a sateJLite of 50 kg weight into an altitude of
several hundred km. Within a foreseeable time, the shooting of space
rockets will surely not beccznesuch a familiar phenomenon as the pene-
trating of meteors into the earthis atmosphere treated at the beginning.
Certainly it will always be a very costly procedure; it is surely extremely
optimistic to insert for the actual pay load an expenditure of 10 times the
smount calculated in connection with equation (48), thus 150,(X)0cal~g.
With this digression to the questions of interplanetary aviation we shall
close the section on rockets.

.

7. Ftlkmii
.

All problems treated have in common the high-temperature differences
connected with high supersonic speeds - a consequence of the large kinetic
energies inherent to such flows. High temperatures appear, therefore,
when the air in front of meteors and on fast-flying bodies is stopped.
High temperatures are necessary when high speeds are to be prcduced in
propulsive jets of flying bodies. In increasing the tempemture beyond
several thousand degrees, the heating is greatly reduced by dissociation
and ionization phenomena since a considerable part of the energy is used
for splitting up the molecules instead of for increasing the temperature.
The influence of the molar weight is very great. The light gases, like
hydrogen, with the considerably higher flight velocities of the molecules,
permit the achievement of high flow velocities more readily than gases of
high mol.arweight. With hydrogen as the propelhnt it is therefore possi-
ble to produce, in the laboratory, transient high temperatures in air, and
gases of low molar weight appear particularly suitable as the propellant-
Jet substance for rockets. With them, the astronmnical velocities which
are necessary for space rockets are most nearly attainable.

The high centrifugal forces, which balance the gravity pull at the
high velocities in space, make themselves clearly felt even at supersonic
speeds. They tipose a Mitation on the path curvatures of flying bodies.

. Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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TABLE l.- ASTRONOMICAL SPEEDS

M/h lun/sec

Velocity of sound c in the stratosphere 1,080 0.30
(temperature -50° C)

Circumferential velocity of the earth at
approximately ~0° latitude 1,080 0.30

Velocity of revolution of the moon about 1
the earth

Velocity of revolution of the earth about 30
the sun

Velocity of the sun with respect to the 20
next constellation

Velocity at the edge of the universe 50,000

Velocity of light 300,000
—

mm 2.- COMPRESSION-SHOCK WAWZ FOR 8 = NORMAL DENSITY

A

$, $In> Flight ~/T f/p M

abs gi [caiJ In/a ;/p altitude)
[h] (for T = 2230)

1 x 103 2 x 103 5 x 103 1 6.o 14.3 4.5 27 4.8

5 x 103 10 x 103 56 x 103 1.20 10.4 17.8 22.4 280 14.8

10 x 103 20 x lo3 235 X 103 1.g8 12.9 19.2 44.8 IJ40 29.8

20 x 103 40 x 103 500 x 103 2.48 11.1 18.2 89.6 2460 44.1
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OF THE ENERGY FOR
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TABLE3.- COMFARISON

PENETRATION

VERTICAL
.-

OF THE ATMOSPHERE

. .

—
W2

mass: yKinetic energy per unit
c

94 ~2
Resistance work per unit mass: — —

r[ti 2

—

—. ——- —
___ .-.
.- —

Heat of fusion of iron:
4’~al@--= 00@’;’sec’3

—
. -.

,. .:-- ---- —
.

● ✎

�

PRESSURE RATIO CW

-—. .— -
—

TABLE4.- CARNOT EFFICIENCY qc, CORRESPONDING

THE PISTON ENGINE, AND Stagnation TEMPERAti

OF THE RAMJET POWER PIANT
—

.-—.
-.
-.

.,. .-_ -—-

Tm = 223° abs

& Vc Po/P ‘O/Tin
To To - 273

1’ 1/6 1.9 1.20 268° abs @ c

3 9/14 37 2.80 634° abs 3610 c

3 5/6 530 6.00 1,338° ab6 1,065° c

.—

.

—
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Tmm ~.- S!IllRTINGANDSATEIJL~ VIXOCITIESFOR VARIOUS

DISTANCES FROM IWE El@THtS SURFACE

R-%) s ) M

[kmj [~/~e~ [b;seq
for

c = 330 m/see

7*9 24
30: iz 25

1,000 ::; 8.5 25.5
2,000 6.0 8.9

w o 11.2 ;:

TABm 6.- REACTION~TS

Heat of fusion of iron

Black powder

02 and CH4

02 and H2 + H20

2E +H2

1/2 percent mass defect

I
%

[+2/.] [ 1
*(km/sec)2

49

630

2,560

3,220

49,200

0.642

2.32
4.62

5.22

20.22
30,0002

33

iiR+i&
f?R

25

6.9

5.7
1.3

.

.
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Figure 1.- Bow wave forhigh Mach
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Figure 3.- Com~sition
ofthetemperature
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(according to G. Burkhardt (ref. 2)).
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Figure 4.- Internal energy of m = 29g air for normal density, as a
function of tie temperature (according to G. Burkhardt (ref. 2)).
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Figure 6.- Change ofstateina soundwave.
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Figure 7.- Wave offiniteamplitude.
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Figure 8.- Initialstateintheshock tube. ‘
-..

W=o
a)

C=co

P=PO

Air

W=o, C=cl , p= PI

Hz -

x
~

Figure 9.- Explosion process in the tub~;
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