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INHERENT STABILITY OF HELICOPTERS. *

By G. Arturo CTOCCO.

The equilibrium, in still air, of a I’stationary[lhelicopter

(i.e., of one having neither vertical nor translational velocity,

but a tendency to remain practically motionless within restricted

limits of space) presents some difficulty in practice and justi-

fies a theoretical investigation of its l’inherentstability,lli.e.,

.

. independent

Let us

plest form,

of the pilot.

imagine, therefore, a ‘helicopter reduced to its sim-

namely, a pair of propellers revolving in opposite

directions about the same axis of symmetry and driven by means of

gearing inclosed in a sphere beneath.

Without presuming to know the best practical form it may be

givenby inventive genius, such a t~e is theoretically possible

and may therefore be adopted as the ideal type.

Let us assume also that the resulting lift is centralized* *

and passes exactly through the axis of symmetry; that the latter

passes through the center of gravity; and that there is a state of

equilibrium between the lift and the force of gravity at the alti-

tude where the helicopter is desired to remain stationary.

* From llRendicontidells R. Accademia Nazionale dei Lince,i.ll
August, 1923, pp. 47-52-

** The lift may be decentralized
or velocity, spontaneous
a gyration.

by cyclic variations of incidence
or vol”unta.ry,which occur duri-ng
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What would then happen, if some disturbing cause should incline

the axis of symmetry z from its vertical position by a small an-,.. -.,,-,..
,.gle ~?,. . . .,

Let us observe that there is no stabilizing action of position,

such as maintains the

the original vertical

a lateral thrust, due

(acting at an oblique
.

mg.

equilibrium of a balloon and tends to restore

position of the axis, but that there is only

to the composition of the lifting force

angle of Y to the vertical) and the weight

This thrust, approximately mgy, tends to produce lateral

motion (“drift”), from which there can arise only ~lnindirect

straightening effect, capable of producing a rolling motion.

“Drift” and “roll” are thus combined in a.motion which, by exten–

sion, will be called “stable”, when it consists of more or less

decreasing oscillations about a mean position; and “unstable”,

when it consists of oscillations tending to increase.*

It is easily demonstrated that such a resultant motion, when

composed of the lateral and vertical forces indicated, is essenti-

ally unstable.

We will designate by u the velocity of drift arising from

the lateral thrust mg~ toward the axis x, perpendicular to z;

by U’ its derivative or the baricentric acceleration of the mov-

ing body; with Y’ and Y“ the successive derivatives of ?’, or the

* We arrived at similar conclusions in the “Lateral Stability of
Airplanes” (Rendiconti d’Istituto Sperimentale Aeronautic,
May-July, 1912), in which the resultant w;otion is more
complex, on account of the dissymmetry in the direction of
drift.

.
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angular velocity
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Y perpendicular
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and acceleration of the rotation

to x and z; by j the moment

the”axis y-”

y about the axis

of inertia of the
,..

demonstrate farther along, in propellers of sPecia~

shape, there is generated in the drift a straightening moment “hU,

directly proportional to,the velocity. Hence, for small angles,

the equations of motion in this case may be written:

y“+ hu = O (roll)
(1)

u’ - lSY = O (drift)

in which the coefficients of u and y are divided respectively

by the mass and moment of inertia of the moving body.

By combining the above two equations, we obtain the single

equation:

Y rtl+hgy =0 (2)

which is satisfied in general by values of T of exponential form,

with exponents which are roots of the cubical equation:

which, for h >

pair of complex

and coefficient

xs+hg=O (3)

0, has only one real negative root, -xl; and a

roots a f pi, with a real positive part a=>;

of the imaginary part ~.a~~

There is generated therefore, at least for an

rapidly tending toward zero, an oscillatory motion

~=_~-. and of increasing amplitudeaccording to
a&

increment
‘T ‘%”

G

exponential term

of semiperiod

the logarithmic

It is noteworthy that this increment is a fixed number,, inde–
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pendent of the conditions of the problem and especially of the

straightening moment. Such motion is therefore irreducibly unstable.

In the ,case of the helicopter, this motion of “drift” gener-

ates damping and resisting forces which modify the result and the

consideration of which forms the principal object of this article-*

In order to find these forces, together with the straightening

action already mentioned, let us imagine the two helicopter propel-

lers, with four blades each and so regulated that each propeller

furnishes half of the lift and absorbs about half of the power.

We can then examine one alone and the results will apply approxi-

mately to the other.

Let F represent the lifting force of each blade in still air,

with zero “drift” and “roll” and Q the resistance encountered by

each blade during rotation. If U is a suitably selected mean tan-

gential velocity, we can write:

F= f(q)U2

Q=q(~)u2

f and q being experimental functions of the

q -.

Let us now consider the helicopter in the

and “rollIl. There arise variations, ACP and

tors of equations 4 and consequently there are

(4)

mean angle of attack

motion of “drift”

Au, in both fac-

increments in the

lift and in the resistance or drag, which, by indicating “withthe

* The effect of the damping forces on stability was discussed by
me in 1904 in a paper on the critical speed of airships;
then in 1909, in setting forth the conditions of stability
of airplanes (this publication, June 5, 1909); and a~in
in 1912.
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apexes the first derivatives of f and q, we can write with suf-

ficient approximation:

,.AF =,,. - . .. .“”

AQ”=

f’{ q“)u2’m ”+ ’f(’q)2u Au ““-’

q’(q)u2Aq +q(v)2u Au
(5)

Let us now calculate the increments AU and NP, due to the

“drift”, for a blade, whose axis of rotation makes an angle of a

with the axis y. T?eimmediately obtain AU = u cos a, but, as

to A9, nothing can be affirmed, unless we imagine the propeller

to be “bell-shaped,!’ i.e., with the blades inclined to the plane

perpendicular to the axis of rotation, like an umbrella turned in-

side out. Tt is the usual shape of propellers, when the thrust is

offset by the centrifugal force.

If (JJis the angle of the ‘~bell!l,i.e., of the axis of the

blades with the above-mentioned plane, it is easily demonstrated

that, for the blade thus defined and with close approximation, we

obtain

U Aq=u sinatanw*

Moreover, it is easy to calculate the increments due to the

“roll” . With its angular velocity Y’, defined above, this apprec-

iably affects only q, but it is necessary to know the distance @

of the mean center of pressure of the blade from the axis z. In

this case we have:

UAl~=psinaY’

* ‘l’heexistence and the calculation of the effects of the transverse
dihedral on the “drift” of airplanes, with analogous formu-
las, were discussed by me in 1912, in this publication.

i—
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By substituting all these values in equation 5, we obtain the

increments AF and AQ for the blade under consideration. From

simila,r,,considerations, there we”realso found the corresponding
.. .

values for the other three blades at the same instant.

In fact, the

these increments

the three moments

problem is to determine the three projections of

AF and AQ, on the three axes, x, y, z; and

of the same with respect to the three said axes,

knowing the mean distance p from the center of pressure; and, last–

lY, to add the simultaneous values thus obtained for all four blades:

We thus obtain the following resultc relative to “bell” propel-

lers with four blades, in motion of “drift” and “roll!!.

The resuitant projection of the AF on z “and the resultant

moment of the AQ with respect to z are practically zero in ev-

ery instance.

The resultant projection of the AQ on y and the resultant

moment of AF with respect to x differ from zero, but they are

offset by those of the lower propeller, so that they do not affect

the stability.

On the other hand, a result differing from zero is obtained by

adding the resultant projection of the AQ on the axis of “driftI1

to that of the lower propeller. It is a true resisting force of

constant instantaneous value 4q(q)uu, so that, for both propel-

lers, we have approximately:
,..

Resisting force = 75 HP u
U2

(6)

in which HP represents the horsepower absorbed by the helicopter.
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It then differs from zero and is also added to that of the lowe~

p~opeller, the resultant moment of the AF with respect to the axis

y caused by the’“drift’$. D being their diameter, we have, for both,.,,.
-----

propellers, approximateely:

(7)

This also differs from zero and is added to that of the lower

propeller, the resultant moment of the AF, with referei~ce to the

same axis y, caused by the “roll”, giving, for both propellers,

approximately:

Damping moment = ~ f’(q) Da ~t (8)24 f (Vj- ti–

All these instantaneous values are practically constant for a

four–bladed propeller, while there would be oscillations during a

revolution, i.e., dependent on the position a, for two, three, or

five-bladed propellers.

We are now in a position to lay down the equations of motion

in a more complete manner, i.e., by indicating, with r, h, and s,

the coefficients now determined by equations 6, 7 and 8, respective-

ly divided by m, j and j:

y“i-sy’+hu= o (“roll’~) (9)

us + ru - gY = O (“drift”)

and, by combining,

“YSII+ (r+ s)~’’+rs~’ +hg= O

satisfied by the exponential form with exponents x which are roots

of the cubical equation:
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(10)a+r. x+hg=o@’+(r+’S)x

It is here possible to determine the conditions necessary and
,.., .,, .’”

sufficient’for stability, i.e. , the conditions for which the real

roots and the real parts of the complex radicals of equation 10

are negative, which cannot happen in equation 3.

It is well known that it is only necessary for the three coef-

ficients r, s, h and the expression rs (r + s) - hg to he posi-

tive. This gives us the key to the probleimof stability, since, be-

tween the values assumable as constructive data it allo~~sus to

vary the bell shape at will and to give it the value:

(11)

which gives us an intrinsically stable helicopter.

In this particular case, we can write:

(r+s)rs=hg (12)

In this case, the three roots of equation 10 are: one real

negative root -(r + s) and two imaginary roots with the coeffici-

entt ———-
$ ./%

r+s

so that, at least for one “initial term which contains a rapidly di-

minishing exponent, the amplitude of the oscillation of the “roll”

is in definite harmony with the semiperiod:

/ --—-—.—

T=”IT J’”r+shg
It is readily seen that, since the ratio between r and s is
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‘~ery small in comparison with unity, this semiperiod corresponds

approximately to that of a simple pendulum
...... .. .,.-’-,—.

h=:=~—
3 tan w

of th.e..length:

which can be determined on the axis, by cutting it off with a per–

D from the center.pendicular to the “bell” traced at a distance of ~

It is, moreover, noteworthy that, by calculating the “excur-

sion” (semiamplltude) o, of the “drift” by means of equation 9 and

introducing the above-me-ntioned approximation, we obtain the maxi-

mum amplitude of the excursion

Go= Yoh

which is that of the siml~lepend-ulum,oscillating with an angular

amplitude TO equal to the maximum angular amplitude of the “roll!’.

From this particular case, it is readily deduced, by turning

to the general case, that if we depart from the conditions verify-

ing equation 12, in the sense

ment as indicated in equation

eat with a = O, which will

of diminishing the straightening mo-

11, there will arise a damping factor

diminish the amplitude of the oscilla-

tions and mill restore the helicopter, more or less rapidly, to its

original vertical position. This is the case of stability.

If, on the contrary, we depart from equation 12 in the sense

of increasing the straightening moment, there will arise an exponen-

tial factor with the exponent a > 0 and the amplitude of oscilla-

tion will increase. This is the case of instability, tending toward

the limit furnished by the example in which we assumed r = s = O,

with h > 0.



. .— .... ........ ---- .- ,-.,—-,. ...... .... .. -.

-1o-

It is also easy to consider the opposite limit, in which r

and s are large in comparison with h. In this case, “oymaking
...

h“..=O..in the -first of”the equations 9’and assuming that there is a

Permailentoriginal decentration of the lift, we find it impossible

to satisfy ‘theeqllationtith a final value of 7’ zero, as was the

case for h >0. This indicates instability.

~~econclude that the ideal helicopter taken for illustration,

can remain IJinherently stabie,!jprovided there exist, in addition

to the straightening moment, damping forces of the kind described;

and provided the straightening moment be, in opposition to this,

sufficiently moderate to satisfy the determined- condition of sta”=;

“oility.

Translated by
National Advisory Corflmittee
for Aeronautics.
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