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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 1135

THE LOAD DISTRIBUTION IN BOLTED OR RIVETED JOINTS
IN LIGHT—ALLOY STRUCTURES*

By F. Vogt
SUMMARY

This report contains a theoretical discussion of the load distribu—
tion in bolted or riveted joints in light—alloy structures which is
applicable not only for loads below ths limit of proportionality but also
for lcads above this limit. The theory is developed for double and sin—
g1l shear Joints. The methods given are illustrated by numerical exam—
ples and the values assumed for the bolt (or rivet) stiffnesses are based
partly on theory and partly on kncwn experimental values. It is shown
that the load distribution does not vary greatly with the bolt (or rivet)
stiffnesses and that for design purposss 1t is usually sufficient to
kncw their order of magnitude. The theory may also be directly used for
spot—welded structures and, with small modifications, fcr seam—welded
structures. The computational work involved 1n the methods described is
gimple and may be completed in a reasonable time for most practical prob—
lems.

A gsummary of sarlier theoretical and experimental investigations on
the subJect 1s included in the report.

1. INTRODUCTION

The distribution of the loads on rivets in steel structures has re—
ceived much attention during the last 30 years and a surmary of refer-
ences on thig subject is given in section 2. It has been shown that the
load distribution is not usually uniform, asnd this has been explained
theoretically by considering the relative stiffnesses of the different
rarts of the gtructure. The actual stiffnesses have been calculated in
this way frqom the observed nonuniformities in the load distribution.

lReprint of Report No. S.M.E. 3300, Cct. 194k4; issued by the Royal
Aircraft Establishment, Farnbcrough, Ergland.
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The therretical information available, hcwever, is only valid for
lcads below the limit of proportionality, and for aircraft structures the
penavinr above thig limit is of great importance. This report contalns a
theorotical discussion of the load distribution in bolted or riveted
jeints that is more complete, and particular attention is given toc the
cese in which the loads exceed the limit of proportiomnality.

Anuy theoretical treatment must be based on the knowledge of the
local displacement at a bolt (or a rivet) as a function of the shear load
carried, and the load distribution for any number cf tolis or rivels may
then ve found mathematically. The basic problem is therefore to determins
the local displacement at a bolt, or the stiffness of the bolt, as a func—
tion of the load. This displacement includes the bending and shear édefor—
maticns in the bolt itself together with the local ccompression in the
plates due to the bearing stresses. This dlsplacemsnt can to some extent
be estimated thecretically whern the lcads are below the limit of propor—
tisrality, and this is shown in 3.2. This is not possible for loads
avove this limit, and, as the experimental information at present avail—
able is not sufficient, further tests are necessary.

In this c~mnection the diffexresnce in behavicr of bolts and hot or
ccld rivets, and of veolts or rivets in single cor doutle shear, is impor—
tent. In hot riveting the platves are pressed together snd the shear load
up t2 a certaln amcunt is carried by fricticn; when thies fricticn fails
the rivet carries the shear load directly. In cold riveting in light—
allecy structures the pressure betwesn the plates is ccmparatively wmuch
less and consequently the load carried by friction is e2lso leas. The
Pressure in bolted correcticng is entirely dependent on the tightening of
the nuts and cannot be relied upon in ailrcraft structures tecause of the
effects of vibraticn. The diameter of the rivet is increased during the
proecess of riveting due to compression and this is particularly the case
in hot riveting. The rivets not only fill the hole drilled in the plate
but may even enlarge it. In bolted connsctions the holes usually are
drilled with a slightly larger diasmeter than the bol®ts, and when the
shear load is increased above that taken by friction the plates will slip
before the bolts can act again. This slip can be eliminated only by us—
ing bolte turned to @ close fit. Owing to both theee reascns hot rivets
can be assumed to be gtiffer than cold rivets of the same ncminal dimen—
gions, and they are both stiffer thesn bolts. Ccmpariscn between the
series of tests available is difficult and, further, the value of tests
onn ateel structures for the degign cf light-allcy structures is limited.
It sheuld be remembered also that even if rivets in single shear are de—
signed for the same bearing and shear stresses as for rivets in double
shear, they may behave very differently, eand this is mcst noticeabls when
the plates are thin and flexible in comparison with ths rivets. In the
cage of single shear the plates will te bent locally, and the consequent
tilting of the rivets may increase considerably the displacement tetween
the platss. Because experimental data on these furdamental parts of the
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problem are partly lacking, the analysis developed in this repcert is
based on assumed rivet and bolt stiffnesses that can be only partly
checked elther by theory or by available test results.

2. SUMMARY OF REFERENCES TO EARLIER INVESTIGATIONS

C. Batho in reference 1 based the theory of the load distribution
on the principle of least work; it is developed for double shear joints by
assuming known values of the rivet stiffnesses. The theory is applicable
only to lcads below the limit of proportionality, and consideration is
given to Joints between tapered members. The rivet stiffnesses were cal~
culated from tests made on Joints with a large number of rivets.

Tests reported by J. Montgomery on pages T27 and 755 of reference 2
vere made on steel plates with single to gquadruple riveted lap jeints
that are ordinarily used in shipbuilding, that is, rivets in single shear.
A main purpose of these tests was to determine the load at which the fric-—
tloral resistance due to compression between the plates fails and the non-—
uniformity of the load distribution in multiple row rivets was confirmed.
The tests given in the paper cannot, however, be used for an accurate de-
termination of the stiffness of the rivets beceuse this would involve
ccmplicated calculations.

Strain tests on steel gusset plates are reported by T. Wyss (refer-
ence 3) and indicate a nonuniform load distribution, but the tests cannot
be used for the determination of the rivet stiffnesses.

In reforence 4 by W. Pleines tests on riveted stesl comnecticne are
referred to, and the limit of proportionality can cnly to scme extent be
Judged. Tests were made also on dural plates connected by a steel bolt
in double shear to steel gtraps, and give valuable information on the
limit of proportionality so far as bearing stresses on dural plates are
concexrmned., The stiffness of dural bolts connecting dural plates cannot
be found from these tests.

A paper by E. Cassens (reference 5) contains a theory for the calcu—
lation of the loads on rivets connecting a plate to a beam in bendirg.
The theory is not adequate as essential features are omitted and the re—
sults are partly misleading. A few tests on the stiffness of rivets in
steel and dural structures are also referred to, but no details of plate
dimensions or test methods are given. Although the author applies these
test results to rivets in single shear it is not clear whether the tests
were conducted on rivets in single or double shear,

Steel Structures Research Cormittee Reports (reference 6) include
theoretical investigaticns and also tests. In tke first repert (pp. 100—~
179), Batho gives an improvement cf his theoretical treatment in reference
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1 which is valid below the limit of proporticnality. Teste on Joints with
a lerge nurber of rivets or bolts were made by Sanawi in connecticn with
thig thenretical investigation. The load carried by friction in the case
cf oolted conmections was measured also as a function of the torque on
the volte. This last matter also is dealt with in the second repert

(zp. 138-176). On pages 285291 and also on peges 295 and £96 of the
final repcrt the deformation at rivets and bolts dus to shear forces is
ccnsidered.

In these reports references are given also to other papers on this
gunject:

C. Findeisen, Hertwig and Peterman, and Hovgeard (references T tc g).

Bleich, in hig German textbpok on steel bridges also has published,
in 1924k, = theory of the load distribution cn rivets. The rsfevrences
av3ilable indicate that only the simple problem of lcads below the limit
of proportiorality is considered.

Reference 10 by 0. Volkerson gives a thsoretical discusgsion of the
lomd distribution on rivets bascsd on a "substitute systen” with a contine—
uous connecticn hetween plate and strsps instead of conecticn at dis-
crete prints. This does not enpear to =implify the anziysis and the
mstrkcd is unsuitable for tapereli gecticng and for loads aoove the limit
of preportionality. The extension of the thsory to nonlinear deformations
is incorrect and gives misgieadiny resvits. The direct nmessurements of the
stiffness of dural rivets constitute the main valus of hig wcrk and these
test geries are the only omes of real value that have teen published on
this sutject. The results of the different teets are discussed in 3.3.

Little origirnal work concerning the locad distribution on rivetsz is
given in refsrence 11 b; H. Portier, but in part VII the Bleich and
Volkersorn methods are given., In addition, some investigations are given
on temperature stresses,.

2. GENFRAL THEORY COF DOUFLE SHEAR JOINTS

.

3.1 Distribution ¢f Loads below Limit of Preportionality

A doutle shear joint is shown in figure 1(a), and in figure 1(b) the
lcade carried by the different members of the jecint also are shown.
Asgume the bclts to carry the shear lcads P, Pz, Pz, Ps. . ., half of
whichk are carried st each side strap. The tensicn losds in the different
sections of Lhe plate are then
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QL = Py

Qz = Py + P

Qg = P + Pz + Pg, and so forth

and the loads in the two side straps taken together are

R1=P"‘Ql
Ro =P —Q
Rg = P — Qa, and so forth

where P 1is the total lcad carried by the joint.

The total local displacement at each bolt (in bolt, straps, and
plate) may be written in the form

01 = c1P100o

82 = cuPpb,, and so forth

where Up 1is a quantity with which all deformations are compared, and

C1, C2, and so forth, are nordimensicnal parameters that are constants
below the proporticnal limit and functions of the loads above the propor—
ticnal limit.

The extersion of each section of the plats and of the side straps
may in the same way be written in the form

lll = ay Q1 %o
hgl = as Q> 04, and so forth
and A1 = by Ry by
Az = bo Ro B, and so forth
respectively.
New By + Ayt = Ay + B
85 + Aot = Ap + Bg, ard so forth
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and these give the fallowing equations,

clPl+alPl=bl (P—Pl)+02P2
CGP2+32 (Pl'l'Pg):b;_j (P—_Pl_PZ-\"'cSPS

03P3+a3 <P1+P2+P5)=b3 (P—Pl"Pz“‘Ps)+C4P4
and so on, if there are more than four bolis,

(ELl+bl+Cl)Pl-'CgP2=—blP
{az + bz) Pr 4 (ag + bg + c2) Po - cg Fg =D P

(ag + bg)(Py + Po) + (85 + bg + ¢g)P5 - ¢, P, = by P, and so forth
Further, if there are n bolis
P=PL+Par+Pg+ .. .+ 5%

ard from these simple equaticns the loads P, P,, and so forth, carried
by the bclts are easily calculated once the ccefficients &, b, and c,
which rerresent the relative stiffnesses of the parts of the Jjoint, are
knovm,

If the bolts are arranged in several rows normal to the tensile load,
each row containing a number of bolts, the calculatione may te carried
out as above with the following modification. Let the number of volts in
the ith row be mj end let Py be the total load cn all these bolts.

The load on each bolt will then be Pi/m;j. The terms c3P: in the equa-
tions which rerressnt the displacement at an individual bolt shculd then
be replaced by ciPi,/mi; otherwise, the equations are unaltered.

Agsume the stiffness of all secticns of the plates and straps to be
the seme and take Og = 1/EA, where A is the mean effective seciion of

the plate, so that

al=a2=a3=...=b1=b;_,=bs=...=l
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Assume further that the gtiffness of all the bolts is the same:

Ci = Cz2 = Cg

The equations are then

(2+¢c) Py =¢cPy=P

fl
v

2?1 + (2 + C) Pg - C Ib

2Py + 2P + (2 + ¢) Pa = ¢ P4 = P, and s0 forth
and because of gymmetry,

P, = Pp, Pz = Pp-i, P3 = Pp-go, and sc forth
which tegether with the relation

P=P1+P2+...+Pn
gives the following results.

For 3 bolts: P; = Pg = P(1l +c¢)/(2 4+ 3¢c) and P =P c¢/(2 + 3c)
Fer 4 bolts: Py = Py = P(2 + ¢)/(u+ bc) and Py = Py = P c/{b + ke)
For 5 bolts: Py = Ps = P(2 + ke + c¢&)/(4 + 10¢ + 5¢°)
Py, = Py = Plc + ¢®)/(4 + 10c + 5c?)
and Pg = P ¢c2/(k + 10c + 5c2)
P(k + 6¢c + ¢2)/(8 + 16¢c + 6c2)

1]

For 6 bolts: Py =Pg4

P(2¢c + ¢c2)/(8 + 16¢c + 6c2)

i

and Py =P, = P c2/(8 + Lbc + 6¢%)

With, for instance, c¢ = 2, these relations give:
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For 3 bolts: P; = Pz = 0.375 P or 1.125 P/3
Pz = 0.25 P
For 4 bolts;s Py = Pg = 0,333 P or 1.333 P/4

0.167 P

ry

hv)
ft

&
"

For 5 bolts: Py =Ps = 0,319 P or 1.555 P/5

#

=Py = 0.136 P

HJ
[}
f

Ps = 0,091 P
For 6 bolts: P; =Ps = 0.312 P or 1.87 P/6

Ps = 0,129 P

g
N
I

Ps = Py = 0,063 P

This gives the well—known result, that by using reliatively stiff
bolts (when ¢ is emall) an increass in the number of bolte does not re—
duce the load cn the highest lcaded bolts very much, provided the loads
are bslow the proporticnal limit. 3By using very flexible belts (when ¢
is large) the load distribution approximetes to a uniform distribution:

Py-> P/M as ¢ > o

This is to scme extent rosalized when all the bolts undergo lerge non—
linear defcrmations while the plate and straps still remain stiff. (See
3.7 and 3.8.)

Example 2

A unifeorm lcad distribution can be obtained also by tapering the sec—
ticn of the plate and stiraps in proportion to the lcad to be carried by
this desired distribution., For instance, In the case of five bolts the
relative stiffnesses ¢of the different secitions should be chosen ag follows:

84 =by =1 that 1s section A, = P,

ag = bz = 4/3 that is section A5 = By = 0.75 By
8 = bg= 2 that is sectlon A; = Bg = 0.5 B3
g1 = by =4 that is section A; = B, = 0.25 By
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and if c¢1 = Cz = Cg = C4 = Cs, 1t 18 found that P; = P = Ps =Py = Fs,
and” this result is independent of the value of c.

More generally, a uniform load distribution 1s obtained If all tolts
have the same stiffness and the cross sections of the platees are chocen so

that

By =4y (n—-1)/1

but it is kardly precticable, however, to taper to this extent in actual
constructicns.

If the taper is chcsen as follows,

ae = by =1 that 18 section A4 = B
85 = bp = 1.25 = 5/4  that is section Ag = By = 0.8 B;
as = by = 1.667 = 5/3 that is section As = Bs = 0.6 By

]

ay = bg = 2.5 = 5/2 that is section A; = Bg = 0.4 By

it is found thkat for ¢ = 2,

P, = Ps = 0.245 P

P, =P, = O.174 P
and

PB = O.l62 P

instead of 7.319 P, 0.136 P, and 0.091 P 1if there were no lapsr.
Similarly, for ¢ = 4,

P =P = 0,231 P

Py =Py = 0.183 P
and

Pa = 0,172 7P

instead of 0.274 P, 0,161 P, and 0.129 P if there were no taper.

t
o

With this degree of tapering, the maximum load on any bolt for ¢
is reduced frcm 1.5G5 to 1.225 times 0.2 P and for ¢ = & 15 reduced
1.370 to 1.155 times 0.2 P,

o}

rcm
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In other words, the taper has considerably reduced the overlcad on
the outer bolts to nearly the mean velue 0.2 P.

If *the sactions 1.0 — 0.8 — 0.6 — 0.4 are the maximum degree of taper
that can be used in crder to maintain the necessary strength of plate, it
is to be guestioned whether this is the best poszible taper. A detalled
investigation indicates that the best load distribution is cbtained by
making the cross section of the plate as small ss possible betwesn the
last two bolts and by tapering only after the secord bolt. For irstance,
with tke teper 1.0 — 1.0 - 0.7 — 0.4 and ¢ = 4 +ths rivst loasds are
0.226 P, 0.181 P, 0.180 P, 0.181 P, and 0.229 P. The reduction of the
mexirum rivet lcad is only fram 0.231 P to 0.229 P, wkich is negligitils.
But the sirsssses in the plates are reduced also by this changs in %tke taper,
and even if thke sffect of this slteraticn 1s of littie importance, it is
at least an improvement in the dssign of the siructure. The lcad distri-
buticn for the particular case of five bolts is shown In figure 2.

3.2 Displacemsnt at Rivets or Polts and Theor-tical Aralysis for
Lcads below the Limit of Proporticnality

Belcw the limit of proporticnaelity, and assuming that no lcad is
carried by friction, the local deformation at the bolt snd the hole can
Le approximately calculated In the two extreme casss when the diameter of
the bolt 18 slther very large or very smell in ccmparison with the thick—
nesses L of the plates and the straps.

(1) Diemeter vsry large.— In this case the Tult 1s wery etiff ard will
then be crly slightly bent, The dis*rituticn of load alcong the axis of
the bolt can be assumsd 5 be falrly even, as showa in figure 3(t). The
direzt shear and bending deformation in the bolt 1tself can then easily
be calculated. Let f3; be the displacement te‘wecrn the plate and tre
straps due to this part of the deformation. Thkilg displacement can obvi-
ously t= tsken as the difference betweern the menrn crdirate for tke elastic
line of th= tolt for the thickness 1t of the plate minus the mean ordi—
rate for the thickness t; of the straps, as indicated in figures 3(e)
and 3(b). The detailed calculation gives

f1 = (P/EA) (9t1° + 15612 to + 10t; to2+ 2t2°)/11.784°

+ 0,3 (P/Ed) (2t + tz2)/d

where the first term represents the deformetion due to bending and the
second term that due to shear.
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With +t; = 0.5tp, . this gives

f; = (P/E)'{ 0.6(t2/a) + (tz/d)a:}

and with 41 = t2

{ 3
£ - (/) 0.9(t/) + 3.0 (t/)” }

The bending of the bolt introduces nonuniformity of the loed with a
coneantration toward the ccmmon surface ot the plate and the strsps, and
thus roduces the bending of the bolt. In additicn, rivet heads and tight
nuts on the bolts will reduce the bending. The formula therefsre gives
declidedly too largr a value for the displacement due to bending 1f 4 1is
small and can be cnly approximately correct for large values cof d.

The direct ccmpression due to bearing stresses in the plate, the
straps, and the bolt must be added to this displacement due to bending
of the bolt.

Coker and Filon (reference 12, p. 527) give the approximate stress
distribution in an infinitely large plats with a lcaded hole. The stress
distribution includes a term proportional to 1/x where x is the dis—
tance frcm the center of the hole and Integraticr. from the edge of the
hole to irnfinitely large values of x wili thererire glve inflinitely
large values of the disnlacement fo (see fig. 472)). OCnly the local
deformaticn at the hole 18 required here and not the effect of the stresses
awgy frcm the hole. It is thersfore reasorable to integrate orly up to
certaln values of x, and 1%t 1s fourd that

for x =4 1.0 fo = éP/Et) 0.362
x=41.5 f- = (P/Et) 0,556
x =4 2.0 fo = (P/Et) O0.745
x =4 3.0 fo = (P/Et) 0.967, and so forth

For larger values of x, fz increases only very gradually, and, since
x = 34 takes into account more than the local strain, it is reasonable
to take

fo = 0.9 P/Et

In the bolt itself there is a compression due to the bearing stresses
which are approximately P/dt at the surface and half of thle velue at
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the axis of the bolt. The corresponding compression between the surface
and the axis of the bolt can be approximstely taken as

£ = (1/E)(P/at)(1.5/2)(a/2) = 0.375 P/Et
The bearing stresses In the plate and the bolt give approximetely
(p/=t) (0.9 + 0.375) — (P/Ed) 1.3 4/t

There is cre such term for the middle plate (thickness tz) and cne for
the sitraps {thickness t3;), and these together give

(p/EQ) 1.3 (a/2%ty + d/+2)

Trhe displacement at the bolt when the hole diameter 1s large is fi~
nally given by

(p/Ed) £(d/ty, 4/t2)

where f 1e a functicn of the relative dimensicns,
ard for t; = 0.5 t»

f 1.3 (&/2ty + a/t2) + 0,6t/ + (tg/’d)O

2.6 d/tz + 0.6 t2/d + (t/a)°

ard for 13

t2

£ =1.95 d/ts + 0.9 t2/d + 3 (t2/2)°

approximately.

These formulas are only valid for large velues of &, and then
the first term 1s the most important, and the others are only of minor
importance.

(2) Diasmster very small,— If the diemeter of the bolt 1is very small
in comparison wlth the thicknmess of the plate the dlsplacement between the
plate and the straps can only depend on the deformatlion in the bolt and the
plates near thelr common surfaces,
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The ideal case is to some extent representsd by spot—-welding wilen

the two surfaces are hcmogensously connected over an arsa of diamster d.
For this case the displacement may be found by means of the formuiag for
stress and strain in a semi~-infinite body lcaded at the surface, ard for
lcads distributed over rectangular areas the average displacement ha. besn
calculated (reference 13). Substituting a square of sides & icr & clrcle
with djameter 4 = 1.28s, both of which have the seme area, it is found
that for bolts Iin double ghear

5 = 2(0.5 P/Es) 0.91 = 1.03 P/Ed

This calculation gives too small a value for the displacement ir <the
case of bolt or rivet connections because the bolts or rivets are not
welded to the plate. Cn the contrary, a lcading of the Joint must pro—
ducs openings betwsen the bolt and the plate.

Another estimate may be made ag follows by assuming that the bvolt
is ccmpletely built in at distances greater than gd, g Dbelng a carfain

parameter, from the common surfaces of the plate and the straps, The
bolt is then in double shear, as shown in figure 4(b), and

5 = (P/EA) (3.7 + 6.8g")

end taking different values of g it is fourd tkat

fer g = 0.3 & = 1.3 P/Ed
g = 0.k 5 = 1.5 P%a
g = 0.5 & = 2,7 P/Ed
g = 0.6 & = 3.7 P/Ed

The coefficients can be determined only by tests, ard provislcrally
a value of 3 1is assumed to be reasonable, Much depends cn how closely
the bolt fits the hole and if the hole 1s larger than the bolt the dis—
placement will obviously be greatly increased,

(3) Interpolation.— By writing
5 = (P/EQ) F

and plotting f as a function of the ratio d/tg for very large and very
emall valuss of this ratio, the values 4 f for medium values of the ratio
may be approximately obtained by interpclation as shown in figure 5.
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Cn dimensional grounds the digplacement must be glven by a formula
of tkis type, where f 1is a nondimensional function of the ratios be-
tween the diameter and the thicknesszzs of the plate and the straps. The
width of the plate also enters into this function, bdut if the width is
large in comparison with the diameter the effect of variations in the
width is negligible.

3.3 Comparison with Tests

Volkerson has measured the deformation for single dural rivets and
gives diagrame for a ccefficient n defined by the equation & = P/n
and by writing

5 = (P/EZA)F

whers f is a function of the relastive dimensions f = Ed/n

oL

With a value of E eqgual to 70C0O kilograms per square millimeter! the
folloving results are obtalned from his diegrams:

t1 to d n

(rm) (mm) (m) (kg fom) £

1 1 5 6,050 5.83
1 1 L hohoo 6.37
1 1 3 3,000 7.C0
1 1 2.6 2,420 7.59
2 2 5 8,50 b,12
2 2 L 5,670 L.,75
2 2 3 4,020 5.25
3 6 5 11,200 3.12
3 6 I 7,420 3.78
3 6 3 L 420 4,78

sy valuss of f  are shown in figure 6 as a function of the ratio
a/to.

The following results given by Cassens alsc cre shown in the sane
figure on the assumption that the tests were made on rivets in double
shear:

d =5 rmm n = 100,000 kg/cm
d =L mm n = 50,000 kz/cm
d =3 mm n = 46,000 kz/cn

1This corresponds to lO7 psi.
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No information 1a given on the test methode employed. Volkerson admits
verjations up to about 25 percent for the individual samples frxm the
average cf six, and, where so much depends on the wcrkmanship, this 1s

not unreasonable. It is obvicusly more serious that the test resulis

are not in agreement with the dimensional law, which necessitates that all
the polnts should be on a continuous line In figure 6. This was not in—
vestigated, and it is stated that the deformations are proportionasl to the
lcads up to 17 percent of the ultimate for & = Sto and up to 46 percent
of the ultimate for 4 = 0.Ttp. A more detailed investigaticn of Volkerscn's
results shows that the proporticnal limit corrvegponds either to bearing
ptresses up to 32 kg/mmZ or to shearing stresses up to 13 kg/mm®, Only
for very large dlameters d Iin comparison with the thicknesses 1+ was

the limit found t» be at appreclably lower sgtresses, and thies could be
expected becauss the buckling of such thin plates takes place. In this
connection it should be noted that Pleiner has observed permament defor—
nations dus to bearing stresses above 12 to 15 kg/mm2 in the plates.

Since these deformations esre not propcrtional to the loads, the limits
glven by Volkerson therefore appear to be high. The deformations, however,
are protably not greatly in excess of the limit of proportionality.

The disagreement with the dimensional law can be explained by gaps
In the rivet holes or by a different type of nonlinear deformation. The
moest reasonable explanation, however, is the difference in the action of
friction for large and small rivet diameters. Montgomery (reference 2)
has pointed out in an article that, for steel rivets, "In fact, the whole
geries of experiments showed that the adherence factor had not the im~
portance in the thicker plates which 1t had in the case of thinner material.
This statement means that for constant thickness of the plates, out vari-
able diameter of the rivets, the frictional resistance ig comparatively
greater for large than for small rivet diameters. This is in agreement
with the Volkersoa results and might explain the disagreement with the
dimenslonal law.

"

If, now, ccmparisons are made with the results of the theoretical
analysis glven in 3.2, 1t can be seen that for a small rivet diaemeter there
ie falr agrevement with the Volkersorn tests. TFor large diameters cnly did
the tests gilve coneiderably less displacement than that gilven by the thecry,
thus indilcating considereble frictional resistance,

Since the main polnt here is to obtain a formula giving the correct
order of magnitude,

f =a(dfts + d/2ty) + b

may be taken as an average where a = 0.8 and b = 2.5, and the straight
lines corresponding te t; = tz and t1 = t2/2 are shown in figure 6.
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By writing

5 = Pf/Ed = cP8, = cP 1/EA

the coefficient ¢ = A £/ld used in the general theory 1s cbtained

where

A cross secticn of plate

1 spacing of rivets or bolts
ard

d diemeter of rivets or bolta

Frcm the approximate formula given above for f 1t is found that

c = (A/1) (0.4/%y + 0.8/t2 + 2.5/3)

Tra only other test serles that can be used for the dovtermination of
the coefficient ¢ is given by Batho in his original paper (reference 1),
and in the Steel Structures Committes Reports Irefersnce 6)., From tests on
l/2—inch to 7/8—inch steel rivets spaced 4 inches apart and Joining
3~ by 5/8~irch plates with 3— by 5/16—inch straps, Batho found the empirical
relation

c = P/(lO5 X da/h) (Batho used S for c)

whsre

P total load on the Joint, pounds
and

d rivet diemeter, inches

The coefficient c¢ 1s deduced from theory that is valid only telow
the limit of proportionality and ¢ should then devend only on the rela—
tive dimensicns and not on the load, The variation of ¢ with the load
may have been caused by frictional effects and by nonlinesr deformations
within the range of applied load.

Batho's formula for ¢ cannot be directly compared with the formula
based on the theory glven above and the Volkerson tests, because it in—
volves P eand no other dimension apart from the rivet diameter. Batho
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has pointed out that the indirect way of determining the coefficient ¢
dceeg not give accurate results and the tests indicate a value of ¢ vwhich
is considerably less than that to be expected from the forsgoing tkeory
and the results of Volkerson., ZEven at loads equal to cne third of that

at failure the value of ¢ 1s only one fourth to one fifth of that Lo be
expected, and for higher lcads the experimental values of c¢ . are Increas—
ing very rapidly.

The explanation may be that, for the lower loads, the entire locad is
carried by friction and then the corresponding stiffness of the rivete is
very much increased.

It 1s not, howsver, reasonable to base the design of light—alloy
structurss on these tests on hot riveted structurss because thess must
involve considerably more friction than is to be expected with cold
rivets or bolts.

The formula based on the Volkerson tests is recommended for the de-—
slgn of light~alloy structures until new tests have been made,

3.4 Displecements sbove the Limit of Proporticnality

Mathematical analysis cannot give the displacement of rivets or bolts
for lcads above the limit of provdorticnality. The only test series pub-
lished, which gives general results for light—alloy rivets, apnear to be
of Volkerson.

Generally speaking, 1f the diameter i1s large 1in comrariscn witk the
thickness, the Joint will fail due to bearing strerses after large dic—
placements which are primerily due to deformaticn of the plates. Very
thin plates will fall by buckling and, according to Pleines, thils occurs
if 4 1s greater than 5t, provided the platss are not suppcrted by
nuts or rivet heads.

The following data have been taken from Volkerson's work and are
shown in figures T(a), 7(b), T(c), and 7(d). The tests refer to dural
rivets with dimensions given in 3.3.

Let

P; represent limit of proportionality for the rivet, from which the
corresponding bearing and shear stresses are calculated

Py, wltimate lcad at failure from which the corresponding bearing and
shear stresses are calculated

82, ultimate digplacement at failure




18 NACA ™ No. 1135

and

S value of the ordirate at the load axis for the tangent to the upper
part of the displacement curve. (See fig., T{a).)

The bearing end shear stresses for the londs P; and Py are plotted
as functicns of the ratio d/tg and those corresponiing to the load S
are also plotted in the same way. It is found that on an averege
S = 0.52 P, with variations frcm 0.86 to 0.76 end in one exception to 0.71.
Failure for 4 greater than 3tz seems to be dus to beasring stresses with
a maximum value of 140 kilcograms per square millimeter and for smzller di-
ameters is due to shear stresses with an averags value of about 29 kilograms
per square millimeter.

Fer 4 = 3t, the limit of preportiocnality ssemcs to be at bearing
gtresres of sbout 32 kilograms per sguare millimeter, and decreases both
fcr largor ard smaller dlameters =8 shown in figure 7{(v). For very small
dilameters the limit of oroportionality correspends 1o shear stresses of
about 13 kilograms per sguare millimeter,

The displacement gt the limit of proporticnality can be found from

8 = (P1/EA)E

where f ig the gquantity discussed in 3.2 and 3,3.

Let the displacement at failure te

8o = (Pp/Td)f>

where fo 18 a similar function of the relative dimersions, The quantity
fr has besn caleulated from the given test results and 1s shown in figure
7(d) as & function of tke ratio d/ts. The experimental points in this
figure very nearly lis or a smooth curve, and thers 1s actually better
agreement than for f below the limit of proportionality, If P. sand

s are known,the ultimate dieplacement Oz can now be found for auy
slze of rivet.

In this way the displacement in the high region and the low region
is obtained ag a functicn of the leoad, and 1t is cnly necessary to Join
the correspcnding two straight lines by a smooth curve. It is not nec—
eseary to determire mors polnts on thls curve directly frcm Volkersonts
tests because it is more important to know their order of megnitude than
their accurate values. The curve shown in figure 7(a) 1s for the case
where & = tz. The nonlinear part of the displacement 1s found to be
ccmparatively much greater for larger dlameters.
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The continuous curve representing the displacement is perhape a little
misleading, and for most practical purposes the displacement is more ade—
quately represented by a discontinuous (or dotted) curve.

3.5 Test Methods

Volkerson made the plate continuous with the side straps attuched to
it as shown in figure 8 and measured the extension between the pcints Ap
and Cj. A correction was then made for the normal extension in the plate
(A ~ Bp) and the straps (By ~ Ci). Pleines measured the extensicr be—
tween the points D; ard Dy wlthout any correction. At first sight it
would appear reasonable to measure the displacement betwsen points E; and
B> to obtaln the local "bolt + hole deformation” directly. This, however,
would necessitate a correction in the original equations as follcws.

The elorgation of the straps between By and Bll (see fig. 9) was
previously denoted by

)\.2 = bz Ra 80

The total tensile force in the strap for the length B; to A; is, how—
ever, equal to

R1=R2+P2

and the correction expression for the elongation should therefore be

Az = %o(ba R + bpl Pp)

and similerly for the length of plate Bo* to Co' the lcad Ps enters
into the expressicn for the elongation,

Ao = 50(a2 Q + agt Pg)

where the coefficients az' and byl take account of the additicnal
elongation in the length when the direct pressure on the hole gives tension
in the plates at both sides of the hols.

With the bolt + hole deformation measured between the points By and
By included in 52,

8o = 021 P> 8,, and so forth
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But
8o + Aot

X2+53

and using this relation

’ 1
021 Ps + an Q2+&21 P3=b2R2+b21 Po + ¢35 Ps
which may also be obtailned from the original equatien
02P2+&2(P1+P2)=b2(P~P1"P2)+CaP3

by writing

cz = c2 — bt
1 1
and C3 = C3 — ap

These corrected coefficlents ¢ may be found directly by determining
the extensicn between the points Ay and Co con the test specimen since
the connection 1s made by a single bolt. These pclnts should te situated
sufficiently far from the bolt for no appreclsble straln tc cccur bsyond
the pcinte. 1lagcral geging should be avcided, arnd to reduce the number
of gages a "bridge" may be built up between the two straps as shown in
filgure 172. TFor testing one tolt, two gages — cne on each side — are then
needed.,

3.6 Deformation of Plate and Straps

If the effect of the Lole be disrsgarded
A = R1/EA

where A 1is the cross sectien and 1 is the distance between the bolts
as shcwn In figure 11, So far as is krnown, no direct tests on the addi-
tional elongation due t¢ the hole are available In publishked work, If

the dilameter (d) of the hole is not teo large in compariscon with the
width (h) of the plate, an estimate may, however, be made in the follow—
ing way. A rectangulsr hole ¢f area 4 x nd 1s substituted for the cilr—
cular hole and the sxtension is calculated cn the basis that the stress 1s
wiformly distributed both at the ccmplete secticn and at the reduced sec-—
tiwn., This glves
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A = R1/EAt
where the average effective smection is
Al =A/{l+nd2/7, (h-—d)}

A ccmparison with the stress dlstribution gilven by Coker gnd Filon (refer—
ence 12, p. 489) indicates a value of the coefficient n equal to 2.5t03,
Their tests were made en plates with open holes and, if the holes were
filled by boltes, the stress distribution would be more uniform and n
correspondingly reduced, Possibly n equal to 1.5 to 2 would glve a
result that ls mcore nearly correct. If the holes are very closely spaced,
the effective secticn is probably not appreciably different from the mini-—
mun section t(h — 4d).

3.7 Modifications in the Theory for Load Distribution for Loads
above the Limit of Proportianality

Above the limit of proportionality the equatlons that determine the
load distributicn are no longer linear and, although an exact solution
may be formally obtained by treating & as a ncnlinear functicn of P,
the ccmputaticnal werk would then be very severe. The results may, how-
ever, be cbtained to any required degree cf accuracy in the following
slmple way, provided the load—extension curve is krown. Assume that the

load on the 1th boit is Py and then near this value
81 = k1 (P1 — S1) %o

where the meaning of the constants ky and Sy may be seen from figure

12, The quantity k 1s proportional to the reciprocal of the tangent
modulus in the same way that c¢ 1is proportional to the reciprocel of
the modulus of elasticity (E) at low loads. On the assumption that
nonlinear deformations occur only in the bolts and at the holes and not
in the sections of the plates betwsen the holes, the equations

84 + Mt = Ay + 8141
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then give

ki (P ~S1) +a4 (Py +P2+ .. .P1)=bg P~P; -Po—. ., .—-P1) +
ki+y (P1+1 = Sia1)

that is,

(g + b1 + k1) Py kg Po =Dy P+ (kg S; ~ ko Sp)
(8 + b2)P1 + (ap + bp + kg)Pp — kaPa = baP + (kaSp—kaSz) and so forth

Thess equations differ fiem those that are ccrrect cnly below the 1imit
of preporticnality in the presence of terms of the type k3S; — ka5» and
in tha*t ¥ now replaces ¢, In order to determine the values of S and
X, the bolt lcads may be assumed to be in the neiglborhood of the average
load P/n, and in most cases recourse to a seccnd approximation will not
be necessery. The corresponding valus of k for all the bolts may then
be obtained from the load-extension curve, The terms (kiSi—ki+15i+1)
are then zero and the equations are ildentlcal with the criginal ocnes, ex—
cept that k now replaces c.

When all the belt lcads have been determined in this way, more accu-—
rate values may be fournd by substituting tke ceorrespornding values of S
and k fcr each bolt Intc the complete equatirng given above. The lead
distribution may be found tec eny requirsd degree of accuracy by the repe—
tition of thils process.

It eppears from the Volkerscn tests thet at half the ultimate load
the valae of k 1is sbout five times that of ¢ 1n the particular cass
of thick bolts, that 1s, at relatively large values of d/t. If, for
example, a =b =1 and ¢ =2 at low lcads, a value of k = 10 may
be assumed to be correct for lcads at helf the ultimate., For five bolts
c =2 gives

Py =Pg = 0.319 P
Pp =P, = 0,136 P
and Py = 0,091 P

while k = 10 glves as a first spproximeation
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P]_ = Ps = 0.235 P
Py =Py = 0.182 P
and Pg = 0,166 P

The value of k increases very rapldly in the neighborhcod of the
ultimate load and then, according to Volkerson's tests, a value of
k = 50 (or more) 1s not unrsasoneble for a value of ¢ = 2. With k = 50
it is found that

P, = Pg = 0,208 P

Pp = Py = 0.196 P

0.192 P

and - Pg

These results show the extent t0 which the loads are me¢re uniformly
distributed when there are deformatlions besyond the proporticrnal limit.
The design of a joint should not, however, be based on these equalized
loads becauss the actual behavior of each individual bolt (or rivet) ie
likely to be irregular near the ultimate load., It 1s safer to base the
design on values of k corresponding to medium loads.

3.8 Symmetrical Joints

When there is symmetry, 1t is convenlent tu number the bolts frem the
axis of symmetry end, for example, in a Joint with 8 bolts the numbering
is then

4 (end), 3,2,1,1,2,3,4 (end)
If all the sectlons of the plate and straps asre the same

C1 = C2 = + 4 « =C

The total number of bolis 1s gssumed to be 2n, and the equaticne valid
up to the limit of propertionality are
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Py =P
Py = Py + (2/c) Py
Ps = Pp + (2/c) (Py + P2)

P, = P, + (2/c) (Py + P> + P_), and so forth

and P, may be found from the equation

2(P1+P2+. . .+Pn)=P

after expressing Pi in terms of P;. The bolt loads for Joints with a

large number of bolts are shown in figure 14 for values of ¢ equal to
5, 10, 20, and 4O,

If, now, a certain number of the bolts — say from (1 + 1) — carry
loads above the limit of proporticnality while theose up to 1 carry
loads belcw this 1limit, an approximate soluticn mey be found as follows.

Assume the dlsplacement below the limit of proportiocnality to be

51 = ¢ Pibo
and for all loads above to be

3y = k (Py — 8)8,
where k and S are constants.

The continucus lcad—sxtension curve is thus rsplaced by two straight
lires as shown In figure 13. The assumed limit of propcrtionality i1s at
the lcad Sy = Sk/ (k — c¢), and by a proper cheice of the second line
this value will te greater than P;. On the other hand, however, the
value of k 8o determined will be much smaller than that corresponding
to loads near the ultimate.

If the 1% bolt carries a load that is Just equal to Sp, the dis-

placement at this bolt may be expressed by elther of the preceding for-—
mulas. The equations for the first 1 bolts are then
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Py =Pgg + (2/c) (Py + P24+ . . . Piy)

as before, and for the succeeding bolts are

Pi4s = Py + (2/k) (Py + P2+ . . . Py)

Pi4o = P14q + (2/k) (Py + P2+ . . . Pi-1), and so forth

As an example, a symmetrical Joint with 12 boltse may be considered
and the results for ¢ =5 and k = 20 are given below.

(1) Pg =St

Py = 1.0000 P, = 0,068k 5,
Po =Py + 04 Py = 1.4000 Py = 0,0957 S,
Py = Pz + 0.4 (Py + Pp) = 2.3600 Py = 0,1613 Sq
Py =Py + Ok (Py + . . . +Py) = L,2640 Py = 0.2014 S

Pg =Py + 04 (Py + . .. +P) = 7.8736 Py = 0.5380 S,

Fg = Pg + O (Py + . . . + Pg) =146326 Py = 1.0000 S,

05P=P; +Po+ ...+ Pg = 315302 P, = 2.1548 s,
(2) Ps = Sg:

P, = 1,0000 P; = 0.1270 Sq

P, = similar expressions = 1.4000 P; = 0,1778 S

Ps = to those above = 2,3600 P; = 0.2997 S,

Ps = L,2640 P, = 0.5415 S,

Py = 7.8736 P, = 1.0000 S,

Pg =P5 + 0.1 (P1+ . . .+ P )= 9.5634 Py = 1.2146 S,

05P =Py +Pa+ .. .+5F = 3.3606 S
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(3) P, = 84°

P = 1.0C00 Py = 0,2345 S,
P, = similar expressions = 1,4000 P; = 0.3283 S,
P, = to those above = 2,3600 P; = 0,5535 So
P, = 4,2640 Py = 1.0000 So
Ps =Pg + 0,1 (Py + . . . +P,) =5.1664 Py = 1,2116 S¢
Pg =Py + 0.1 (P + . ..+ P) =658 P, = 1544k 5q
0.5P =Py +Pa+ ... +5P, = L.8723 So

Similer results may be obtained for Ps, P, and P; equal to 5,
thus giving the loads carried by the bolts at various applied lcads asg
rhown in figure 15(a). TFor intermediate values the loads carried by the
bolts may be found simply by linear interpolaticn. The bolt loads ars
also shown in figure 15(b) as functicns of the total load for this par—
ticuiar case. '

The example shows that in a Joint with meny bolts the lcad distribu~
tion 1lg far from being uniform even when the deformations are nocnlinsar,

Tke time taken to complete the calculatlons and the drawings was 1%
hours, which clearly shows that an asnalysis of this kind can be made in
& reascnable time,

3.9 Reinforcing of Main Plate by Side Plates

If the maeln plate 1s reinforced by slde plates, as shown 1n figure

16(a), these will to scme extent behave as straps in the usual way, but

the deformaticon at the main bolt will be slightly altered. The loads
carried by the bolts are denoted by

P;, P2, P35, &nd so forth

ths loads in the sections of the middle plate by

Q = Pl} Qe = P + Pg, QS =P; + P + PB’ and so forth



1

NACA ™ No, 1135 a7

end the loads in the sectlons of the two side plates taken togethgpﬂbyq

Rl =P - Ql} Rg =P - Qz, Rs=P — QS, and so forth

as shown in figure 16(b). The dlsplacement at the first bolt was previ-
ously denoted by C3P1Sc and, because the side plates, an additirnal

term that is proportional to P, must now be introduced. (See fig. 16(c).)
This additional term consists of two parts, one of which is due to
bending of the bolt and the other due to the compression arising from
the bearing stresses on the side plates. The first gives a displacement
in the same direction as P;, and the second gives a displacement in the
opposite direction because the side plates slip back relatively to the
middle plate. The mein bolt will usually be strong in comparison with
the plates and the displacements due to bending willl therefore be small

in comparieon with those due to bearing. The total displacement dus to
P, will therefore be negative and hence

S1 = (e Py — gP)So

where g 1s a positive constant. The equation

Sy 4 Xll = Ay + P

now gives
(1 + by + ¢1) Py ~co Po = (by + g) P
while the other equaticns are as before
(az + b) Py + (as + bs + c2) P> — c3Ps = bo P
(az + bg) (P1 + Po) + (ag + bs + ca) Pg — ¢ Py = bs P, and so forth
A more detailed discussion of the constant g 18 given below.
Assume, for example, that there asre one bolt and three rivets, as

in figure 16(a), and that

81 = 8z = ag = by + b + by =1

i

cy1 =1.5, ca=ca=cqe s 3

i
o
[6e]

8
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The equations are then

]

-
®
d

3.5 Py ~ 3 P2

?Pl+5P2-

w

&
it
g

2P1+2P2+5P3-3P4. =P

Py + P>+ P3 + P4 =P

which give
Py, = 0.557TP
Pg = 0.050 P
Ps = 0,120 P
Py = 0,272 P

In other words, not quite half the losd — Py + Po + P3 = 0443 P — 1is
transferred by tle rivets to the slide plates and from tuese to the main
bolt. In addition, the bearing stresses acting cn the middle plate ere
reduced to 55.7 percent of those found when there were no side plates.
If the term gPB, 1s neglected, the loads are found to be

P, = 0.403 P
Pp = 0.137 P
Ps = 0,164 P
P, = 0.296 P

As explained, the ccefficlent g may be written in the form

where gl represents the compression due to the besaring stresses and gli
represents the bending of the bolt, The deformation due to the bearing
gstresses has already teen discussed and
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g'Ps, = g'P1/EA = (P/Ed) 1.3 (d/2ty)

that 18, -
g = 0.65 (A/it1)

The bending of the bolt is due to e bending moment the value of which is
approximately

(B/2) (s = t1 — t2)/2

end from this by calculating the relative displacement between the centers
of the side plates end the middle plate it is found that

g** Po, = g P(1/EA) = (2/3) (P/Ed;*)(s—t1~tz) (3t12+6t1ta+2457)
that is,
gt = 0.43(A/d11) (tardy) “(s/te — 1 — t1/t2) {1 + 3(t1/t2) + l.5(t1/t2)2}

If the main bolt is made of steel and the plates of dural, the abovwe
constants 0.55 and O0.43 in g!' and gl should be replaced by 0.52
and 0.1k4, respectively. It can be seen from these expressions for gt
and gl that the latter is small in comparison with the former if the
dlameter d; of the first bolt 1s large in comparison with the thicknesses
of the plates, which 1s usuelly the case in practice.

For the slightly different system depicted in figure 17, all the equae-—
tions remain the same as before except that now P; + Po + Pa + P4 = O
instead of P. With the same dimensions as above it is found that

Py = 0.462 P

Po = — 0.C61 P
Pg = - 0.127 P
Py=— 0.27T4 P

In other words, not quite half the load 1s transferred by the three rivets
to the middle plate and from this to the main bolt. The bearing stresses
are correspondingly reduced to 53.8 percent of those found when no middle
plate is added for the strengthening of the lugs.
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4. SINGLE SHEAR JOINTS

It has already been pointed out that in single shear there 1s local
Yending in the plates, and the consequent tilting of the rivets increases
the displacement for a given lomad. Even if the rivete are designed for
the same bearing and shear stresses as for rivets in double shear, the
displacements must be expected to be larger. If this additiocnal displace—
ment did not cccur, the results already found for double shear would be
directly applicable to single shear, and by writing the displacement fer
loads below the limit of proportionality as

& = ¢Pd, = cP (1/ER)

1t would be found that
c = (&/1) (1.6/t + 5/4)

for twe plates of the sams thickmess riveted tcgether. The actusl dis—
placement 1s protably larger and this will be mcst noticeable for large
diameters when the tilting of the rivets is cf greatest importance.

A theoretical analysis of the load distributlon on the rivets is
given below and the value of ¢ 1s assumed to be known. This analysis
1s very much complicated by the bending of the Joint as a whole, and the
results mey be summarized as follows:

1. The lcad distribution on the rivets 1s dependent on the tctsl lced
even below the proportional limit (instead of being independent,
as for double shear Jjoints)

2. Fcr +he game value of ¢ +the loed distribution at small loads
shows even greater nonuniformity than thet for double shear
Joints

3. The load distrilibution beccmes more unifcorm as the lcads are in—
creased and In scme cages 13 better than that for double shear
Joints even below the limit of proporticnality

4. At higher loads the load distribution approximatses to that for
double shear Joints, provided the elastlc limlt or the ulti-—-
mate strength has not already been rsached
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5, The results for double shear joints are therefore recommended for
use in design because only the load distribution at the highest
allowable loads are of interest, and this will usually be a
safe approximation.

As a preliminary to the detalled analysis the bending of a single
plate outside the joint as shown in figure 18 is first considered. The
differential equation for the elastic line is

Yxx = Py/EI

vhere P 1s the offset tensile load and EI is the appropriate bending
stiffness. This gives the solution

y = g exp (- 6x/1)

where g 1s the offset of the elastic line at y = O and JQ is a non—

dimensional quantity equal to 1(P/EI)® or (1/t) (12 £/E)® in terme of
the average axial strese f = P/A 1in the plate. The slope of the elastic
line at x =0 dis

o= (g/1)6

Now consider a symmetrical Joint between tw> plates of the same thick-—
ness t and with 2n rivets, the rivets being numbercd froem the axis of
symmetry as shown in figure 19(a). Initially the plates are flat, and
under the tensile locad P they bend as shown in filgure 19(b). At the
axls of symmstry the central line of each plate 1s offsst a distance 0.5t
from the load axis. If the bending in the Jolnt could be neglected, and
the slope be kept as at the ends,

0.5t = g + a(n — 0.5)1
approximately, and thils gives

t/ 42 + (en - 1,)6}
(t/1)8/ 42 + (on ~ 1)9}

®
"

o
ft




32 NACA TM No. 1135

These formulas glve an approximate indication of how the slope varies
with the load, it being remembered that 6 I1s a function of the loed. In
consequence the moment arms will also depend on the load, and the load dis-—
tritution on the rivets i1s then dependent on-the load even at loads below
the l1imit of proportionality. The load distribution 1s, however, greatly
influenced by being inside the Joint, and these spproximate formulas have
merely been glven to fix ldeas.

The relation between o and g at the outer rivet is needed for a
more exact solution of the problem. Consider a section originally of
length 1, between the (i — 1)tB and the it rivets in the left~hand
slde of the axis of symmetry as shown in figure 20. The tensile load car—
ried by the plates 1s denoted by Qi and Ry, &nd the rivet loads at the

ends of the section by Pi— &and P3. Then frcm symmetry

Q1+R1=P
Q =Ry = P/2

Ry

#

P/2 - Ny

and R P

n n

i

where
Ny =Py +Po+. . . Py

The offset loading causes the plates to bend, and the plane ends of the
gsection are at an angle ¢i to one another., Ccmparison between the ex—

tensions at the common surfaces of the plates then glves
Ril/BA — t@1/2 + B4 = Qi1/BA + tf1/2 + 83—
that 1s,
1= (1/%) {51 — 511 + (R1 — Q) Z/EA}
A
= (1/2Aat) {C(Pi - Pia) — 2 Ni_l}

or
(t0%/12 P1) {C(Pi - Pg-y) — 2 Ni...l}

In corder to produce thils degree of bending, each plate must be sub-—
Ject to a bending moment of amount EI¢1/1,
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Let y'; denote the average value of the ordinate of the common sur—
face of the two plates for the section of the Joint. The bending mcment
acting on the whole section, resulting in bending of the two plates and
axial forcea, ls then

My = Pyty = SEIf1/1 + tRy/2 — tQ1/2
- (4/6) {otea = Bas) = B My }
and this gives
y'1 = (t/6P) Yc(Py — P1—) - 8 Niné}

The quantity y’i is senalbly zero at very small loads and the foregoing
relation then shows that

Py = Pi— + (8/c) Wiy

The corresponding equations for double strap Joints 'involve the constant
2/c instead of 8/c. It follows that for very small loeds the load dis—
tribution shows even greater nonuniformity for single.shear Joints than *
for double shoar Joints and this 1s due to the bending of the plates. If
Infinitely large loads could be applied within the limit of proportionality,
angles ¢i would still be finite znd at such loads the equatlons reduce

to those for double shear Joints, that 1s,
Py = P + (2/c) N1y

In the enalysis of the load distribution at Intermsdliate loads it is
convenlent to replace the average ordinate yi' by the ordinate y; of

the point of intersection of the tangents at the ends of the sectlon, as
shown in figure 21(a).

Now

yi' = yi + 2¢1/6
and 1t follows that

¥y = (t/6P)-{c(l - 62/12)(Py — P1—) — 2(k - 62/12)N1_1:}
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Simple relations may now be found betwsen the quantities yj if

tlicre is an even number of rivets y; = O, and this merely confirms that
the rivets on sach side of the axies of symmetry carry the same load, Fram
figure 21(b) it is clear thet the following recurrence relation holds be-—
weool the y’i values,

Fi+1 —2y1 +yim1 = 1, 1=2,3, ... (n-1)
ard at the ends of the Joint (see fig. 21(c)),

Ynp=8-—t/2+ /2 =g(1 +8/2) -t/2

Yo =yn + (o + @n)l =g (1L + 38/2) — t/2 + 1¢y

The uxpression for y; and ¢i previously found may now be substlituted

into those squaticns to give n relations between the n rivet loads
end the ordinate g.

In addition
2 (Py +Po+ ... +Pp) =P
and these equations teken all together suffice to determine the rivet
loads P4 and the ordinate g,
In general, the solution of the squations is rather Involved and

es an 1llustration the ccmparatively simple case of n = 2 (i.e., 4 rivets)
ls considered in detail, The eguatiorns are

ya =g (L +08/2) — /2

0=g (1L +38/2) - t/2 + 195

J1

and 2Py + 2P = P
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or

)

g(l +6/2) = t/2 + (t/6P)'{ c(1 - 8% /12)(Pp ~ P;) ~ 2(&—62/12)P1f
g(1 + 30/2) = t/2 ~ (t/6P)(6%/2) {c(P?_ ~Py) - 2131}
and

2Py, + 2P, = P

Thege equations gilve

r N -
PofPy =1 + [:8 + 62(10 + 39)/121 /ic{:l + 38/2 + 62(10+30) /24 j + 6ej

and by taking c¢ = 4, the following numericel results for various values
of & may be obtained:

0 P, /P Po/P
0.0 0.125 0.375

S 179 .321
1,0 .200 ,300
1.5 .209 .291
2.0 .213 .237
2.5 .215 .285
3.0 .215 .285
3.5 .215 .285

For very large values of 0
Py =Py (1 + 2/c)
and sgain this gilves

0.2 P

[0

Py

Q.3 P

[t}

Py

as for double strap Jointsl'
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The solution for very high values of 6 18 of little practicel in—
terest bocause 1t corresponds to high loads. Now

f = E62 t2/1212

and by taking 6 = 2 and 1 = 10t 4t is found that f = E/300, Stracses
in sxcemg nf thls valus will result in nonlinear dsformations, and the
formula will nn lrnger be velid unless the rivet pitch 1s increased, The
variaticrn in the 1lrad on the outsr rivet is shown dlsgrammatically in fig—
tra 22 ~n the basis that the lcads are within the elasgtic limlt. The ac—
tusl rnumerical results will, of course, vary both with the numbar ~f rivets
and with the value of c¢ fcr the particular Joint in question,

When thera are sgeveral rows »f rivets join@ng the two platcs tegether,
it 18 nncessary enly tn modify the above formulgs by taking A  to be the
arqa ccrresprnding to cne line cf rivets.

The abnve table shows that with 4 rivets and ¢ = 4 +the lred dis—
tributlien en the rivets 1s the same for sirngle and deouble shcar Joints
1f 6 = 1. In general the load distribution for single end double shoar
Joints with 4 rivets is the same 1if

q = 2¢/(k + c)

and frr larger values of q the load distributicn is betipr fer single
than for double shear Joints.

The equations as given above are for Jeints with an oven number
of rivets (2n) and for an odd number of rivets (2n + 1) they should
be mndificed as frllowe. The central rivet 1s designated by the suffix
o and the other rivets are designated as before. The tetal lead 1o new

P=P +02 (Py +Pa+ .., .P)

n
instead of
P=2(P1+P2+000Pn)
and
Ny =Po/2 + Py +Pa+ .., ., Py
Inetead AT

N, =P, +Po+...P

1 1
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At the axis of symmetry Fi3 = - yo instead of y; = 0, All other

general squations, however, remain unaltered, For example, in a joint
with only three rivets the eguations are

P=P0+EPJ_

(t6%/12 P) {c(l—“l - I;o) - PO}

Ji =
y1 = (£/6 P) {c(l ~ 6%/12) (B —~ Po) — (4 — 6%/12) Po}'
y1 =g (L +8/2) -t/
and.
Jo=—v1 =g (1L +308/2) ~t/2+d
which give

Py/Py =1 + {8 -0 + (446) 92/12] /[jc 2(146) + (4+6) 92/12:} + 69]

and by teking ¢ = 4 the following numerical results for various values
of 6 may be cbtalned:

o P,/P P, /P

0.0 0.200 0.400
D .250 .375
1.0 276 .362
1.5 .290 .355
2.0 .268 .351
3.0 .304 .348
h.o L3686 .347
5.0 .304 .348
10.0 .29 .352

The single shear Joint with three rivets has the same load dis—
tribution as the double shear Joint; that is, Pi/P =1 + 1/c 1if
q = 2c/(2 + ¢), and for largey values of q the single shear Joint
has & better load distribution than the double shear Joint, and in
particular for g = 4/3 and ¢ =4 the load distribution
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Po/P = 0.286

P, /P

i

0.357

is obtained both for single and double shear Joints, and the distritution
in single shear jointrs 1s slightly improved for larger values of 0.

When there are geveral rcws of rivets it is necessary only to make
the same modification that has already been menticned for an even number
¢f rivets.

CONCLUSICNS

Further expsrimental data on the load distribution in bolted or
riveted Joints in light—-alloy structures are needsd to check the theory
develoned in this report and also to provide design data on bolt and
rivet stiffresses, The experimental data at present known are primarily
due to Volkerson and these are not sufficlent. The numerical examples
given shcw that the load distribution does not vary greatly with the
bolt (or rivet) stiffnesses and that for design purposes it 1s usually
sufficient to know their order of magnitude. The thecry may also be
directly used for spot—welded structures and, with small modificatiocns,
fcr seam-wslded structures.

The computational work involved In the methods described is simple
and may be completed in a reascnable time for most practical problems,
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