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ELLIPTIC FUNCTIONS AND INTEGRALS WITH REAL

MODULUS IN FLUID MECHANICS*

By Robert Legendre

SUMM4RY

Advantage of the elliptic functions and of the more general functions
of Schwarz for fluid mechanics. Flows outside and inside polygons.
Application to the calculation of an elbow diffuser for a wind tunnel.
Properties of the elliptic integrals of the first kind and of the elliptic
functions. Properties of the theia functions and decomposition of the
elliptic fictions into products of theta functions. Properties of the
zeta functions. Decomposition of the elliptic functions into sums of
zeta functions and calculation of the elliytic integrals. Applications
to the calculation of wing profiles, of compressor profiles, and to the
study of the vibrations of airplane wings and of wxupressor vanes.

The manuscript of the present paper was checked byMr. Eichelbremer
M

W%O corrected several imperfections and suggested n~rous
to make reading of the paper easier. However,’the limited

● not permit filling in more than an incomplete knowledge of
of analytic functions.

improvements
subject does
the properties

INTRODUCTION

The solutions of a very large-number of problems in fluid mechanics
are expressed with the aid of elliptic functions. The mechanism of the
role of these functions is not difficult to analyze.

From one point of view, the elliptic functions can be considered as
the simplest ones (after the exponential>and circular ones which they
generalize) smong the solutlons of Mfferential equations whose coeffi-
cients are polynomials. Thus, it is natural that one must resort to
elliptic functions when a somewhat close approximation is desired.

From another more geometrical view point, the majority of the prob-
lems which can be solved with the aid of exponential and circular func-
tions are related to schemes which assemble the given quantities on a

*“Ies Fonctions et Int~grales Elliptiques a Module R6el en M6canique
des Fluides,” ONERA, Publication No. 71, 1954.

NACA Revfewer’s note: The original French publfcatton contains cer-
tain typographical errors and obvious omissions in equations that have
been corrected without comment.
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unique segment or else on a .~ique curve or on a family of curves, deduced
one from another by a simple periodicity. As soon as the given parameters
are on two separate chves or on a family of curves deduced one from
another by a double periodicity, the elliptic functions are introduced.

The elliptic functions are analytic functions, the field of which
represents directly the plane flow of an ideal incompressible fluid.
The conformal transformations allow the association of the fields of flow
around very different obstacles.” On the other hand, the study of the
flow of compressible fluids is largely based upon the acquired knowledge
of analytic functions, at least as far as search for approximations by
various artifices is concerned.

Among these artifices one must mention the study of the hodograph,
that is, of’the potential of the plane flow of a comp~ssible fluid repre-
sented with the aid of the velocity. The relation between the potential
and the velocity”is in fact much closer to the one expressed by an ana-
lytic function than the relation between the.potential and the coordinates
in the physical plane. ‘Thetheory of conical flows satisfying an ecpation
which is linearized by approximation, on the other hand, leads to the
study of the three-dimensional flow of a compressible fluid in terms of
the plane flow of an incompressible fluid. Finally, the projection of
the velocity of the almost uniform flow of a compressible fluid onto a
plane perpendicular to the mean direction of this velocity is approxi-
mately the velocity of the flow of an incompressible fhid. The nearer
the Mach number of the mean flow is to unity, the closer is the
approximation.

The theory of the elliptic functions Is generally very little knon—
among engineers, not so much for want of mathematical treatises as because
of the lack of work establishing the connection between these functions
and the flows which they can represent. One finds quite often a thoroughly
documented treatise which does not contain a single figure.

The present paper uses largely the geometrical methods taught in
1930 at the Ecole d’Application du G6nie Maritime by the Institute mem-
ber, Mr. Emile Barrillon. It does not attempt the rigorousness to be found
in the mathematical treatments but the.intuilziveand quick solution.of
the problems, The general theorems relative to the analytic functions
permit a justification of the exactness and uniqueness of the solutions
found. -

Although the paper belon@ in the domain-of applied mathematics, it
establishes some properties of “theelliptic-functions which are, to our
knowledge, original. ““ .

—

-“t

*

—

. . .

“x-
——
—.

.

=-.
..,-
..-”



NACA TM 1435 3

1. SCHWARZ!

1.0 Flow Outside

TRANSFORMATION

or Inside a Polygon

Th’elater developments will show that the e31iptic functions with
real modulus and the integrals which csm be attached to them represent
flows outside and inside quadrirectangular polygons. They generalize
the circular functions which are associated with flows limited by
birectangular polygons and are themselves p-icular cases of the Schwarz
functions defining the flows outside or inside arbitrary polygons.
Finally, Schwarz‘ functions are the shplest of the automorphic (or
Fuchsian) functions of Poincar~.

Without aspiring to such large generalizations for the limited sub-
ject of the present paper, although the geometrical methods are of a
character to facilitate the understanding and to generalize the applica-
tion of poincar~’s functions, it iS useffi to associate the e~iptic
functions with real modulus to the functions of Schwarz.

Let us recall the principal properties of the analytic functions
which will be useful later on.

. An analytic function is associated with a representative field
constituted by a net of two families of orthogonal curves forming a

e grid. Each curve corresponds to a constant value of the real part or
of the hginary part of the function. For the interpretation in terms
of fluid mechanics, one of the fsmilies corresponds to the equipotentials,
and the other to the stream lines.

An analytic function of a variable, Which itself is an analytic
function of a second variable, is an anal@ic f~ction of the second
variable. Its representative field in the plane of the second variable
may be constructed by a point-by-point conformal correspondence, that
is, locally conserving the angles and the ratios of the len@hs except
of the second order. An analytic function such as the one above which
defines the correspondence between the two variables is thus associated
with a conformal geometrical transformation.

An analytic function defined in the entire plane of a variable dif-
fers only by a constant from the sw of its principal parts in the
neighborhood of all its singular points. If an analytic function is
defined in a limited region of the plane, but if it is real or has a con-
stant imaginary part on the contour of this region, and if it is possible
to make this region correspond, by conformal transformation, to a half

. plane or to the interior of a circle in such a manner that the function
can be defined by analytic continuation in the entire plane of the new

. variable, it differs only by a constant frcm the sum of its principal
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parts in the neighborhood of all its singiilaritiesa=d “%m the sin&-
larities of the analytic continuation in the entire plane of the new

“

variable. ...—-...-—

1.1 Hodograph of the Flow Outside or Inside a Polygon

In accordance with the foregoing review, it suffices to characterize
one flow defining a conformal transformation of the polygon into a circle
or into .sstraight line in.order to determfne all flows containing doublets>
sources, sinks, or vortices in limited nuniberor distributed on the curves
in infinite n~ber. These flows will, in fact, be associated with an
analytic function, determined except for one constant for these enumerated
singularities and their images, by inversion with respect to the circle
or by symmetry with respect to the straight line.

—

For reasons of symmetry, the retained fundamental flow will be that
of a circulation around the polygon or that of an isolated vortex inside
the polygoti. —.—

Let u be the complex variable in the plane of the polygon and
X(u) the complex potential of the flow whose real part is the potential
of the velocities, while a streamline corresponds to ii-constantvalue of
the imaginary part. We can select X real on the contouz of the polygon

b

(figs. 1 and 2). .
.-

●“
The velocity has a constant d:rection on every side of the polygon.

This property may be easily characterized by use of the hodograph, that
iB to say, of the velocity”or also of its inverse, studied as a function
of x

—.—

where p is the inverse of the intensity of the velocity, and e the .
angle of inclination of the velocity, cons@nt on one side of the polygon. .

-.

Even more convenient w~ll be the study of the logarithmic hodogyaph .=--

the imaginary part of which is a constant on one side of the polygon cor-
responding, in addition, to the real axis of the X- plane or to the circle

ix
of radius 1 in the plane of the variable z = e . The-variable z will

s

always be associated with the function X in the following calculations.
Comparison of the figures 1 or 2 tith figure l(a) shows, in fact, that the .
conformal transformation u(z) defined implicitly for X(u) and X(z) .

.—
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nWces the etierior or interior of a polygon correspond to the interior
of a circle. Another transformation u(t), defined further on, will make
the exterior or interior of a polygon correspond to a half plsme.

1.2 General Solution

Let us choose to study ln~ as a function of z = eix. The vertices
of the polygon correspond to the unknown points of the unit circle

‘1>220 ● ●>zk. c .,%, which are singular points of the function u(z).

No other singular point exists, except perhaps at the origin, center of
the circle, which we agree to make correspond to the point at infinity
of the field outside the polygon or to the point of reference of the
field inside the polygon since the desired circulation has no other
singular point outside the polygon but the point at infinity in the case
of external flow, and the center of the chosen vortex in the case of
internal flow.

The constancy of the imaginary part of ln~ on the unit circle in
the plane of the variable z permits defining the analytic continuation
of the function toward the outside of the circle. It is sufficient to
make correspond to z and ln~, for an internal point, the relation
between l/lZ and ln~ + Cte defining an analytic function at the exter-
nal point which is the inverse of the first with respect to the circle.
The two functions join on the circle where z = l/~ and

ln~ =Inp-ie

It suffices to adopt as constant 2i.0,that is to say, the angle of
inclination of the side of the polygon multiplied by 2i, arranging cuts
between the singular points and, for instance, the small-straight lines
extending the radii (fig. 3).

The mode of analytic continuation shows that there exists no singu-
lar point outside the
points are thus Iomwn
singularities.

In the proximity

behaves like

circle, except perhaps at infinity. All singular
and the function may be defined by the sum of its

of a vertex uk of the polygon, the function x(u)

where ~ is the angle at the vertex measured toward the fluid.

Consequently,
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%
u- u~=c~(x-xk) +.. .

Since z(X) = eix ixkis regular at a vertex zk = e ,

%—--1
~ =c~(z - Zk)fi +.. .

.

—

—

h,= p++ z~) + ● . .

—

At infinity, for the flow outside a polygon, and %-roundthe selec~ad ‘- .
vortex for the flow inside a polygon, the function X(u) behaves like a
logarithm

.

x= ti lnu+ . . .
k.. ;

The plus sign corresponds to a flow outside a polygon and the minus ~
sign to a flow inside one. .

. ...-

ln$=*ix+. ..=%lz ““
-.

———

It iS not
singularity is

Finally,

necessary to study the infinity of the z-plane where the
determined by the analytic continuation

—-

ln~ is defined by the sum of its singularities
—

If one notes that
contour “ofthe”polygon

the sw of..thedeviations of the-stre~ on the -
is four right “angles,then

●

()‘kz~-1 =*2 .
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where the plus sign corresponds to the
. sequently, the function ln~ behaves,

On the other hand

flow outside a polygon.
for an infinite z, like

)+xk

iX - ~iXk
i-

z- zk=e = 2ie ein ‘%
2

and

la! =.(%-l)ln(sin+)+C!te

(
%-,X- $3-C

E=~=C~sinY
)

%

J(

x- ~-l
u= c II sin J)

2
dX

The flow outside
spends to real values.
exactly equal to X t
flow.

.

1.3

or inside a regular polygon with n sides corre-
Xk Of X stepped at 2c/n and to values of E&

23r/n. The plus sign corresponds to the efiernal

Extension to

The formula established above

can be generalized.

A zero value of

between two parallel

A value of ~

More Complex Polygons

for values of ~ between O and ~

~ corresponds to a polygon vertex at infinity

sides (fig. 5).

eqyal to 2X corresponds to a point of return

(fig. 6).

A negatLve value of ~ corresponds to two infinite branches

inclined by -~ (fig. 7).

A value of

. between the two
% ‘i@er than ~ corre”syondsto an overlapping

adjoining sides (fig. 8).
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Finally, the formula defines a polygon, for a real X, if
()

$X 3.1
Jf

is a positive or negative integer different from *2..

Even when all values of ~ are contained between O and %, the
choice of the values of ~ for the representation of an a priori given

. .
..—

.- —.——

b

polygon is difficult. It is generally expedient to resort to the elec-
trical analo~, and.the analytic expression is no longer applicable except ‘“
to the exact numerical study in the neighborhood of the

When X

()
%&yh

varies from O to 2LM where m is the

the variable u resumes its initial valu~

singularities.

entire value of

and the polygon

z may be chosencloses. In fact, all cuts in the plane of the variable
outside the unit circle, and the integral of ~.dX on t=hatcir;le is equal

to the integral around an infinitely small circle. Since ~ is, except
for one factor, equivalent to z, the integral —

is itself equivalent to” z, except for
pendent of the integration contour, it

one factor, and, since it is inde- .

is necessarily zero. .—

.
.——

1.4 Change of Reference .-—.—.-

For the flow inside a polygon and for the flow l~ted ‘bya polygon
●

having infinite branches, the vortex of reference was chosen arbitrarily.

If another field or reference X’
_-

is selected, it maybe useful to-
determine its relation with the initial reference X.

‘x, the field X’In the plane of the variable z = e is that of a
vortex inside the unit circle. It is, exceptfor one constant, defined
by this singularity”situatedat a“point the complex variable of which

will be denoted by &iP and by the image of the latter with respect ‘
to the circle.

It is convenient to make a change of axes which makes the symmetry

‘i~ as the variable.evident, taking ze The new function X’ then is ‘
.

) ( )-ip-e~
xf = -i l.n(ze-ip - e-a + i In ze +p’-ia

.

..
—
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The imaginary part of the constant
. should be real on the unit circle in the

tour of the polygon.

-ia was chosen so that X!
plane of z, Image of the con-

If one sets z’ = e‘x’, the relation between z’ and Z iS
homographic

(z,<i~’)(Z<i$ . ea(.le_ip’ + Z<’P)+1.0

The relation between X’
venient for the real values

tan “ - “
2

and X may be put in another form, con-

X -Ptan — +tanh~=O
2

This expression shows the advantage

X-P
t(u,p) = tan— =

2

of the function

-i z - eifi

z + ei~

which is real on the contour of the polygon and depends on a real param-
. eter P. The above formula shows that t(z,j3) is represented in the

z-plane by a doublet on the circumference at the point z = -ei~, assuming
the unit circle as a streamline. The conformal transformation z(u) thus

. makes the function t(u) correspond to t(z); this function t(u) is
represented in the field of the variable u by a doublet on a side or at
a vertex of the polygon (fig. 10), according to whether the value chosen
for ~ does not or does correspond to the vertex of the polygon in the
transformation z(u).

When no reason of symmetry makes it advisable to prefer the func-

tions Xor z=eix for defining the conformal transformation of a
polygon into a circle, it is often convenient to utilize a transforma-
tion t(u,~) for a judicious value of ~ which makes the real axis of
t correspond to the polygon, and one of the half-planes limited by the
real axis to the interior or to the exterior of
formation t(u,~) maybe defined directlyby

4)(%=%(’+’2)-1-*‘-1‘t -

the polygon. The trans-

where
a

.
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This expression is suitable only when the doublet of t(z) has not
been chosen at a vertex of the polygon. If, on the contrary, j3=x~+sc, ●

the expression maintains the same form but the term corresponding to- ~

must be omitted in each of the products.

The change of reference t
a/2

= tanh ~ is .particularlyconvenient

with the latter expressions. It shows that ~ has the same form as
dt‘

~“ which was obviously necessary.
—

dt

For the flow inside a polygon, z(~.1)= -2 and the term in

1 + tz disappears. In the other cases, the presence of this term indi-
cates the existence of a point at infinity or of a critical point at the
center of the vortex X(u).

If all.values of @k are integer multiples of TI, the expression

‘u is a rational fraction of t and the integral is expressed with the
z
aid of rational fractions and of logarithms, that is, of functions which
are the inverse of exponential or circular functions.

If one of the values of @k is an odd multiple of rt/2,there exists .

at least one other value of ~ of this tyye if all others are multiples

of IT, since the sum of the values-of @k is a multiple of ~. The
.

B

polygon has then two right angles and du/dt which is a square root of
a polynomial of the second degree, multiplied by a rational fraction in
t, is again integrated with the aid of rational functions and of exponen-
tial or circular functions.

. .

If three values of ~ are odd multiples of Jc/2jthere exists a

fourth value of ~ of this type forallotherp to be multiples of n.—
The polygon has then four right angles, and ‘du/dt is the square root of
a polynomial of the fourth degree in t, multiplied by a rational function.
The function u(t) is called an elliptic integral and its properties will
be studied in the following chapters. 1

—.. —
1.5 Field of Doublets or of Sources and Vortices in a Polygon

With the use of a.confo~ t“ransfoz%ationwhich makes a fraction of
the plane limited by a polygon correspond to the interior of a circle or
to a half plane, it is easy to study the field F(u) of doublets or of
sources and sinks limited by a polygon which is transformed into a field
defined in the entire plane by analytic continuation with the aid of images

m

with respect.to the circle or with respect to the real axis.
.—.—-. .

-..-
.U

.-—.. —
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We shall choose to utilize a transformation t(u) for studying the
. field F(u) which is transformed into F(t) defined in the entire plane

by symnetry around the real axis of t.

The sum of the singularities of doublets, or of poles of a higher
order forms a rational fraction Fl(t) the analytic continuation of

which is ~l(t), obtained by replacing the coefficients by their con-
jugates. The field F(t) = Fl(t) +l?l(t) is a rational fraction with

real coefficients. Inversely, such a rational fraction defines by a
transformation t(u) a field of poles F(u) admitting a polygonal
streamline.

The singularities corresponding to sources, sinks, and vortices are
logarithms. The function F(u) becomes, after the transformation t(u)

F(t) =
[

2Al.n(t-
1

t~) +Iln(t - +3)

Inversely, an expression of this form Qefines a
sources which contains, except when Z(A+A)=O, a
tour of the polygon, for infinite t.

i-c te

field of vortex
somce on”the con-

A-frequently encountered particular case corresponds to the sources
and sinks, the strengths of which are equal or are in a simple fractional
relationship. The function F(t) is then the logarithm of a rational

* fraction.

The field of a line of sources or of vortices is

where A(s) is an arbitrary intensity distributed on

defined by

fs)d=

the line C as a
function of a parameter s which can be the curvilinear abscissa. The” ‘:
intensity A(s)ds is real for sources and purely imaginary for vortices.

1.6 halytic Continuation, Periods, Case of Reduction

The analytic continuation of a real function (or one with a constant
imaginary Part) on each of the sides of a polygon is obtained by successive— .-.
symmetries with respect to the sides.
generally multiform and the procedure

. symmetries.

The continuation is periodical.
. respect to a side of the polygon, the

The-continuation thus defined is
followed depends on the order of the

Two successive symmetries, one with
other with respect to the homologue
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of another side in the first symmetry, are equivalent
of a translation and of a rotation by an angle double
sides.

. ..-
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to the combination .._
that of the two”

.-= .— -

If the symmetries are combined in such a manner:that the rotations
have as their sum a multiple of ~ without the translation being zero,
the function F(u) admits this translation as the period.

Figure.11 illustrates the constructing of a period in the case of a . .
triangle.

.

The rotation after the sixth symmet~”-is

.—
-2a - 25 -27=-af

For the rectangles and the equilateral.triangles,the symmetries
show the way, and the sense of description Which is inverted after each
symmetry, is reproduced after rotation around a vertex. A function F(u),
which is real on the contour of the rectangie or of the triangle, is then
uniformly continued. For regular hexagons,_:Lthesymmetries again show the
way but two turns must be described around a“Vertex in order to reproduce
the sense of description. We shall find fi~lly that the uniformity of
the function defined in the entire plane, ccnnbinedwith the double perio- - .
dicity, is characteristic of elliptic functions. ‘-

The analytic continuation by symmetries permits utilizing, for the .

study of a symmetrical flow in & polygon, the transfotmatton rektiVe to ‘“
the half polygon limited by the axis of symmetry. In order to study, for
instance, the field F(u) of a doublet on the axis of symmetry of a
quadrilateral with a circulation such that the stagnation points are at
the vertices (fig. 12(L3)),it will be convenient to utilize the trans-
formation t(u) relative to one of the triangles (fig. J2(b)) and con- ...
tinued analytically in the other

..-=-.— —

.— ---

E-1 g-l
*“= (t - l)fi (t + l)fi .—

In the plane of the variable t, the ffiction F(~) has the appear-
ance represented by figure 12(c). The cuts will be eliminated by the
classical transformation 2t = s + 1/s and.the function F(s), uniform
in the entire plane, will be defined by its singularities -.

id.)
F(s) = ‘e . +

s - em

-h
iB ln(s- eio)+ ‘e -ti-iB I.n(s- e-io)+C .

s-e
.

The condition of separation of the stream at C in the F(u)-plane
imposes an infinite branch in the F(t)-plfie-%nd a stagnation point at

. .
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the origin in the F(s).plane, either with dF/ds being zero for s = O
or else B = -A cot u. The constants m, A, C, remain arbitrary. The
first defines the position of the doublet in the F(u)-plane, the others
fix the scale and the origin of F. Finally, the field F(u) to be
studied is defined parametrically by F(s) calculated above and u(t)
defined by Integration of du~dt whose variable t is itself a function
of s.

Another particular case of reduction pertains to the flows l~ted
by an equilateral triangle which can be related to flows inside a particu-
lar rectangle, that is, as we shall see, to the elliptic functions and
integrals.

In fact, we
of the triangle,

If we set

then

shall study the field of a doublet at one of the vertices
corresponding to a function t(u) defined by

and y(u) defines, as the later chapters will show, an elliptic integral
with a real modulus.

In general, numerous cases of reduction of the functions of Schwarz
exist which may be found by analytical or geometrical methods. The sub-
ject of the present report is limited to the study of the reductions of
the elliptic functions and integrals with real modulus which till form
the subJect of the following chapters.

1.7 Examples of Application

Assume that turning vanes .for a right-angle elbow diffuser intended
for a wind tunnel have to be defined.

One intends to construct the vanes very simply by means of one metal
sheet reinforced tith the aid of a second, soldered to the first (fig. 13).
For the setup of the calculation, the thickness of the sheets is neglected
and the regions of the trailing edge and the leading edge are assumed to be



-.—-.

14

6traight. It is “desired,
avoid its becoming bent.

—
—

NiiCA!lM1435

—
moreover, to orient the leading edge so as to *.-.

Let F(z) be the con@ex potential of the flows (fig. 14). To
choose the distribution of velocities, it is convenient to construct the
inverse hodogbaph

~(f) = g

Let us follow the streamline which divides at the leading edge
(figs. llandl~).

FromB to C, the direction is constant and ~ varies on a radius
inclined by e,

.—
..—-.

.-

OBc .,.

From C to D, the direction of ~ changes and its intensity increases.
Its extremity describes the curve CD. .-.

From D to E, the direction is again constant and ~ describes the

radius DE, inclined by $+-d.

The same reasoning applied to the upper surface of the vane fixes c

as limits of the field F(g) a curvilinear quadrilateral CDDIC’. The
variation of the velocity will be quite continuous if logarithmic spirals
are chosen for the curve; CD and CiD’.

Iet us now carry out the transformation ln~. The
quamilateral is transformed into a parallelogram (fig.
itself corresponds to a circle or to a straight line by
transformation (fig. 16(b))

— — .+

curvilinear
16(a)), which
means of a Schwarz

_L+~ “d(ln~) _
.L-b

dx
co (sin x ) 2 sin(~ - x) 2

where the real part is chosen for O<X<X1 .and where Co isareal

Constant determined by t“hecondition that the imaginary variation of .ln~
between C!and D is

— —

●

.-.
.“. —

<.
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In order to choose the value of XA correspondi~ tc the image of

the point at infinity upstream, one till make X vary by imaginary values,
starting from an arbitrary real value ‘2 such that O < X2 < Xl

stopping the integration at the value Xl = X2 +

tion is satisfied. One will operate in the same

l-~
-x)]-z dX

lnp such that this equa-

manner for defining XG~

corresponding to the image at infinity downstream, starting from a
value fl+x ~ such that O c X < Xl

3

Practically, for sufficiently small values of e and 61

It remains to define

the plane of the variable

variable eix. This field
i%

source vortices in: e

respect to the unit circle

F(X), the field of the initial potenttal in

()X, or rather F e
ix

in the plsae of th~

is determined by its singularities which are

and ~% as well as in their images with

in the plane of eiX (fig. 17).

The strength of a sink is equal to the strength of a source, and
may be determined exactly by the condition that the imaginary part of F
varies by 1 from one vane to the neti

(~F=(l+i tana)lneix-e )
ix2-T2

(-(l+ itan P)lnei X+e ix3-73) +

((1 - i tan a)ln eix - e
-ix3+73) - (1 -

(
ix

itan~)lne +e
-ix5+?13)

.
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!lIheconstants tan a and tan ~, put in this form for facilitating
the ultimate notation, must be such that the complex variable z in the
plane of the physical variable will be uniform. For this it is necessary

J
that the integral ~ dF taken on the contour CDD’C’ of the hodographbe

zero (fig. 15). Since the function F presents singula~ities only at A-
and G inside the contour, the latter may be replaced by a Ioq enclosing
A and G (fig. 18). One will note that —

where ~ and dF/dX are uniform functions of x inside the contour.

The portions of the integration on the two branches of the loop con-
necting A and G thus compensate one another, &nd it suffices to evaluate
the residues at A and G. -...

In the neighborhood of A

since the first logarithm of the expression of F increases by ~i for
a contour enclosing A, and the others are uniform. Liketiise,in the
neighborhood of G

—

The

For

and

complex variable z will be uniform if

i(l+ i tan~){A - i(l i-i tan ~)~G = O

,ei(a-~)cos ~ KG —
—= .
cosa LA

-,
..

a deviation by a right angle, the argument of ~G/~A is

“a - b=+ —-.

II~G‘ana=-cotp=ii

---

.-.

.-

..
-—.

—
.

.

—

.-

*

.
.—
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The pitch of the
.

tour surrounding A or

i(l + i

17

vanes is the variation of
J
~ dl? for a closed con-

G. This variation has already been calculated above:

tan u)~A = ieia ~ = i(KA + KG)COE a

The numerical calculation of the profile, for a real X, offers no
difficulties. One must especially be careful to choose correctly the
arbitrary initial values; the hodograph methcd prohibits fixing a priori
the geometrical values in the physical plane. The angles e and e’,
for instance, determine indirectly the ratio between the chord of the
profiles and the pitch of the vanes, for it is clear that with short
profiles considerable velocity differences between infinity upstream and
the leading edge, on one hand, between the trailing edge and infinity
downstresn, on the other, must be accepted. In compensation, the given
conditions in the hodograph plane permit imposing on the velocity a quite
continuous variation favorable to a sound flow of the real fluid.

There exist methods of electrical analogy more powerful and less
laborious for designing lattices of blades.

The exsmple above is intended especially for illustrating a study
- of analytic functions, performed in a manner suited to the needs of

engineers.

2. EIZZF’I’ICINTEGRALS OF T3E FIRSI KIND

2.0 Definition

AND ELLIPTIC FUNCTIONS

The elliptic integral of the first kind with real modulus is defined
by

f

x
u= dx

0 @ - X2)(1 - k2x2)

The radical is positive for x = O. The coefficient k is real and

smaller than one. Its square k2 is the modulus. The inverse function
is denoted by

x= sn(u,k)
.

or, more simply, by sn u when k does not vary in the course of the
calculations. To this furictionare associated.
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X2 =dnu= 11~

where the radicals are positive for u = O.

The inverse functions of cn u and dn u may be defined directly
by integrals

I

xl
u=-

1

1

X2
u=-

1

They could therefore be

.-
dx.

.
..

.-...- —
.—

—

c .

J(1- ‘x’
)( )-1 + k2 + X22

included in the definition of 6. u if the
restrictions fixed for the choice k were lifted; the modulus is only
under the restriction that it be real. It is more convenient for what
follows to use the three functions for an equal value of k, smaller than
one. .-

The two functions ,s. u and dn u are--particul=-cases of the
functions t(u) defined in paragraph 1.4 and determine flows around
doublets in a rectangle. The function cn u likewise defines a flow
containing doublets, but with exchange of output between the doublets.—

The three functions are represented by figure 19. The extension of
the field of c. u by symmetry around a vertical side would complete
the rectangle along which cn u is real but showing that this function
is not, like sn u and dn u, one of the functions t(u) defined in the
preceding chapter for an arbitrary polygon. “Its field ~ontains two doub-
lets on the perimeter of the rectangle.

The analytic continuations of the functions sn u, cn u, d. u,
defined by symmetries around the sides of the rectangles are uniform and
periodical. The same is true for any rationd,function of the three func-
tions above which is called an elliptic function with real modulus. Such
a function is not generally real on the contoti of a rectangle and does
no longer define a flow in a rectangle.

.-
The derivatives of the functions sn u, c. u, d. u result hmaedi-

ately from their definitions
—.

-...:

—.

. .-.

—.-.—

-.
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&(sn u) =Cnudnu

&(cn u) =-snudnu

&n u) = -k2sn u cn u

In order to normalize the three functions as in the previous chapter
in linking them to the field of the vortex at the center of the rectangle,
it suffices to set

k = sin G

x= sin Xsnu=—
sin @

u=
J J

dX

O’-’ 0x2#in”-x
Sine+x El+x+x E#+fi-”x

T
— sin —
2

sin
2 2

The expressions of dn u and cn u as functions of X are

dn u.=-COB .x

cnu=
sin @l

The derivative of x(u) is

The function X(u) is periodic except for a multiple of ~ which
depends on the chosen sections among the vortices. Since the direction
of the vortices is reversed by syuunetry,the periods are twice the sides
of the defining rectangle of X(u), for instance 4K and 4iK’ where
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K=
r~

dx

o sin20 - sin2X
.

-. ---

J
fl/2

dx =i
f

Ye/2-@
iKl = ()‘;-x

@ sin% - sin2X o

.ls’n2k-9-s’n2@ -x) ._

The function X(U) a&nits, moreover, the period 2K + 2iKf since
two successive symmetries reestablish the direction of’the vortices.

2.1 Logarithms of the Elliptic Functions
—

The logarithm of an elliptic function, multiplied by a complex coef-
ficient, is represented by the doubly periodic field of source vortices
and of sink vortices, corresponding to the poles and t_othe zeros of the
ellirhic function. The sum of such logarithms is of the ssme nature but,
if t~e coefficients of the
intensities of the sources

The logarithms of sn

In sn

logarithms ~ave no simple common measure, the-
and the circulations of the vortices are varied. .

u> cn u, dn u define the-fields of figure 21

u= lnsin X-l.nsin G ,F ,

-.

-.

lndnu=lncosx” —

If the above fielps are derived graphically, there corresponds to -
each source or sink a doublet, and to each straight line on which a func-
tion has a constant imaginary part while “du” is real or purely imaginary,
corresponds a real or purely imaginary value of the derivative. -.> .,—..— -.

This operation furnishes the fields of figure 22 “-
—

-.

&@‘n] ‘-S”:: u ‘-
2 snucnu

&Eti dnu] =-sin@
dn u
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The last field is that of the function sn u, except for one con-
stant and for one factor, for a ratio of the periods twice that of the
original function. The conjugate field of the first, with, for instance,
i cnu dnu/snu, corresponds to the function dn u for a ratio of the
periods half that of the original function, in addition, with a change
of origin. The later calculations will furnish more convenient methods
for multiplying or dividing the ratio of the periods.

If the field of the logarithm of an elliptic function is that of
source vortices, the inverse does not hold true, as the later study will

●

show. Even in the case where the representation of a field of source
vortices is possible by the logarithm of an elliptic function, the finding
of this function is difficult. The following exsmple which will soon be
useful shows the origin of the difficulty.

Let the function

cnu-cnu
F(u) =ln 1

cnu- cn U2

be selected for representing a source of the strength 2n at u = U1
feeding a sink, or a source of intensity -2x, at u = U2.

The field of F(u) contains actually sources of all values of u
for which cn u = cn U1

u= U1

U=-u 1

u= U1 + 2K + 2iK’

u= -Ul + ~+ 2iK’

and at all points deviating from the preceding ones by multiples of 4K
and of kiK’. It is sometimes possible to eliminate the parasitic singu-
larities introduced in order to consene only those whose representation
is desired.

A particular case is that of a field of source vortices inside a
rectangle which has already been treated for an arbitrary polygon. The
logarithm then allows for a constant imaginary part on the contour of

‘x(u) letis, by analytic con-the rectangle and the transformation z = e
tinuation to the exterior of the circle of radius 1 in the z-plane, to a
field of source vortices defined in the entire plane.
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F(u) = z ~ ln~(u) - z(unjJ

where
.-..- .-...- “

z =dnu+isin@snu . ->

If, in particular, the values of the coefficients

hers, the function F is the logarithm of an elliptic

& are real num-

i’unction. “

2.2 Change of Origin and Theorem of Addition
.

The problem of change of origin for an arbitrary elliptic function
can be reduced to the problem of change of origin of the function x(u),
that is to say, to the definition of X(u + v) as a function of X(u),
since the elliptic functions are expressed as functions of X.

The study may be carried out by conformal transfo~tions, first for
a real v, then for a purely imaginary v, and finally for a combination.

It is more direct and more convenient to define the function X(u+.v)
by its singularities in the u-plane which are vortices with the circula- -
tion *2n. The conjugate field iX(u + v) is that of sources of intensi-
ties *~.

.

This is a case where it is possible to combine the singularities of
elementary elliptic functions, and one finds .- :.

—

[-

2ix(u+v)=ln:::- cn(v -

J

iK’) cn(u+ iK’) - cn(v+ 2iK’) + ~te
cn(v + iK’) cn(u - iK’) - cn(v - 2iK’

The singularities of the second term arej in fact,-partly those of
sources of i;tensity ~ at-the following points, defined except
multiples of 4K and of 4iK’

v - iK’ -v + iK’ v+iK’+2K -v.- iK~ + z

v +-IK’ -v + iKl v- iKt+2K -V-iKt+2K

and partly those of s-inksof intensity % at

v + iK’ -v - iK’ v - iK’ + 2K -v+iK’+2K

v - iK1 -v - iK’ v+iK’+2K -v + iK~”+ 2K
,.

still except for multiples of 4K and of 4iK’.

for

.-

—

4

—m

— -...

—



.

NACA !IM~435
23

Some of these singularities compensate one another, whereas the
effects of the others are additive. The field of the second term is
definitely that of sources of intensity 4fi at

-v + iK’ -v - iK’ + 2K

and of sinks OF intensity 4Yr at

-v - iK’ -v + iK’ + 2K

which are, of course, the singularities of 2ix(u+ v).

If v and u tend successively toward zero, the constant
as zero.

appears

It remains to link cn(u - ~’) = -cn(u+ iK’) to X(u), that is,
to treat the problem of change of origin initially posed in the parti-
cular case where v = *iK~.

The function i cn(u - iK’) is real (fig. 24) on the defining
rectangle of X(u). It suffices therefore to define it in the plane of

z eix(u) where it is represented by doublets at +1 and -1=

i cn(u -

The constant C2 may

u= K+ iK’

It is zero

iK’) =

=

i i—- —+C1
2+12-1

-cot x(u) + C2

be specified by

where cn u = O and X(u) =;

i cn(u - iK’) = -cot x(u) =- ‘iU
sin @ sn u

The formula of the change of origin assumes, consequently, the form

[
2ix(u+v)=lnsinesnv Cnu-ibvxsinesnu Cnv

-idnu-

sin@snvcnu+idn v sinQsnucnv+idn u

X(u+ v) = arc tsn~cnv tan X(u)] + arc tan~nu tan X(v)]
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.-

From this relationship result the classical addition-.

sn(u + v) =
snucnvdnv+snv cnudmu

1. 2sin2@ sn2u sn v

NACATM 143’3

formulas

.-.

cn(u+v)=cnucnv -snudnusnvdnv

1 - sin% sn%sn%
.

dn(u+.v)=bu’tiv-
s.in% sn ~cn u sn v cn v

1- sin% sn% sn%

where the denominator is the square of the common mod~us of the four
terms which appear in the expression of 2ix(u+ v).

If one has set v = U1 and v + u = -U2, the functions X(u), X(ul),

X(u2) play symmetrical roles for

U+u 1“%=0 -....

It is easy
three functions

to establish several symmetrical relations between the
X, but these relations have the disadvantage of not

defining each of the functions from the two others in a uni~orm manner.

The addition formulas are valid for-any arbitrary “u and v, but
for a real u and a purely imaginary v, they reduce the calculation
of the X function regarding a complex variable to the calculation of
this function for the real values and the purely imaginary values. It
is sufficient to change in the formulas v to -iv.

More conveniently, one may note that the mode of definition of x
by a symmetrical vortex establishes the relation

.

Xp+iv, ]=fisin ~ ~+x~-K’, cos~]

or simplifying the notation ..
.-

x(K+iv)=:+X’(v -K’)

sn(K + iv) =
sin[X(K+ iv~ = COSIX’(V - K’~ = dn~v - K’)

sin @ sin G sin G
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dn(K+ iV) = COS [X(K + iv)] = -sin~’ (v -

i
cn(K + iv) = 1 -

sn2(K + tv) = ~i

sin2Q

25

K’)] = -COS @ Sn(V - K’)

cot Elcn(v - K’)

It is then indicated to replace in the addition formulas u by
u- K, and V by -K - iv. The functions of u + iv will thus be
expressed with the aid of functions of u - K and of v - K’; the addi-
tion formulas, in their no- forms, permit transforming these functions.

The calculation leads to the classical formulas

X(u+ iv) = arc tan[1tan x(u)

[ 1+iarg tanh cnu tan X’(v)tan~
cn’v

sn(u i-iv) = snudn’v+icnu dnusnlvcnv

R sn12Vcnf2v+ sin2@ sn

cnu cn’ v - i sn u dn u sn’ v dn’v
cn(u + iv) =

en’% + sin% sn’% sn’2v

dn(u+ iv} =
dnucn’vdn’v- isin%snucnusn’v

en’% + sin% sn% sn’2V

Thus, it is sufficient to calculate X(u) from which the other
functions can be deduced, for the values of @ between O and n/2,
and the real values of u between O and K. However, the addition
formula establishes, moreover, for a change of origin by a fourth of
the real period

Cos 0
dn(u-K)=dn(K-u)=—

dnu

[
cos x(K - ujlcos~(u)] = Cos Q

It suffices therefore to make u vary from O to K/2 where

.
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We remark furthermore that —— r

.n.=L44L41
.

tan G —

and this formula permits calculation of cn u from X(K - u), known from
O to K, without use of a radical. . -f.-

The addition formula of X m&y be written “

X(u -1-v)
[ t=Q 1+ ’rct4!anx(v::m:(K= ~c tan tan X(u)tan X(K- v)

This expression explains why use of the symnetric&l relationships
between the three functions X(u), X(-v), and X(-u - v) is not very
convenient. The function X(u + v) is actually expresied with the aid _
of four nonindependent functions.

One could set up a parallel argument regarding
by a fourth of the imaginary period

sin X(u + IK!) sin X(u) = sine

Another classical means for calculating cn u
radical consists in setting

cnu= Cos q =- QQ&&

sin X
snu=sinCp=—

sin 9

—

a change of origin
... .. .

— .-

wii%out using a
—

v.

dnu= COS 8 cosh ~ = COS X
—
.-

.. .. .

. .

+----

cnu+isn.u2iq)=hcnu
-isnu

—.

21=h’1
sin@ dnu+cnu
sin@dnu-cnu

The fields of the functions. q(u) and v(u) are represented by
figure 25. The functions i(p(u) and ~(u) have fields which present
the same sl.ngularitiesas

.
ln~n u~ and ln[dn u] except for the ratio

of the periods and the origin. This could.furnish a second means for
dotiblingor dividing the ratio ofthe periods by two. .

..—

..-—
._



NACA

.

.

tor,

ml 1435

The derivatives of the functions q and v are

dq=tiu
du

27

g=-sinesnu
du

The functions *, X, ~ therefore integrate, except for one fac-
, the functions sn u, cn u, dn u.

Changes of origin permit integration of other simple elliptic func-
tions with the functions X, p, V calculated for u + K; u + iK’;
u+iK+iK’.

2.3 Gauss and Landen Transformations

The most direct and geometrically most significant method for
studying the doubling of the ratio of the periods consists in the study
of the X(u) function.

Let us consider two functions
()

x(u,k) and Xl U1~~ of the same

origin (fig. 26).

The scale of U1 is chosen in such a manner that the real periods
of the two functions are the sane in the u-plane

~ti
=

The ratios of the periods are

iKl~ i Kl—= .—
K~2K

In the plane of the variable z = eix, the function Xl is repre-

()sented by two vortices at ~ = eix ~ and -Z. inside the unit

circle the circulations of which are t~ ● It is defined by these singu-
brities and their images with respect to the circle.

The minus.sign
stant should become

U1 =U= o.

[1
1

z + Z. z -~
xl.ih-~— + Cte

- Zo z +&
‘o

was introduced into the logarithm
zero when Xl is calculated for

so that the con-
2 = 1 where

—
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[1
220 sin X

xl = 2 arc tan
1 2- Z.

.

At U =K+ iK’, the function X is ~/2 and the function Xl Is

Tc- Ql

.-.

.—

-.

.
.=-. --

—— ● �

✛

w --

.. .-

[12Zofi- % =2 arc tan
1- 220

We remark that

[()]
sin iX ~

iK1=sin Gsn — = i sin
2 2

—

and it appears that G1 is connected with .-

whereas the relation between ‘1 and X

Ell xl
tan ~tan~=

Deriving this last relationship and
~ = X = O, one establishes that

is

sin X

—

—

calculatl.ngthg derivatives for
.- . .. ...—

1

and the transformation is finally

%

[
]. sin[X(U~ COE32~j @n2~]

X(ul, sin@l)
tan ~ tan

2
—

It is possible to deduce-from this the relations of Gauss

[

2 % 1cos,2$,tan ~

(

Sn u
sn ul, sin ~1) =

Q~

1%sn2~lc0s2%‘an22]
COS2 ~ + Sinz

.

.

-

-

—-—
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(Cn Ul> )sin (31 =

.

the use of which is less convenient than that of the trigonometric rela-
tion between the X functions.

Making use of the Gauss transformation, one can obtain from it many
others by change of origin and interchange of the axes with the aid of
the addition formulas. The most frequently used one is the transforma-
tion of Landen which defines the function X2(u2,~) as a function of

X(u,k) for the same origin but a ratio of the real period doubled
(fig. 27).

It is clear that the Gauss transformation applied around the point
~ + iK’2 and for the axes turned by a right angle requires a function

represented by X(u) to correspond to X2 except for a displacement

frcm the origin by -K/2. This geometric consideration guides the
calculations.

First of all, the symmetry of definition of X(u) permits making
a first change of origin

( ) [(X2u2)sin@2 =~+X-iU2-
( )]

~ - iK’2), sin ~ - @2

The transformation of Gauss defines then the vortex in the rectangle
of twice the length-width ratio

tan! - ~)tan~Iiu2+ ‘~ - ~2~ ‘in~- ~, =
( )1]

[(sin X -i% + i%
“- K’&s2k - %)J t=(i - %)]

Finally, a second change of origin leads to the function X(U, sine).
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It remains only to make the calculations
tion formulas of X(u)

“tiththe aid of the addi-

.

—
-.— .-—“.— -L

.- —-. .

[ 1=-dnu+K sine
Z“

Noting that

we find that the addition formula of dn u furnishes

[ 1
.

X(U2, sin~2) = dnu - (1 - cos@)sn u cn u
tan~-

4 2 1- (1 - cos G)sn2u

The notation of this complicated formula has been
is possible to deduce from it Landenls formulas

( )
1 ()-tan2~-~

sn u2, sin G2 =

()
l+taxlz:-$

shnplified. It

.
—

.

.

..

— -— .—._ .—
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() X2

dn(u2, sin G2) =
2tan&Z-

()
~+~m2Yc X2

F-T

..

dn (U2, sin @2) =

1 -[1 - tan2@- ~]sn%

dn u

where
form,

the elliptic functions sn u, cn u, dn u, written

represent

in abbreviated

and so on.

The transformation of Landen permits approximating the logarithmic
derivative of dn u to the fUnctiOn sn u for a doubled ratio of the

The logarithmic derivative of sn u corresponds to a third type of

transformation derived from that of Gauss by a change of origin, with
imaginary ccxnplexvariable, without interchange of the axes.

iq(u) and e~(u) haVe fields tiich CmLikewise, the functions e
be linked to those of the elliptic functions by means of the ratio of
the periods double or half.

2.4 Multiplication or Division of the Ratio of the

Periods by an Odd Integer

Due to its analytic continuation by symmetries, the function X(u)
is represented by a field of vortices of alternate directions. If a
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vortex on p is retained, in the sense of one of the periods, with p
being an odd integer, the field established corresponds again to vor-
tices of alternate directions, that is, to a function X(u) for a ratio
of the periods p times as large. The initial function X(u) there-
fore is the sum of p functions X(u) for ratios of periods p times
as large and being deduced one from another by a displacement of the
origin. This propetiy does not exist if p is an even number as in the
case of the transformations of Gauss and Landen.

.

Let us study first the functions X(u) with the same origin for a
modification of the ~ginary periods (fig. 28), comparable to those of
the Gauss transformation. -

The function X(ul,kl) for which the

period and the real period is p times as
ratio for the function X(u,k)

~_p-1.

x(ul,k~)= ~1

q=-+

Using the addition formula

is defined

[
(-1)’% u +

ratio between the imaginary

small as the corresponding
by Its singularities.

1
—

iqKt
—, k + Cte
P

—.

of X(u) and noting that

one has, since x is odd
..

The constant is zero because, for a convenient dete~ination of the
arc tangents, all terms are zero for U1 = u = O at the origin.

The values of ul and of u are linked, according-to figure 28 ~

‘1 u .
—=.
K1 K .-..

.
The constants kl = sin Q1 and ~ = sin ~ are likewise con-

nected. It suffices to write for u = K the relation between ‘1
and X

- --

.
—

%

—
. . ..

.-

. .

.

:..

.—

●

✎✚

✍✍
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.

.

=p-l

01 =e+2 ‘~- (-1)’ arc tan

‘=1 [*]

Finally, a differentiation of Xl with respect to u furnishes

~= p-l

(
sin 91 cn Ul, )sin @l Kl T

z

~+tan2X(u, sln@jJcn
—=1+2

Coa e

sin ~ cn(u, sin G) K
‘=1 r

~n2 ~,
1.0s G + tan2X(u, sine)

The value of

K1
—=
Kp

Let US study
integer p (fig.

origin.

LJ+ J

~lK may bespecfiied for U1=U=O

[

‘=+
iK1‘

sE#&l+2 ~
(-1)q

~
1

(
,n ~

‘=1 P’
Cos o

)1
now the multiplication of the real period by an odd
29) for functions X(~,~) and X(u,k) of the same

The sane argument leads to writing

‘=J2#

X(u2,k2) = ~ (-@X(u+~, k)+Cte
‘= p-1-— G

That is to say

X@2,k2)= X(u,k) +

The relation between

specified for u = K and

‘=2&

2 r (.1)’ [ (1qKarc tan tan x(u)k)cn ~ k

q=l

~ = sin ~ and k = sin El will also be

U2 = P%

1P---q .~

-% =@+2
[ ($ w)]

~ (-1)’ arc tan tan Q cn

‘=1
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and the relation between
l.ationof the derivatives
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K2 and K will result also from the calcu- —

for u=u2=0 -..

(sin E@ cn u2, sin 82

sin Q cn(u, sin G)

=p-l

~_1+2”q z-(-l)q (l+t=2~)’n(%’ ‘in Q)

q=l (
l+tan2Xcn2$, sine

)

~ = 1 ‘K’2 sin @.—= —
K P iK’ sin @

2

-.

. ..-

The above transformations, combined with those of Gauss and Landen.
permit linking the functions X(u) for the ratios of the periods which-
have an arbitrary fraction as the quotient. However, the calculations
are very compllc&ed, and the tran~formations are es&ciaLLy useful for
the approximate calculation of the elliptic functions.

2.5 The Functions q(u) and I#(u)

The functions q(u) and ~(u) correspond, like
nating vortices or sources and give reason for use of
addition of the singularities.

The function p(u) is defined by

sin (p(u)= sn u

Its addition formula may be
functions.

We simplify the notation by
functions of the variable u, by
those of the variable u + v

cos q(u) = cn

—
.

X(u), to tilter-
● -

the same method of— .
.

.—

u .-

deduced from those of the elliptic—
—
.-

designating by the subscript 1 the
2 those of the variable V, andby 3

snl cn2 dn2 + sn2 cn~ dn~
sin (p3 = smj =

1- sin2t3snl2 sn22

cnl cn2 - snl dnl sn2 dr,t2
cos 93 = cn3 =

1- sin2Elsnl2 S*2

*

--
.-A-

. .

:-.
—
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.

E!iq =
e

cos cp3+ i sin q3 (cnl + i snl dn2) (cn2 + i sn2 dnl )

Cos q3 - i sin 93 = (cnl - i Snl dn2)~n2 - i sn2 dnl)

Tj . . . t.n~dn,] +..c..n[~dnl]

=
[ [ 1..c tan d% tan ql] + arc tan dnl tan 92

For completing the
may note that

dn

symmetry with

u=
[

i tan 9(K

the formula relating to X(u), one

+iK’-
1

u)

The same calculation performed for the function

leads to the addition formula

[ 1

CII1cn2

‘3
=argtanhsin~— — -

dnl dn2

[ 1tsmh ~1 tanh I@
= arg tanh

sin @

arg tanh[sin Q snl sn21
L

- arg tanh

~(u) defined by

@cnu

-1

ianh~l(K -

1

u)tamh $2(K - v)

sin @

The method of superposition for multiplication or division of the
ratio of the periods by an odd integer may be applied to the func-
tions cp(u) and ~(u)
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=p. l

= ~(u,k) + 2 q ~- (-N
[ (J

‘K ~arc tan tan q(u,k)dn —~
P

‘=1 “-

For the function w(u), one must be cautious because this function
is not zero for u = O, and in order to avoid introduct-ionof a constant,
it is convenient to calculate V(K - u) which is zero for u = O.

‘_p -1

*(K - u@l)= & (-l)q~~-u+~,k)
p-1

‘=-~
. “—

~_p-1

= *(K - u,k) + 2 [1~2(-l)qarg t~~fiV(K-u,k)

q=l
()

& ~,k,

—
-..

“q’
*(K - w+v’2)= ~ (-1)%+ - u =,+)P

p-l
q=-r

—
-.

.

~_p-1

[

.

tanh V(K -
()
qK

u,k)cn ~,k
= W(K - u,k) i-2 X2 (-l)q arg tanh

‘=1
()

~qKk-- —)P 1
.2.6 E~ansions in Trigonometrical Series

Since the elliptic functions and their logarithms, the latter except
for a-multiple of 2ifi,are doubly periodic functions of u, it is pos- .

sible to etiinate one of the periods by a logarithmic transformation,
foregoing the s~etry of the roles of the.two perids- .-. -.

.-m-
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We choose to eliminate the period l+K by

2Ki~=lnt
4K

t =

the transformation

e%!

When u increases by 4K, the vsriable t reassumes the same value
as the dliptfc function F(u) which is a uniform function of t. When,
in contrast, u increases by 4iK’, the variable t is multipliedby

~2=e
.a~

and thus is not a uniform function of F since to a single
value of F there corresponds an infinite number of values of t in

geometrical progression with ratio q2.

To the rectangle of the periods of the function x(u), there corre-
sponds in the t plane a ring-shaped area bounded by the circle of the
radius 1 and the circle of the radius q2 (fig. 30) in which the field
of the X function is that of four vortices with the circulations f~
in

iTC(iKt) ~ 3 3
e~= q2 in -q+ in q~

‘2
and in -q

The neighboring rectangles are transformed into rings reduced or
increased in the ratio q2, and finrmllythe X function is defined in
the entire plane by its singularities which are those of alternating vor-

( i)
r+

tices on the real axis of t with real ccm@ex variables *q where
r assumes all integer values, positive or negative.

iX=rj (.l)rlnt-~’$+cte
r.- r+z

t+q

It will be convenient for what follows to distinguish the positive
and the negative values of r by writing

r+~ 1

iX=$J-l)r~t-q 2 ~r-z+t+cte
o $t +qr+zq-r- - t

The constant is zero as it appears when u = X and t = 1.

Coming back to the variable u

[

( r+~ )(-ifilr

‘x=&(-l-)rkl-q 2e

1 + ~r+$eig1)o ( )( )L @L
1+ qr+i e-%? 1- qr+2 e 2K

1- -1
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Since the parameter q is essentitiy smaller than 1, every loga-
rithm can be expanded in series, for the real values of u. The validity

.

of the addition of the series is less evident but it is accepted without
justification

s=02 r=m (r+*)(2+ (as+,),* -(w)i~
ix(u) =

2 ~ ~ (-l)r q [2s+1 e
-e

-= 1

—

The function x(u) is thus represented by a trigonometric series,
the coefficients of which are functions of q, which is itself propor-
tional to the logarithm of the ratio of the periods. The corresponding
value of @ is X(K)

~ ~ (-l)s
E?= —

q+!
~=~ 2s + 1 1 + q2*+l

and this alternating series is rapidly convergent.
.

For Kf = K, in particular, the value of q—
@ is ti/4 whence

The expansion
differentiation

the relation

( 2?)
Y( m (-l)s e- ‘+ m-=
4 ES=o 2s + 1 -(2s+l)fi

l+e

in trigonmnetric series of cn

-1. dXcnu=——= a

sin @ du Ksin @

In particular, the value of

S+*”

5 2s+1S=ol+q

K is defined

is e-fi and that of ..-

u is obtained by

.-

c0sk2s+‘):l

for u = O.

.

.
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.

more
kind.

The above series petit calculation of the elliptic functions much
easily than by numerical integration of the integrals of the first

X=2

= 2

with,

It is equally possible to deduce from the first

in particular,

r

,.,

expansion of X

r+~
q 2sin3

+ arc tan -1

w r+*

e=

11

2 ~ (-l)r arc tan 2q
1 - q2r+l

1 r+icos~-q

The functions q(u) and ~(u) give a basis for comparable calcu-
lations the principal results of which are

l?= *Z&+2~L ~ sin .#u Q
2s s ()-K-S=ll+q
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1s +-

*= -2s q 2 -2s+1 2s + 1S=o l-q C“SK2S+1)=I‘--.
1

.As ‘s+2~+l sin[(2si-1)~]
‘nu-Ksin G S=ol. q

The value of dn u for u = O furnishes an expression of K as
a function of q independent of 0

K=: +a: qs2s
s=ll+q

c

fi=-
2

.
-.

,-

1

2 ——

l+2sqn2
n=lL -1

When the real perid is
is close to 1, and the above

One may then go back to
tageous, with the aid of one

much larger than the imagf~y period, q
expansions do not converge very rapidly.

a ratio of the periods which is more advan- .
of the formulas fiich permit dividing the

ratio of the periods by an odd integer. One may also utilize the above
expansions, within their limits of convergence, for imaginary values of
u of the form u = K + iv (where v is real) up to v = K’/2, then
continpe them by the formula of displacement of a half period.

.—

3. THETA FUNCTIONS

3.0 Advantage of the Theta Functions
—.

The elliptic functions and their logarithms are represented by
singularities of alternating sense; the necessity for this is clear for
those which sre real, or have a real constant psrt on the contour of a
rectangle due to the method of anal~ic continuation by symmetry. This
limits the possibilities of calculation by addition of the singularities

.
..—..

= .—
-. .-

.

.

.=

—

,. .

=

.

—

r

.

-

.—

-.
.-=”
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in the whole of the plane. The difficulty appeared first for the multi-.
plication of the ratio of the periods of the function X(u) by an even
integer. It was also clear for the functions q(u) and ~(u) and, if
we had preferred to consider the logarithms of the elliptic functions,
represented by sources the strength of which is conserved in the course
of the conformal transformations, the difficulty would have continued to
exist for the elliptic functions whose singularities are poles, which are
Just as easy%o add as the logarithms, but whose rules of conservation
affect the residues, that is, the properties of the logarithms which inte-
grate them.

In order to separate the various singularities which reproduce them-
selves periodically at the intervals 4K and 4iK1, tithout associating
them automatic- with singularities of inverse sense, it is desirable
to define a function presenting singularities which are all of the same
sense.

After separating the essential singularities, we have only to con-
sider those of the sources and of the poles. These latter are deduced
from the sources, whatever their order may be, by differentiation. It
suffices therefore to study the sources.

The theta functions are the analytic functions, the logarithms of.
which are represented by the fields of double infinities of re~rly
spaced sources at the vertices of rectangles. One theta function is
linked to the study of the elliptic functions with real modulus whose.
ratio of periods is equal to the ratio of the sides of the rectangle
defining this theta function. In generalizing according to the rules
of reduction of the elliptic functions, it is sufficient that the pro-
portion of these ratios be expressed by a shple fraction, a ratio of
two integers.

An elliptic function with camplex modulus # may likewise be
associated with a theta function corresponding to the field of a double
infinity of spaced sources with pericds the ratio of which ceases to be
purely imaginary. One sees that, if the projection of one period on
another is a shnple fraction, a ratio of two integers, the theta function
will be identical with the theta function associated with elliptic func-
tions of real modulus, except as will be discussed later.

The elliptic functions with imaginary modulus have, so far, only
infrequently been applied in fluid mechanics, and do not come within
the scope of the present study.

i
3.1 Definition of the Theta Functions

The analytic functions are rela.tedto the flow of an incompressible
fluid, and it is not possible to conceive of an infinite number of sources
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without providing for the disposal of their outputs. The theta functions
prohibit placing sinks at finite distances, and one must admit the exist- d
ence of an essential singularity at infinity which characterizes the infi-
nite output of the sources.

It would be possible to reduce the double infinity of the sources to
a single one by logarithmic transformation as %s done in the preceding
chapter for the X(u) function, but it is siqpler to argue directly in
the plane of definition of the theta function for illustrating the mul-
tiplicity of determinations of this function.

The field of a simple infinity of sources, regularly spaced on a
straight llne (fig. 31), is known and corresponds to the analytic function

..

Thus, it is possible to define a theta function by superposition of
terms of the form

L cosh(rx ~) j

where the denaninator ch(M &) was introduced in

the logarithm tends toward zero when r increases
z and b/a remain constant.

‘e=F ‘[*I+
r=-m

~( sin Itz + rib

e=ctex a )

r =-m cosh fir&

.

such a manner that .

indefinitely while

~te

However, this shows the possibilityy of defining another theta func-
tion by interchanging the roles of a and b, and of defining an infhit y
of theta functions - combining t~e two first ones after various changes of
origin and adding functions which do not have any singularityy at finite
distance like the circular sine and cosine functions. The singularity
to be retained at inf’inity is therefore not actually determined.

.— -.. .

.

—..—
..-

-—

--
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.

It suffices for the intended applications to choose a single func-
. tion for a given distribution of zeros, and onlv the first definition

given by th= above equation will be re~ained. ~ simple transformation
yields

The constant is chosen real.

The theta function admits the period 2a. It is real when z is
real and when the real part of z is an odd multiple of a/2. It iS
purely imaginary when the real part of z is an even multiple of a/2.
Its field is represented by figure 32.

Since the symmetry of
the scale factor is rather

v+

e(v,q) = 2C0 sin Ytv

the roles of a and b is agreed upon and
inconvenient, the notations are simplified

T = ib—=-$1.nqa q<l

In order to simplify the notation in the calculations which lead
frequently to a displacement of the origin by a quarter period, one
denotes the value of e after such a change of originby 81.

Because of the symnetry of the roles of a and b, masked by the
choice made for the theta function, the calculations lead likewise to
utilizing a displacement OX the origin by T/2, but the func.

‘ions‘k+X4 ‘d ‘Jv+N ‘e ‘Otreal‘en v ‘s ‘ea’o
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) ‘Xv is real when v isThe product 81(v + ~,q e

designated by he2(v,q) and used in the calculations,

s-

—... ..+-

real. It will be .

in p~eference to

If the origin is displaced once more.by T~2,

Hence, the two formulas

%(V+ :J = ‘e-xiv ‘2(v~q) .

‘2(V+m=+ ‘-*iv‘i(v’q)~~ -~
.

In order to complete the symmetry of these two foz&ulas, one chooses
.

A=q -1/4=

Elimination of e~ after change of v and v + ~ in the first

formula furnishes

el(V+ T,q) = # e-2tive~(V,q)
., . ....

Finally, a e3 function can be defined by — ——.-

The functions in e2 and b e3 differ only by the origin of the

ccmrplexvariable and are represented by the ssme field (fig. 33).

Finally, the theta function and the auxiliary functions el~ ez)
.

and f33 may be defined by the infinite products
m..

. . .. .
.-..

--
.-
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.

.

.

.

e(v)d = 2C0 stn Kv fi[ 1 )( ]
2r e~iv ~ 2r e-2fiiv

-q -q
r=l

1

elkd = 2C0 Cos YcvH [’ a“ ea-cilr
l+q )(

2r
l+q

1
~-aiv

r=l

-1 m

e2(v, q) s [ )(coq r ~ (1+q~+l eaiv ~1 + q2&1 e-~iv
r=O

es(vjq) = [ )( ]Co q-~ B (1 - q&l e%iv 1- qa+l e-~iv
r=o I

with the formulas of change of origin by a quarter period, written with-
out mention of the parameter q

(ev +
T)z=

1
iq-r

e-iatv
e3(v)

()elv+T .q ‘i e-ifive2(v)
z!

f33(v+*)=qv)j
13,(r+~)= iq-ke-ifive(v]

()
-1

e2v+$ . q G’e
)

‘ifivcl(v)

and for a displacement by a half period

e(v + I) s -e(v) 1el(v+ 1) = -eI(v)

e2(v+ 1) s e2(v) e3(v+ 1) = e3(v)

J
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e(v -i-T) = -q-l e‘2ifive(v)

-1e~(v + T) = q ~-2iJcv

The last formula may

cl(v)
\

e5(v+ T) s -q-l e-2ifive3(v)

e2(v + T) = & e-2inv e2(v)

.

J
“-

~+

be interpreted. The function e2(v)e admit8

the period T. It is real when the variable v is real.or purely imaginary.
It corresponds to the interchange of the roles of a and b in the initial
notation and its logarithm is represented by figure 34.- —

This remark maybe made more specific:

Each one of the terms of e2(v,q) admits
and can be represented by an infinite product

itself an infinity of zeros

1+ q2W2 e~iv = ( )IT

[

2r+l m ~l+q 2V

s=-~
1

(2s +1) -i(2r+l)~

Hence, the purely formal

%(?,3=Jbe-%)

.
expression

[ 1s=~wfi‘-(26+,)2;(a+1)‘=-m
Ir

This product is not convergent, but an artifice that consists in
arguing in terms of a derivative
coefficients of the factors tend
increase. It is more convenient

[[( III]tiKr
d3 -T =

-2 sgm rgm

I

(2s + 1) + i(2r + l)K’/K

7
In 82 v,e

d
1- a

(2s + 1) -
1.

i(2r + l)K’/K

of-sufficientlyhigh order that the
rapidly toward zero when r or s
to derive a sum by calculating

— . s..

r 2 1

. .

This sum is convergent and shows that the “function
‘&-*) -

which corresponds to the interchange of a and b in the definition of
62 is related to the original functionby .

—.-

.-

—
——

.

.
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The integration furnishes

The periodicity observed above leads to replacing v by v + ~

in this rektion. The formulas for change of origin then furnish

The constant C maybe specified for v = O

Changes of origin permit deducing frm the above formula the group
of formulas for change of axes

%(%==).*$ %(iww
,,(o,e-%) E12((),39

Lw-?=ie.t~-%)ZK# e ~,eK

( “)
3-C-— -g

e, O,e K
()

e,.O,e
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3.2 Expression of the Elliptic Functions and of Their -

Logarithms With the Aid of the Theta Functions
4

An e~iptic function is a rational fraction of sn u, cn u, dn u.
Let m be the degree of its numerator and n the degree of its denomina-
tor with respect to the whole of these Y?unctlons. Except for the case of
reduction, the”reexist, ti.a rectangle of 4K width and 4iKf height,
4 m zeros and4 n poles which canbe determined as roots ofpolyncmi-
als. The numerator, for instsmce, my be written in the form

..

Gm(sn u,cnu) + dnu~.l(snu,cnu)

its roots are smong those of

(~2(snu, cnu) - 1- cn u)k2sn%)~=12(sn u~

This function may be written in the form .

.-

gh(snu) + cnu~-l(s~u)

its roots are among those of

g~2(snu) - (1 - sn%)h~-12(snu) .

This polynomial of degree 4m in sn u has four m roots and
every root defines four zeros in a rectangle of the periods. Among these
16 m zeros, ofiy four m are zeros of the numerator of the elliptic
function since the method that was followed furnishes the zeros of

Gm(snu, ~ cn u) A dn u~.l(snu, A cn u) = O— —

The determination of the roots of a polynomial of high degree can
be difficult unless it is only a matter of numerical calculations. Once
that determination is made, it is easy to separate the convenient roots.

If the degree m of the numerator differs frmn the degree n of
the denominator, the elliptic function presents four poles of the order
m-n or four zeros “ofthe order n - m, with the common poles sn u,
cn u, dn u. Finally, the function presents as many poles as zeros, if
each one is counted with its order. —-

.-
-:
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The logarithm of the

the intensity of which is
or the order of the pole,

49

elliptic function is represented by sources,
the product of %c and the order of the zero
counted negatively. It appears, intuitively,

that this logarithm is definedby these singularities like a sum of -
logarithms of theta functions. ‘Todemonstrate this, it is Just as easy
to reason directly regarding the elliptic function F(u) which can then
be written

r) r)
-%?

F(u) =
‘+x” ””xe~

-bl ‘

r) (+)

f(u)

e—
u-

4K”””xe K

where al, . . ., ~ == the Z=-, bl, . . ., bp the poles after

eventual reduction of the poles common to the numerator and denominator.
If multiple poles or zeros exist, the corresponding theta function appears
with a degree eqpal to the order. Writing that F(u) admits the periods
4K and 4iK’, one will obtain, according to the formulas for dispkcement
of the origin of the theta functions

i&(r+is)

. f(u + 4K) = f(u) f(u+4iK’) =f(u)e

with

r+i.s =bl+. ..+balal. ..-a
P

Its
the

The function f(u) has neither pole nor zero at a finite distance.
logarithm g(u) has no singularity at a finite distance smd follows
s~ler law

g(u+ 4K) = g(u) + 2iYcA

g(u+4iK’) = g(u) + & (r + is) + 2ti~

where X and w sre integers.

Neither has the derivative dg/du a singularity at a finite dis-
tance, and since the derivation of the above formulas shows that it is
doubly periodic, its continuation to infinity does not introduce any.
singularity at infinity. It can therefore only be a constant.
Consequently
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where A and B are constants.

—. .

using
for g(u),

this expression in the law for
one finds

r+is= -4@+ 4Uds

—

displacement_of the periods
.“.

A = inA/2K --

The sum of the complex variables of the poles minus the sum of the
ccmplex variables of the zeros is a multiple of the periods which cer-
tainly proves that it is not possible to represent by an elliptic func-

.—

tlon a function defined by arbitrary singularities as Was indicated in
section 2.1. ,—

Even though the zeros and the poles are defined except for integer
multiples of the periods, it is still possible to choose them in such a
manner that r + is, is zero. In this case A is zero, g(u) and f(u)
are constants:

() ()e=x. ..xe”s,
F(u) = 4K

() ()

x Cte
- bl

e~
4K

x . ● .Xe &
4K

The constant is to be determined for an arbitrary value of the
variable u. The logarithm of the elliptic function F(u) is simulta.
neously determined.

In the simple cases where the zeros and poles are obvious, it is
frequently more convenient not to try to make r i-is zero but to
replace the constant by

Finally, if four zeroi

one will be able to replace

‘(%+9

-.

or four poles differ only by ha~ periods,

the product of the four theta functions by

.-— --

Let us apply to the function sn u which presents the zeros of

()O% and whose poles are the zeros of e~~)

.
..—.

.-
..-.-
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.

or else, choosing U. = K, expressing e as a function of e3, and

noting that sm u, (3, e3 are real with u

Sn u - ‘(*) ~‘3(*)_‘(*) ~‘~(o)

*3(%) %) e3(& %(0)

Likewise

.n u . el(&) ~ e,(.) a-J&) ~ e (0)
dnu=

‘3 (# ‘1(0) ()
e3 & +e2 O)

From the last relation, written for u = K, there results

“=-=[-r=[~;;$q
From the relation pertaining to sn u, written for

results

k [1cl(0)2 = 4q*
=sin Q= —

92(0)

These formulas may be utilized for

-R (l+q2r)-
r=l
co

rr( 1 + q-l )
@3

El, Jointly with
the formulas of 2.6. ‘&her, more convenient formulas will be set up

calculation of

u= ‘+i’t,

4

further on. As in 2.6, when K’ < K, one may interchange the roles-of
the two periods, setting

n’

q’=e -F Inqtlnq=-fip

which permits sti~ using the above formulas for a value of q at most
equal to eq. .,

The fwctions Q, % V maybe defined by

-
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.

(?!IJe2(o) e u
tanq=—

()
e3(o) 61.&

.

. .

. .-

---

3.3 mansions of the Theta Functions in

Trigonmnetric Series
—

.
The logarithms of the E12 and e3 functions maybe expanded in

trigonanetric series like the ~, X, w functions, but it is more
advantageous to directly expand the theta functions in trigonometric
series. .

Let the function be, for instance, e2 which, due to its being .
even and to its periodicity, may be written, for a convenient value of
the constant Co left undetermined in section 3.

.. ->- .— -

m

e2(v,~) = 1+2X
s=1

Inserting this eqmession

m

Cos 2S37V= +~as e2si3was
S=.m

into the relation

e,f + ~,.) . fl <2MV e2(v,.)

and setting the terms equal, one will find

= ~2s-1 s ~(2s-1)+(2s-3)+...+I 62
as %-1 =~

and consequently

m

e2(w) = 1 -1-2 ~ qs2cos 2SYCV
S=l

— .——
.

—.

.

..—.
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( b)= ~:1 ‘s293(vj@ = ep v + 1 + 2 ~ (.1) q Cos 2sltv

IiLkewise “

(2)‘+~ 2

= 2gq CO.(2S + l)JCV
s=0

e(v, q) = -el(v + $,+

( 2!)2s+
=2

%
m (-l)sq sin(2s + l)Ycv
s-

The value of Co resulting from these expressioriswill be retained
hereafter. Setting)-for instance, the two values of 01(0) equal:

~ q(s+ %)2
co = ‘4

[
fi(l+q2r)2
r=l 1

The trigonometric series of the theta functions are very convergent
and convenient for the calculation of these functions and of the elliptic
functions. Unfortunately, the theta functions do not satisfy any s~le
rule of addition permitting calculation of their values for complex values
with the aid of their values for real values.

The values of k and k! corresponding to a value of q may be
calculated by the formulas
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.

22
1+ ,g(.l)%s

(ml [
002

kf =
1= 1

~2(0)J L,+2~qs2J

which result i?mnediatelyfrom the expressi.ons.of the functions sn u,
cn u, dn u, with the aid of the theta functions which @ve been
established in the preceding paragraph.

These formulas are retained for the calculation of k and k’,
in preference to the formulas of 2.6 and 3.2. .—

One will.note, moreover, that the formula established in 2.6 for
the calculation of the quarter period K is written

.

..”
.. —..-—

——

—

—

●

~= [9,(0)]2
.

3.4 “Elliptic Functions With Given Z&os and Poles

If the zeros al”” . ~ =d the poles bl . . . bp of an elliptic

function are

the function

F(u) ~
F(%)

where F(%)

given, obviously, for convenience, satisfying the relation: L
—...- — :-

,- —.
a~”+ . . . ~ =hl+ . . . .+b

P

is defined by
...-—

f3&#)*● ■ f+%)r’ ;:). ● 9 ‘r 3
‘(%+ ● ● ‘(%2)‘F%+- ● ‘(%5)
is an arbitrary constant chosen.a6__the-value of the func- .

tion in a complex variable U. differentfrom those of the zeros’and
the poles. The problem is to Shtithat”it is-possible to express this
function with the aid of the three functions sn u,

.
cnu,”driu.

--
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Let us begin with the
poles. The relation

shnple function admitting two zeros and two

al + az =bl +b2

expresses that the logarithm of the function Is represented by two sources
and two sinks at the vertices of a partielogram. One may also regard it
as corresponding to the superposition of the field of a sink at the center
of the parallelogram which is capable of absorbing the output of the two
sources and of the field of one source feeding the two sinks. Besides,
if the problem is solved when the center of the parallelogr= is at the
origin, the formulas of addition will permit a change in origin. Thus,
it suffices to study

,(~),(q)

*2 &

()4K

This function has the same singularities as ~ - — 1
U1

and,
sn2 ~ sn2 Q

2
choosing as a reference U. = 2iK’

which becomes after

, 1. ‘(%#’&#) (2)
# ~

()
82 & 8(: * $),(;1sn2 Q

2

reduction

1 e 2(0)932(0) e.1
~+)e~+)

sn2 ~ 022(0)
82(2)’7%)

on the other hand, the formulas of addition establish

sn2u l-~nu—=
2 l+dnu

The problem is thus solved for the elementary elliptic function
retained.

Let us go back to the general problem and suppose that the nunioer
of the zeros and of the poles p is a power of two. If this is not the
case, it will still be possible to multiply top and bottom parts by the
ssme theta functions.
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Let us then group the terms two by two:

‘~i~)’(”+)=82(U.
where f(u) is e~ressed as a function of

Likewise

8(U - al~~2)8(- - al~~) .Q2(U -

)+ f(u)

..

cn u, sn u, dn u.

.“

)al+a2+a3+a4

16K .-
g(u)

.

-s -- ---.

Since the sum of the complex variables of t“heroot~is equal to the.
sum of the complex variables of the poles, the method eliminates the
theta functions, and a rational function of sn u, cn u, dn u remainsy ___

3.5 Use of Theta

Theta functions appear useful for
functions and for the investigation of
singularities.

.-

Functions

the calculation of the elliptic
elliptic functions with given ?.r.

-—

They permit establishing more simply the properties of the elliptic “ _
functions demonstrated in the preceding chapter. All demonstrations
were, in fact, based on the possibility of addition of s~arities,
and it is much more convenient to isolate these singularities rather
than search for ccmibinationspermitting compensation of the parasitic
singularities. The formulas for multiplication or division of the ratio
of the periods by an even or odd integer are written very simply

and

E@bd ()=8(V,Cf)8(V+T,Cf) . . . ‘~+ (I? - ~]T, esri(r-l)v-~

el(o,q)

[ 181(o,qr)81(T,qr) . . . 81 (r - l)T,r2

Finally, the theta functions permit calculation of the elliptic
integrals as will be shown in the following chapter.

-.

.

.

.

...+—

.-
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*
We note

tions before
particularly

that it would have been possible to study the theta func-
.

the elliptic functions, but the method would have been
for these uniform functions with double periodiclty, and

would have concealed the generalization to the Schwarz

4. ZETAl?UNCTI~SAND CALWLNI’ION OF THE ELJXPI!IC

4.0 Definition of the Zeta Functions

functions.

INTEGRALS

The theta functions were introduced, in the preceding chapter, by
their logarithms, represented by fields of sources analogous to the
fields of sources and sinks of the logarithms of the elliptic functions.
It appeared there convenient to use the theta functions for the calcula-
tion=; in preference to their logarithms;
the latter whose derivatives are simpler,

A zeta function is the derivative of
function

and likewise Zl,

Derivation of

however, it is better to
in the present chapter.

the logarithm of a theta

Z2> z~ 1 (capital ~) for 61, 62, 63.

the relationships

study

ln~(v+ l,q)] = M~e(v,qjJ

()I_I@v+ ‘r,qg = lr$(v,q)] - 2ifi ~+ :

establishes for the zeta function

Z(v+ l,q) =Z(v,q)

The zeta function
of 2ifi,the imaginary

Z(V+ T,q)

admits the
period T.

= Z(v,q)- 2ifl

real period 1 and, except for a multiple

‘The zeta function thus defined is linked to the function Zn(u,q) of
Jacobiby Z3(v,q) = 2KZn(xv,q). It seemed here more convenient to-~hoose

. the logarithmic derivative of the theta function with respect to its normal
variable v rather than with respect to the normal variable of the elliptic
functions u which is sometimes 4Kv.
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Likewisej the differentiation of the relation

..

given

Z(V+ id = ‘3(v~q) - ‘ii

shows that, when v is real with Z5(v,q) being real , the func-

““n ‘(v+ @ (

)

has a constant imaginary part.

-- .

—.

.

—

On the other hand, the function Z(v,q) admits a pole at each zero
of e(v,q). It is purely imaginary when the real part of v is -1/2, 0,
1/2 since in e has, on these straight lines, a constant imaginary part
when dv is imaginary. The representative field is that of figure 35.

—

4.1 Properties of the Zeta Functions

In the neighborhood of one of the zeros of e, for instance
●

Vl)

the function in e behaves like ln(v- VI)+ Cte, and Z behaves like

l/(v - v~). It admits therefore a double infinity of simple poles of the *..—
same sense, in contrast to the elliptic functions which have singularities
of alternating sense. Just as it has been possible to define the logarithm
of an elliptic function by superposition of logarithms of theta functions,
it will be-possible to define-th~ elliptic function
tion of zeta functions.

Before examining this essential utilization of
it is of interest to study some of their elementary

directly by superposi~

—

the zeta functions,
properties.

If the zeta function represented in figure 35 is .qerivedgraphically,
the field obtained will present a double pole””atthe origin, the deriva-
tive will be real for the real values of v“ and for those values of v
which have T/2 as their imaginary part since zeta and dv are real.
It will also be real on the straight lines corresponding to the real
parts of W -1/2, 0, 1/2, since both dZ and dv are imaginary on
these straight lines. The field is that of figure 36. It is defined
at the interior of rectangles on the contuof which i{ represents a
real function and corresponds to an elliptic functton. .

-.

This function is, except for one constant and one factor, l/sn22Kv
or, in other words,,the fun&ion p(2Cv)
theless prefer to evaluate the derivative

of Weierstrass. We-sh&l never- Q
of the function Z3(v,q) which,

.——
— &.-

. . .
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as we have seen, differs frcm Z(v,q) only by the origin and one con-
stant (fig. 37).

The field is that of a double pole at the center of a rectangle
representing, always, except for one coefficient and one factor, the

function dn22Kv.

Ak.(v,qd = A dn2(~V) +B

which by integration becomes

Z3(V,CJ =C +

In the neighborhood of v

1 and its derivative like

@

J
v

Bv+A
o

= T/2, the

-(V1)2.--$
behaves like i

()

and consequently
2KV-$

Z3 function behaves like

On the other hand, dn(2Kti)

A= 4K20

T?he Z3 function admits the real period 1, and, writing for simpli-

fication of the notation

E =~1’2 [~2@Kvl = ‘v

we shall find, writing that Z3(V+ l,q) = Z3(vjq), that the constant B

is -4KE. The origin of the symbol E will appear in 4.4 when the
elliptic integral of the second kind Is studied.

Continuing the integration

and writing that e3 admits equally the real period 1, we shall find

. that C = O. Consequently
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—

z3(v, d =4K’ Jv [~’(a%) - ?] x ‘V1

a“ndfor v = 1/2

.

——.
..

.—

Besides this property of its derivative, the zeta function has t~e ~
advantage of satisfying a law of addition. The logarithmic differentia%icm

6(v+ vl)e(v- .l)= e22(0)

[

1 1

eke’ 1e12(de32(d sn2(~.l) sn2(~).

furnishes in fact .

==F==a “‘““‘(v + VI)+ Z(V - v,) - ‘z(v)= ‘K c~(’K.)ti(XV)sn’(~~l
..

one

and

—.

Interchanging the roles of v and vl and noting that Z Is odd,

has
-——— .—.....- =

.-

by elimination of 2(V - VI)
. .—. =

( ) - i=+dmvds%fv) ““”‘cn(2Kv)dn(2Kv)sn3”2Kv1
zl&+v~) = z(v)+ 2(.”) +2K

sn(2Kv)sn(2KV1) sn’(21WJ]

This is a law of addition for Z(v) analogous to=that of the
elliptic functions.

.

Applying it to .1 = ~, gives -.

-.

-——.

.:
.

. ,.
, ..—

—
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Z3(V) = z(v) - 2K
cn(2KV)dn(2Kv)

sn(2Kv)

and this formula relates simply Z5 to Z whereas Z1 and Z2 are

related still more simp~ to Z a~d Z3 by a

Making a change of origin of T/2 in the

— —
simple change of origin.

formula of addition of Z

Z,(V + q) = Z,(v) + Z~(vl) - 2Kk2s.(2K@m(2Kq)s.~(v +VJ

This formula of addition is simple. In order to be able to apply
it to the calculation of Z3 when v is real and v. purely imaginary,

one must have available a means for calculation of Z3(iV).

The relation between the values of the zeta function for the imaginary
values and for the real values of the variable result from the corresponding
relationship between the theta functions established in 3.1

3432(%5’)]=+1 ++ l-n

which furnishes by differentiation

d+%-9]+cte

and by a displacement of origin replacing Y by v -

For practical purposes, it is more convenient to
in the form

i
?2

use the relation

for calculating
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.

where the 23 functions appearing in the second term correspond to real

va;luesof the @riables when a and P are real. The calculation of
the Z

3
function for the complex values of the variable is therefore

reduce to the calculation of the 23 function for the real values of

the

E,

and

variable. The other zeta functions are simply reduced to 23.

From the above formulas there results an hnportant relation between
Et, K, Kf

[(~Z iv+$,e )]iflT =
dv 3

according to the formula for

.

-- —— .

.
differentiation of 23

:< .._-_.=

4i&’ [ti2(2iKV + K,k) - ~] = ~ + ~
2

X 4K’
[ 1
dn2(2K%+ K’,k’) - ~

the laws of addition show that this formula is independent of v and is
written

4.2 Decomposition of the Elliptic Functions

Just as it was possible to decompose the logarithm o? an elliptic
function into logarithms of theta functions and consequently the function
into a product of theta functions, the poles of an elliptic function may
be approximated by those of a zeta function for definition of the elliptic
function by the sum of its singularities.

.
. --

Let us first assume that the elliptic f’uncttonhas only simple poles.
It may be represented by

.--

.-

.

. .—. -

.

.

-. ,.
,. —
-.

—
-i-- “.--
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F(u) =
()-ale~ ().C+!?2

4K ‘“ “ ●

()

- bl
0: (Q)

u-

4K ‘“””X6 4K

xc

where all poles bl, . . . bp are distinct.

In the neighborhood of a pole ~, the function behaves like

8(+) x.. :,(+2)
‘(u)-‘w) x● ● ● ‘F&w%

The same is true in the neighborhmd of a pole which differs from
bx only by multiples of 4K and of 4iK’.

On the other hand, in the neighborhood of the sane poles

Consequently, the function

G(u) =F(u) - &’PiK?x**’%iP ~u-%

‘( )A=l ef(o) x . . ●

‘(’l;>) 4K

has no singularity at a finite distance. Its derivative is an elliptic
function without singularity, even at infinity, by reason of its double
periodicity. It can only be a constant and consequently

G(u) =A+Bu

but G(u) admits the period 4K and hence B is zero

A- e
F(u) =A+C W)xooo’(%ir)S(

h=l

r)
>f3f(o)X. ..e4K

z(2_#)
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The”elliptic function is thus found to be decomposed into zeta
functions. .

Let us note besides that F(u) admits the period 4iKt and that,

()

u- bA
when u increases by 4iK, the function Z — decreases by 2iYc.

4K
Consequently

~’(h;:) ’”””’’(w)

~.1 e’(o)x. . .
x ‘r-)

This indicates that the sum of the residues of an elliptic function
in its poles is zero and e~resses simultaneously for a p that is at
least equal to 3, a general property of the theta functigns which one
must not apply without obsening that, for the chosen form of the
elliptic function, the sum of the complex variables of the zeros is
equal to the sum of the complex variables of the poles.

If scnnepoles of the elliptic function are multiples, the calcula-
tion is appreciably more complicated.

F(u) =C

d-l
Noting that —

d@-l
-(.l)a~- 2!, we Sha~l

Va

(K)u-al
e— X.. .xe

‘T4 )

- b~

()

U-bp

4K ‘=””xe 4K

Z(v) behaves in the neighborhood

.

.

.=--

of v = O like

form, for v
u-b~

= —, the
4K

elliptic fuuction
.-

F(u)
~ da-l

Fl(u) =~ + (-1) z(v) ‘(% ;:’) x 9 ● ● x ‘(w)

dva-= a-l:

r)

- bp
e’s(o) x . . . ‘a ~4K

This new elliptic function admits the pole=:u = ~ at most to the _
order a - 1; starting again, we shall progressively reduce the order
and we shall find the principal part in the neighborhood of each pole.
The function F(u) differs from the sum of the principal parts in the
neighborhood of each of its poles only by a constant.

.-
The elliptic func- .

tion is thus decomposed into a sum of zeta functions and into derivatives
of zeta functions. ..._..i—

. ..—
.- .

:.
--.
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For practical purposes, to calculate
neighborhood of a multiple pole, one will

65

the principal part in the
proceed as for the decomposi-

tion of rational fractions, replacing every term by a limited expansion.

4.3 Calculation of the Elliptic Integrals

An elliptic integral is defined by
J“lJ

P y, (Y- Y1)(Y -Y2)~

~(y-y3)(y-W)]dy where P is a rational function of the three

variables.

The form of an elliptic integral is invariant in the course of an
inversion or of an inversion followed by a symmetry which can be defined
by

Y
ax+b=—
cx+d

The critical points xl, ~, X3, x4 are the images, by inversion

s~etry, of the critical points Yll YE? Y3) Y4”

Let us first assume that the four critical points of the y-plane
are not on the same circle, that Cl is the circle which passes through
the points Y2, Y3, Y4~ that C2 is the circle which passes through

Y3~ Y4~ Y1~ etc.?(fig. 38)0 Let us draw the circle C which bisects

C3, C4, and the circle C’ which bisects Cl, C2 and let us make an

inversion with respect to one of the points common to these circles.
The circles C, C!r are transformed into straight lines. The circles Cl,

C2 on one hand,
C3’ CA

on the other, are transformed into circles of

the same radius and, if the origin is chosen at the intersection of the
.—

images of C, C?, if the x axis is chosen in the direction of the two
most distant images, for instance ~, ~, if the scale is chosen so

that the distance till be 2, the critical points are

where k is a
than 1.

‘2= -’1=1 X3=-X4=*

numiberwhich is generally complex and has a modulus smaller

The elliptic integral takes the form

fil~,=,=~dx
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. .— —.

—.

For the method of construction which was followed; k cannot be
real, but it can be purely imaginary and in this case the integral Is
reduced to that of an elliptic function by the transformation

x

[m

-k2=cn u, .~
1 -k

If k is not purely imaginary, the elliptic inte&2. is reduced to
that of an elliptic function with imaginary modulus, which exceeds the
scope of the present study. .—-.--

Let us now assume that the critical points in the y-plane are on the -
same circle C, that yl and Y2 are consecutive, and”that Cl and C2

are the circles orthogonal to C at Yl) Y3 on one hand, at Y2 and Y4

on the other (fig. 39). Finally, let C3 be the circle tangent to CII..

C2, and to C between y3 and y4.
..

—
.:

If we make an inversion with respect to the point of contact of C
and C3, the two circles are transformed into two parallel straight lines.

The circles Cl sad C2 have therefore the same radius, and choosing
the axis of the abscissas following the straight line tr~sfomned from C,
the origin in the middle between xl, X2, and the scale in such a manner :
that ~, X2 is 2, one obtains .—

.
X1=-X2.1 X4

‘-X3=$’1

The elliptic integral thus assumes the form

f P,(J=, 6==).
and becomes the integral of an elliptic function by

x= sn(u,k)

If now the four critical points yl, Y2~ Y32

the points y5 and y~ and the points yl and Y2 (fig. 40) are on

opposite sides.

.—

the transformation ...—

.

Y4 are on a circle C,

The above construction wi12 this time furnish the following values
for the images of the critical points .—

-.

●

1= -x
x3 2=1 x2=-x4 =7<1

.
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and the elliptic integral takes the form

f[J 1
P3 x, (1+ x)(l+ a2x), (1- X),(l+a?x)dx

It is reduced to the previous formby the transformation

J a2 - 1)~2 - (a2+ 1)=
(~2 - 1)X12 + (U2 + 1)

Finally, sm elliptic integral is the integral of an elliptic func-
tion. The latter always has a real modulus when the four critical points
of the initial integral are on the same circle or on a straight line. It
does generally not have a real modulus when the four critical points of
the initial integral are not on the same circle. To make it be effectively
a function with real modulus, it is necessary that two circles bisecting
the four circles passing through three critical points be orthogonal.
This is true in particular
flow inside an equilateral

the critical points are 1,

for the integral of section 1.6 defining the
triangle which was reduced to

n=
J &

j, j2, and infinity. A bisecting circle

passing through $, J2 admits as diameter the degenerated circle con-
necting 1 with infinity.

With the elliptic function being decomposed into zeta functions and,
if multiple poles exist, into derivatives of zeta functions, the integra-
tion is immediate. To the shple poles correspond logarithms of theta
functions represented by source vortices. Doublets correspond to the
double poles, doublets of a hi@. order to multiple poles.

A first example corresponds to the addition formula of
‘3 “

.
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4.4 Elliptic Integral of the Second Kind-and

Flows Around Rectangles
—

Before transformation into integrals ofel.liptic tictionsj the
elliptic integrals may be decomposed into integrals of=three kinds.
The calculations are generally more tedious than in the case of immediate
transformation into elliptic functions, but the integrals of three kinds
have a direct advantage for many applications. The integral of the first
kind is connected with the elliptic functions and was studied in the sec-
ond chapter. The integrals of the second and of the third kind will be
studied.

The elliptic integral of the second kind is defined by

.
.

. .
—

+—

—

—

—

.——

According to the first chapter, it corresponds to the flow in the
neighborhood of an open rectangular polygon (fig. 41). The calculation
of this integral is immediate. It is sufficient to put —-. -

x = sn(u,k)

for finding -. .. =

!
u

el(u,k) = dn2(u,k)du —

o

The vertices at acute angles toward the flow correspond to u = *K.
For u=K

x= sn(K,k) = 1

el(K,k) =
J

K dn2(u,k)du =E(k) ~“
o

.
a value already introduced in 4.1, in the study of the d6=ivative of the
zeta function.

The vertices at obtuse angles toward the flow correspond to

=*K+iK’
.

u .

For u=K+iK’
—. - L,. ..—

. .

-.

_
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x= sn(K + iK’) =*

69

J
K+iKf

e2(K+ iK’,k) = E(k) + dn2(u,k)du
K

or, making the change of variable:

u =K+iK~+iu’

dn(K + iK’ + iu’,k) = -k’ sn(u’,k’) “

dn2(K+ iK’ + iu’,k) = 1 - dn2(u’,k’)

Consequently

e2(K+ iKt,k) = E(k) + i[K’(k’) -E’(k’)]

we function cl(u) is linked to the 25 function

()el(u,k) =-&Z3 .& +%

One finds again that for u = K, when 23 = 0, the value of ez(u)

is E, and that for u = K+ iKt, when 23 = -M, the value of e2(u)

is

e2(K+ iK’,k) =~+E+~= E+i(K’ -E’)

In the plane of the variable u, the field
the field of Z3(u) only by superposition of a

displaces the stagnation ~oints to lead them to
(fig. 42).

of eZ(u) differs from
unifoti stream which

the zeros of dn u

Of more interest for the applications is the integral

[~~”

whose representative field (fig. 43)
that of a flow around a rectangle.

is, according to the first chapter,
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It is easy to normalize (fig. ~), by setting ..*

k = sin X.
sin Xx=—
sin %0

whence follows the new form of the integral

f{

2X0 2Xsin - sin

sin X.

but it is more practical to reestablish the
functions by setting x = sn(u,k), and this

—

dx
—

.-—

connection with the elliptic
transformation gives to the

integral

One

value of

the form —

J
u

J

u dn2U - k’
2

cn2du =
o 0 k2

du

--—=.-=-- ,

u
.

.

‘&z,(&)+ ~ - k12)-#
.

of the vertices corresponds to u = K where 23 ssO and the

the integral is E - k’2K The middle of the side adjacent to
k’ “

.

tou= K+ iK’ where 25 = -ifi and the valuethe origin corresponds

of the integral is

(E-&+ E- )k,2K+iKt=E-kf2K- ~El - k2K1
~’ k2 ~2

In the plane of the variable u, the field of the new integral
again differs from that of Z3 only by a uniform stresm (fig. 45), this

time leading the stagnation points to the vertices of the rectangle which
correspond to the zeros of cn u.

It is equally interesting to construct the field of sn u in the
plane of the variable represented by the integral

.

—
*-

‘iii’q)=% P -*l’”

..
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~is field is represented by figure 46.

In a general manner, the field of sn u in the plane of the elliptic
integral of the second kind, increased by .squantity proportional to u,
is unifom at infinity and surrounds a rectangular polygon the forms of
which vary with the real proportionality factor.

4.5 Elliptic ktegral of the ‘l?hird~nd

The elliptic integral of the third kind is defined by

J
x

1 dx

J(o-~1. X2)(1 - k2~2)

In contrast to the two preceding integrals, it
ters: k and a.

depends on two parsne-

Taking into consideration the methods of integration applied above,
it is useful to study the integrals of the third kind only in the cases
of direct significance for the applications. These latter correspond
almost always to real values of a which alone are considered here.

The position of m with respect to the critical points: -l/kj
-1, 1, l/k determines the appearance of the rectangular polygon,
corresponding to the real values of a and ltmiting the representative
field which, in accordance wi~h the first chapter, is that of a doublet
of the order 1/2.

Figure k7(a) corresponds to a value of a

Figure 47(b) corresponds to a value of a

Figure 47(c) corresponds to a value of u

It is of no interest whatever to normalize
field of a vortex. It is preferable to set

lying between -1 and 1.

between 1 and l/k.

larger than l/k.

here in defining the

x = sn(u,k) a= sn(uo,k)

This transformation leads to the integral

1-
U

du
Jo snu-sn ‘%

which can be easily represented in the plane of the variable u.



----- ~.. -.

72 —.
.

NACA 1%1143; ..:..-__-.
.’:

.

For U. between -K and K (fig. ~(a)), the function to be inte-
grated presents a pole at u = ~ in the neighborhood of which it behaves “_..
like

‘np+(u-’Q]-‘n ‘o-Cnuob h -“J
and consequently the integral behaves like 1 ln(u

cn~dn~ -%)” It

is represented by a source. It is real, like its derivative, for
-K<u<K and for -K+iK’<uCK+iK’. It is purely imaginary
along the vertical lines of abscissas -K and +K since its derivative
is real and du is imaginary on these straight lines. The derivative
is zero for u = iKi which corresponds to a stagnation point of the
stresm.

For ~ lying between K and K + iKt (fig.
analysis defines the field of a vortex since cn uo

For u lying between -K+ iKr and K + iKt
field is again that of a source since cn ~ dn ~

--

~~(b)), the same
is purely imaginary.

... _ .

(fig. 48(c)), the .
i8-real.

In order to represent the elliptic function with~he aid of zeta
.

functions, one must determine all poles in a domain of variation of u
from 4K to 4iK’. These poles are the zeros of sn fi- sn Uo: .

‘o U. + 2iK’ -U. + 2K -U. + .2K+ 2iK’ .-
-.

We have already calculated the principal part in.~he neighborhood

1
snu=snu

o

Proceeding in the
other poles, one has

a “-
‘cnuOh:O@ o)-4KcnuQfiuo . -:”-
ssme manner in the neighborhood“ofthe three—

-.*----

The constant can be determined for u = ~ + 2K
.

●
✎ ✎
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snu-snuo

z2&&j + z&) + z3(a

and the integration is immediate

One reduces the elliptic integral of the third kind to the integrals
of:

Agreeing to
another, one has

7

sn,u ~ sn,uo

introduce parasitic

sn u
2snu - sn,uo

stngularities

sn u

which compensate one

L sn U.

snu - sn ~ ‘:;:::<= sn,u - sn~ + sn,u - sn~

We shall proceed inversely, deducing the two new
that which has just been calculated

J

u%nuocn~dnuo

J

ucnuodnuo

J

u

2
%0 ‘u= o snu

du -
0 snu-sn - sn U. o

integrals from

cn~dn~ du
snu+snuo

Likewise
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f

u

o

but

“.-..
—. ~ .—

.-
.

.-.-

2cn U. dn U. sn u

J

u cn.Uo ti ‘O ~~”+

J

ucnuodnuo -

2
%

du = du
snu-sn ~snu-sn~ ~ snu+sn~

it is more convenient, in order to avoid the reduction of the theta
functions, to calculate this integral directly by making the change of
variable u = K - U1 which leads to a rational integral in dn u~.

One can likewise observe that the field of the function 1

-1 sn% - s#uo
differs ”framthat of the function L only by the ratio of the

snu- sn ~ —
periods, and one can thus reduce the two integrals to one another by the
formulas of doubling of the periods. .. ---—,.—

4.6 Calculation of the Zeta Functions and

of Various Constants

The most convenient method of calculation of the zeta f~ctions
utilizes the expansions in trigonometric series of the theta functions.

-

and the analogous formulas for Zl, %!> ~“ —
-.

It can be equally convenient to directly make use of the expansions
in trigonometric series. It is sufficient to start from expnsions of
the theta functions into infinite products

.. —

~1-Ie3(vjq) = lnez(o,q) -

[ 121n R (1 - q-l) + ~ ln(l - qW1e2m) +
o

.EM(1- @-e-2i”v)
r=o
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23( WI) = -ai~
r=O

In expanding, at least for the real values of v, such that

@+l e*2ifiv has a modulus smiler than one:

m

z3(v, q) = -ati
“ *(2r+l) se2isfiv+ ~i ~ : &’+1) s e-2isYcv

SE
r S=l r=O s=l

= 4Y’Cg q’ sin(2sfiv)
S=l 1 - qas

Likewise

For Z and Z1 one must isolate the poles

q2s
Z(v,q)= x cot(m) + h s

S=l 1 - q2s
sin(2sfiv)

~2s
Zl(v,q)= -a tan(fiv)+ 4Yr~ (-l)s as sin(2sYrv)

S=l 1 -q

The expansions of the derivatives of the zeta functions are deduced
from the expansions above, and for instance

This defines E(q) for v=O

K~- E]= m sqs

21r2
z ~S=l l-q
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One may also utilize, for the calculation of E, ~he theta functions
.----s

Z3 - 1 %
93 d.v

.—.

.-

and for v=O

8YF~ (-+fiwq”z
dz3 n=l
F= n n2

1+2~(-l)q
= —

.

.—.

m ..

1+2
n=l

.
&ctions into %ia functions __.

—
we @ecom@osition of the eiliptic

introduces

e;(o,q) =“+~(v,q]” - --
~=0
--

This quantity may be calculated in various ways, for instance

—

,----starting from the expression of sn u

sn u . ‘(~~2(0)
e3

()g ‘1(o)

Deriving

cnudnu=~

[

‘e~(~ - Q,,(&)e(&l

2K Q3(&) e32.(&) -

—.

..—-

.—

..- -
.

:.
—. -=.

,--
and foru=O

.
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taking into account

we shall.find

This formula
infinite product

1

6’ (o)

specifies

2K
—= 022(0)
Yc

s 3q(0)e2(o)e3(o)

the ~ansion of the theta function into an

fkd = e1(0)e2(0)e3(0)sin ~fi
r=l

Finally, the principal constants
the following formulas

may be calculated with the aid of

w= cd.) . I+ 2$3 q.’
n=l

12()n+
2gq z

K.*.W.L ‘=0 ~
92(0) l+2~qn2

n=l

‘la=/= _03(0) _ 1+z~l(-l)nqn2
e’(o)

1+2% qn2
n=l

@ e3° (0) 95’’(0) ~
l-&.—.—— 1

$ e3(o) +—=-
= 292 (0)e5(0) 2

(
l+2~qn2

n=l r

2 (-l)n+’n2qn2
n=l

n n21+~(-l)q
n=l
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It will always be possible to assume in these formulas K’ >K

and q< e-m by interchanging eventually the roles c?f K and K’.

Moreover, the infinite products of the expressions of the theta
functions may be reduced to series.

For instance

E‘1
q2s

=- .—
S=l S1.qas

.

—

4..7 Second Integrals of Elliptic Functions

If one must again integrate the integral of an elliptic function, the “
weighted sum of logarithms of theta functions and of zeta functions or of
derivatives of these latter, only the logarithms introduce

For the applications and especially for the numerical
may be sufficient to define these new functions by series.

new functions. ..

calculations it
For instance

. (1. q2r+l)~

. .

she3(0)+4~
S=l S(1- q-)

sin2s5rv

.-

—

. .
.

.

“..-

..- . .._
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. In a general manner, the complicated integrals pertaining to elliptic
functions may be calculated numerically by use of expansions in series.
The method does not make evident the singularities of the functions except
those which are situated on the contour of integration; they are most fre-
quently led back to the real axis and must be removed frcnnthe expansions
in series.

5. VARIOUS AET?LICATIONS

5.0 Ranges of Application

The present paper was written so as to permit understanding and
facilitate utilization of the studies of fluid mechanics for which we
introduced elliptic functions. We refer to these studies (1 to ~) which
form a group of applications.

The elliptic functions solve the problems of flows around obstacles
the contours of which are schematized by segments of straight lines and of
stream lines. They furnish the field of nonstationary flow around plane
vanes in vibration.

The exsmples chosen below illustrate the possibilities of use.

5.1 Iaminar Profiles for Airplane Wings and Blade Grids

The problem is to define profiles along which the velocity varies
very slowly in order to avoid separation of the boundary layer and to
delay the appearance of shock waves at high speeds. The importance of
this problem is emphasized in several of our publications and in the work
done bymy coworkers undermy direction (6 to 15).

The airplane wing is a particular case of a blade grid for an infinite
blale pitch. It is therefore sufficient to study the blade grid.

For the first schematization which will be corrected later on, we
assme that the velocity is rigorously constant on certain regions of the
profiles. The pressure is then equally constant for the isentropic poten-
tial flow, and the contoux is that of a free jet in equilibrium with an
inert space at constant pressure. In order to simplify the calculations,
the connections between the above regions are assumed to be rectilinear.

. A profile may thus be defined by a dihedron AB, AB’ at the leading
edge, two stresm lines BC and BIC’, two se~ents CD, with C~D forming a
dihedron at the traitig edge (fig. 49). The iower surface of the profile,
convex near the leading edge and concave in the central region if the cam-
ber is great, normally admits a point of inflection I.
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We disregard the possibilities of application to_fluids satisfying
a judiciously chosen law of ccznpressibilitywhich result from a simple

.

modification of the integration beginning tith the hodograph, and treat
only the flow of the incompressiblefluid (3 and 10 to 15).

If F is the complex potential of the flow in the physical plane
where the complex variable is z, we construct the hodograph !(F) = dz/dF
or rather the logarithmic hodograph A = ln~. ...—

Along the stream lines, the intensity of the velocity is constant}
the modulus of ~ and the real part of h“ are-constants.-.

Along the se@nents of straight lines, the dtrection of the velocity
is constant, the argument of ~ and the imaginary pm% of A are constants.

The image of the profile In the plane of the hodograph Is therefore a-
rectangular polygon (fig. n), the general appearance of which can be easily ‘-
constructed from an approximate outline of the flow. —.

The field F(A) is that of a source vortex with-the image O of the
—

infinity upstream discharging into a sink vortex with .thetiage 0’ of the
itiinity downstream. In the case of a w5ng profile, this field is reduced
to the field of a doublet with circulation with the unique image of infin-
ity. It is not difficult to define as in 1.7, if one knows how to make a . ●

half plane correspond to the interior of the rectangu@r polygon by a con- ~
formal transfomnationo — ,. *-

=..!=..- -

Let us choose to define such a Confofi-l transformation f(A) by-the
-

field of a doublet at N on C’D (fig. 51). The reduction of the elliptic
integrals shows that it is always possible to choose the point N, the ori-
gin and the scale of the field in such a manner that the function assumes
the values -1 and 1 at B and B’, l/k and -l/k at C’ and C.

:--~~

Let us thus assume fl, f2, to be the values of f at A, the
==

f3

image of the stagnation point, D the image of the trailing edge, I the
image of the point of inflection at the lower surface of the profilej the
derivative dA/df then is determined by its singularities except for one
factor: ..-=

.

F
.-—

~te - fzj

~= G=+f~fd(f-f4
.—

According to figure 41, the constants satisfy the inequalities
.

-l<f~<l
-.

— .—

fz <-l/k
—

.

-l/k <f3 <-1 .-
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and If one sets
.

“f=snu fl = sn ul f2 = sn(u2 + iK’)

the function dA/du is elliptic:

dh _ -C (l+ksnu)(snu-f3)

du o

(
snu - sn U1)[snu- (sn U2 + iKt)J

81

The constant Co is real and positive because u is real along BA,

and contained between -K and Ul, whereas d~~du is real and positive.

It is convenient here to decompose the function which depends only
on sn u,

-~~=+k+
al

+ %2
Co du snu- sn U1 snu- snu2+ iK’)

by replacing the parameter f3 by the parsneters al and a2 linked
the condition that dA/du should be zero for k sn u =

u-l m al
1=

The
a linear

l+ksnul (l+ksnu2+iKt )
l+ksnul

function A(u) is the sw of integrals of the
function of u.

-1

a2 sn u2
+

l+snu2

third kind and

by

of

Before proceeding with the calculation, it is suitable to remark that
extensive work would not be justified for a crude representation. A much
more significant profile may be obtained for a continuous contour of a
hodogra’phand close to the polygonal contour. It is possible to retain
two stream lines of the field of a source at A discharging into a sink
at D (fig. 52). The two branches at infinity in A, the image of the
stagnation point, must be separated from ifi so that the profile does
not have an angular point at the leading edge. The two straight lines BA,
B’A of the polygonal contour must therefore be separated i(3’c+G+E1)
where e and e’ designate arbitrary small angles fixing the deviation
between the hodograph of the schematic profile and that of the desired
continuous profile, and presenting, in particular, a finite curvature at
the leading edge.

. In the neighborhood of the point A, the derivative dX/du behaves
like
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d~ -a C
10 ~ %lCo 1

z“ snu - sn U1 ‘“~tiulu-ul.

and the integral, except for a regular function, like

.

.

A- -%Co ln(u - Ul)
cn U1 dn U1 .—

When u exceeds the value u~
.—

by increasing values, the Imaginary

part of ln(u - Ul) decreases by ifi and that of A increases by —
i(fi+ e + ~!); consequently

Likewisej in the neighborhood of the point
behaves like

‘h

D, the derivative dA/du

—

dA -CQco k sn2u2 U2C!0
~- snu-sn(u+iK1)- cnu2~u2u - U2 - iK’

.

and the integral, except for a regular function, like

I@cn U2 dn

When u exceeds the value

Ln(u - U2 - iK’) increases by

the leading edge, h varies by

According
before

—

.-

‘2
+ iKt by increasi~ real v@ations,

i-ifi,and if- A de~ote= the edge angle of

( )E+6’Ac”u2dnu2a2Co=-1+~~
k sn~

to the relationship between ~~ and ~ established -.

co C!IIUldYIIIIA cn”u2 dn U2 “-”
= .-

(

=C!
e+st l+ksnul

)
fikl+snu2snu2 1

1+~
. . .—

Hence the expression of the derivative
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Replacing
value AB of

83

( )(cn U2 + iK’ dn U2 + iK’)
snu - sn(u2 + iK’)

Cl by its expression and integrating beginning with the

A at B where u = -K, one obtains

[( - U2 - iKZ
e“

)(
u-%-iK’

A. 4K 83 4K )

l-c‘-1(el )( u+u2+iK’u+u2+iK’e2

4K 4K )

[

~+K 2Kcnuldnul l-ksnul

T x
sn U1 l+ksnul - ‘(2) - ‘@]+

[

Au+ K=cnu2dnu2 xl- snu2
z-w- sn ~ l+snu2

- z~) - Z,&)]

The second term is expressed with the aid of theta functions that
can be calculated for values of the variable which are complex when u
varies from -K to K by real values. It is easy to obtain an expres-
sion which can be calculated more easily by first ccmnhg back to a single—
theta function

[

(e“
- U2 - iKf

)(
eu -

U2 + iK’

4K 4K )

e
(

u+u2+2K+iK!

)(
e.
u+u2+2K-iK*

4K )4K _

and then decomposing the products of theta functions according to the



84 NACA TM 1435
.... -—> .-..--

The point B J
.

corresponds to u = K ..._..- ~

AB , - A~
=in+K

cnu~dnu~l-ksnul

‘- ‘(3-~ ‘@+l+ksnu12
l+%%-

sn u~

#K
CnU2dn U21-sn~- A U2

()
z—

()
-AZ U2

sn ~ l+snu.2-Z 2K 2.1’(3=

The real part of ~Bl - AB defines- apprOXiIMtel-yfor the modified

representation- the logarithmof the ratio‘ofthe maximum velocitieson
the upper and lower surface of the profile.

The calculation of l(u) along the straight lines CA, C’A of the
hodograph is comparable. The variable u varies by real values from
-K+ iK1 to K+ iKt, and this time it is convenient t-omake the trans-
formation of the theta functions containing u1.

The calculations along the straight lines BC an~ B’C’ introduce
the theta functions for complex values of the variable @to the two
logarithms. It suffices to use the formulas of change of given axes at
the end of 3.1 for arriving at a formula analogous to those used above.

To plot the outline of the modified contour of the hodograph, one
must use necessarily the theta functions for complex values of the variable,
but since the values of ~ and e’ are small, the calculations converge
rather rapidly.

— -.
-.

One will begin with defining the image of the field of figure 52 in
tlieplane of the variable u (fig. 53). . . “..

This hage g(u) is that of a source at U1 discharging into a

sink at iK! + U2 with a field which follows the contow of the rectan-

gle -K, K, K + iK’, -K + iK’.

The function, g(u) is determined by the above singularities.

[.

snu- sn ul
g(u) =h

snu-
(

an U2 -tiK’)]

.—.

t-

.—

%“

-“

—.

.
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If the field of the flow around the profile is not desired, it is
not necessary to calculate l(u) in the entire field of the hodograph.
The contour suffices for the integration of the profile. However, the
singularities must be correctly placed. For practical purposes, one must
start from approx~tions furnished by a freehand sketch or by electrical
analogy and then make corrections with the aid of the exact formulas. It
is, besides, possible to differentiate the latter for corrections in order
to avoid calculation of the theta functions.

We do not take up again the calculation of the integration of the
profile begiming with the hodograph which is set forth in several of the
papers cited as references. However, let us note that this calculation

leads to the use of the functions eA and e‘A and that the logarithms
of the theta functions which appear in A are transformed into powers of
theta functions.

5.2 Vibrations of a

We have studied the flow around
we intend here to extend the results

- (fig. 54).

swallow-Tail wing

a delta wing in tibration (ref. 16) and
to a plane, slender swallow-tail

We shall not resume the discussion of the approbations Which per-
mit definition of the flow potential by the real part of

(b(~,X,T) = f ‘n(Yo,x,T)f(<,yo)dYo
where x is the abscissa counted from the vertex, y. the algebraic

distance to the axis of symetry on the wing, T the product of the time
and the velocity at infinity, Wn the normal displacement velocity of a

point of the wing in the course of the vibration, ~ = Y + iz a ccm@ex
variable formed with the ordinate y and the height z, measured normal
to the ting, from a point of the flow, f the complex potential of the
field of the plane flow of a source of the intensity 1 at a point Y. on
the upper surface of a transverse section of the wing tith the abscissa x,
discharging into a sink at the same point on the lower surface. The inte-
gral is extended to the entire section of the wing which depends on the
abscissa x. \

Between the vertex of the wing and the reentrant point of the
trailing edge, the calculation is identical with the one made for the

. delta wing, and we plan, essentially, to define the function f(cYYo)
in the transverse sections which intersect the trailing edge.
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Since the problem is linear, we shall distinguish the symmetrical
vibrations for which Wn is an even function of y. frcznthe antisym-
metrical vibrations for which Wn is an odd function of yo. This per-

mits limiting the integration to a half wing, replacing the func-
tion f(~~Yo) by f(c,yo) + f(~,-yo) for the symmetrical vibrations,
andby f(~,yo) - f(~,-yo) for the antisymmetrical vibrations. In order
not to complicate the notation, the f function modified in this manner
will be represented by the same letter.

Let us treat first the symmetrical problem and neglect, to begin
with, the influence of the vortex sheet which is shed by the trailing
edge. The field of the f functi~n is that of two s.gwrcesat symmetrical
points of the upper surface discharging into two sinks at the same points,
but on the lower surface (fig. 55). T%? intensities are all equal to
unity. The condition of Joukowaky imposes the position of the stagnation
point at B, the image of the trailing edge.

:, -;=.-A

In accordance with a general method for the problems of flow about
two segments of straight lines, we shall carry out a cunformal transfor-
mation-defined
(fig. 56)

where a and
the rm%icular

—

.-
—

.-

by the–field of-circulation about the segments AB, AtB’
-. —

b are functions of the abscissa x which are linear in
case where the leading edge afidthe trailing edge are both

straight lines.

In order to avoid using imaginary values of U1 on the wing, we

shall make the change

(
i K1’ -

The field ~(u) is equally

u
)
= U1 - K1

representedby the figure 56, but one
must interchange the equipotentials and the stream lines.

—

(=adn(u,k) kz= l-~

2

In the plane of the variable u, the representative field of the
f function can be graphically constructed”(fig. 57) with sufficient
precision to determine the general appearance=and the s@&il.arities.
The rectangle ABOI corresponds to the quarter of the right lower plane

.

of figure 56 where the f function admits as a singularity that of a
sink at M where u = ~. .

. .
. . . -
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The analytical extension by symmetries defines the complementary
singularities, and the f function is determined, except for one linear
function of u, corresponding to a unifom flow parallel to the real
axis, by

r-h-~fi

The Joukowsky condition at the trailing edge imposes that df/du be

zero for u = K

o=-*~(*+)-.(*+2]+cl=*.l(%)+c,
and consequently

Ylf=ln[1‘(%+9‘(%5’)
The constant Co may be defined

so that f will.be zero when ~ is infinite md u = ~’.

However, this purely imaginary value may be neglected.

The problem is therefore solved by the parametric definition of the
function f(~) with the aid of f(u) and of ~(u).

Let us now study the influence of the vortex sheet originating at
the trai~ng edge.

Because of the linear character of the.problem, the field induced
by the vortices may be superimposed on the field calculated above under
the condition that this induced field is not altered by the velocity which

.
is normal to the wing. This reservation willbe respected if the field
induced by each pair of symmetrical vortices of the sheet encloses the
mean position of the wing (fig. 58) and satisfies the Joukowsky condition
at the trailing edge.



—
.. ,.

8!3 NACA TM 1435 ..——.
,.—. .. .., -----

The field of these symmetrical vortices may be transposed in the
plane of the variable u (fig. 59) where it appears like the field of

.

vortices with a uniform flow, parallel to the real axis, @acing the
stagnation point at the image B of the trailing edge. The corresponding
function fl(u) is determined by its singularities and their images of

the analytic continuationby symmetry. For a vortex with a circulation
equal to one

—

fl+-la [1(82 &# ) +DO+DIU

e2(+)

The stagnation point i-sat B if dfl/du is zero for u = K.

where the logarithm c derivatives of the relations estahlished at the
end of 3.1 have been utilized for the calculation of the 23 function
for a purely imaginary argument.

To facilitate the notation, the 21 function will be represented
by

2.(*A,) = +$)

.

the fl function is then defined by

=fl=ib[*~]-%~l(%)+%]+aDo ‘-

The constant Do can be determined by the condition that f~ should

be zero for infinite ~, that is, for u = iK’.

Nevertheless, it appears as purely imaginary and may be neglected.
-r

The ordinate y. of the vortex center is
.

Yc)= a dn(K + iK’ - ia,k)

—.

_—.

—

. . ------—

. .

4

.——
.

,.

. .

. .

-.

“

.

.
.-

= b sn(u,k~) = b snta
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The equilibrium of pressures on both sides of the vortex sheet
. requires that the potential difference be invariable along a vortex at

a point which is displaced at the speed of the flow.

This variation of potential, equal to the circulation on a contour
starting from.a point of the sheet and coming back to it, avoiding the
wing and the sheet, will be the weighted sum of the variations of the
f and fl functions.

When such a contour does not enclose a vortex, the theta functions
are uniform and the variation of u is 2K. Consequently, the variations
of the functions are, respectively

If the image of the contour in the plane of the variable u encloses

the vortex $L~2(y)], -it is convenient to add 1 to Afl.

The potential is the real part of

Wn(~, x,7)f(u,~, k)ak2sn U. cn ~ d% +

7’fl(u,a,k)b cn u dn

if 7 dyo Is the intensity of the vortex

dYo =bcnadn ada.

ada

of the magnitude

The circulation or variation of the potential on the above contour
is
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where CLo is the image of the point -
vortex sheet intersects the contour.

with the ordinate Yo - where the 4

The condition of constancy of the
by the flow is written

circulation for a point entrained
..

—

and, consequently, r’ has the form r(x - T,yo). ——
.—

The two first integrals do not depend on y. and the latter may be . -

written
~b

.

Consequently .. .. .. -- -,
:-.-.

Y“ [( 1
‘&r x - T,Yo)= dyo .—

~_

r
b ..-

This relation utilizes completely the law of the variation of
with y. and it suffices to retain the expression of _~ for y. =

in order-to eliminate the last integral
..

‘o
cn U. d% + .- —.

This integro-differentialequaticm in I’ which can, besides, be
transformed into an integral eqmtionby an integration by parts of the
lakt integral, is not very manageable in the general case, but for the
applications usually undertaken, the vibrations are harmonic, and the
solution r is likewise harmonic if the period of establishment of the
motion is neglected. One agrees to retain only the real parts

iti’
Wn = Wo(y,x)e = ‘o[a dn uo,x]eiw’ r s ro(y)eiu(T-x)

and the integral equation assumes the form -.
*

-. ..—
.,=. —

-..
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where

y= bsn’a

and a, b, k2, K, K’ are known functions of. x, the two first ones
linear for rectilinear leading and trailing edges.

If the last integral is integrated by parts, it takes the form

1
K

x f[
ro(b sn’ a) -

0 ‘o’%~1’(*) + q~

The integra~d part is zero because ~’ is zero for a = O and

behaves lW ~
in the neighborhood of a - K~ whereas, if there

exists no singularity of the wing contour rendering the derivative of r
infinite, the-first term behaves like

dro d(b snt a)

-r da
(a- K’)= ~bcn’

cnr u tends toward zero when a tends toward
the two terms tends toward zero. The argument
integral which remains is finite.

If one notes, on the other hand, that

a dn’ u(K’ - u)

Kt and the product of
shows, moreover, that the
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the integral equation takes

—

—
,..
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the form — .,

f

K
I’o(b)=-~ti

()WO(UO~X)Z1 ~ ak2sn U. cn U. duo -
Q —

K!
1
![

[

sn,2a:
ro(bEn CL)- I’o(b~ -2k2K’ — -

1

2E’+pc L
z

o
cn t2a

.

This equation maybe differentiated in order to furnish .%(b) as

a function of the values of I’. frmu O ta b. It p&rmits therefore

the construction of I’o(b) by graphic integration for a form of harmonic

vibration given by Wn(uo>x). For practical purposes, it is more con-

venient to retain the equation in its first form.

For the transverse cross section of the abscissa .x. passing through
the point upstresm from the trailing edge and constituting the limit of
the delta upstresm giving rise to an easy calculation, the formula fur-
nishes I’(0) for decomposed elliptic functions and zeta functions cor-
responding to k = 1. Besides, the quantity r(0) is in that case the
circulation for a contour passing through the axis of the delta wing.
Starting from this initial value, the value r(b) may be calculated step
by step in successive cross sections the abscissa x 02 which varies
from x. up to the abscissa of the wing tips. If an effect r(b) is

known frmn O to b(x) in a cross section of the abscissa x, the curve
may be etirapolated by a segment of a straight line of undetermined slope
drtdb. The integral equation, written in the cross section x + &x where
5X is a finite variation is then an equation of the ffist degree in dr/db.
The procedure, equivalent to the differentiation of the.integral equation,
has ~he advantage of avoiding the calculation of the de~ivatives of the
elliptic functions and of the zeta functions which depend on the abscissa
by the intermediary of their modulus k2.

.-

When r(b) and its derivative dI’/db are calculated, the potential
is completely determined by the distribution Of intensity of the circula-
tion 7 linked to dr/db. The calculation of the aerodynamic forces may
then be carried out as for the delta wing.

-.

If one has to deal with antisymmetrical vibraticms, the calculation
is parallel and it will be sufficient in this case to pe2form again the
determination of the functions f and fl.

::
Figure 60 represents the field of the function f(~), and figure 61.

its image in the plane of the variable u corresponding–to the function
which is defined by”its s@q&rities, that is} that of a sink at M and
that of a vortex with the tige I of imfinfty.

x

f(u)

—

. .
.

.

... . ..

-.

—

.

w.

*

,
.-

;

1.

-.
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a

.

. 1

[1.A.4A
()U+uofin—

2

Aq(u) + Co + CIU

+ co + Clu

dfl
CI$+)dur+) cn=du= Atiu+c,

—=. —
du %

()

u - U. ‘k U+uo
sn — sn —

2 2

The constants A and C are to be determined
stagnation points exist at B and O in the plane

in
of

such a manner
the vsriable

that
u.

Id us study likewise the function fl(~) characteriz~ the vortex

sheet (fig. 62)3 construct- its image in the plane of the variable u
(fig. 63):

[

e( )(u-iK’+i~ 61 u-if~+ia
i~ 4K

1’

)
fl== +iBln

)(
-ia u+iK’ -ia

Q(U+ ‘:; ‘1 4K
)

. 1

[

u- K-

1

iK’+ ia
sn’

‘&”sn, u- K-2iKl
+ I@(u) + Do + DIu

- ia
2

(u- K-
)(

-iK~+ ia
df~ cn’ iK’+%1’u-K2

2 )

K ‘k

(
u- K- -

)
iK’ + ia

snf
2

( )(
‘nru-K-iK’ -ia ~ru -K-iK’ -ia

i 2 2 )

z
+Bdnu+

(
sniu-K-iK’ -ia

2 )

+ Do + DIu

Dl
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The constants B and
d.fl/du is zero at B

DI are to be determined
and 0.

Tran@@ed by Mary L. Mahler
National Advisory Committee
for Aeronautics
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