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1. INTRODUCTION —

Boundary-layer suction originally was applied to reduce the
boundary-layer thickness and therewith the inclination to flow sepa-
ration; however, since the properties of bodies with small drag have
been improved more smd more, attention was drawn to an increased extent
to the reduction of surface friction. One now strived toward keeping
the boundary layer laminar as long as possible, thus to defer the tran-
sition point to turbulence as far as possible. Boundary-layer suction
was recognized to have a favorable effect in this sense, and therewith
the velocity distribution in a laminar boundary layer behind a suction
point acquired heightened interest. The stability of a laminar velocity
profile is very severely affected-by the shape of this profile.

In a considerable number of theoretical reports (reference 1) the
case of continuous suction was treated for reasdns of mathematical
simplicity; permeability of the wall surface was assumed. In further
reports, the stability of laminar boundary-layer profiles in ca~e of
continuous suction was treated ad a considerable rise in the stability
limit was determined; however, a technical realization of such perme-
able walls with sufficiently smooth surface and adequate material
strength characteristics is difficult. For structural reasons, it is
simpler to arrange single-suction slots. In addition to the suction
effect proper, there appears here the sink effect first discussed in
detail by L. Prsmdtl and O. Schrenk (reference 2) and recently treated
by Pfenniger (reference 3) in an instructive experimental investigation.

Below, the pressure variation along the wall as well as, in partic--”
ular, the sink effect are disregarded. Figure 1 shows the practical
realization of such a case. We assume that on a flat plate A, a laminar
boundary layer (“lllasiusbounda~ layer”) develops at constant pressure.
We assume a second plate B arranged beginning from a certain point X.

at the distance Y. parallel to the firstplate so &t a suction $~ot

..
—-

—

-— _

*“Entwicklung einer laminaren Grenzschicht hinter einer
Absaugestelle.“ Ingenieur Archiv, Vol. 17, 1949, pp. I-99-206.
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is formed between the two plates. The magnitude of t%e power require-
ment for suction is assumed to be precisely_such that”jmerelythe part
of the boundary layer situated between-”the.tw.oplates is removed.

.
Thusj

there begins above the plate B a new laminar bounda~=layer which is.
distinguished from the Blasius boundary lay%r by another initial condi-
tion. The new boundary layer fornisat its @art the .Quterpart of a
Blasius boundary layer.

—

—

2. BOUNDARY-LAYZR EQUATION AND ASYMPTOTIC =VIOR

—. .---

By intrcxiuctionof the stream functionjmi! the t@al pressure, the
boundary-layer equation may be transformed by the well-lamwn methcd
(reference 4) into

..

where g = p+~u:

the flow takes place
U1 = const., thus to

or, respectively

&g _vua$3 “-

ax $
.-.. (1)

a& $.u. We limit ourselves to the case that
—.- —..

outside of the boun~ary’layer at t~~evelocity ?

the flat plate and put furthermore

..
g =+12(1 - q(x,V)).+-Const. :

—.

(2)

(3)

. ..‘

..

This statement has been chosen so that for large ~-valui-s, q assumes
the value 1. Equation (1) is thereby transfo--d into =“

—

(4j-

.-. —.
From the definition of the stream function and from equation (3), one

further obtains with ~ = v/~~ .
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In order to investigate the asymptotic behavior
equation (3), we put for large values of ~

(5) ‘—

_ (6)

(7)

of the differential

q.=l-qv with ~ << 1 (8)

In first approximation, one

This differential equation,

then obtains

aqw a2qw— =“VU1 —
ax

(9)
av2

however, is mathematical& identical with
the differential equation &f a nons~eady flow independent of x which
has been treated before (reference ~); the time t is now replaced by

.

the stipulated space coordinate x. It also corresponds to the weJl-
known heat-conduction equation. The general solution is therefore given - —

J’
x

qJo, x’)* Q

% k+-=+)”’

—
●

✎✎✿�

‘(*]’w’+
(lo)

___



NACA TM 13364

Therein

● ✎

—

is the known error integral. W. Tollmien (reference 6) has investigated
this solution for two special cases where the first integral disappears.
For the boundary layer with suction, however, this will no longer be the
case.

3.. BIASIUS BOUNDMY LAYER

—,
Although we presupposed that the velocity U1 at the edge of the --

boundary layer is constant, the problem of W-e suction-boundary layer
to be treated here nevertheless differs from the flow on a simple flat
plate (“Blasius bounda~” layer”) by the fact that other_initial condi-
tions exist; rather, “theBlasius boundary la~r is cent-ainedas special “
solution among the suction boundary layers since there :% = O, thus

suction point and beginning of the plate A (fig. 1) coincide. Since we a
shall make use of this special solution for the later calculation, we
shall first consider the Blasius boundary layer. It is_distinguished
by the fact that q may be regatied as dejendent merely on a g.uan- W

tity q = v/@@” One theriobtains from equation (4) the following .

differential equation of the Blasius boundary layer ~

The solution may be written in the following fi-rm

—

-. (11)

.-

(12)
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The constants

al =.L
15

a2 =-$

~ therein have the following

= 0.57627 x 10-6
a5

a6 = 3.8907 X’10-9

.
b

-1.3986 X’IO;9
aj = (990-1 15) a7 =

ak = 1.60333 X 10-6
a8 ‘ -3.9135 x 10-11

5

values

~ = 3.7282 xIo-12

= 2.2383 x 10-13
“alo .

all = -0.3104 x 10-14

a12 =
-1.081 x 10-15

—

Due to the boundary condition,at th wall, one integration constant is
zero.

‘e second ‘itegra’ion C“%!4’ ‘s dete~’;;)’:; ‘gea;~:”~’cbehavior for large values of q. Because of

integral in equation (10) is elimi@~d. The second integral, however,
yields by partial integration, with consideration of the asymptotic
behavior of the error integral, just as in the case treated before by
W. Wuest the solution

.W:-+’(,+-r (13)

The constantp ~ in eq~tion (12) and y in equation 13) are deter-
mined by the fact that for large q values Jq and a aq according
to equation (12) smd equation (13) agree with cash other. The recalcu-
lation of the two constpnts yield~ the following values —

For comparison, L. Prandtl (reference 7) givea~th$ fi~lowing valuea
calculated by Blasius an~.T~~er which read, converted to the above
designations

“’a-‘
.

p = 2X0.332=0.664 .

Y = 2f~0.231 =-0.819 ~,

-,

.—.—

.—

—..

.—

.

.-
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F. Riegels and J. A. Zaat give in a new report (reference 8] for 7
the

The

and

—
foilowing value

7 = 0.342v%= 0.857

function q with first and second derivative

plotted in numerical table 1 and figure 21.

4. ASYMPTOTIC BEHAVIOR OF TKE

For calculation of the asymptotic

—

has b&&n tabulated

SUCTION BOUNDARY LAYER

behavior of the
layer, we divide the function”-% defined by equation
parts

%=%1+%2

.

.

.—

suction boundary
(8) into two

..

The first part is to be selected so that it satisfies th~ initial condi-
tion at the suction point x = ~; this is done:by extend~ng the asymp- e

totic solution of the Blasius boundary layer t~: x > ~ as well. From

equation (13) one then obtains
. _ $-”

[“””H - “-”

.—

%l=Y1-@!3
4VU1X

—

%he numerical table has been calculated with the values !3= 0.664 ‘- “’
and 7 = 0.819.
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Numerical Table 1. Blasius Boundary Layer

——

n

0
.1
.2
.3
.4
.5
.6

:;
.9

1.0
1.1
1.2
1.3
1.4
1. p
I. 6
1.7
1.8
L.g
2.0
2.5
3.0,

:::
4.5
5.0

o
,06606
.13106
.1939
. 25b6
.3135
.3695
.4228
.4&n
.5211
.5659
.6081
. 646g
● 6831
.72.67
; 7474P+

.8017

.8252

.8465

.8657

.9352
● 9TL5
.9881
.9962
● 9988
● 9997

0.6640
.6555
.6427
.6206
.5981
● 5734
.5471
.5195
. bg12
. k625
■ 4337
. bo62
.3766
,3487
.3217
● 2955
.2705
.2466
.“2238
. 2Q22
.1820
.1013
.0509
.0217
.0085
.0029
.0009

~tt(n)

o
.12751
. 17’7~
.2114
.2369
.2561
.2700
.2796
.2856
.2883
.2883
● 2857
.2809
.2743
.2660
.2563
.2457
. 23bo
● 2248
.2088
.1955.
.1303
.0774
.0381
.0169
.0066
.0022

o
.2570
.3620
.4404
.5046
● 5599
.6079
.6502
.6842
. 7z12

. 86b5

.8807

.8954

. g084
, gmo
.9304
. 96TL
; ‘m&

.9981

.— —

7
.

.—

— .. . . - — ___

~= O forms the new wall stres&.ine and V. the suction

quantity. The secoud part %2 then must be chosen so that the bound-

ary condition & = q~(o)x) is satisfied. If the asymptotic rela-

tion q-l- % would rigorously apply in the entire domain of the - ‘-

bounda~ layer, there would have.to be at the wall ~(O,”x) = 1, because –

of q= O; however, the asymptotic solution deviates frm the rigorous
solution if it is continued up to the wall. Therefore ~(O,x) is ti “---

unknown function re@rMng which we merely tie the assumption that it.
does not become infinite. As initial condition for the.part ~ one

d

——
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further has
%2(’@o) = O since. %1( ~,xp) already satisfies the

initial condition .

\

..=y[.r@~_&]_
.— —

which insures the connection w~th the Blasius-soluti&.
bution

The contri-
%2 ‘0 “thq‘O1utiOn alm ‘Ust obeY the diff=ential equa- -

tion (9). In the solution (equation (10)) the f+rst-integnl is elimi-
nated, because of ~(~,xo) = 0, whereas in the second integral Qne _

has to put

[-:*]

q2(o<x) = qJo,x) - qJo,x) = qJo,x) - y ~

so that the asymptotic solution reads

..-

——. .——
By partial integration one obtains with consideration of the asymptotic
behavior of’the error integral (by W. Wuest, elsewhere)

-.
Because of the connection with the Blasius solution, however,—

%@xo) = y, if the asymptotic solution is continued ujjto the wall,
—so that one finally obtains a6 the asymptotic solution for the suction

boundary layer
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Instead
again go back

of the error integrals Q one
to the Blasius solution if one

b&avior of the latter according to equation
consideration

9

may for large values of V
takes the asymptotic
(8) and equation (13) into

(15)

In this fOrmll~a qB represents the Blasius solution. The last form of

the solution proves to be particularly expedient for the further con-
siderations.

5. APPROXIMATE SOLUTION FOR THE SUCTION BOUNDARY LAYER

.

It suggests itself to generalize the asymptotic solution which is
valid for.large values of ~ in the following manner —

—.

Due to q =0 for *=O and
tion F(w,x) must satisfy the

L .

because of equation (15) the func-
following conditions .

Vo

t-) *O
F(O,X) = qB — F(m,x) =

Vulx (T)
4vu~xo

(16)

It was hoped at first that one could choose for F, as in the nonsteady
analogue by W. Wuest, elsewhere correspondingly an exponential func-
tion as the simplest formulation; besides equation (17) thilsappear-
ance of the second derivative of q at the wall would he added as a
further condition; however, it was shown that such a formulation does
not meet with success and even, in a certain domain, does not yield any
solution at all.

-.

(17)

. .

—--—
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For the further calculation we introduce the fo~lowing simplified
notation .

if+ifo lf~ rx-

-=’ W%J=n’m=’” ‘=’O+ ‘%”’18)
so that the solution (equation (16)) reads

~
q=qB(q)-F 1- “1q?l’))

According to a suggestion by A. Betz, we equate as first approxi-
mation ql the function F to the value dependent & on x

()$’0
FO(X) = F(O,X) = qB —

r
= ‘B(%)

~ulx

at the wall. “Thus the first approximation reads -

~1 = Q?) -
[ 1

F. (1- qB(n’))

(19)

(20)

.

—
This formulation does not fulfill the boundary-layer e@ation (4) exactly.
In particular, the second derivative of ql “Et the wall does not disap-+
pear; however, the dependency on the second derivative hf the stability
of the velocity profile is of a very sensitive titure.etithat one has to
look for a more accurate solution. By substitution of thea~proximate
solution (equation (21)) into the boundary-layer equation (4), one
obtains

.

/
Hence there results ~261 ?1712 as the error of this fir~t approxi-

mation. By subtractim of the exact solution.~ which F stands
for F. sad q for ql, while 61 disappears, one then obtains d
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.

where

(22)

iS ~ unknown function. The quantitY 62
~~ disappears for q’ = O

~~d ‘qt = ~. By integration of equation (22) one obtains

(F- C 3FO) 1- qB(Tr) ‘Gl+ ‘2
(23)

Therein G1 is to be dete~ned graphica~y or numerically by repeated

quadrature

(24)

One may detetine the as~totic behatior
of G2 by substituttig in the

above definition ‘f 62Jr
for rq~

and fi theasY@totic

r
qld @’- ~ q~*

values
Thereby one obtains

-*%1 ‘d

62 t! N (x - +-(% - qwd

Hence follows with use of equations (9), (19), (21), and repeatd inte-

gration with resPect to q: = $//m

[(]7(Fm. Fo)l -@$
(25)

62 ‘“

-.

——.
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As before, @ denotes the error integral. Generally we visualize 62

as represented in the following manner

.2.=%(+ - ++.]

By Way of
.—

approximation we limit ourselves to the first two terms,
with al = ?fFm- Fo) ~d ~ determined by the fact that q must

disappear at the wall. We determine accordingly the @ction F
approximately to be

a2 = -@,x) - Y(Fm - ‘O) (28)

— .-.

Calculation example~- $o/fwo = O.1~ was selected as numerical-.
example; F was calculated for the values xj~ = 1.234, ~.562, 4.34,

and 9.78 and plotted in figure 3. For x/~ = 1.562 the error was

determined by substitution of the approximated solutionfito the
boundary-layer equation, and compared with the first approximation
according to equation (21). Compared to the first approximation, a con-
siderable improvement results particularly in the regiorinear the wall
(fig. 4)* In figure 5 the results are converted to the ;elocity pro-
file, in figure 6 the second derivative is represented. ‘As a supplement,
the connection between the degree.of suction ~d the suction quantity of

the magnitude qo* = ~o/~~ till be suppl@Mnted. B~ the degree of

suction G we here understand ““””

—
(29)

—

51* being the displacement thickness immediately ahead of the suction ‘

point and 82* immediately behind it. Therewith @ is given by

.

.

&

.

.
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~ , J“O(&-l)a’J
‘J& y (30)

The resulting values are tabulated in table 2 and plotted in figure 7.

Table 2. Degree of Suction

~o* 0 0“1 ,0”2 0.4 0.6 0.8 1.0 2.0

0 0 0.392 0.520 0.671 0.762 0.824 0.870 0.974
J

The suction quantity *O

relation

\

The development of d
is investigated if b the

is, furthermore, given by the following

6. SUMMY

.j
lsminar boundary layer behind a suction point
suction merely the part of the boundary layer

near the wall.is “cui off”, with~ut the-slot =xerting a sink effect.-
As basis of the calculation, we used the boundary-layer equation in the
form indicated by Prandtl-Mises &ich is.closely related to the heat
conduction equation oti,respectively, to the differential equation of
the nonsteady flow~ich is,,indeendent OX the coordinate x along the
wall. “3With considemtion offih asymptotic behavior of the solution,
an approximate solution is develuped w~ch is similar in structure to
the solution of the nonsteady analogue which has been treated in sn
earlier report by W. Wuest,.elsewhere.

Translated by Mary.L, l@hler .
National Advisory C&t’tee
for Aeronautics ,}

./ ‘
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Figure l.- Boundary-layersuctionattheflatplatewithoutsinkeffect..

4%q;d’

v 1 I I 1 ,

0 0.5 LO 1.5 2.0 2.5 3.0 3.5 ‘

Figure 2.- The functionq(q) oftheBlasiusboundary layerwithfirstand
second derivative.

•1

“
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Figure 3.- Auxiliaryfunction F(q’,x) forcalcdationofme suction

boudary layerfor VO/~~o’= “o.IZ!i ““””“

j ,(s= c)2q
~

.2x$a#

0.02 I *

-0.02

-0.04

-0.06
0 Q5 1,0 M 2.0 2,5

Figure4.- Error ofthefirstand Second aPProx~rnationfor=x/’xo= 1~5620

--
●
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0 0,2 0.4 0s6 0.8 LO

Figure 5.- Velocityprofilesofthesuctionboundary layerfor

qO/~~o = 0.125 tid variousdistancesfrom thesuction

point.

4

3

2

I x—-
dy~ U12

t
o

D
0,050 0.100 0.150

Figure 6.- Second derivativeoftheveloci@ profilesofthesuction

boundary layerfor VO/{~. = 0.125.
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Degree of suction @
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—
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09
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-

.

-w‘

Figure 7.- Degree ofsuction(ratioofthecross-hatched~d thetotal
shaded area infig.1).
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