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TECHNICAIL. MEMORANDUM 1237

ON THE MOTIONS OF AN OSCILLATING SYSTEM UNDER
THE INFLUENCE OF FLIRFLOP CONTROLS™

By I. Flllgge-Totz and K. Klotter

PART I.-— MOTIONS OF AN OSCILLATOR OF ONE DEGREE
OF FREEDOM; CONTROL WITH REGULATOR-POSTTION
CONTROL WITHOUT SHIFTINGS OF REVERSALS.

Abgtract: So—called flip—Fflop controls (also called "on—off-—course
controls") are frequently preferred to continuous controls
because of their simple construction. Thus they are used

" also for the steering control of airplanes. Such a body
possesses — even if one thinks, for instance, only of the
symmetric longitudinal motion —~ three degrees of freedon
80 that a study of its motions under the influence of an
Intermittent control is at least lengthy. Thus, 1t is
guggested that an Investigation of the basic effect of such
a control first be made on a system with one degree of

freedom;. Furthermore, we limit ourselves in the present
report to the investigation of an "ldeal"™ control where the
control surface lmmedlately obeys the command given by the
"steering control function". Thus the oscillation properties
of the control surface and. the defects in linkage, sensing
element, and mixing device are, at first, neglected. As

long as the deviations from the "ideal" control may be
neglected in practice, also ths motion of the control

*n{iber Bewsgungen eines Schwingers unter dem Einfluss von
Schwarz-Weiss—Steuerungen." Zentrale flir wissenaschaftliches
Berichtswessn der Luftfahrtforschung des Gemeralluftzeugmeisters (ZWB),
Untersuchungen und Mitteilungen Nr. 1326, Berlin, August 1, 1943.

lIn carrying out these investigations we were effectively
supported by study councillor K. Scholz (DVL) and H. F. Hodapp (VIfS).
In the beginning Dr. Bader (DVL) also participated in the investi-
gations.
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surface takea place at the beat of the moftion of the
principal system. The aim of our investigation is to
obtain a survey of the influence of the system and control
coefficients on the damping behavior which is to be

attainede.

Qutline: 1..

The Flip-Flop Control (System:EQpation,—éteering—Control"
Egquation, Equation of motion, Steering—Control Functlon,
Systems of Type A and B, Reversal Points of Type a

and b)

The Finite Equation of Motlon, the Fquation for the
Control Function and Its Derivative

Representation of the Course of Motion. _The Generating
Motion. The Phase Plane. The Plane of the Reversal
Values o T ”

Division of the Plane of the Reversal Points into
"Intercepts" and "Limit Pointe" ("Starting Points" and
"End Points", Respectively) and into Reversal Points &
and Reversal Points b, Respectively

Curves of Constant Interval Length Vi, (Isochrones) in

the Plane of the Reversal Values and their Particular
Cases

Energy Conesideration and Poriodic Soluti&hs

Comprehensive Discussion of the Possible Courses of Motion
(Discusaion Figures 27 and 28)

2The geme problem, although within a somewhat narrower scope
(only system A), has already been treated by H. Bilharz in a report
entitled "Ober eine gesteuerte eindimensionale Bewegung" (On a
controlled one—dimensional motion), Zeitachrift fllr angewandte
Mathematik und Mechanik, 22, pp. 206—215). The methods of investi—
gatlon differ. H. Bilharz streassed particularly the mathematical
representation, whereas we strove to emphasize the mechanical gide
of the problem. After the reports had been written independently,
discussions held in common showed complete agreement of the results.
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1. The Flip—Flop Control3 (System HEquation, Steering~Control Equation,
Equatioﬁ of Motlon, Steering-Control Function, Systems of Type A
and B, Reversal Points of Type & and b.)

The controlled motions of a vehicle (which itself is regarded
as & gystem of one degree of freedam) are determined by two equations:
a) “he equation of motion of the system ("system equation"), b) the
steering—control equation. Tne system equatlion may be written, as a
rule, with greater or smaller epproximstions, in the form

al'q') + 'btc.p + c'q) = NB (l.l)

where @ signifies the gquantity characteristic for the motion

(control or regulated quantity) — thus for the course control of a
vehicle, for lnstance, the deviation from the course, B, the so—called
ad Justment quantity — for the course control the control—surface
deflection; the factor N is occaslonally denoted as "control— surface
effectiveness".

3Recently a distinction in regulation technique has been made
between the concepts "regulation" and "control"™ (Regulation Technique,
Concepts and Symbols, edited by the VDI — Specilal Commlttee for
Regulation Technique, outline, p. 3). A control is spoken of only
when the varlation in the position of the regulated quantity does not
occur on the basis of a measurement of this quantity which 1s to be
influenced; every varlation of the regulated guantity based on a
measurement of thils quantity which is to be lnfluenced 1s .caelled
regulation. In this sense every so—called "automatic control of a
vehicle" also is a regulation. In this case, however, the designation
control 1s retained, in agreement with gensral collogquial usage in the
technique of automatic vehicle control and particularly in aviation
technique. TFor flip—flop control the outline mentioned above
suggests the deaignation "open—shut regulator” or "in-out regulator"
(elsewhere p. 83). The "system equation” (1.1) would be called,
according to these suggestions, "equation of the  regulation distance",
the control equation "equation of the regulator™, etc. We limit
ourselves here to these directives. '
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If the regulation of the motion 1s performed by a control with. N L
continuous variation of the regulated quantity, the ¢ontrol equation ' -
reade in general '

k (k) o (V) §
Z o P =Z%ﬂ’ o (1.2)
k=0 v=0

The number of the terms in the sums depends on the number of the
sensed derivatives @, @ . « + » » &and on the structure of the
regulator (control machine) by which the number of the deriva—
tives of B 1is determined. :

In (1.2) for instance the equation of the simple regulator
position control

= &P + ari ‘ (1.2a)

or of the sgimple flight—veloclty control

-

™

is contained (with use of two sensed quantities).

By substitution of the equation (l.l) - solved with respect ' : -
to B and differentiated as often as necessary — in the left side
of (1.2), there results for the coordinafte ¢ & homogeneous linear
difPerential equation of higher order with constant coefficients. It
describes the controlled motlon under investigation. The roots of
ita secular equation for ingtance give information on the stability
behavior. - i -

In this report a so~called flip—flop control (also called
on—off—course control), in contrast to a control working continuously,
will be investigated. The characteristic of such a control consists
in the fact that the adjustment quantity B does not vary continu~—
ously and proportionally to a linear cambination of the sensed .-
quantities @, 9, ® . « . . . ., but can aseume only two constant
values +Bg or —Bg. The control equation reads in thig cage, if a
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linear cambination of the two quantities ¢ and @,
namely F = p19 + poP, 1s sensed:

—8o sgn(p1® + PoP) (1.32)

w
"

or

™
[

= +By 8gn(P1P + PoY) (1.3b)

The function F = PP + pzé, the sign of which is in (1.3a) as well

as in (1.3b) deciding the sign of the adjustment quantity B, will be
called the (steering) control function below.

If the control function F passes through zero, the adjustment
quentity B 1is, in a discontinuoue manner, "reversed" from its
poeitive valuse BO to 1ts negative valuse —Bo (or inversely). Thus

the points where the function F passes through zero are the "reversal
points™ of the control. As long as (like in this consideration) the
zero pasgage of the control function is decisive for the reversal, one
may consider 1nstead of

=
|

= PP + Pg¢

the function

Ff
]

P + pP (1.k)

(where p = p2/pl). In this repart the control function will always
be used in the form (1.k4).

If p > 0, the control function F shows, with respect to the
deflection, a lead by the time tv; if p < 0, it shows a lag

by tn (cf. fig. 1).

Besides, the time is counted so that from each reversal point
a count gtarts with +t ='0. The values @ (0) =9, and ¢ (0) = ¢,
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are algo called the reversal values. Because of F (0) = O the
relation

P = ~9g/Fq (1.4a)

exliste between them. Let the length of the interval before the next
revergal polnt be t;.

A system, the control equation of which reads like (1.32), is
always denoted helow as system A; a system, the control equation of
which reads like (1.3b), is denoted es system B. Thus one should note
that the sign of the adjustment quantity B vearies with the variation
of the sign of the control function F, but that two possibilities of
coordination exist; In system A one has )

sgn B =—-agn F

in system B, in contrast, _ ' .

sgn B = +sgn F ..

Regardless of how the control-surface deflection may vafr in the
courge of a motion, the correlation between the sign of B and that
of F 1s a priori determined by the apparatus.

If one substitutes (1.3a2) or (1.3b) in (1.l), the equation

I

atp + b'§ + c'o = F(sgn F)NG,

or

ald + blo + ¢t = F(asgn F)M ; (1.58)

results as equation of the controlled motion of the system. In it
the upper sign 1s valld for a system of the type A, the lower for one
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of the type B. M = NBy is the value of the control moment,

m = +(sgn F)M " (1.6)

which stands on the right side of the equation (1.5a); thus M is an
egsentially positive gquantity.

The variation of the control function ¥ &and of the control
moment with time is shown in figure 2a for a syatem A, in figure 2b
for a system B. Furthermore, a reversal polnt where the control
moment m Jumps from its negative to the positive value is called =
reversal point a, one where the control moment Jjumps from the positive
to the negative value, a reversal point b. According to the aforesaid
it is clear that 1in the system A at a reverssl point a the control
function F passes through zero from positive to negative
values (F < 0), ap reversal point b, in contrast, from negative to
positive values (F > 0), whereas this correlation is reversed in the
gystem B. .

In the form (l.5a) of the equation of motion four parameters, at,
bf, ¢! and M, appear; furthermore all terms have the dimension of a
moment (& generalized force). After division by the inertia factor
(the moment of inertia) a' the equation (1.5a) assumes the form

% + 2wy + o®p = F(sgn F)b (1.5Db)

the number of parameters being reduced to three, D, w, b; now all
terms of the equatlion have the dimenslion of an angular acceleration.
The significance is (as customary in oscillation theory)

o® = c?/at; D=1'/2\a'c! and b = M/at

The upper sign on the right side again epplies to systems of the
type A, the lower one to systems of the type B.

Occasionally instead of the form (1.5b) a further form of the
equation of motion 1s of advantage; i1t results from (1.5b) after
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division by m? and reads - i

Smbigotemny
= + 2D T+ +(sgn F) ] N (1.5¢)

Here all terms have the dimension of the coordinate @ itself.
Finally, with a new independent variable T =wt due to which the -
derivative becomes

g€ I~

4
dt ar
the differential equation (1.5c) could be chaﬁged to the form

o" + 2Dp! + @ = ¥(sgn F) fe- (1.54)

when the derivatives with respect to T are dencted by dashes.

In all numerical calculations we shall further on put the

paremster b/a® = M/e! equal to unity. This means that the scales
uged for plotting the resulis are at our disposal. The

parameter b/w? gignifies the deflection (angle) ¢ = p; that the

control moment M produces on the restoring spring c¢'. This
"gtatic" deflection ¢y then is the unit of the varieble ¢. Or, in

other words, instead of the quantity @, the new quantity § = @/

is used as the dependent veriable. Thus the differential equation
ultimately obtains the final form:

9" + 209 + P = F(sgn F) (1.5e)

Of the four parameters a&at!, b', c', and M appearing in (1.5a)
or the three essential parameters D, w, and ﬁ7&? = M/e!' appearing

in (1.5¢), two parameters, w &and b/w?, have been eliminated by the
meagures mentioned, nemely, first, different count of time (or,
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regpectively, use of derivatives é/m, 6/&?, etc.), second, having the
gcales of the varlable ¢ and @/m at disposal (or, respectively,
different count of the deflection) so that as a sole parameter the
damping coefficlient. D rewainsa. If nothing else is noted, the latter
is put down for all numerical calculations as D = O.l.

For better maintenance of the illustrative qpaiity, however, the
equation of motion is not used in the form (L.%e); one stops at the
form (1.5b) or (1.5¢).

Thus one celculates with the time +, using again as derivatives

only quotients o¢/w, 6/@?, etc.; one may also calculate in the
coordinate ¢ 1itself, bearing in mind, however, that the latter is
meagured on a gpecial scale, so that the unit denotes the static
deflection Q3.

2. The Finite Equatlon of Motion; the Equatlion for
the Control Function and Its Derivative.

The differential equation (1.5b) deascribes the motion in sections
only. As soon asg the control function F changes ite sign, another
differentisl equation appears, since the disturbance term in (1.5b)
changes 1ts sign. Likewiase, the integral of the equation of motion,
the time equation of the motion, applies for that reason only to one
section betwsen two zero—passages of the control function F; it
reads '

Q = 20™% 4 o2t (sgn ) —g-,- (2.1)
(V)
wherein
M o= _5_+ iv=own [—D + i Vl —-D?.]
Ap = ~B — 1V =-m[—D—i\/l-—D2] (2.2)

with & =To end Vv = VL — DP. Tt has already been mentioned thet
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the count of the time in each interval is to start from zero. The
time t = 0 denotes the beginning of an Interval; & reversal point
ig located there. The derivative of (2.1) reads:

Aot

¢ = 3Ae™MY 4 AgBe (2.3)

Since for attainment of a real solution the :Lntegration congtants A
and B must be conjugate—complex, they may be written - . -

A = Col€, B = coTlE -

therewith one has obtained for (2.1) and (2.3)

= C [eklt.*-ie + eket-—ie] + (sgn ) c:% (2.1a) B

a3
I

A t+le | t—le
C [A'le 1 + A.Eexz ) ]

L=l
n

(2.32)

A further useful form of the equation (2.3a) is obtained by
expressing the conjugate—complex factors - }\.l' and xg __which,

because of \/5° + V2 = ¢ have the value w, by this n_iagnitucie and the
argument +0:

A o= aeld  p = welc (2.

it

inversely, one then has

cosc=-—g-=-D; sincr=£ l—D._ (2.5)
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Thus one obtains instead of (2.3a)

% _ C[eklt+i(e+c)+ exzt—i(emﬂ (2_3b)

11

Analogously, the expression for the control function F =¢ + pcp

may be rewritten. Using (2.1a) and (2.3b) one achieves, first

At+ie ic t—1 —i
F:C[el (l+cnpe)+ex.2 e(l+a)pe Gi:l

+ (sgn F) fé- (2.6)

If one expresses the conjugate—complex factors (in parentheses) by
their magnitude C?' s&and thelr argument =7,

1+ apel? = ctedT; 1 & ape 0 = grg™IT (2.7)

one obtains

+1

F = CC'[exlt-'-i(e”) + eket_i(e-”)] (sgn F)

(2.62a)

Gole

therein the magnitude is

= \/1 — 2Dup + aPp? | (2.82)

and the argument

T = arctan ep \/1 =17 (2.8b)

1 — Duwp



12 | ' S NACA T™ 1237

The derivative F of the control function shows the factors M
end Ap Dbefore the e—functions. They may again be ex;pre,ssed
according to (2.4) by megnitude and argument. Thus one obtains

i oot [eklt+i(e+c+'r) + exgt—i(e+o+ﬂrﬂ (2_9-)_

Finally we indicate how the integration'constants C and ¢
are related to the initial values @y and @y/w:

2 5 Am 2
C=%——,11TD'—2— q30i(58nF)£—2' +QD%QEP01(ESDF)O'%]+(%)
(2.10)
tan € = — 1 d’o/dﬁ +D a)
P50t = 5

gin ¢ = — 5%_\/?—_55 [%)Q + D (cpo + (egn F) ;;2)] b) (2.11)

cos €

%[cpo + (sgn F) (:42 c)

The equations (2.la), (2.3b), (2.6a) and (2.9) show the

functions o(t), Mwﬁ’ F(t), and ﬂwll We state them once
more, splitting the coefficients A, end 1, into their real
and imaginary parte: _ B e
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q)('b) = Ce—&b Ei(v‘we) + e—i(‘vt+eﬂ ¥ (sgn F) _'_ba_
: @

0(t) _ o0t Ei(vt+€+0) N e—i(vt+e+c):,

®
_ (2.12)
F(t) = cote—ot Ei(vt+e+'r) + e-—i(vt+e+rrﬂ F (sgn F) b
E(t) - gore~St E,i(vt+€+o+'r) + e—i(vt+€+o'+-rﬂ
@
The brackets may also be written in real form according to the
de Molvre theorem:
o(t) = 20e 0" cosvt +¢) ¥ (sgn F) i%
m =206—8t COS(Vt +e + U)
®
F(t) = 20C%e ™" cosfrt +€ +7) T (sen F) - (2.13)
W
E(t) _ 20cte™dt cos(Vt + e + o + 1)
®

In order to prepare for later applications, we indicate explicitly
what form the third equation of (2.13) assumes if the integration
constants are expressed by the initial values:
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F(t) = + (sgn F) & 7% cos vt ' o .
[43)

st _[% (1 - Dwp) + (co + (sgn F) l)(D-mp) 07 sinwt
\/l-Dz[w ° P
(2.14)
7 (sgn 1) IO -

w
At the reversal points t = O one obtains
F(0) =0

and

. . 2 . ) .
F(0) _ _1 (@Po) ®o b
T—m{j—g +2wowi(58n?’_);;é-q3o+¢o

= %37.515 _ | (2.15) .

as one can recognize from F = ¢ + pP, using the differertial
equation (1.5b).

3. Representation of the Course of the Motion. The Generating

Motion. The Phase Plane. The Plane of tﬁé'Revérsalivaiﬁeé; . .

In order to represent the course of a motion one may use various
expedients. The first, conventional one, consists of plotting the
varisble ¢ as a function of the time; thus one obtains the
deflection~time-diagram (p—t—diagrem)., The ordinate of this
diagram, the deflection itself, may be obtained for special classes
of motions (to which also belong those of interest here) as the
proJection of a "generating"” motion. The generating motion of an
harmonic oscilletion is, for instance, a circular motion with constant
angular veloclity w;, & fact which 1g well known and often put to use.
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The functions (), ®(t) ana F(t) (cf. the equations (2.13))
o

all ghow the sasme damping factor; thus they mey all be written in the
form

vy = CeO% coslvt + a) + 3o (3.1)

Such functions may, however, be represented as the proJjection of the
motion of a point which moves with constant angular velocity v on
a spiral (displaced from the zero point by the distance yo). Hers

the motion along the spiral is the "generating" motion. The spirals
which lead to the functions @, /w, F, and F/w are congruent.

They differ only by the angle at which the starting point of the spirsl
lies (or, respectively, by which the spiral is rotated compared to an
initial position).

The facts mentioned here are readily understandeble. If one
takes in addition to '

y= ce ot cos(vt + a) (3.22a)
the function
x = Ce~0b gin(vt + a) (3.2b)
end forms either
2 =y + 1x or r = x2 + y2

one arrives at the complex or real form of the equation of a
logarithmic spiral in the form

z = ge{~—O+iv)t+ia

(3.32)



16 o - T NACA T 1237

=Co vV > (vt) (3.3b)

Thus y(t) 1s one, x(t) the other rectangular projection of the o
motion of & point on the spiral : -

In the course of our calculatlons we have made wide use of this
expedlent of the generating motion on the spiresl. The sclution of
transcendental equations which contaln expressions of the form (3.1),
for instance F(t) = 0, is thus possible in a simple manner.

The phase curve (curve in the phase plane) forms another means
for following the course of a motion. Coordinates of the phase plane
are the variables ¢ and ¢ or multiples of them; for using variables
of esqual dimension we shall always gelect @ “and ¢/w. The time t
plays for such "phase curves" the role of a paramester; to each point

of a phase curve there corresponds a constant value t. By differ~
entiating the equation ¢ = @(t) one obtains the second .
equation ®/w = ¢(t)/w; both equations together form ths representation
by parameters of the phase curve.

For & harmonic odcillation the equation of the deflection—time— R
dlagram reads

¢ = A cos(wt + a) (3.4)

the diagram represents a cosine—line. For the ‘curve in the phasé

plane the parsmetric’representation is . : o SRR = e
@ = A cos(wt + a) (3.4a)
LA sin(wt + a) (3.4D)
w
4

Phase denotes in general physice any complex of the quantities
determinant for a state (pressure, temperature...). A state of motion

1s completely determined by the coordinate and all its derivatives

with respect to time; @, ¢, §...... determine the phase of a state of
motion (they determine a point in the phase space), ¢ and ¢ are two

of the quantities determinant for the phase of a motion. They are the
coordinates of the phase plane. In a problem "of the second order" B}
the phase is already completely determined by two quantities @

and .
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The equation of the curve, resulting by elimination of t, reads

o2 +(2) - a2 (3-40)

it is a circle of the radius A. Thus to a harmonic oscilllation a
clrcle corresponds as generating motlon as well as phase curve

(fig. 3).

If a controlled motion of the kind nemed in sections 1 and 2 is
described 1n the phage plane, all the reversal points for a certain
system lie on a straight line, the "line of reversals". Reversals
are made when F = @ + o9 = 0; however, since in that casge the time
count also starts enew, @ = @5 and Q= 9o Thus one obtains

or

o)
ten a = + @O/m = — ap (3.5)

Thus the reversal polnts lie on the stralght line, the slope tan «
of which has the value -—wp. (If wp > 0, the straight lines go
through the second end fourth quadrent, if ap < 0, through the first
and third quadrant).

The phase curves are similar to logarithmic spirals, but do not
colnclde exactly with them. Real logarithmic splrals as phasge curves
are obtained, however, if one places into the phase plane instead of
a rectengular (rectilinear) coordinate system an oblique-engled one.

This can easlly be proved with the aid of figure 4. ILet the
angle between the negative absclssa—exis (—9/w —axis) and the
positive ordinate axis (¢ —axis) be the obtuse angle o as it is
determined as function of D by the equations (2.5). If one applies
the cosine theorsm to the shaded triangle, ons obtains

r2 f[q: + (sgn F) ;%T +(£) —2[¢ + (sgn F) ;%]g cos ©
- (3.62)
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If ¢ end ¢/w therein are expressed as functions of the time L
according to the equations (2. 13), there results N

25t [ . 2 - _
r2 = 4¢% [cosz(vt +€) + cos?_(vt +e€ + g) - -

=« - (3.6p) _
—2 coga(Vt +€) coavt +€ + o) cos d] =

Splitting of cosL@)t +€) + &] according to the addition theorem then
yields

-2
=(2C sin o) e V V) - (3.7)

thus the equation of a logarithmic spiral. L o i

The lines of reversals, which have, as shown above, in a rec— . . -
tangular coordinate system the slope tan a = —wp, have in the _ -
obligue—angled coordinate system mentioned the slope tan a = —tan T. -

This may be recognized with the aid of figure 4. For the angie a
plotted there one finds

¢p 8in o ~ wp sino ' |
tan a = ~ - - = - . . Sl
Po/w — Qg cos o 1+ wpcoso - -

Hence, then results, with use of the equations (2.5) and (2.8)

S S

1l — Dup

S
il

thus

From equation (3.7) also follows that the angle subtended at
the point of convergence of a spiral bstween the rays toward any two -
phase polnts has the value vt; thus it is a measure for the time L S
required by the motion. Hence it.follows directly that the gngle . T i
between the rays toward the points of reversal has the vaIue vty T s

at the beginning and at the end of the interval.
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Since for system A the point of convergence of the spiral arc
always lies on the side of the line of reversele turned away from
the arc, for system B, however, on the side turned toward the arc,
it follows immediately (cf. fig. 5) that for system A the angle

is vty s n, for system B vtq 2 x (cf. also 5).

The fact that the phase curve in the oblique—angled system is a
logarithmic spiral greatly facilitates following the course of the
motion even through many intervalsg. One draws several wlndings of a

o)
- = (vt) -
gpiral r=eo V ( ). Moreover one draws on & trangparent paper
provided with oblique—angled ‘coordinate lines ¢ and o@/w (cf. fig. 6)

the points =+ %/w? and the line of reversals. The line of reversals —
for the points of which the control function is F(t) = O — then
divides the phase plane into values pertaining to positive F(t) and
into values pertaining to negative F(t). ILet the starting point of
the motion be B, (cf. fig. 6). The control is to be handled

according to system A. The control function F = @ + pp has at
the point Pa for the positive p a positive sign. Thus the

point —b/m? mst be fixed to the point of convergence of the spiral,
and the spiral must be rotated so that it passes through P, . The

Plrst point of intersection of the spiral with the line of reversals

then is the initial reversel value SO. At the reversal point SO’

F changes its sign. One must, therefore, in continuing the

construction of the phase curve, fix the point b/m? to the point
of convergence of the spiral; one may now draw the phase curve

from SO to tHe next reversal point Sl' In this manner the entire

courge of the motion may be quickly constructed.

In constructing such phase curves one obaserves eagily two
peculiarities which may occur in the course of the motion. First,
in the proximity of the zero point of the phase plane there may
exlst reversal points starting from which the phase curve doés not
again meet the line of reversals (fig. 7). Such a "missing" of the
line of reversals may occur only in the case B, not in the case A,
however strong the "damping" may be, for in the case A the point of
convergence of the spiral lies "behind" the line of reversals. If
the phase curve does not again meet the line of reversals, no
further revarsal takes place. Starting from the last reversal point
the seme functions ¢(t) and (§/w)(t) continually describe the
motion. The motion is a damped oscillation convergent toward the
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point Py = j% This cage will be treated more thoroughly, one

speaks there of a "rest" of the control, the last reversal point being
called "rest point". . -

The second peculiarlty of the course of motion can also be
easily understood from the phase pattern (cf. fig. 8). We have for
ingtance a system A; we coms from a reversal point. Sl’ the distance

of which from the zero point has the order of magnitude b/w s to the
farther Sy without having intersected the w/m — axis, and remain

therefore at the left of the zero point on the line of reversals.

If we now contlinue with the construction in the customary mamner, we
find that the phase curve attempbts to run further on the same side
of the line &f reversals, that is, the control function attained

in 82 the value O, but did not, however, change 1ts sign. Since,

however, the "zero passage" is the condition for & reversal, the
behavior of the control gsurface is not determined here. Only if for
instance the reversal should occur somewhat after the zero passage
of F (legging of the control surface), we could construct further
(cf. fig. 9). One can gee that the motion then assumes. very high
frequency and that its deflections decrease. The cases leading to
such an undefined behavior of the "ideal" control are treated in
detail in sections 4 and 7.

In the further course of the investigation in addition to the
phage plane another plane, showing a cloge relationship to it, will
be used frequently. In the phase plane with the coordinates o
and @/m the motion may still be described continucusly; a phase
curve forms the sequence of all polnts of state. However, in our
further investigationsg we shall oftem be content to condider instead
of the successlon of all points of gtate the sequence of the reversal
points, that is, of those values ¢ =@, and ¢/w = éo/w which

exlst at the moment when the zero passage of the function F takes
place. Thus from the pointe of the phase plane the reversal
points g, @o/w (wvhich lie on a straight line, the line of reversals)

are singled out and used for characterization of the motion. If one
again forms & plane from the lines of reversals pertaining to all
kinds of systems, one obtains the @q —-¢o/w'— plane or plane of the

reversal velues. In this plane of reversal values the motion of a.
system 1g indicated by & sequence of points in isolated location.

No further information is obtained concerning the course of the motion
between the reversal points. The esgential characteristics of the
motion, however, — above all, the demping, the increase of the
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amplitude, etc. — may be recognized even in such a representation, for
the phase curves are logarithmic spirals with a polnt of convergence

lying either at the point b/m?' or —b/m?., Thus one is certain that
the motion between two reversal polnts does not show any peculilarities.
The demping of the motion is assured when the sequence of the reversal
points converges toward zero.

However, whereas we placed an oblique—angled system of coordinates
into the phage plane, we shall always place a rectangular ons into the
plaene of reversals. The lines of reversals then agein obtain the
gslopes tan o = -wp. This plene of the reversal points,
the g — éoﬁm — plane, will be discussed in great detail later on.

An example ig shown for 1llustration: Of the motion of a
syetem represented by the phase curves of figure 10 (here drawn in
Cartesian coordinates) only the reversal points appear in
the @y - (po/m — plane (fig. 11). For the prescribed system with

congtant values p and o the reversal points lie on the straight
line of the slope tan a = —ap. The points on straight lines of
different slope pertain to other systems. However, it must be noted
that the difference in the distances of two reversal points from the
Zero point is not yet a measure for the rate of damping. Thils
difference measures the demping per Iinterval. In order to arrive at -
a damping veloclity, the length of the intervals alse must be taken
into consideration (cf. section 6).

A perlodic motion is, for instance, represented by two reveréal
points repeated successively again and again (fig. 12). However,
these points need not by any measns denote the maximum deflection

which occurs during the motlon; on the contrary, maximum deflections
are reversal polnts only when @O/m = 0; such points lie on the

ordinate axis.

4, Division of the Plane of the Reversal Points into “Intercepts"
and "Limit Points" ("Starting Points" and "End Points",
Respectively), and into Reversal Points a and
Reversal Polnts b, Respectively

We start out considering the variation with time of the
functiongs F(t) and nm(t), as it is represented in figure 2. The
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zoros of the control function F(t) denote the reversal points. At
these zero points the function F = ¢ + ap (§/w) always shows a break,

because $/w2 . jumps (as follows from the differential equation, for

instance (1.5b)). The Jump of @/a?_ at a reversal point 1s

2 (+0) = & (-0) = + gb for reversel poiﬁﬁs a
a@ a@ w? . . - B
(4.1a)
ji +0) — ji -0) = -2 for reversal polnts D “
Becauge of the relation following from the definition of F
E=9+(m—£
w W w2 — -

there results, therefore, for the Jump of f/w, which characterizes
the break of the function F, at the reversal points & the value

F (40) = E (=0) = 2up 2
oo -To -l :
at the reversal points D — “ (%.1Db)
F F ~ b
5('*'0)"5(-0) ——20396—0'2-

4 positive value of the Jump (right side of (4.1b)) for decreasing

function F agignifies a "breaking away from the perpendicular"

(fig. 13a), for increasing function F a "breaking toward the

perpendicular" if designations are used as they are cugtomary in L. _

optice for the consideration of the ray path at the bouﬁdary_of two B —

media of different density. In contrast, a negative value of the Jump
signifies for decreasing function F a "breaking toward the perpen—

dicular" (fig. 13b), for increasing function F a "breaking away

from the .perpendicular!”. "Breaking toward the perpendicular" increases .
the amount of the slope, "breaking away from the perpendicular" . —

reduces it. ) - =
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If one now considers what was said about the sign of the Jump
in the equations (4.1b), together with what was said in section 1
about the occurrence of reversal points a eand” b in the systems A
and B, the following possibilities result:

Table 4/1

System A System B

op > 0 | breaking away from | breeking toward the
the perpendlicular perpendicular

wp < O | breaking toward the| breaking eway from
perpendicular the perpendicular

The correlations are Iindependent of the "character" of the reversal
points, whether a or b.

Ag an example, we comment on the first case: If ap > 0, the
Jump values are, according to (4.1b), positive at reversal points a,
negative at reversal points b. However, in the system A ths
function F decreases at reversal points a (where the Jump value
is positive) so that there a breaking away from the perpendicular
occurs; &t reversal pointe b (where the jump value is negative) it
increases so that agaln a breaking away from the perpendicular occurs.
The remaining three cases may be discussed correspondingly.

From ths fact that the break (change in slope) which the
function ¥ shows at the reverssl points has a finite valuve, it
follows that in those cages (that 1is, in quadrants where a breaking
"away from the perpendicular" occurs) "directions of incidence" exist
to which no "directions of refraction" on the other side of the time
axig correspond; thus the function F does not again pass zero and,
therefore, no more reversals occur. These cases correspond to the
total reflections of the optical analogy (shaded angle section in
fig. 13a). Inversely, in case of bresking "toward the perpendicular"
"directions of refraction" exist to which no "directions of incidence"
belong (fig. 13b). Thus in both cases no more reversal occurs; the
zero points (reversal points) of the function ¥ are no longer
"{ntercepts" (of the controlled motion), but "limit points™ where the



ek _ NACA TM 1237

motion either must end ("end pointse") or may etart ("starting points").

The directions of incidence without directions of refraction as well e - T
as the directions of refraction without directions of incidence lie '

in the angle gections ghaded in figures 1l3a and b. The limltation

of the angle space is glven by the condition that for the direction

of incidence or refraction F =.0. If one sdbstitutes for ¥ the ~
expression according to (2.15), one obtains o =

5 \2
Po %o
('25) + 2D —= Py * (sen F) 2 "l 9y + QO =0 (4.2)

When D < 1, equation (4.2) represents for system A (upper sign) as :
well as for system B (lower sign) two ellipses in the plane of : =
reversals, since sgn F may be either 1 ar.—1 (fig. 1&) If the e =
third term has the negative sign, the equation describes the upper

ellipse, if it has the positive sign, it describes the lower ellipse.

On the boundary of the ellipses lie the "limiting cases of total Co
reflection"; within the ellipse lie limit points, outside of it B
intercepts. o .

Whether the limit pointa lying in the Iinteriar of the ellipse o . L
are end polnts or starting points may be decided for instance in the e e
following mammer: For end points, breaking away from the perpen— '
dicular always occurs; for starting points, breaking toward the
perpendicular. The table 4/1, which classifies the quadrants in
this respect, glves, therefore, Information also about the question
where end points and where starting points lie in the space ingide : -
of the ellipses. The results of this consideration are plotted in
figures lhe and 14b. The ellipses represented by equation (4.2) are
occasionally called the "small limiting ellipses" to digtinguish
them from other curves to be dlscussed later.

As explained in section 1, the reversal pointe a and b
differ by the aign which the function F shows at the point zero.
The function F(0)/w is given in (2.15). Thus F(0)/w is positive
ag long asg both factors, Qoﬁm and the brackets K, show the game ..

sign; ¥/w 1s negative when the factors have: ‘different signs. The )
1imiting case F/w = O occurs when the brackets vanish; the ) -
slgnificance of thls case was discussed Just now. The equation X = 0
represents the "emall limiting ellipses” discussed above. Reversal

values Qg &o/w from the space inside of the ellipses are
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for K < 0; reversal valueg from the space outside of the ellipses
are for K> 0. o

We inquire first: What regions of the P0 — cbo/cu — plans, for

the system A, contain reversal points a. To system A pertains the
upper sign of the third term in X (2.15). Furthermore, one has for
every reversal point a (cf. fig. 2a) in the system A (after the
reversel) sgn F = —1. Therewith the term in question assumes the
negative. sign; thus of the two "small limiting eliipses" only the
upper one ls considered. Reversal polnts & in the system A require,
morsover, F« 0, thus different signs for the factors cpo/cu and K.

In the right semiplane where cbo/aa> 0, X must be less than 0; the

reversal polnts a 1ie, therefors, in the space inside of the (upper)
ellipse. In the left semiplane where cpo/ua < 0, K must be greater

than Q; the reversal points 'a 1lie in the gpace outslde of the
sams ellipse (cf. fig. 154).

If one investigates reversal points b, one obtalnsg sgn F = 1,
the third term in K becomes posltive, the lower one of the limiting
ellipses is of importance. Since F/w must now be greater than O,
the reversal points b 1lie in the right semlplane in the space
outside, in the left semiplane in the space ingide of the (lower)
ellipse (fig. 15b).

The investigatlon of system B is similsriy found. Here the third
term of X (2.15) has the lower sign. For reversal points a,
slgn F = 1, so that the negative sign for the term remains; by this
fact (as for reversal polnts & of system A) the upper ellipse applies.
The reversael points & vrequire thaet F/aa > 0; they 1lle In the right
semiplane in the space outside and in the left semiplane In the space
inside the (upper) ellipse, (Fig. 15c.) For reversal points b,
because, the sign F = —1, the lower ellipse is of importance;
since F/o < 0, ths reversel points b lie in the right semiplane in the
space inside and in the left semiplane in the space outside the (lower)
ellipse. (Fig. 154d.)

If one now visualizes the figures 15a and 15b of system A
superimposed, one can see that within the ellipses at the upper left and
lower right no reversal. points, elther a or b, are situated.
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These points we recognized in section 3 as end points of the motion.
In contrast, the starting points which lie within the ellipses at the
upper right and lower left are included In the consideration, since.
the definition of the reversal polints mikes use of the sign of the
function F after passlng zero, and this sign actually is explained
for starting points. It even becomes evident that these lagt-named
regions are doubly covered over when figures 15a and 15b are
superimposed, and thus contain points of type a as well as of

type b. The motion may, therefore, begin from all.starting points
in two different manners. Outszlde of the ellipses lle intercepts
which ar'e now unequivocally divided into reverssl points a and b.

5. Curves of Constant Interval-Length vtl in
the Plane of the Reversal Values (Isochrones)
and Thelr Particular Cases
The length of the intervals vt _is.difgprent_forffhﬁ geparate
reversel points. We investigate here the geametrical loci of all
the reversel points for which the following Intervel is of equal
length. It can be shown that these geomptrical loci are ellipses.

Fram the conditlon that

F(ty) = 0 (5.1)

follows with the aid of equation (2.14a) after a few transformations
which may easlly be supplemented

$n\2 cos Vit —e% vEL ()
(7§> + (sgn F) i% D+ Ml -p° =0

ain th @

(5.2)

¢
+ 209 2 + (ssnF)b—2¢o+q>02=0
L |

For D <1 this is the equation of an ellipse in the plane of
reversals with. vty as a parameter. :
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The numerical investigation shows that for the system A only
<
ellipses may appear for which V%, = x, for the system B only
ellipses for which vt, = m. This fact is immediately understandable

if one considers that in the system A the control moment essentially
gtrengthens and 1n the system B essentially weekens the restoring
moment. A glance at the phase curves of section 3 (fig. 5) also
gshows that the length of the interval compared to an uncontrolled
motion is diminished in the case A, increased in the case B.

In section 3 1t had also been recognized that, if the length
of the interval t; is increased, the phase curves finally no

longer intersect the line of reversals so that no further reversal
occurs. The last reversal point is called "rest point". In the
deflection~time—diagram the limiting case of such a motion appears
as indicated in figure 16. This limiting case 1s characterized by
the additional condition (besides (5.1))

F(t1) =0 (5.3)

This equation (5.3) eingles out solely one ellipse from the
family of ®llipses and determines the parameter ty .

Using equation (2.14) and ite derivative, one obtains from the
conditions (5.1) and (5.3) the transcendental relation

—5’- (v61) )

s} .
cos th -5 sin vtl,— e (5.4)

for the paramster vtl. It is satigfied

l_) for th =0

2) for a value different fram zero vty = VEl'
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This last value is the one that corresponds to the "limiting rest
condition". Thus an ellipse is determined in the plane of reversals
by vty =viy; it is occasionally called the "large limiting ellipse".

The meximm interval length following from equation (5 4) hag,
for D = 0.1, the value

v, & 300° -

Such resgt points can occur only in the system B. Besides, it can

eagily be seen that the "emall limiting ellipses" mentioned in T

section 4 also belong to the family of ellipses of comstant interval—
length. Thelr psrameter has the value vtl = 0; one recognizes at

once that ome obtaing from equation (5.2), by performing there the
limiting process vtq >0, the equation (4.2).

As mentioned at the beglmnning, the amount of damping is given
the value D = 0.1 in all numerical calculations. All flgures are
drawn accordingly. The figures 17es and 17b show (for reversal
points a) how the small and lasrge limiting ellipses appear when D
agsumes other values. The curves are plotted for D = 0.1 .
and D = 0.5. In any case the curves go through the points O and 1.
For D =0 the small, and likewise the large, limiting ellipse turns
into the circle through the polnts O and 1 symmetrlcal to the
Pyexis. _ —_

If one places — as we did - into the plane of the féversal values
a Cartesian coordinate system, the curves of constant interval-
length 1ty are ellipses. Without explicitly carrying ocut the

transformation we want to note that all these ellipses become circles
i1f one applies ingtead of the rectangular the . oblique—angled
coordinate system that was used in section 3 for the phase planes:
(where the negative ¢/w —axis forms with the positive ¢ —axis

the angle o). The equation (5.2) then ig the equation of the
family of these cilrcles; the angle o appears 1f one introduces it

according to (2.5) instead of the amount of damping D. . — -

6. Energy Consideration and Periodic Soluticgé

For the preaent problem the flip~flop 505%501 has the purpose
of achieving a much stronger damping of the matlon than attained by
means of the existing damping force alone. However, in such a
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controlled system not only demping, but also periodic and amplitude—
increasing motions are possible since the control moment may not
only remove energy from the system but may slso supply energy to it.

In order to obtain a survey of where in the o —-¢O/m — plane

lie the reversal values for damping and where for periodic and
amplitude—increasing motions, we inqulre first about those points
in the plane of reversal values from which motions start that are
deprived of energy or suppllied with it by the control moment.

The energy supplied to the system by the control moment m 1is
glven by the expression

51
v, =/ mat (6.1)
0
With
m=+ (sgnF) M (6.2)

(the upper sign again being valid for systems A, the lower for
gystems B) it becomes

U, =% (sgn F) M (9; — 94) (6.32)

We now investlgate what sign this expression has for reversal
pointe in the individual quadrants. We consider flrst system A.
In section 4 we determined that for system A reversal points a lie
in the second and third and reversal polnts b 1in the first and
fourth quadrante. With reversal points a in system A sgn F = —1;
wlth reversal points b sgn ¥ = 1. Tnder the further assumption
that the course of the motion is always such that P9 and @, Ilie

on different sldes of the zero pointS, the factor (Ql —-QO) ‘becomss

29

5For intervals leading to end points or starting from sterting
polints, Po and P, may happen to have the sams sign. In that case

ons must consider them separately; however, the result will again be
the one shown in table 6/1.
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negative for motions starting from reversal points in the first and
second quadrant, positive for motions starting from reversal points
in the third and fourth quadrant. ST

Taking these facts into consideration one finds the firet column
of the following table. .

Table 6/1
sgn Ué : .

Motion starts from &

reversal point in System A | System B

l. quadrant 1 -1 -

2. " -1 1 -
30 " l _l

b -1 1 - N

For the system B first the first sign in (6.32) ie reversed. ' ST
Furthermore the correlations of (sgn F) o the reversal points a :
and b eare interchanged; however, since the reversal points a _ _ -
and b simultaneously vary their position in the guadrants, the -
correlation of (sgn F) to the quadrants 1s maintained. Likewise the T =
correlation of sgn (@l —-Qo) to the quadrants remains intact. That S

means the sign of U, in gystem B is, for all quadrants, the opposite -
of that in system A (column 2 of the table 6/1). N

Where sgn U, = 1, energy 1s supplied to the system by the
control moment, where sgn U, = —l, energy is removed. However,

where energy la removed by the control moment as well as by the

damplng moment, the controlled motion certainly is demped even more

strongly than the uncontrolled one. Where, on the other hand, energy

is added, 1t ig damped less and the amplitude may even become constant - -
or increase.

The motions starting from reversal points. in those guadrants
wvhere the control moment supplies energy nust now be considered more
thoroughly in order to determine the position of the reversal points
from whence start periodic, damped, or amplitude—{ncreasing nmotions. e
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The energy supplied by the control moment 1s given by
equation (6.3a); it may be put in the form

0, = ot % (e ) B (v - 0p)] (6.30)

For the energy consumed by the damping force one has
&1 '
U, = / (b'p) & at = a'QB/ $° at (6.4a)
0 o -

If one introduces ¢ according to equation (2.3b) and integrates,
one obtains

[ BMrH(Rera)s | 2hgty—(2et0)1

U, = c'Dc?
(6.4b)
Se+g)t  —(2e+o)i —28%
_e( c)_e( +o) _%e 1+%]

If one expresses the e—functlons backwards again by q)o,' q'DO/m, P15

and cbl/tn, one obtains’

(6.5)

31
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and, accordingly, for the difference of the two energyf§alues

by A
AU=UV—UZ=/‘ (b'cb)cbd.t-—/ wp dt
6 0

o P > . -eBty\  (6.6)
=ct D<pl 7% - P Z?> + 2C (1 - D2)<l - 8 l)

e 3 -8 o]

w

FPlret, 1t shall be shown that AU vanishes for reversal points
belonging to periodic motions. B t T

The periodic motions themselves may be found without an energy
consideration: TFor periodlc motions there exist between the reversal
values P Qo/w at the begimning of the interval and the reversal

values @, él/w at the end of it the relations

and _I ' - . =z
% _ B
0. _% 6.7)

The perlod then 1g the double interval-length T = 2tl. With the

aid of the equations (2.13a) and (2.13b), (6.7a) and (6.7b) may be
put in the form

8¢ :
] b 1 b
2C cos ¢ + (sgn F) ;5 = —2C cos(e+vty) o + (sgn F) ;5 (6.8a)
and
=3t '
cos(e + g) = ~cosle + o+ vty) e L1 = (6.8b)
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The equations (6.8a) and (6.8b) represent two relations between the
integration constants C and € and the quantity o characteristic
of the system on one hand and the interval length vt; on the other.

If one expresses the angles € and o with the aild of (2.11) and
(2.5) by the reversal values 9, end c'po/cu, one achieves (after a

longer calculation) the equations

+ (sgn F) —

2 .
@ cos(\/l -D° a)tl) + cos Dwbq
‘3’0 b _1 sin( \/l - D2 asbl)

(sgn F)

@ o? Vi- D? cés(\/l - D° a)ti) + cos Db'bl

D
(ER e (P o) ooy

8
(o)

]

+

|

as paramstric representation of the "curve of the periodic solutions”
in the plane of reversal values.

This curve is & spiral—like curve (cf. figures 28a and 28b); the
interval length t; 1s a parameter. The curve starta for t, =0

at the origin of the coordlinate system and runs for tleeo toward
the point @, = 1, q)o/a) = 0. For vty = ® the curve intersects the
ordinate axis. The points V%; < % beleng (according to the
aforesaid) to the system A, the points vty > to the system B.
Moreover, the curve ends where vtl becomss vtl. It ends, therefore,

on the "large limiting ellipse" (which limits the region of the rest
points); it can be shown that that point is simultaneously the point
of intersection with the small limiting ellipse.

If one now substitutes in (6.6) — after having expressed C
also by ¢, and cpo/a) — the reversal values according to (6.9) and

takes into consideration that moreover 9, = 9, and ti)l/a) = —cbo/a),
one finds

AT =0

or (6.10)
' Uy =T

(6.9p)



34 ' NACA T™ 1237

As before, the value D = 0.1 of the amount of damping is taken
as a basgis also for the curves of figures 27 and 28. For other values _
of the amount of damping the curves of the periodic motions appear as
indicated in figure 18 which refers to reversal points a. For D =0
the curve degemerates into a straight line which coincides with
the ¢O/m - axis. -

Furthermore, the sign assumed by the energy differénce AT
outgide and inside of the curve of the periodic motions (6. 9) isg
of interest.

A genersally valld discuseion of the sign with the sid of the
equation (6.6) meems difficult. However, a large number of numerical
examples show that for system A in first and third quadrants, for
system B in the sector between the @y — axis and the ray 0SQ (fig. 28)

the motions always converge toward the perlodic ones, from reversal
polnts outside of the curve of periodic motions with decreasing
deflections and from reversal points inslde of that curve with
increasing deflections. In the sector between the rays 0SQ and OR

the motions go from "inside" points with increasing deflections toward
the periodic ones.

The arc RS of the curve of the periodic motions is "unstable",
that is, from reversal points in its vicinity the motion goes, 1n
cagse the point lies "inside", toward & periodic motlon on the arc
section lying farther to the outside, in case the point lies "outgide",
the motion i damped in the customery mamner (leading to & rest point).

& good survey of the course of ths motion discussed Just now and
therewlth of the problem of the removal or additlion of ensrgy may be
obtained from figures 19 to 24. Figures 20, 21, and 24 show, against
the non—dimensional interval length v 1., the pertinent value of

reversal P at the beginning and ? at the end of the interval

plotted for various values p. If one selects a first reversal
point, for instance in figure 21, all the following are easily determined
by drawlng In a stepped line. Starting from the reversal polnt sh’

one no longer obtaeins an intersection point with the curve l@o] The

point §) corresponds to a point in the domain of the small limiting

ellipse. For p = 0 one must plot @o/m since all ¢ = 0,
(n=1, 2, 3, «..), see figure 19. For p>+e,Vt; alvays
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equals =n and, moreover, ¢0 always equals zero. Thus one has to

select here also another manmner of plotting. We selected the one
used by K. Bbgel” since for p—>« owur problem transforms into the
one treated by BBgel. For this case a simple relation between the
reversal values @y and @, may be given (cf. figs. 22 and 23).

A further problem ariges in connection with the energy consider—
atione. Xven the free oscillation of a damped system causes removal
of energy. If the control of the system is to demp the motion more
rapidly, the decrease of the meximum deflections must be stronger
than for the free oscillation. For the free oscillation the ratio

e
of two successive maximm deflections is e Vv . For the

controlled osciliation the ratio is not constent, and the time tM

between two maximum deflections is not constant, elther. It is,
however, assumed that tM always lles between the correlated

interval %, end %, (ef. fig. 25a). This relation may be proved
I IT

with the aid of the phase diagram (fig. 25b). For this purpose the

construction 1s not continued from the reversdl point 82 in the

cugtomary manner, but 82 ils — since we are interested only in the

ebsolute values of the maximum ¢ — values — mlrrored at the zero
point; then one may contlnue to operate in the second interval with
the same point of convergence, as can be understood immedistely. Ome
has 9JSuPS; = vtlI; 98, tPSyt = vtlII; 9481P8; ¢t = vty. By

conatruction,

IS "BSp! < 4 HPG) ' < & 5pPSy

By the construction a simple correlation between ty and the
ad Jolning interval lengths is given. For this reason there is for

gystem A vt S eand for gsystem B = Svt,, Svi (ef. p.27).
M M 1

6]B&Sgel s» K.: Das Verhalten ged¥mpfter und aufschaukelnder freier -
Schwinger unter der gleichzeitigen Einwirkung elnsr konstanten
‘Reibungskraft. (The behavior of damped and amplitude—increasing free
oscillators under simultaneous influence of a conastant frictional
force.) Ing.-Archiv 12, p. 247. -
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One may now plot the ratio of two successive maximum values
(construction cf. fig. 25b) against Vi (fig. 26). The uncontrolled __

oscillation is represented in this diagram by the point k G'tM = x).

In order to be enabled to compare the demping of the motion in the
controlied and in the uncontrolled system, one has to take into
congideration that in the controlled system the change of the meximum
deflectlion occurs &t different times. The rate of damping in the
controlled system isa (wmaxh of the uncontrolled motion was denoted

Y Qs Pnax, of the controlled motion by ¢Cn):

In the uncontrolled system, that 1s, for a freé dampoed osclillation

vUJq’trnu/—lq’tm/

k14

Only when the ratio VG/VU exceeds 1 does the control fulfill its
purpose. Thus one forms the ratio vG/vU for equal initial

value an = P,

o _ | %] T %l
Yt —
U Pon+1 1 M (e \/_].—-D—an— l) V:“

Vi

Pl
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?
The numerator 1—[?—"—'-]?‘—[ — 1 can imediately be taken from figure 261.
Gn

D
- ——x
V vt
The denominator (e 1-17 - l) —T’_ﬁ represents a straight line

which is drawn in for comparison. It goes through the zero point and
through the point X. For all polnts lying below the drawn—in
straight line £, the ratio is vG/vU » 1, that is, the controlled

motion 1s damped more quickly than the uncontrolled one. This,
however, signifies that, as a rule, the system A will be prefersable.
We shall return to this problem in section T.

T. Comprehensive Discussion of the Possible Courses
of Motion (Discussion of Figures 27 and 28)

The perceptions gained in the previous paragraphs are surmarized
in figures 27 and 28. In both figures the type of line used indicates
the type of the reversal polnts: Solid curves correspond to the
revérsal points a, dashed ones to the reversal points b, Figures 2T7a
and 27b show for system A and for system B, respectively, the curves
of constant interval length t3 (isochrones). Here one recognizes
the fact mentioned in section 5, that in the system A the parameter

is %y € 5/v, in the system B, in contrast, tl?:t/v . To the family

TRegarding the 1limit rest in figure 26 the following remark must
be made: On p. 35 an upper limit is determined for the time
interval vtM between the successive meximum values. Only maximum

values within the sphere of normal operation of the control are
considered, for instance @ and Qg in the gketch, figure 26,

upper right. If, however, in the system B rest occurs in the course
of a motion, one is inclined to melect (in considering the damping of
the controlled system) as the last pair of maximum velues Pao

end @+ The time interval (v tM)R between these maximum values,

however, may be larger tThan VTEI-’ as can bé easlly teken from the
phase curve: = <(vtM)R < 2x.
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of these curves of constant interval length also belong those
for t; =0 and t; = t;, which had been denoted as the "amall"

and "large" limiting ellipses in sections 4 and 5, and the properties
of which had been discussed there. In figure 29 the esmall and the
large limiting ellipse are (for the system B and reversal points a)
drawn separately once more and the significance of the 1ndividual
domains resulting from section 4 is 1ndicated

Besides the small limliting ellipses which enclose the domain of
the limit points, those domains are marked in the two figures 28a -
and 28b, whence one arrives at an end point after one or after two : -
intervals. The domain whence a single interval leads to an end point
18 subdivided once more and it 1s noted whether thils end point lies on _ _ _
this or the other side of the zero point. ' -

For system B, aside from end points, rest polnts of the motion =
are also possible. Reversal points in the crescent—shaped domains : B
lead after one or after two steps to such rest points. _ e e =

After all that has been sald so far, the course of the motion
ad Joining any reversal point is now clear and thus the time has came
to decide on what parameters are useful for a desired course for given .
initial valuwes. In gection 1l 1t was shown that, when the actual .
time t 1g used as independent varlable, the equation of motion
contalns the parameters D, w, b, and p. Let us assume that D
and o are prescribed, that is, that we are_dealing with an e -
osclillating system the damping and natural frequency of which are
gliven. Let the damping be insufficlent and the requlrement be made
that the damping be improved by application of an intermittent
control. It 1s, therefore, desired to attain in the shortest possible
time, for prescribed initlal values ¢, and ¢a’ negligibly small

values ¢ and @. We may now select b/a:2 and p and decide,

moreover, on control system A or B. If, for instance, a large b/w2

is selected, 1t may happen that almost all reversal values pertaining

to our maximum posslble initlal values fall into the domain of the

small limiting ellipse. That would mean that on the basis of the results
of this report ("ideal" flip—flop control without lag) the motion becomes
undefined after & short time or Increases towsErd a periodic motion

(cf. fig. 14 and p. 34). 1If, on the other hand, a small b/o? is

gelected, the reversal values in question will lie within a domain of

their pleme which is sq large that the limiting ellipseg and the two

curves of the periodic motions lie entirely within it. If now for

Ingtance & negative p 1is selected, we would have in system A for a .
large domain on initial reversal values an increase of amplitude; for
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positive p, on the other hand, in general, damping extension into
the domain of the small limiting ellipse would occur. Moreover 1t
would have to be investigated whether the rate of damping is
gufficiently high. If system B is selected, there would occur, for
negative p, decrease down to the rest ellipse; for positive p an
increase of amplitude occurs for a large domain (within the curve of
the periodic solutions). Since the ellipse of the rest points is
always larger than that of the end points (emall limiting ellipse),
system B with negative p will certainly be more unfavorable than A
with positive p. Let us, therefore, decide on system A and
positive p. Now arises the problem what magnitude of p to select.
For this purpose one must congider the curve of damping againat the
tims t, that is, the figures 19 to 22 and figure 26. According to
these figures, one is at first very much inclined to select a rather
large p. However, the following fact is opposed to that: As we
know, one enters rather soon the domain of the small limiting ellipse
in which the motion, under the effect of a control without lag, is no
longer defined. It has been polnted out before, on p.20, that éne
again obtains defined phenomene of motion in this domain, 1f one

takes the lag into consideration (cf. the report by K. Scholz8 made
in commection with our report). It is now shown that, with these
facts teken into consideration, smaller values of p are preferable
since they cause a faster damping of the motion within the small

limiting ellipse9.

Tranglated by Mary H. Mahler
National Advisory Committee
for Aeronautics.

39

8Scholz, K.: Uber die Bewegungen eines Systems von einem Frei-
heitsgrad unter dem Einfluss einer Schwarz-Weiss-Steuerung mit
Schaltverschiebungen. (On the motions of & system of one degree of
freedom under the effect of a £flip—Fflop control with lag of
reversals.)

9Prof. Fischel (DFS) called our attention to the fact that it is
shown in a report by Golling (shortly to be published) that vor very
small time lags the motlion twrms into a creeping toward

zero (Q = e'¢/p).
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Figure 1.- Leading (0 > 0) and lagging (¢ < 0) control functions.

F(t)

b Fyy @b N

Figure 2.- Course of the control ﬁlﬁdﬂon F and of the controLmo_men_t_ m
for system A and system B.

L,D

Yo

I

Figure 3.- Phase curve of a harmonic oscillation.
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Figure 4.- Logarithmic spiral as phase curve in an oblique-angled

coordinate system.

Figure 5.- Interval lengths for system A and system B.

b1
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Figure 6.- Phase curve of a motion, composed of sections of 1dgarithrnic spirals.
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Figure 8.~ End point S9 of a motion.
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(b)

(@) N
H

Figure 9.- Phase curve of & motion with laggin
lag period yat = 5°)

g control surface (constant
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Figure 10.- Phase curve in Cartesian coordinates (schematic).

o

&
R/

o = arc tan(-wp)

Figure 11.~ Reversal points.

o

R/

Figure 12,- Reversal points of a periodic motion,

k5
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(a)

F(t) .

(b)

Figure 13.- ¢‘Breaking

%, %

2 of the contrdl iunction; -

() (b)

Figure 14.- Small imiting ellipses for system A and system B with
initial and end values. '
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Figure 15.- Domains of the reversal points a and b,
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Figure 17.- Small and large limiting ellipses for various values D and lz =L
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Figure 18.-

Figure 16,-

System A

Limiting “‘rest’’ condition.

Systern B
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Figure 19.- Survey of the decrease and increase, _I'eSpeéﬂv_‘é_J.y, of the reversal
values of controlled motions. g
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Figure 20,- Survey of the decrease and increase, respecﬁvgly, of the reversal
. values of controlled motions.
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Figure 21.- Survey of the decrease and increase, respectively, of the reversal
values of controlled motions, o -
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g 11 ¢ 1
6 ?ys]fe/r A 6 System & 1
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Figure 22.- Survey of the decrease and increase, respectively, of the reversal
values of controlied motions.
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Figure 23,- Survey of the decrease and increase, respectively, of the reversal
values of controlled motlons.
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Figure 24.- Survey of the decrease and increase, respectively, of the reversal
values of controlled motions.
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Figure 26.- Ratio of two successive maximum deflections plotied agalnst the time interval between them.
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Figure 27.- Curves of constant interval length 'tl (
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