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THE TORSION OY BOX BFAMS WITH ONE SIDE LACKING*
...

. By ’E. Oambllargiu

., . . . .

The torsiori of box beams of rectkn~ul~r section, the
edges of which are strengthened by flanges, and of which
one aide ie lacking, is analysed by the energy method.
The torsional stresses are generally taken up by the bend-
ing of the two parallel walls, the rigidity of which is
augmented by the thiril wall. The result was checked ex-
perimentally on duralumln and plywood boxes. The torsion
recorded was 10 to 30 percent less than that given.by the
calculation”, owing to self-stiffening.

1. INTRODUCTION

Box %eams (rectangular) lackln~ one side, with or
without bulkheads, fins frequent use in airplane design
as, for instance, on the wing near fuel tanks, or bomb
racks, or the landing gear, or even In the fuselage in the
viclni~y of a wide door, or of the load compartment for
droppable loads (bombs, provisions), or incidental to ar-
mement installation. Shell constructions of rectangular,
rounded-off section, as customary on wings and fuselages
near openings extending to an inside wall, or in any case
of consider~ble width, can also be approximately treated
as such.

Section II explains the unsuitabillt~ of Bredtts me”th-
od. The a~al$sls ie made accorai.nq tb Minellifs procedure.

Section III describes an experimental procedure for
the exact derivation. of the values of shear modulus G.
The experimental solution of G and Younqis modulue E
of the employed material is followed subsequently by a
torsion test and a t~rsion analysis.of thtn-walled pris-
matic beams of rectangular secticn with ono side-lacktng~
The materihls are &uralumin and plywooa: The analyt~.cal
data are discussed and compared with the test data. .‘.“

.

*nBerechnung der Verdrehung kaetenf~rmiger Tr&ger, denen
e$ne Wand fehlt.11 -7Luftfahrtforsohuni , vol. 16~ nO* 8S
Au%ust 20, 1939”,.flp: 403-411. (1111 calcolo torsional

delle travl a cassone manoanti di una yarete.m)

—
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II. THEORETICAL ANALTSIS 01’.TORSION

Bredtls theor~.of torsion of hollow cylinders and
thin-walled prisms states that the torsional stiffness of
a body of this type is zero when a-part lying between two
generatrices is lacking or, more simply expressed, when
the %ody along a generatrice is cut
to check Bredtls formula

up . It Is sufficient

If S = O, for no matter. how small. .

Experience, on the other hand,

the region., then B = 0.

shoTs that it” is possi-
ble to maintain-a certain, not neqligihle, torsional stiff-
ness for hollow, thin-walled prisms, which are partitioned
and open. (The partitioning corresponds to that consid-
ered in Bredt~s theory. ) It only stipulates the prisms to
be built in at one end or both - this case is technically
little probable - in such a way as to preclude axial warp-
ing of the end section.

Torsional stiffness can be mnrkedly increased by
flan%es running along the edk~es of the hollow, open prism.
In consequence, the torsional stress involved does not
correspond to the classical St. Venant-3redt stress, but
rather to one under m31ch the particular hollow body,
which the extprnal force tries to twist, and actually
twists, cot merel:~ re~cts with shearing stresses but also
with normal stresses. In other words, rather than’a true
hollow body, it represents a.-s~~tem of be~,ms Joined along
the edqes,

--—
eac~ of which is sti-essed separately in shen,r

and bending-

With a type Of fixity not pro~lilltinq axial warplnq
of the e~d section, the hollow body could have no torsion-
al stiffness differlnq from zero. If the upriqht walls
were joined at the point of fi~ity with a cylindrical
hinge with ~ertical axis, and the horizontal wall with a
cylindrical hinge with vertical axis, thus permitting the
built-in sectlori to warp. at will, the torsional stiffness
would be” zero: Hence, it is assumed that the restraint is
actually as previously indicated, so that the problem ’06-
comes that of torsion’of an open, thin-walled pr$sm ~ith
flanges and partiti.on~, ‘ad “i:lluitrated IR figure 1.

. . :.
.- , ..

I
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The “torque is trarismitted by means of two vert~cal
.- foroe-s P..of equal mag”riitude and op~oslte direction and

applied at the” vertloal wsl.ls in the end section. What
are the elementary form oh-anges”of which the state af the
total form change consists?

The two vertical walls are strained by antisymmetr~cal .
bending momente of equal and opposite magnitude. Let y=
be the bepding ordinate, and Ya the shear ordinate of ~
vertical wall.

The tendenoy of the left or right wall to defleot up-
ward or downward. is eount~racted by the llaison of the
vertical walls with the horizontal wall” along the edges.
Actually the horizontal wall prevents the lower edge of
the vertical left wall from becoming shorter and that of
the right-hand wall from becoming longer. The result is
a countereffect on the upright wall facing the horizontal
wall along the edge, which produces an axial strain in
these walls. “ It is therefore necessary to take into ac-
count a total axial displacement ~(x) of the sections on
the vertical walls, naturally in the oppo.elte direction;
that ie, toward the negative x axis for the left wall, and
toward the positive x axis !Cor ttie right wall.

The horizontal wall itself receives axial reacttons
from the vertical walls, of. equal magnitude and opposite
direction, against which It can react only with the bend-
ing y3 and, if necessary,’ with the shear y4. But it iS
not strained as a.whole: I.e. , Its center line retains its
original length. ..

# The state of deformation IS therefore reduced to the
five parameters Y“I, Yas !, Y3, Y49 Their positive direc-

tions are those shown in figure 1. As seen, the x axis
for each wall was assumed ‘Mith point of origin in the out-
side free end. The positive direction points from free
end toward the restraint. The etraln condition is explored
by means of the energy method, which IS based on the prin-
ciple of virtual energy (reference 1). (The notation used
fn the present report is the came as Mlnellile (refer-
ence l).) . ..

Let L denote the strain energy, and U the eum “of
the scalar. produot~ of external forces and displacements
of their applied points, then form the difference L - U.
The principle states that between all strain conditions

.—- . —. -.
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. . . . .
rec”oncll.ed with th”e type.”~f””support, “the “state for which
L- U becumes. a minimum i-s the true “8tate.. Hence, ex=
pregsjng L - U In relation to the form changes and He-
fining ttlese to the satisfaction of the support- co~ditiono
and the minimum condition for L - U SIVQS the “true state
of strain. For the case in point, it is:

.

J’
2“

“u = P{yl (a) + y.(o)} = - P(.vll+~al)dx -.”

0
‘Nom “ L is to tie expressed.” “.

Let Jv and Jo, res~ecttvely, denote the moment”of

Inertia of one vertical or the horizontal wall, Q t~e
cross-sectional area of a vertical wall, al the thick-

ness df. a vertical wall of height h, and 62 of the 2or-
Izontal wall of height l).

The flanges. contatned In ~ are acsumed equal, a~d~
they are also c“ounted in, in Jv. If, Instepd, the lower-

flanqes ~re ascrlbcd to the %oTizontal mall, Jv rould -
have to he %iven a value which would correspond to the
vertical wall without the lower flnnqe. whereby the neu-
trnl “axis of the wall would be displaced upward. The
stress T along the wall web is mssum:~d uniformly distrib-
uted, md hence T = - G yal ii tho vertical walls as
well- ha in the horizontal” wall.. Then “ .

o

J

(0)

(i)
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. .
The result is a functlo’nal’,”depending on five “fundtions
which must make It a minimum. The equation of continuity
between two walls along the. edge .elimiaates- one. Owi n%

-“to the ”e-qliali”ty’ofstrain aloag the edge, we have for the
two vertical “walls: .

.-

from which’ follows:

(2)

The substltutioh of “this “expression for 73 in equation
(1) reduces the new functional to the four functions y~,

Y~. Y4V ~, giving

t,In the search of the functions Fl, Ya, 74, whi ch

make this functional a minimum, the following limiting
conditions rrhich reflect the geometric constraint at the
point fixity, should be observed:

Yl(t) =Ya(t) =Y4(L) =0: yzl(t) =0; ~(t) =0 (4)

A variation UT Is ap~lied se~arately tc each of the
four functions. Considering the corresponding functional
as function #(c), we can write: ..

(y+d), o = o
=

m must naturally comply with the establ~shed limlking
conditions which 71sYanYa8 ~ themselves satisfy,

(5)

Equation (5) is the well-known equation of the calculus of
variations. ..

.. ...-. . .m
. .

\
. . ..-t .
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The variation is first applied t=c Y4 ●

or

1
t

Y4’ 714’ dx = O

.0

(5b)

(6)

Partial integration gives:

This equation is comp~ipd with then nnd then only for any
form of the function ?14 when

Y4° = 0: Y41(0) = o (7)

Adding the known geo~etric condition Y4(t) = o gives’ y4
for which

y4(x) = o (8)

.Eeturning to the fun~ttonal”-,~hile posing y4 = O,
and. applying the vartatton to Ya ;Ives

.,

I
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. Equation (6) gives a relation which, dl~ided by 2, has the
. - form-

..,,. ... . .-,-,..-,---- ‘-.,

J
1

(G s= h Fa ~ % l+P~i)di=-O’ (9)

o
or

f

a

~a~ (Q szhya f”+ p) ix= O “ ‘(”9a)

o “.
Equation (9a) ~s satlsfled for any function ma if

Qslhayai+P=O (lo)

The integration of equation (10) with regard to
equation (4) for Ya s that is, Ya(l) = 0, gives:

Ya = ~+ (t - ‘)
~h

Applying the variatltin to ~ gives:

}
+ Ef@+E~f)a+&@~a~a+ 2P(YLI+7=?) dx

The application of equation (5) leaves: .

: (11)

.7

i

)“

(ha)

J

o (12)

whi ch , multiplied by ha/2 , and the common factor ~f
placed in brackets, afforda

.
b

.[ { .}
~f (2EJo+”E~ba)!:+h EJoYlti dx=O (13)

..
0

... ,

This equation is satisfied for any function Tl if
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t“’=“’ .- h.E Jo
yl II

2EJo+E$lba
(14) “

Then the variation is appli”ed to Y1.

+G~hy=l a + 2P(y1 ‘+cTlz’+ra

}J
‘) dx

Thb application of equation (5) gtves:

or, rearranged,

2

J{( E
2EJV+3 EJO

)
Y= “T* 2h EJog’nJf+2PnlfIl+p

}
dx=O (15b)

-o

partially Integrated, the first expression of the ia-
tegral reads:

0 .. 0
.

(16)

and the second expression: “

It
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nl

+ J-pll #x= -g’(o) mx’(o)+g’’(o)nl(o)+ Jr’ ml ax

o 0

t

o

(17)

while the third cans as we know, be written as -2P ml(o),
so that in conjunction with equations (16) and (17)* equn-
tion (15a)

“( )
2EJ”V + ~ EJO “yz ‘:(o) ~ ‘(o) + (2EJV

*
1

1
!

+ $ EJo)y~’’(0) Tlz(0) +
‘ J’( )

2EJV+$ EJO YZIVT dx !
I

o > (18)

i
- ~~ EJO \’(O) llzt(0) + ~ EJO t“(0) VI(O) I

i
I

J
The integrals nre arranged into a single integral, the sx-
press~ons with respect to T(O) and UI(0) being divided
into two groups:

[

a
-’01’(0) :$ EJo \’(()) + (2EJv + ~ ‘Jo

)
Yl”(o)

1

[J+ 111(0) ; EJO g“(o)

1

(18a)

+
(

‘8 EJO2EJ~ + —
)

~;ll(o) - ap
Ila 1

I .—. —
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Equation (lHa) is. satisfied. monly when the following con-
ditions are complied with:

(~ EJO ~’” + 2EJV + $ EJO) y$v = O
h

2h ~J””
~a (

o ~’ (0) + 2EJV + $ EJO) 7%”(0) = O (20a)

The result is a differential equation, niamely (19), and
two limiting conditions (20) and (20a). .

Integration of equ~.tion (19), with due regard to equa-
tion (20), -qives:

( )~ EJO ~“ + 2EJV + $ EJO y;~- 2P = O (21) “.

and of equation (21) with due regard to equation (20a):

~EJo ~’ +
( )
2EJV + $ gJo Y n - 2PX = o -

1
(21.2)

Aside from equs.tioa (?la), we again write 9ClU~tiOn

(14) obtained from the minimum condition with respect to

t=-
-hEJo

22J0
n ~ 1“

+ Ecll
(14)

which , ~ftgr ~lim~n~tion of C1 from equations (21a) and
(14), and minor changes, lonvos:

PX
Y~ “ = — ~-~——— (22)

EJV+

Integration, with allowance

p “X3 - XZ?x + 2t3
Y= = g “—— hr— “

EJV + -———

( )
2~+J

En EJO

(23)

k
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“Integration of equation (14) With due regard to equa--..,.,
t-ion (4) for” ‘~-‘and ‘yl. ~iveg:. .,--- . . .

(14a)

whioh, since yz is known. from equation (23), gives: ‘

There remains thea the solution of y~. Equations
(2) and (14a) afford a relation %etween y3~ and yz~
which, with allowance for y~(t) = yl(l) = O ultimately
gives:

Y3=—
biECl

— YL (25)
2EJ0 + &E~

The strain condition Is therefore completely defined
through Yl(x) ~rom equation (23), Ya(x) from equation
(11.), Y3(x) =~;;; equation (25). ~(x) from equation (24),
and because = 0.

The construction of equation (23) discloses that
YJX)S that 1s, the bending lino of a vertical wnll,

agrees with the bending line of a bu~lt.~n cantilever beam
under load P . at the free end, with the inertia moment:

while the natural Inertia moment of the wall seotion is
Jv only. Formula (23a) definitely expresses the effect
of the presence of the horizontal wall on the bending
stiffness of the vertical walls.

The shear strains on a vertical wall are equal to
those of a beam of the same size, built in, cantilevered,
and loaded in the same manner.

The moments in the vertical wane, positive in the
sense of the moment due to P, are in any section

1--- —. .... —
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,

Mv = E Jv ylli = Px
La

(26)

The moment is, as seen, given by the product of p)(x
the moment existing in a vertical wall which is no longer
connected with the horizontal wall, and a correction fac-
tor < 1, expressing the reduction in stress in a verti-
cal wall by virtue of the attachment with the horizontal
wall,

Equation (24) gives the specific strain ~’:

!’ ‘--
-2EJoh

-————

2EJV (2EJ0 ~bEE~) + haEJo E$l
Px (27)

The total normal stresses (positive, if tensile) in
the upper and lower edges of the left vertical wall is
given by the formula:

!’ follows as function.of Yl” from equation (14), hence

gives:

: ~h
(

23 Jo
o —-— + 1) yl~

upper 2 2EJ0 + ma #“
lower

(28)

In the corresponding edges of the right wall, the same
equal and opposite stresses as in equation (28) mro ob-
tained.

111. EXPERIMENTS

The “experiments wero made on boxos of duralumin and
plywood in order to test the conclusions of tho procoding
theory on npon hoxos and to evaluato the practlcrl approx-
imation.
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.

It is. an.ticipatod that, because of the effect of self-
stiffening. as a reeult of the great form ehangeb, the ana-
lytical resulte will he too unfavorable compared with re-
ality: but in practice the analyst and the defligner pre-

.

fer to err on the.”safe” side. “ “

The foregoing theory stakes that the open boxes have
a low ovar-all torsignal stiffrioss as comparod to a closod
box of the came dimensions. But. 3t does not equal zero
as Bredt’s t-neory stipulates in hts particular oaee.

The foregolnq. theo~ further nanifests that the tor-
sional stiffness of the opon box Orlgin,~.tes in the flex-
Ur.d stiffness of tho ~ortical wall~, the deflections of
which t-ho horizontal..wall opposos. This wall undergoes no
shear, it moroly bonds. The verticnl walls are mzb~eotod
to very llttlo shear, which probably hue little effect on
tho d650rmatione of-the &ystom. It tiny be said that the
system ronctn proaomtnnntly \Yith n~rmml stresses to tho
mpplied torquo, whonoe the term “twisting” is employod ro-
luct.antly to tho typo .of Stress considered hero.

n) Experimonto with Closed 3uralumin Box for
tho Exporimontal Dotormination of G

..
The twisting test of the hox be- ~~th ono mall lack-

ing was procoded by the oxperimdntal determination of G
for tho employed duralumln sheet. This value ie to be
used in the calculations for the box With one wall romovod~
Tlio detorminntion of (3. IS offectod by tho twisting of n
thin-walIed beam of” Squ”tirosection (plots 1 mnd 2). Tho
reneone for the squaro section wero tho following:

In a roctnngular, hollow, closod-off prism an support-
ed as to permit wnrpinq, the angles of \?arping or disloca-
tion of n Vertical mall and thoso. of ~ horl~ontal wall, aro

(
tl”) -proportional -h- - — Now, eince

al Sd”
h=b and s1=132

.on n square. aeqtion of constant thtoknes.s,. the angles of
wr.rping nro equal -to ~oro: i.e., thero is no warping. If
ouch a box Is ro~tr,~ined so as to preyent w,arping, It will
hnve no effect whatac~vor, becauso nn normal stresses due
to bendinq can nccur. Even possibly existing flanges have
no reason fnr pnsitive o“r.nogativo tenEion. All this iS”
beneficial for tho con~truction of a tie~t %OX on which
flnnqoe along tho od~os nre nooossary. Moreover, it Is
simpler to clmnp the lIOX and providO a robust flnnge that

——-— . ..— . — - — -— -- —
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definitely prevents warpinq. ““Fo$ this reason the shear
modulus G, deriyed from the twist of the discussed box

-must ba exactly correct.” “ “

For the box bean of square section of side length h,
and thickness s, it gives: .

~Gh4=GhsgB=—
4& .

s

~he angle at the extrene end amounts to

For Z = 149.5 cm, h = 15 cm, s = 0.06 am, it is:

a(o) = Mt - 149”5
G 153X0.06

hence for G:

149-5
G = ——-—

Mt Idt
— = 0.74 —-—

15s X 0.06 d(0) d(o)

Measuring the vertical displacements yl and y% at

the ends of a horizontal ~ar of 1.6 m length, and applying
a torque with two equal and opposite loads P at 100 cm
distance, gives:

Mt = P x 100 kg/cm

(y+y)
~(0) = —~--r?-- (in radians)

O 74 ~fi=” = 11 840 x p - kq/cm~G.= .

~1
+ y2 . ‘“ Y= + Y2

-.—
160

(29)

The recorded values are compiled in table I.
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P
k.q

.—
10
20
30
40
50

—-
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d

YI“
cm

0.2
.45
.65
.95

1.25

TABLE I

+;~
I :9

:45
.65 1.3
.95 1.9-

1.25 ~ 2.5

P

FL+Ya—.
25
22.2
23
21
20

G

lcg/cnP
.-—-
296,000
263,000
272,000
249,000
237,000

—.

15

The last two values for (3 correspond to a strain
condition hy incipient buckling; they are therefore ap-
parent, not actual, G values. The test average is G =

270,002 kg/cma.

F~~:ures 2 and 3 show the test rig, and figure 3 is the
set-up with Huggenberqer strain gages, which were also used
in order to obtain G by Q different method.

b) Load Tests

Tho dimensions of the open hox are given in plot 3;
figure 4 s“aows the test procedure.

The torque 3S applied at the free end of the box by
means of a double lever where the applied forces are 100
cm apart. The box being 20 cm wide, the force (P) is in

each cr.se 100 = 5
-Z5- times greater than the load exerted at

the two ends of the lever during the test.

The measurements included:

1. The two vertical,. oppositely directed displace-
ments Ys and yd at both ends of the hori-
zontal bar of.160 cm lengt~, the test point ly-
ing on the median plane of the bar attachment.

2. The horizontal displacement y “ of the lower
horizontal mall. The ordlna?es .~gv ~d, and Y.
were measured at the “free end of the box. “

~o corresponds to the Yaluo Y3(0) of the theory.

Ys a= d yd, reduced In ratio of “the horizontal differ-
ences, correspond to the quantity YI(0) + Ya(0), or, ex-
actly:
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d@ + y=(o) -.”=”160 ‘“”= % ‘“a “

For this reason the expression ~’% Ye + yq

2
is used for

Yl (0) + W=(0) in ta%le II. “

TABLE II “ .

5i~~10
15

I
i 35

20 I 48.5
25 i 59
30

I
71

12.5
25
36.5”
51”.
62
73

0.5
1,0
1.5
2.0
2.5
3.0

1.53
3.06
4.47
6.22
7.56
9.00

There is a dlstinc~ proportionality between torque
and strain, according to table II. This brings us to the
formulas of the preceding theory. Making x = O in the
expressions for Yl , Ya, and 73 gives :

? 13yz(o) = “
i—

I3EJV 1 +

\ 2“ (%$

3@) = —p&
Gsla

. . @)=_b2~n
2’0 + ban ‘1(0)

(30)

(31)

(32)

Hext “we compute Jv”, ~, a~d Jo. The cross section of a

flange section is 30 mma = 0.3 cma (fig. 5). The inertia
moment of a vertical wall wiiL two flange sections - the
centroids of the flange sections %eing 12 - (2x0.4) =
11.2 cm sp.need apr.rt - is:

0.06x123 + 0.3xll.2a‘v = — 12 ———
2 = 8.64-+ 18.80 = 27.44 cm4

.

The inertia moment Of the horlzontj~,l wall is:
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Jo + ~~~@ . 40 em4 .
..

.,---., ..-, -- ,... . 12,. . . ., . . .
.

The eection il of o%q. mf the tw”Q vertiaal walls, ln~lu-
sive of both flange sectioas in:

Cl = 0.06 x 1~ +2 x 0.3 = 1.32 cma

whereby

= aIC Jv . , (33)

..

(34)

a is a kind of enlr.rqement factor of Z Jv, which in-
cludes the supplemental horizontal wall.

aEJv= 1.228 X 750,900 X 27.44 = 26.3 x 108 k$/cma

The box lenqth without the clampln~ flange is about 135 cm.

yl(o) +ya(o) =- PZ3 +-xJ-
3aEJv Gslh

(=P— 1353 +-
135 ~ } (35)

3X26.3X108 270000x0.06x12
‘1

= P (!3.0Zi2 + 0.0007) = 0.0319 P
J

Then
Yz(o) = 0.0312 P

hence

y3(o) = .bhfl 20X12X1.32yl(o) = ——–~-— y+o)
2J0 +.1)% 2x40 + 20’”xl.32 1

r

(36)

= 0.52~ ~1 (0)=0.521x0.0312 P=0,016P5 P ,

I_ —.— —..
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With P = 30 kg, .YI(0) + ya (0) = 0.313 X 30 = 0.957 cm

against the 0.9 cm test value. For y3”(0) = 0.01525 X 30 =

0.48 cm against the experimental 0.3 cm.. The accord be-
tween tlieory and teat Is satlafactory.

c) Tests on Closed Plywood Box -
Determination of G

The box was a thin-walled beam of square section. The
dimensions were those of the duralumln specimen (plots 1 and
2). The walls were of 1.5 mm birch plywood. The walls and
the partitions were connected by 10 X 10 mmastrips. The
two partitions at the end were of 2 mm birch plywood. The
15 X 15 mma flange strips were of spruce (figs. 6 and 7).

The distance of the couple and of the test scale was
d = 112 cm. The test arrangement is shown in fiqure 8.
It iS

B=–@G=~G=Gh3s
J* 4:
c

(37)

(38)

Y& and Ya are the res~sctive readings from the right

and left test scale.

According to equation (38), the experimental value of
G iS:

PdalG = ——.— = 6,770 —–~—
h3s(~d + YS) yd + ~s

-——

T
—.

Load P yd

kg

~

mn—— —— —.—. .
5 12.5

10 25
15 41
20 58
25 78

TA
—-
Vis
7i.13...—_
12
24
39
55
76

lLE III
l———
Yd+~s
mm

24.5
49
80

113
154

-—— I ———

2.04 13,800
2.04 13,800
1.875 12,700
1.77 12,000
1.62 ~ 11,000

(39)

Al-.. - . .—.- . — -
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Since critical phenomena appear at P = 15 kq, the
------ value G s 13-,800 .kg~,cm?.Ss .mai.nt%iried~..

Putting m = 3, would give:

~=tim~G ““”= 2.67 X 13,800 = 36,800 kg/cm=

.

d) Load Tests with Open Plywood Box

The dimensions are given in figure 9. The side walls
and the partitions are of 1.5 mm birch plywood, the out-
side bulkhead walls of 2 mm birch plywood. The flange
strips are of 15 x 15 mma spruce. The test cirranqement Is
shown in figure 10.

As shown in section 11, it is:
.

P t=yl(o) = —-—-——-–———

3EJV 1 + -

2JV (i+:> ~

h
(40)

with h = 15 cm, b = 25 cm, and s (wall thickness) =
0.15 cm. Now the walls of the box have ~ G =“13,800 k%/
cma , and an E = 36,80~ kg/cmc, as establis-ned by tests.
But for the spruce strips, it Is around E = 100,000 kq/
cmz. So”in the calculation of SI (section of one wall
includiaq strips) and for Jv (their inertia moment) as
Is custonary in reinforced concrete, the area of the spruce,
i.e., that of the harder material, must be multiplied by

E spruce = 100000n=———
‘plywood 36000 = - 3

Hence (fig. 11):

n = 0.15 “x 15 + 3 x 2 x 1.5s = 15.75 cma

Jv = 0.15 x g + 3 x 1.5a z% = 656 Cl?14

ba 252 12
~=-

= 3.2

0.15 x p22 = 0.15 X 25

(41)

(42)

(43)

.— — . —- -——
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Z+g=
00 15?75

+ 3.2 = 0.127 +. 3.2 = 3.327

~5a
-—

~+;) =

= 0.0515
2 X 656 X 3.327

yx (5) = — P 1353 “ ‘.— = 0,0336 P
3 X 36,800 X 656 X 1.051~

. .

ya (o) = ———p-=--—— = 0.00434 P
13,800 X 0.15 X 15

yx(o) + ya(o) = (0.0336 + 0.00434) P = 0.03794 P

d (o) = 2-L&Q = 0.00304 P

(44)

(45)

(46)

(47)

(48)

(49)

Take, for example, the 10 kg load, bear in mind that
the distance between the couple is 120 cm, and that b =
25 cm. Then,

P= % 10 = 48 kg

#(o)
computed = 0,00304 X 48 = 0.146

instead of an observed test value of 7.8 cm, which corre-
sponds to

a(o) ~ x 7.8 = o 13
recorded = 120

●

Here also the agreement between theory and test is satis-
factory.

The loads, the proportional moments Mt, and the re-
corded strains along with the theoretic~.1 and experimental
values of d(0), are compiled in table IV.

h
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kg

3
6
7
8
9

10
11
0

-—
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--————

I
!dt=PX120 yd(bight”)

kg/ cm mm

600 32
720 41
840 50
960 61

1080 69
1200

I
79

1320 88

__ A-–:..__

TABLE IV
b—— ----

Ye(leftqa.( b)recorded ~a(o)co;;;:-

mm
1-

In radians
.—— - ——~—

32
41
49
60
67
77
86
5

--—— ---

Translation by J. Vanier.
National Advi~ory Commit~ee
for Aeronautics.

0.063 I 0.073
.067 .087
.082 .102
.101 .117
.114 .131
.130 .146
● 145 .160

I
——-———

ZIEFERZKCE

1. Minelli, C.: Nuovo CQ1CO1O enersetico-variazlonale
dl I’travi a cas~onell sottoposte a torsione.
Ricerche dl ingegneria, Nov.-Dee. 1937. .

— — .— —. — —.
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Dumluminum.
4JVpartition of 8/10 mm baluminum h, Angle section

Pieces:l.
Scale 1:12.5 .

parts--scale1:3 . i, Rivets.
c, Duraluminum. k, 6/10 mm Durald%~”a, Attach flange. d, ~ralminm angles.

b, Partitionwall e, mralminm partition. covering.

of Dnrahminum. f, Rivet pitch, 18 mm. 1, Axiglesection.
m, Partitionwall. *7i7p *# =-~–– ------1--------

L=------t-------
,j?#k4 ,

a,
Plot 2

Partitionwall of
haluminum sheet.

b’++

-djJ&-

2 pieces of 8/10 mm Duraluminm sheet.

.

2 pieces of 6/10 mm II II-. c!,

1
~i?~

Dureluminum angle section.

3 pieces of 6/10 mm Duraluminumsheet.
Attachment flanges.
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l-” 7WU \ -1
#

Angle Section d
15x 15 X 6/10

r

I

I
I
I
l-.

\ a
..

Scale 1:12.5

——--—————————————-————

h

——__—___________________

,:

,,,

,,

I
Plot 3 d,

a, Partitions. e,
b, Duraluminum. f,
c, Partitions. g,

Angle sections. h, Duralumintun.
Attach flange. 2 pieces of 8/10 mm sheet.
Rivet pitch. 3 pieces of 6/10 mm sheet.
Partition of duralumimum.
Scale 1:3.5. ~

o
*
Oa

I
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Figure 1.- Sketch plan of a box beam.

Figure f5. -
i

Test’rig with closed

Figs. 1,5,6,7,9,11

,.,

Figure 5.- Flange profile.

Figure 7.- Section
through box.

plywood box to define G.

=’
Figure 11.- Wall section.

Figure 9.- Test rig with open
plywood box. .
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Figure 2.- Load test with cloeed
duraluminum box to

define G.

Figure 3.- Determination of G with
Huggenberger tensiometers.

Figure 4.- Load test with open
duraluminum box.

Figure 8.. Load test with closed
plywood box to define G.

Figure 10.- Load test.with open
plywood box.

.—.
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