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THE TORSION OF BOX BEAMS WITH ONE SIDE LACKING*

By E. Oambiia?giu

The toresion of box beams of rectangular mection, the
edges of walch are strengthened by flanges, and of which
one glde is lackling, 18 analyzed by the energy method.

The torsional stresses are Zenerally taken up by the bend-
inz of the two parallel wglls, the rizidity of which is
sugmented by the third wall. The result was checked ex-—
perimentally on duralumin and plywood boxes. The torslion
recorded was 10 to 30 percent less than that glven by the
¢alculation, owing to self-stiffeninsg.

I, INTRODUCTION

Box beams (rectangular) lacking one side, with or
wlthout bulkheads, find frequent use in alrplane design
as, for instance, on the wing near fuel tanks, or bombd
racks, or the landing gear, or even in the fuselage 1n the
vicinlity of a wide door, or of the load compartment for
droppable londs (bombs, provisions), or incidental to ar-
mement lnstallation. Shell constructione of rectangular,
rounded-off section, as customary on wings and fuselages
near openings extending to an inslde wall, or in any case
of consliderable width, can also be approximately treated
as such.

Section II explains the unsuitability of Bredt's meth-
od. The apalyais is made according to Minelli's procedure.

Section III deascridbes an experimental procedure for
the exact derivation. of the values of shear modulus G,
The experimental solution of G and Young's modulus X
of the employed material is followed subsequently dy a
torsion test and a torsion analysis of thin-walled prils-
matic beams of rectangular section with one slde-lacking.
The materials are duralumin and plywood. The analytical
data are discussed and compared with the test data.

e,

*n"Berechnung der Verdrshung kaatenformiger Trager, denen
eine Wand fehlt." -‘Luftfahrtforsschung, vol. 16, no. 8,
Augugt 20, 1939, pp. 403-411. ("Il calcolo torsionale
delle travl a cassone mancanti di una varete.l
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II. THEORETICAL ANALYSIS OF. TORSION

Bredt's theory .of torsion of hollow cylinders and
thin-walled prisms states that the torslonal stiffness of
2 body of this type 1s Zero when a.part lying between two
generatrices 1s lacking or, more simply expressed, when
the body along a &eneratrice 1s cut up. It is sufficlent
to check Bredt'!s formula

3

g = 426 8
J 4c
8

If 8 =0, for no matter how emall the rezioﬁ. then B = 0,

Experience, on the other hand, shows that 1t 18 possi-
ble to malntaln a certain, not neglizgidble, torsional stiff-
ness for hollow, thin-walled prisms, whlch are partitlioned
and oven, (The partitioning correesponds to that consid-
ered in Bredt'!s theory.) It only stipulates the prisms to
be built in at one end or both -~ tihls case 1s technlcally
little probable - in such a way as to nreclude axiasl warp-
ing of the end sectlon,

Torsional stiffness can be markedly increased by
flangses running along the edjtes of the hollow, open prism.
In consequence, the torsional stress involved does not
correspond to the classical St. Venant-Bredt stress, dvut
rather to ore under which the particular hollow body,
whlch the external forca tries to twist, and actually
twlists, not merely reacts with shearing stresses dut also
with normel stresses. Ia other words, rather than a true
hollow body, 1t represents a gygtem of besrms Joined along
the edges, each of which 1s stressed separately in shear
and bendlnse,

With a type of fixity rot proaititing axial warping
of the end section, the hollow body could have no torsion-
Al stiffness differineg from zero. If the upright walls
were Jjolned at the polnt of fixity with a cyrlindrical
hinge with vertical axis, and the horizontal wall with a
cylindrical hinge with vertical axis, thus permitting the
bullt-in section to warp at will, the torslonal stiffress
would be zero. Hence, 1t is assumed that the restraint is
actually as previously indicated, so that the problem ve-
comes that of torsion 'of an open, thin-welled prism with
flanges and partitions, 'as 1llustrated in figure 1.
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The torque 1s transmitted by means of two vertical
forces P. of equal maghitude and opposite direction and
applied at the vertical walls in the end section. What
are the elementary form chandes of which the state of the
total form change consists?

The two vertical walls are strained by antisymmetricel
bending moments of equal and opposite magnitude., Let v,

be the bending ordinate, and y; the shear ordinate of a
vertical wall.

The tendency of the left or right wall to deflect up-
ward or downward 1s counteracted by the liaison of the
vertical walls with the horizontal wall along the edges.
Actually the horizontal wall prevents the lower edge of
the vertical left wall from becoming shorter and that of
the right-hand wall from becoming longer. The result is
a countereffect on the upright wall faclng the horlzontal
wall along the edge, which produces an axial strain in
these walls. ' It 1s therefore necessary to take into ac-
count & total axlal dlsplacement g(x) of the sections on
the vertical walls, naturally in the opposite direction;
that is, toward the negative x axis for the left wall, and
toward the positive x axis Yor the right wall. :

The horizontal wall 1tself receilves axial reactlons
from the vertlcal walls, of - equal magnitude and opposite
direction, against which it can react only with the bend-
ing y, and, if necessary, with the shear y,. But it is
not strained as a whole; l.e., its center line retalns 1its
original length. .

* The state of deformation is therefore reduced to the
five parameters y¥,, ya, £, ¥z Y4 Their positive direc-

tions are those shown in figure l. As peen, the x axis

for each wall was assumed with point of origin in the out-
slde free end. The positive direction points from free

end toward the restraint, The strain condition is explored
by means of the energy method, which is based on the prin-
cilple of virtual enerzy (reference 1). (The notation used

In the present report 1s the same as Minelli's (refer-
ence 1).

Let L denote the strein eneregy, and U the sum of
the scalar. products of external forces and displacements
of thelr applied points, then form the difference L - TU.
The principle states that between all strain conditione
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reconciled with the tyve of support, the state for which

L - U becomes-a minimum is the true state., Hence, ex=
pressing L - U 1in relation to the form changes and He-
fining these to the satisfaction of the support corditions
end the nminimum condition for L - U glvaes the ‘true state
of strain. For the case in polnt, 1t is:

-, 1 .
. . r -~
U = Pi'vl (o) + YE(O)} = "'f P(.vll + :'ra') dx
' : - %o .
How L is to Ye expreased.

Let Jy and J,, resnectively, denote the moment of
inertia of one vertical or the horizontal wall, Q tae
cross~sectlional area of a vertlcal wall, s; the thick-

ness of a vertical wall of height h, and 8, of the Lor-
1zontal wall of height D.

The flanges. contalned in () are acsumed equal, aznd:
they are also counted in, in J,. If, instesnd, the lower
flanges rre ascribed to the horizontal wall, J, would’
have to be ziven a wvalue wialch would correspond to the
vertical wall without the lower Fflanze, wheredby the reu-
tral axils of the wall would be displaced upward. The
stress T along the wall webd is nssumed uniformly distrid-
uted, ~nd hence T = - G yg' in the vertlcal walls =s

well as in the horizontal wall,. Then

1 h
L = / £, X EJ u Eiﬂ na 1 Q E,' a i
...u <Lr_ S v ¥ + 5 ,vs + 2 5 B !
o : ? (0)
Gaxd
+ 256G s8; h ;va'a + —5— y4'a} dx !
J
and L - U may be expressed with
ll E -~
J I
- - na 9 ud '3 13
L ~-U u/ {E Je W o+ -yt o+ EQE © + GBJ.’_”;; !
. [ . > (1)
+ Gsgd v!8 + 2P(y, '+y_ ')} dx
2 "4 Y1 ¥, J

s ]
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The result is a functional, depending on five functions
which must make 1t & minimum, The equatlon of contlinuity
between two walls along the edge eliminates- one. Owing
--to the- qﬁality of strain along the edge, we have for the
two vertical ‘walle:
h b
b+r3v =37

from which follows:

olp

0 .
= (T, t o+ yl') (2)
The substitution of this expression for ¥s 1in equation

(1) reduces the new functional to the four functions ¥,.,
yat Y4u g, c'.‘l.ving

1 : a ~
a , By (2 t _h_mn 12
L -U = l/a‘ {E e ¥+ 5o\ 3 g+ 2V EQE
0

Gspd
+G_s:. hya'a+—52§—y4 +2P(y1' +ya')}d.x

> (3)

J

In the search of the functions ¥y, ¥a» F4» £, which

make thlis functional a minimum, the following limiting
conditions which reflect the geometric constraint at the
Point fixity, should be observed:

7.(V) =5, (1) =y, (1) = 0; y,'(V) =0; £E(V) =0  -(4)

A variation €N 1is apblied senarately to each of the
four functions. Considering the corresponding functional
as function ®(€), we can write:

(%),

Se (5)

|
(o}

N must naturally comply with the established limiting
condltions which Yys Fq» Y4 ¢ themselves satisfy,

BEquation (5) i1s the well-known equation of the calculus of
variations. . .



8 N.A.C.A. Technical Memorandum No.. 939

The variation 1s first applied to Jy-

- l a
- B '(2 t h ) a
-] [¢] = a n H
¢(c)f{Eva;' +—2-_b§+_by1 + BEQE L
[o] (5-‘.‘.;
3 G'Bab 1 ' a P( ' 1
+ G s, hy'™ + - (y"'I +¢T].‘l )Y o+ 2 s ) p dx
Applying equation (5) gives at once:
1
(a CC >€=° =f G 8g Dy, Mgt dx = 0O '(.'Sb)
or o _
A
f Yo N4 dx =0 (6)
.o . )
Partlal 1ntegration Zlves:
1 . . . 1 . 3
f’y"‘l n,' ax = ly4|n4'7' - ‘/y4n Mo dx = = 3, 'O |
° {
-f y," Mg dx = 0
(]

S

This equation is complied with then and then only for any
form of the function TNg when

ya" = 0; y,'(0) =0 (7)

Adding the known &eometrlic condition y4(1) = 0 gives Yo
for which

¥olx) =0 (8)
. .Returning to the funétional while posing y, = 0,
and applylng the varlation to Ty slves
l - a . Bl
o(e) =f{EJv?,:'a + E?(% - % 71") +zq ¢’ l

r (8a)
0 a
+ Gg h(vg ™eNg?) + 2P(y1'+yé’+enaf)}-dx i
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Equation (6) €ives a relation which, divided by 2, has the

- form- . s e .
. )
u/“ (G 8 h yg! Mg! + P Ng!') dx =0
[
or 1 :
L/P Na'! (@ 8, h yg' + P) dx = 0 -
°

Equation (9a) is satisfied for any function Ty if
G'Blhaya'+P=o

The integration of equation (10) with rezard to
equation (4) for y,, that is, y,(1) = 0, gives:

¥ = —2 _ (1 - x)

G-slh

Applylng the variation to £ gilves:

1 -2

vy I
®(e) = [ {E Iy yJ'_'a + :-';—Q L—% (¢' +enr) + % .vln]
- L
o) .

. 2 .
+ BQ(E +en') «+ Ge byt + 2P(y1'+ya')} dx

The application of equation (5)lleaves:

. .
f{‘“"%(%ﬁ' +Zg)Einse2zat vlax=o

(o}

which, multiplied by ©b3/2, and the common factor 0!

placed in bdrackets, affords

1
b/n uk {(2 EJy, + EQ ba) §' + h EJ, ylﬂ}-dx =0

o

Thls equation is satiaeflied for any function TN 1if

(9)

(9a)

(10)

:(11)

" (1la)

(12)

(13)
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 * .= h.E J,
E = - R
2EBJ, +EQ b

Then the variation 1s applled to 7.

l
d(e) = /P {m Jy (ya" + € Th")2
lo a
t 2
e f L mnan] o

+ G s h ﬁ;a + 2P(y1'+€ﬂ1'+ya')} dx
The application of equation (5) gives:

1 .
J/‘{EEval"ﬂ1"+EJo <% g' + %
o

b |
=

=2
~_/
o'lb

or, rearranged,

l
a2
f{(EEJv+%:r EJ°> y "M o+ %? BT ¢ N, "+2PT 1'}dx=0
0

n1"+aPn1'} dx=0

(14)

(15)

(15a)

(151b)

Partially integrated, the firet expiession of the ia-

tegral reads:

l

f y:I.n-nlu dx= |y1n -nlt

(o]

Al
_‘/. 75,“'“1' dx =

(o]

, 1
1l
~y,"(0)N,1(0)- ly;l'nlio +L/p %FV n, dx =
o
1

. } o
and the second expression:

~y,"(0)N,'(0) +y,''* (0)N,(0) +L/P ;Ev n, dx

(16)
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- -f--.g'.n.l.“u=. lg' N,! o_‘/j_g“_;]lvax_;-__g__'(o')n1'_(_0)- " M,

o o

1 - 1
+f t"nldx=-g'(o)nl'(o)+g“(o)n1(0)+f N, ax  (17)
. o}

o

while the third can, as we know, be writtem as =2P 7,(0),
so thaet in conjunction with equations (16) and (17), equn-
tion (15=a) :

- (ZEJ'v + .%; EJO)'yl'{(o) T, '(0) + (2EJy 1

|
. 1 :

a 2 i

+ L’b EJo )z!''(0) M, (0) +f (am.:,,+%g EJO> yIVn ax |

° > (18)
- %# BT, £'(0) My1(0) + %% 27, £"(0) 1,(0)
/‘121;
+ EJ, t"' 1, dx - 2P M,(0) = O
/] 8 "o 1 2 J

[ %
o

The integrals nre arranged into a single integral, the ex-
pressions with respect to T(0) and N'(0) Dbelng divided
into two Zgroups:

~
~N,'(0) [%‘% EJq g'(O) + <2EJ7 + %: EJ°> ylﬂ(o)]
+ My(0) [.%g E7, t" (0)

< (18a)

a
+ (2va + %ﬁ EJ°> yi1(0) - EPJ

: 2h n®
+f N, [—g_b B ¢ + ('eEJv + o8 EJ°> ygv] dx = 0
-

0
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Bquation (18a) ls.satlisfied only when the followlng con-
ditione are complled with:

a2
-%9 EJo E™ + (213:.7,, + %—a EJ°> 7»1V=0 (19)
%g BJ, t" (0) + (am.rv + l_:;; E.T°> y,"(0) - 2P = 0 (20)
-i—% EJ, E' (0) + (EEJV + :_; EJ’O> 7"(0) =0 (20a)

The result 1s a differential equation, nemely (19), and
two limiting conditions (20) and (20a).

Integration of equation (19), with due regard to equa-~
tion (20), -gives:

r

a
EB gy, ¢" + <2EJv + b EJO) yM - 2P = 0 (21}

o b2

and of equation (21) with due regard to equation (20a):

1 3
2y, b+ (EEJV + B2 EJ’O) y"-2Px=0 . (2la)

Aside from equation (?1a), we agaln write equation
(14) obtalned from the minimum condition with respect to

gu

gl - _- h E J, v, (14)

227, + BEGY

which, after elimination of ¢' from equations (2la) and
(14), and minor changes, leavose:

Px

YJ." 5 (22)

EJ, + 2h =
o (2 + B

Integration, with allowance for y, (equation (4)), :ives:

. o ) .
y = P _x3 - 31 x +22t (23)
1 6 I h

v 2
2 b
L o4 B

- (m m.:ro)
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‘Integration of equation (14) with due regard to equa-

ticén (4) for ¢t - and ‘y;- ~glves:. S
E _ - h B JO < Yl' (14a)
2BJ, + EGD

which, since ¥y, 1is known from equation (23), gives:

g = — Edqh P(12 - xB) {24)
EEJv(szo + Y*EQ) + »¥EJ, EQ

There remeins thean the solution of ys. Equations
(2) and (14a) afford a relation between y,' and y,'

which, with allowance for y¥,(1) = y,;(1) = 0 ultimately
Zlvesn:

3 °EJ T b2EQ

The straln condition 1s therafore completely defilned
throuzh y;(x) <rom eauation (23), ¥a(x) from equation

(11), &r3(x) from eguation (25), £(x) from equation (24),
and because y,(x) = 0.

The construction of equation (23) discloses that
v,(x), that 1s, the bendinz line of a vertical wall,

agrees with the bending line of a bullt-in cantllever boam
under load P at the free end, with the inertia moment:
Ty l (23a)

2 (h + — i \ 2J ¢ (ﬂ + —

whlile the natural lnertis moment of the wall section 1s
Jy only. Formula (23a) definitely expresses the effect

of the presence of the horizontal wall on the bending
stiffness of the vertical walls.

The shear strains on a vertical wall are equal to
those of a beam of the same slze, bdbuilt in, cantilevsred,
and loaded in the same maznncr.

The moments in the vertical walls, positive in the
sense of the moment due to P, are in any section
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M, = B J, y," = Px : (26)

ha

2 '
2:'711‘ - (m + iﬁs

The moment 1s, as sesen, glven by the product of P x X
the moment exlsting in a vertical wall which is no longer
connected with the horizontal wall, and a correction fac-
tor < 1, expressing the reduction in stress in a vertl-
cal wall by virtue of the attachment with the horlzontal
wall,

Equation (24) gives the specific strain ¢§':

= L)
2EJ, (2EJ, + b EQ) + b°EJ, EQ

Px (27)

The total normal stresses (positive, 1f temsile) in
the upver and lower edZes of the left verticsl wall 1a
€iven by the formula:

' B
" h .
o = - B E'I!_E:-Egl:l: EJV L4 —
upper v Iy 2
lower (272)

E( -t :|=_123 y1">

t' follows as function.of y," from equation (14), hence
glves:

e

2E Jq

- =£11<
upper 2 \2EJ, + 191
lower

+ 13 y,." (28)

In the corresponding edges of the rizht wall, the same
- equal and opposite stresses 2s in equation (28) are ob-
tained,

III. EXPERIMENTS

The experiments were made on boxes of duralumin and
rlywood in order to test the conclusions of tho proceding
theory on npoen voxes and to evaluato the practicel approx-
imation.
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It is.anticlpatod that, because of the effect of self-
stiffening as a result of the great form changes, the ana-
lytlcal results wlll be too unfavorable comvared with re-
ality; but in practice the analyst and the densigner pre-
.fer to err on the. safe side. :

The foregoing theory states that the opon boxes have
& low ovar-all torsiponal stiffrness as compared to a closed
box of the same dimensions. But - 31t does not equal zero
o8 Bredt's thneory stipulates in his particular case.

The foregZolng. theory further manifosts that the tor-
slonal stiffnoss of the opon box originntes in the flex~
urnl stiffnese of the vortical wallg, the deflections of
which the horizontnl wall opnosos. This wall undergoes no
shoar, 1t meroly pends. The vertical walls are subjectod
to vory little shear, which probadly has little effoct on
the deformations of ‘the system., It may be sald that the
system roancts prodominnntly with nermal stresses to the
applied torquo, whonece tie teorm "twistineg" is employed ro-
luctantly to tho typo .of stress consldered hero.

n) Experimeonte with Clored Duralumin Box for
tho Experimental Detorminotion of G

The twisting test of the box beam with ono wall lack-
ing was preceded by thc experimental determination of G
for tho employed duralumin sheot. This value 1s to de
used ln the calculations for the box with one wall removod.
Tho detorminntion of G  1s offected by tho iwlsting of a
thin-walled beam of squaro section (plots 1 and 2). The
rensons for the aquare section wereo the followlng:

In a rectangular, hollow, closod-off priesm sn egupport-
ed as to permit wnrping, the angles of warping or disloca-
tion nf n vortical wall and those of a korizontal wall, ere
proportional (—— - é%/. Now, sinde h'=b and 85 = 8p
.on a square gectlion of constant thickrness, the angles of
warping arc oqual.to zoro; i.e., there is no warping. If
such a box is roastrnlned so ns to prevent warping, 1t will
have no effect whatsocever, because nn normal stresses due
to bending can ncecur. Even posslbly existing flanges have
no reasnn for pnsitive or nogative tension. All this is°
boneficial feor tho construction of o btest box on which
flangos along tho odgoes are necossary. Moreover, it 1s
slmplor to clanp the boex and provide a robust flonge that
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definitely prevents warping. ®For this reason the shear
modulus &, derived from the twist of the discussed bdox

- must be exactly correct.:

For the box beam of square section of side length i,
and thickness 8, 1t glves:-

4
B =42Gh _gpd g
4 .

a b

The angle at the extreme end anounts to

ﬂ(0)=!%l=_uj.;'___

G h” s

For 1 = 149.5 ¢cm, h =15 cm, s = 0,06 ecm, it is:

149.5
4(0) = My 5
G 15°x0,06
hence for G:
4 M i
G = 149.5 % 74 kg

15° x 0.06 4(0)

Measuring the vertical displacements y; and yz at

the ends of a horizontal bar of 1,6 m length, and applyling
a torque with two equal and opposite loads P at 100 cm
distance, gives:

Mg = P x 100 kg/em
(v, +3,)
4(0) = —xr___ "8’
(o) 160 (in radiags)
¢ = 0,74 X290 _ 17 840 x —F _ xe/cmt (29)
Fl + y'-, " ’ yl + ya

The recorded values are compile& in tabdle I.

Al
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TABLE I

P o ¥ 7&*2; P G

kg cm cm em ¥y +¥, kg /coP
10 | 0.2 0.2 0.4 25 296,000
20 .45 .45 .9 22,2 263,000
30 .65 .65 1.3 2z 272,000
40 .95 .95 1.9 21 249,000
50 | 1.26 1.25 2.5 20 237,000

The last two values for G correspond to a straln
condition by incipient duckling; they are therefore av—
parent, not actual, G values. The test average is G =
270,009 kg/cm2.

Fiqures 2 and 3 show the test rig, and figure 3 1s the
gset-up with Huggenberger strain Zages, which were also used
in order to obtaln G by a different method.

b) Load Tests

The dimensions of the open box are given in plot 3;
flgure 4 shows the test procedure.

The torque is apnllied at the free end of the box by
means of a double lever where the applied forces are 100
em apart. The box being 20 ecm wide, the force (P) 1s in

each cose %%9 = 5 times greater than the load exerted at

the two ends of tke lever during the test.
The measurements included:

1. The two vertical,. oppositely directed displace-
' ments yg, and ygq at both ends of the hori-

- gzontal bar of 160 cm length, the test point ly-
ing on the median plane of the bar attachment.

2e The horizontal displacement ¥y, of the lower
horizontal wall. The_ordinagea ¥gy ¥Ya,» and yo
were measured at the free end of the bdox.’

¥, corresponds to the value ya(O) of the theory.
Yg 8ard yg, reduced in ratio of the horlizontal differ-

ences, correspond to the quantity yl(O) + ya(o). or, ex-
actly:
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‘20 ', . 2

7, (0) + y,(0) = 166 Y5 T 160 74

. 20 -
For this reason the expression =—— X B8 35 uged for
y,(0) + y,(0) in tadle II.

TABLE II

P ¥o(left) ya(right) Yo ¥5 (0)+y5 (0)
kg L mm mm mmn [ . mm

5 ; 12 12.6 0.5 1,53

10 | 24 25 1,0 3,06

15 | 35 36,5 1.5 4.47

20 | 48,5 51 ° 2,0 6.22

25 | 59 62 2.5 7.56

30 | 71 73 2,0 9,00

There 1s a dlstinct proportionality between toraue
and straln, according to table II. This bringas us to the
formulas of the preceding theory. Making x = 0 in the
expressions for Y0 Tao and Vs glves:

3

y, (0) = o (30)

h™ \

3EJy \1 + > QE \

\ 27 (ﬁ + J°>/

- Pl
¥o{0) = Ge.n (31)
(9) = — b h (0) (32)
75 (9) 27, + b°Q Va

Next we compute Jy, Q, acd Jo,. The cross section of a
flange section is 30 mm2 = 0,3 em® (fig. 5). The inertia
momert of a vertical wall with two flange sectlons - the
centroids of the flarge sectlons bYeing 12 - (2x9.4) =
11.2 cm spnced npart - is:

_ 0.06x12% 0.3xl1i.2% . - 4
Iy = 5 + 5 = 8,64 + 18.80 = 27.44 cm

The inertla moment of the horizontel wall 1s:
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Jo = QJOGl; 20% . 40 om*

El

The section £ of one nf the two vertical walls, inclu-
sivq of both flange sectiozns is:

0 = 0,06 X 12 + 2 x 0.3 = 1,32 cm®

/ a
- va( 1+ i) =@ ®Jy . (33)
. 23, Cﬁ + ?-)
o
wheredy
) a )
) h :
a =1+ o 2. LE\ (34)
v (Q Jo/

@ 18 a kind of enlergement factor of I Jy, which in-
cludes the sunplementasl horizontal wall.

122

a2
2 20™\
2 X 27.44 (1.32 + 20 }

a =1 + = 1,228

a EJy = 1,228 x 750,000 x 27.44 = 25.3 x 10° kg/cem®

The box length without the clamping flange 1s about 135 cm.

_P1® L _ Pl
3aEJy G s; b

y,(0) + ¥, (0)

3 r \
- P ( 135 -+ 135 ) (35)
3x26.3%x10 270000%x0.06x%x12
= P (0.,0%12 + 0.,0007) = 0.0319 P J
Then
y,(0) = 0.0312 P
hence
y,(0) = —2BQ (o) - _20x12x1.52 $50)1
2, + D Q 2x40 + 207°x1.32

(o]

o ) (36)
0.521 y, (0)=0.521x0.0312 P=0.01625 P f
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With P = 30 kg, .y,(0) + y,(0) = 0.319 x 30 = 0.957 cm
against the 0.9 cm test value. For y5(0) = 0.,01825 X 30 =

0.48 cm agalnst the experimental 0.3 cm.. The accord be-
tween theory and test 1s satisfactory.

¢) Tests on Closed Plywood Box -
Determination of G

The box was a thin-walled beam of square section. The
dimensions were those of ths éuralumin specimen (plots 1 and
2). The walls were of 1.5 mm birch plywood. The walls and
the partitions were connected by 10 X 10 mm?strips. The
two partitions at the end were of 2 nm birch plywood. The
15 x 15 mm® flange strips were of spruce (figs. 6 and 7).

The distance of the couvle and of the test scale was
d = 112 ecm, The test arrangement 1s shown 1n figure 8.
It 1s

a 4
B =-45"_ ¢ - 4k" ¢ _ gn3g (37)
[ 4c 4 B
e B 8
Kl P4l ¥ ity
4 0) = t = - = d -8 38)
( 2 Gh°g d (

Y3 and Yy &are the respective reedings from the right
and left teat scale.

According to equation (38), the experimental value of
G 1is:

a
6 = 24 1 = 6,770 — X (29)
h”s(yq + vg) Yqa + ¥s

TABLE III

Load P Ya | ¥g vat¥g P ; G
__ kg | mm | mn mm Yatyg rg/cma
5 12.5 12 24.5 2.04 13,800
10 25 24 49 2.04 12,800
15 41 39 8o 1.875 12,700
20 58 E5 l113 1.77 12,000
25 78 76 I154 1l.62 | 11,000
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Since critical phenomena appear at P = 15 kg, the
value G = 13,800 kg/cm®_ is maintaired.

Putting m = 3, would give:

B = giﬂ—i—ll @ = 2.67 x 13,800 = 36,800 kg/cm?

d) Load Tests with Open Plywood Box

The dimensions are g€iven in figure 9. The side walls
and the partitions are of 1.5 mm birch plywood, the out-
slde bulkhead walls of 2 mm birch plywood. The flange
strips are of 15 X 15 mm® spruce. The test arrangement 1s
gshown in figure 10.

As gshown in section II, 1t 1ls:

3

¥, (0) = E L . (40)

ABS, 1 + L =
2J (.2. + b

Y\Q "7
o

with h = 15 em, b = 25 cm, and 8 (wall thickness) =

0.15 cm. Now the walls of the box have a G = 13,800 ksg/
cm@, and an E = 36,800 keg/cm?, as estadblished by tests.
But for the spruce stripa, it 1s around E = 100,000 kg/
cm®, So'in the calculation of Q (section of one wall
including strips) and for J, (their inertia moment) as

1s custonary in relnforced concrete, the area of the spruce,
i.e., that of the harder material, must be multiplied Dby

a Espruce = 100000 -3
Hence (fig. 11):
Q=0.15 X 15 + 3 X 2 X 1.5 = 15.75 em” (41)
a
Jy = 0.15 x 5% 4+ 3 x 1.5% 13.5" = 656 cm* (42)
12 )
2 _ 25% - 12 = 3.2 (43)

J
© .15 x 263 0.15 x 25
: 12
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2 b - 2 = +-3. = 3,32
& + T 15w * 3.2 0.127 3.2 ; 227 (44)
a a3
h = 15 = 0.0515 (45)
oF (g + 33) 2 x 656 x 3.327
v\Q 7.,
' 3 . .
¥, (0) = P 135 = 0,0336 P (46)
3 x 36,800 X 656 x 1,0515
v (0) = P 135 . = 0.00434 P (47)
8 13,800 x 0.15 x 15

yl(O) + yé(O) (0.0336 + 0.,00434) P = 0.03794 P (a8)

2_x 0,038 P _ g 00304 P (49)

8 (0) 25

Take, for example, the 10 kg load, bear in mind that
the distance between the couple 1s 120 cm, and that b =
25 cm., Then,

o

12

P = 10 = 48 kg

3

4(0) = 0,00304 x 48 = 0,146

computed

instead of an observed test wvalue of 7.8 cm, whlich corre-
sponds %o

2 X 7.8 _
6<o)record.ed = —IEBJ— = 0.13

Here also the agreement between theory and test 1s satis-—
factory.

The loads, the proportional moments Mi, and the re-

corded strains along with the theoretical and experimental
values of &(0), are compiled in table IV.
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TABLE IV

M, =Px120 ya(right) |y, (1eft) 4}.(0)1.Moz_dedga(o)cwpmed
kg| kg/em mm mn in radians
5 600 32 32 0.0563 0.073
6 720 41 41 .067 .087
7 840 50 49 . 082 .102
8 960 61 60 .101 «117
9| 1080 69 67 114 «131
10| 1200 79 7 <130 «1458
11| 1320 88 86 .1456 .160
0 6 b l
| .

Translation by J. Vanler,
National Advisory Committee
for Aeronautics.
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Figs‘ 10596.7'9!11 -

Figure 7.~ Section
through box.

Figure 6.- Test rig with closed
plywood box to define G.

P
e

Figure 9.- Test rig with open
plywood box.

Figure 11.- Wall section.
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Figure 2.- Load test with closed Figure 3.- Determination of G with
dureluminum box to Huggenberger tensiometers.
define G.

Figure 4.~ Load test with open Figure 8.- Loed test with closed
dureluminum box. _ plywood box to define G.

Figure 10.- Load test with open
plywood box.
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