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LIPT FORCE OF AN ARROW-SHAPED WING*
By M. I. Gurevich

1. STATEMENT OF THE PROBLEM AND INTRODUCTIOR

The flow about 2 conical body of an ideal compressible fiuid
1s considered. Assume that the velocity of the oncoming flow at
infinity W is directed along the =z-axis. The system of Car-
tesian coordinates x, y, z with origin at the vertex of the
cone O is shown in figure 1. From the counsiderations of the
dimensional theory, it may be found that along any ray issuing
from O the components of the wvelocity u, v, W+w along the
coordinate axes will maintain & constant value. It is further
assumed that the conlcal body has such shape and disposition rela-
tive to the flow theat u, v, and w are small in comparison
- with W. The equation of continuity can then, as is known, be
given in the form

Fyg + Fyy = Fpp(f - 1) = 0 (1.1)
where F may be considered either as the velocity potential o
or the components of the velocity wu, v, w§ M = W/a 1is the Mach
number, where a 1is the veloclity of sound at infinity upstream
of the body. It is assumed that the flow 1s everywhere super-
sonic (M >1).

In view of the linearity of equation (1.l), conical flows
with different vertices may be superposed on one another. Equa-
tion (1.l) 1s of the hyperbolic type, which means that each point
of the flow may heve an effect only on the points located within
its Mach cone; by a known method, the body may be transformed
without affecting the flow about its remaining forward part. It
must be borne in mind, however, that the Mach cones constructed
for those points of the body at which the cut is made must
nowhere intersect the remaining parts of the body. A. Busemasnn
(reference 1) pointed out the aenalogy that existe between the
problem of conlcal flowe at supersonic veloclty and small addi-
tlonal velocities and the two-dimemnsionsl problem for subsonic
flow in the statement of the problem by S. A. Chaplygin (refer-
ence 2), which becomes exact when the equation of state of the
gas has the form

*"0 Pod'emnoi Sile Strelovidnogo Kryle v Sverkhzvukovom
Potoke," Prikladnays Matematika i Mekhanike, vol. X, 1946,
pp. 513-520,
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vhere p 1is the pressure, p +the density of the fluid, and Cj
and C'z are constants. Making use of the considerations of

Chaplygin, Busemann reduced the determination of wu, v, w within
the Mach cone to the solution of a Laplace equation in the two
varigbles. In sections 2, 3, and 4, a direct derivation is given
of the formulas of Busemann needed herein end the remalning
sections are devoted to the investigation of the 1lift of an arrow
shaped wing.

2. TRANSFORMATION OF EQUATIONS OF CONTINUITY

For the conicel flow, the components u, v, w can be repre~
sented as functions of the coordinste ratios €= x/z, 1 = y/z.
The magnitudes £ and 17 may be considered as the Cartesian
coordinstes in s plane perpendicular to the =z~axis and inter-
secting it at the distance 1 from the origin (fig. 1). The Mach
cone for the point O cuts out in the £,n plane a circle of
radius A = 1/AM2 - 1. :

It is assumed for definiteness that F = w. It 1s readlly
shown that equation (1.l) in the variables §¢,n will, within the
circle of radius A, be of the elliptic type and outside it of
the hyperbolic type. As hes already been mentioned, the deter-
mination of w within the circle reduces to the solution of a
Laplace equation. This problem outside the Mach cone must be
separately solved. Both solutions Join at the Mach oone in such
a way that on passing through it the wveloclty changes continuously.

Proceed to the transformation of equation (1.l). It is

reduced to the equation of Laplace in three variables for the
independent varigbles

o = ix \M - 1 7 = iy \M - 1 7% =z (2.1)

In spherical coordinates r, o, and ¢4 vhere
x¥ = r cos 0 sin 3 y* = r sin O sin 3 z¥ =1r cos 3

(2.2)
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equetion (1.1l) has the form

F
%(rzFrsin 6)+%(—E§-3)+§-_-8(F5 sin 9) = O

_ Because of the constancy of the velocity along the rays issu-
ing from O, 1 ‘

Y50

9
+ sin d -B? (w,b sin §) =0 (2.3)
Within the Mach cone, imaginary transformations may be
avoided by setting 4 = 16; +then equations (2.1), (2.2), end
(2.3) are replaced by

t =A cos gtho n=Asingthe (2.4)

Wgo+ sh 6 53-9- (vg sh 8) =0 (2.5)

In order to reduce equation (2.5) to the Laplace equation in
polar form,there remains to be introduced a new Independent
varisble ¢, determined from the condition de/d9 = ¢/sh 6;
whence

e=th-g- Yoo + eg-e(wee) =0 (2.6)

The seme result may be repeated for u and v dDut not for
® because ?,. ;4 0. Thus w 1s the real part of a certain func-

tion of a complex varieble, which 1s denoted by

AP (eeio) = Af (T) =w + is

From equations (2.4) and (2.6), it follows that to transform
the circle with center at O and radius A in the plane £,
(interior of the Mach cone) on the unit circle of the T plane
with center at the origin of coordinates, the radii vectors, keep-
ing the polar angles ¢ unchanged, must be transformed by the
formula

1This condition may be expressed in the form

xwx+ywy+zwz=0 whence x*wx*+y*w*y+z*wz*=rwz=0
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2 2 2A th 6/2 2A¢
R = + =Ath 6 = = 2.7
£+ 14+ the 0/2 1+ €2 (2.7)

3. COMPUTATION OF VELOCITY COMPONENTS ALONG X~ AND TY-AXES

Having the function f£(7), by integration the following
equation may be obtained:

(o=u+1v---]-'-f<rdf+-q§> (3.1)
2 €

This equation is obtained as a result of setting up _
aw = w ¢ at + wn dn eand transforming to the variables T, T. The

partial derivatives wg and _ are computed with the sid of

n
the relations u_ = Vor Vg = Vg Yy = Vg, and equation (1.1).

It may be noted incidentally that according to the analogy of
Busemsnn the magnitudes u, v, w correspond to x, y, -V of
Chaplygin and equation (3.1) agrees essentially with that of
Chaplygin (reference 2, ch. V, eq. (94}).

4. BOUNDARY CONDITIONS

Consider the boundary conditlons that are encountered in the
problem of the arrow-shaped wing. If the wing does not extend
beyond the Mach cone, then on the circle [T[ = 1 the additional
veloclties u, v, w are equal to 0.2 Assume & plene wing form-
ing an infinitely small angle ¢ with the z-axis and an angle
O with the x-axls. The normal velocity Im(we~10) aleng it
will have a constant value. Whence using equation (3.1l), the
following is obtalned:

Im @oe"io) = - % m{% f[% (dw - 1ds) + €(aw + 1655,} = const

ds = 0 (4.1)

2Along those parts of the Mach cone where dw =0, u and v

will likewise be comstant because from equation (3.1) for T = 10

1t follows that dw = - % (el%1ds - 1as/e™*) = 0.

88TT
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Lot parts of the arrow-shaped plane wing inclined at an Infi-
nltely small angle toc the X,z plane extend beyond the Mach cone
(fig. 2). The region of influence of the extending parts of the
wing fills 1n space the lnteriors of the Mach cones drewn from each
point of the wing. In the ¢,7 plane, this reglon is represented
by ACDBEF, which is bounded by the tangents AC, AE, DB, end
BF drawn from the edges of the wing to the Mach cone and the arcs
CD and EF.

The flow outslde the Mach cone evidently conslsts of plane
flows. Hence, in each of the regions ACG, AGE, DBH, and TFHB
the velocities and the pressures will maintain constant values,
whereas on passing through the wing w  will change sign. For
a wing symmetrical relative to the axis 17, +the boundary condl-
tione for F(T) on the corresponding arce of the circle will be

.= Wy on CG and HD
W=-wy on GE and FE (4.2)

w=0 on CD &and IEF

5. ARROW-SHAPED WING EXTENDING BEYOND MACH CORE

Only a plane arrow-shaped wing with the arrow angle vy (fig. 1)
symetrical with respect to the plane x = 0, forming with the
plane y = 0 & small angle £ and finally cut along & stralght line,
vhich shell be assumed approximately coinciding wlth the axis 1 = O,
is considered.

The anelysis begins wlth the case where the ends of the wing
extend outeide the Mach cone (tan y > A). The function £(T) ocan
easlly be constructed from its singularitiss.

1 2__-210
w+1is = A2(T) = =2 1g T °2 0 (5.1)
T2e" 10b-l

It is not difficult to be convinced of the validity of equa-
tion (5.1) by direct check of conditions (4.1) and (4.2) because
the analytic character of Af(T) within the circle |[T] =1 1is
evident.

The concepts Y5 .and S must be expressed in terms of the

given magnitudes, the angle of attack B (or, what amounts to the
same thing, in terms of the vertical velocity on the wing vy = -WR),

and the cone angle 7. From figures 1 and 2 1t is readlily seen that
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A
tan ¥ -R-EGO (5.2)

The veloclty Vo may be expressed in terms of W by inte-
gration of equation (3.1):

0 0
vo = -+ Tm| (7-2)8f g9 - - EQ_EEE;SQ 1 { [1g (T-© ~100) (7-6190)
0 2 . T 100)

aT
- A (T+e OO) (t+e 1

whence

Av W

0 0 BA

w = - or — I eseeesee— (5.5)
Y sin O, w 8ino

The lift~force coefficient of the wing is now computed.

c, = 2 . 2 w at (5.4)
pws W tan 7y
-tan 7

where Y 1s the 1ift force, p the density of the gas, and
S = tan 7 18 the area of the wing. Noting that along the parts of
the wing extending outside the Mach angle cone, w = :I:wo, the fol-

lowling is obtalned:

2
Cy = ——ie . | 2wnA(tan - A) +
Y~ W tan 7 often 7 - A) f <1+72

or integrating by parts

4w 1
o = ﬂ_o__ ten 7 - A T a(v+is) (5.5)
an y 1+ . ¥

-1

£y

1188
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and finally
4y 1
=0 4A T ar
Cy = W tem o tan ¥ T 7 5in ZOb

-1 l+'l'2 (1‘2—6-2100)(T2-62100)

(5.8)

The integral entering equation (5.6) is most conveniently
computed py deforming the contour of integration into an upper semi-

circle of unit radlus passing around the poles T, = eiob,

Té = -eiob, and T3 = 1 over infinitesimally small semicircles.

From equation (5.5) and the boundary comditions on the Mach cone, it
is easy to see that the integrals over the arcs of the upper semi-
circle |T| = 1 will be imaginary and evidently cancel each other.
The computation of C_. +hus reduces to the finding of the half-

y
‘resldues at the points Tl, Tz, and 73. By computation
1
T _d(wte) - 1 _ tang
1 1412 W, cos O, Y

whence making use of equations (5.6) and (5.3),

Cy = 484 = 2B (5.7)
M2-1 «

This equation agrees with the well-known formula of Ackeret
(reference 3) for the plane wing, which is a particular case of the
arrow-shaped wing (for 7 = xn/2).

The distribution of the 1ift force, or more accurately of the
magnitude w/(AWB) proportional to the intensity of the 1ift force
for the arrow-shaped wing extending outslde the Mach cone, is shown
in figure 3 (curve II). On the parts of the wing outside the Mach
cone, the intensity of the 1lift force 1s constant. Within the Mach
cone, curve 1I was computed by equation (5.8) obtained from equa-
tion (5.1):
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v o1 2 cos Og 1-T2
= 1 - £ grec tan —— =0 (5.8)
AWB sin GO < I sin 00 1+Tz

On the axis of abscissas the values of £ referred to half
the wing spean were lald off. The Mach cones .in figure 3 are rep-
resented In the form of the dotted semicircles. The nearer the
Mach cone approaches the edges of the wing, the more intense is the
1ift force at the edges (for tam y/A = 1, curve III, at the edges
of the wing w/(AWB) =®). For Aftan y = 0 (case of Ackeret),
the Intensity of the 1ift force along the wing is constant. Curve IV
glves the distribution of the lift-force intensity for & wing within
the Mach cone. (See section 6.) In this case at the edges of the

wing, w/(AWB) = o,

6. ARROW-SHAPED WING LOCATED WITHIN MACH CONE

The case where the wing does not extend beyond the Mach cone
(ten y < A) 1e now considered. In the plane T, +the wing is rep-
resented by the segment of the real axls from -b to b where
according to equation (2.7)

tan y = ZA; (6.1)
1+b

Conditions (4.1) and (4.2) in the plane T assume the form:
w =0 on the circle, and s = 0 on the wing.

From the symmetry of the boundary conditions for A:E'(T), it
followssthat in pessing through the wing w changes sign. The
function Af(T) mey be continued by the principle of mirror reflec-
tion over the entire plane with cuts from -o to -1/b, from
-b to b, end from 1/b to o (fig. 4). It is simplest to con-
struct w+ls = AF(T) from the singular points and the zeros:

1241

wi+is = B = AP
R}wz-vz)(l/bz-#)

where B denotes a real constant to be determined. ZEquation (6.2)
can also be checked directly. The value of vy 18 found on the
plate. For this value, the Integration in equation (3.1) is carried
out over the imaginary radius. Because along the axis of Imsginaries
T=-T and -d4F/dT = af/dT; hence

(8.2)
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o} 1
1 (2-12)° 2(1/b2-1-2)5/ 2
.whence
1l .
5= - BCD+Jz{Df (1+€%)? de (6.3)
(b2+€?) (1/b2+ez) '\! (b2+e2) (l/b2+ &)
setting
€=1b tan @ ’\’i-‘n"" =k b2 = k! ten @ = 1/ A"

(6.4)

the 1ntegral on the right side of equation (6.3) is readily trans-
formed to the ocanonlcal form .

@
S = - Bb(p+1/0)2 [ * [,1-'(1-1:3 sin®e ]2 ap
0 24 o (1-¥2 sin? ®) AJ1-k2 sin®@

or

v = - B |is? a9 + 2K'F(Py ,k)+E(@y,k)

28 Ak o (1-x% sinZQ) /\’l-kz s1nZe

where F(¥P,,k) and E(®,,k) are elliptic integrals of the first
‘and second kind. As is known (ref. 4, equation (126))

\J"qal- - _ E(wl-,f) _ kz gln Ql cos Ql _ E(q)l,k) _ 1-Xk?
°© (2 s1nq)>/ 2 k'2 x'Z Al1-iP sin®Q x!2 x'2

whence
. .B . Akt (6.5)

Ay T EF@L,K) + E@,K) - (1-k')/2
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With the aid of equation (6.5) from eguation (6.2), and from
equation (5.1) with the ald of equation (5.3), it is found that in
the limiting case when the wing touches the Mach cone (00 = 0,

b =1)

2
2vpA TO+1
w+ls = —éﬁ ;2-— (6.2a)

The lift-force coefficient of the wing 1s now computed. From
equation (5.4) transforming with the aid of equation (2.7) to the
variable €,

b
4A 1.2
C ='W-'E—__ e 1 € 6.6)
7 7 _bw (1+€2)2 (

The integral entering equation (6.6) may be replaced by a
contour Integral about the wing.

_..__a.A__.f(wﬂs) 172 ar (6.7)

Cy =
: W tan ¢ (1+.r2)2

This integral is most slmply compubted by deforming the contour
of integration Into a unit circle passing around the poles at the
points T = %1 over infinitesimelly small semlclrcles. Because
on the clrecle w is equal to O, it ls easlly seen that the Inte-

grals over the arcs of the clrcle will be Imaginary and will mutually

cancel. The computation of Cy thus reduces to finding the semi-
regidues at the points T = #i,

2AB 1-72 T _ 2xB

Cy = e
J W tan ¥ ’(.bz_,rz (l/ba_,rZ) 1+ W

whence

SZ = 25 '\,E'- (6.8)
BA x'P(Py,k) + BE@,,k) - (1-k')/2

LW V.Y
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From equations (5.7), (6.1), and (6.8), it is seen that
c

y'sz - 1/(4B) 1is a function of /\le - 1 tan y. The computetions

(fig. 5) can be carried out by assigning varlous values to the
parameter k. 'The center of pressure of the wing is at the center
of gravity of the triangle.

7. REMARKS ON DRAG

If the wing extends beyond the Mach cone, the velocities at
the edges of the wing will be finite and the efficiency of the
wing Y/X = 1/8, where X is the drag. In the case where the
wing ls entlirely within the Mach cone, then as a result of the
infinite wvelocitles at the leading sharp edges suction forces may
be expected, which increase the efficiency of the wing.

The drag of the wing can be computed with the ald of the momen-
tum theorem spplled to the volume of gas enclosed in the cylinder
ebout the wing and the Mach ocone, one of the bases of the cylinder
lying in the ¢ sN plane and the other to the left of the origin of
coordinates in the reglon of the undisturbed flow..

X = % ffﬁ;z + v2 + (MB-1) wz)] at an (7.1)

where the integration 1s extended over the entire base of the
cylinder in the ¢, plane. In deriving equation (7.1), use is
also made of the Bernoulli integral, in which after expanding in
powers of u, v, W ell terms were neglected that contained the
additional velocities to degrees higher than the second, the adla-
batic condition,and the equation of continuity in integral form.

Translated by S. Relss,
Netional Advisory Committee
for Aeronsutics
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