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The flOW

LIFT FORCE OF AN ARROW-SHAPED WIN& ‘

By M. I. Gurevich

STATEMENT OF TBE PROBLEM AND INTRODUCTION

about a conical body of an ideal compressible fluid
is considered. Assume that the velocity of the on=oming flow at
infinity W is directed along the z-axis. The system of Car-
tesian coordinates x, y, z with origin at the vertex of the
cone O is shown in figure 1. From the considerations,of the
dimensional theo~, It maybe found that along any ray issuing
from O the components of the velocity u, v, W+w along the
coordinate axes will maintain a constant value. It is further
assumed that the conical body has such shape and disposition rela-
tive to the flow that u, v, and w are small in comparison
with .W. The equation of continuity can then, as is known, be
given in the form

Fn+Fm-Fzz(l#-l)=O (1.1)

where F may be considered either as the velocity otential C$
7or the components of the velocity u, v, w; M = W a is the Mach

nmiber, where a is the velocity of sound at infinity upstream
of the body. It is assumed that the flow is eve~here super-
sonic (M>l)C

In view of the linearity of equation (1.1), conical flows
with Mfferent vertices may be superposed on one another. Equa-
tion (1.1) is of the hyperbolic type, which means that each point
of the fluw may have an effect only on the points located within
its Mach cone; by a lmown method, the body maybe transformed
without affecting the flow about its remaining forward part. It
must be borne in mind, however, that the Mach cones constructed
for those points of the body at which the cut is made must
nowhere intersect the remaining parts or the body. A. Busemann
(reference 1) pointed out the analogy that exists between the
problem of conical flows at supersonic velocity and small addi-
tional velocities and the two-dimensional problem for subsonic
flow in the statement of the problemby S. A. Chaplygin (refer-
ence ’2),which becomes exact when the equation of state of the
gas has the form

*“O Pod’emnoi Sile Strelovidnogo l&yla v Sverkhzvukovom
Potoke.” Prikladnaya Matematika i Mekhanika, vol. X, 1946,
pp. 5U3-520.
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c1
P=~+c2
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where p is
and C2 are

the pressure, p the density of the fluid, and Cl
constants. Making use of the considerations of

Chaplygin, Buseunannreduced the determination of u, v, w within
the Mach cone to the solution of a Laplace equation in the two
variables. In sections 2, 3, and4, e direct derivation is given
of the formulas of 13usemnn needed herein
sections are devoted to the investigation
shaped wing.

2. TRANSFORMATION OF EQUATIOMS

For the conical flow, the compondx

and the remaining
of the lift of an arrow-

u, v, w can
sented as functions of the coordinate ratios- f = x~z,

be repre-
V = y/z.

The magnitudes L and q maybe considered as the Cartesian
coordinates in a plane perpendicular to the z-axis and inter-
secting it at the distance 1 from the origin (fig. 1). The hkch
cone for the poi t O cuts out in the ~,rj plane a circle of
radius A = l/**

It is assumed for definiteness that F = w. It ts readily
shown that equation (1.1) in the variables g,? till, within the
circle of radius A, be of the elliptic type and outside it of
the hyperbolic type. As has already been mentioned, the deter-
mination of w within the circle reduces to the solution of a
Laplace equation. This problem outside the lkch cone must be
separately solved. Wth solutions join at the Mach oone in such
a way that on passing through it the velocity changes continuously.

Proceed to the transformation of equation (1.1). It is
reduced to the equation of Laplace in three variables for the
independent variables

+=i.fi P=iY6 ~=z (2.1)

In spherical coordinates r, u, and ~ where

* =rcosasin~ @=rsinUsind z#=rcos4

(2.2)

.
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equation (1.1)

a
~ (r2

has the form

F= sin d) +$0

Because of the constancy
ing”from 0, 1

3

of the velocity along the rays issu-

’00 + sin~ $ (wa sin & = O (2.3)

Within the Mach cone, imaginary transformations maybe
avoided by setting 6 = ie; then equations (2.1), (2.2), and
(2.3) are replaced by

~=Acdsathe ‘q=Asinuth8 (2.4)

WOO+ sh e & (we sh e) = o (2.5)

In order to reduce equation (2.5) to the Laplace equation
polar form,there remains to be introduced a new independent
variable 6, determined from the condition de/d9 = e/sh e;
whence

in

(2.6)

The same result maybe repeated for u and v but not for
~ because cpr~0. Thus w is the real part of a certain func-

tion of a complex variable, which is denotedby

Af (ceti) =Af (T) =W+”is

From equations (2.4) and (2.6), it follows that to transform
the circle with center at O and radius A in the plane ~,~
(interior of the Wch cone) on the unit circle of the T plane
with center at the origin of coordinates, the radii vectors, keep-
ing the polar angles o unchanged, must be transformedby the
fornmla

%fhis condition may be e~ressed in the form

Xux+ywy+swz =0 whence #w&+@y* +z%N=rwz=O
Y
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3. COMPUTATION CfFVXLOCITY COMPONENTS ALONG

Having the function f(T), by integration
equation may be obtained:

x- Arm Y-AXES

the following

(3.1)

This equation is obtained as a result of setting up
dh)= @ d~ + @q dq and transforming to the variables T, ~. The

t
partial derivatives WE and (on are computed with the aid of

the relations ~ = VT, ~ = w=, Vz = Wy, and equation (1.1).

It maybe noted incidentally that according to the analogy of
Busemann the magnitudes u, v, w correspond to x, y, -$ of
Chaplygin and equation (3.1) agrees essentiallywith that of
Chaplygin (reference 2, ch. V, eq. (94)).

4. BOUNIMRY CONDITIONS

Consider the boundary conditions that are encountered in the
problem of the arrow-shaped wing. If the wing &es not extend
beyond the Mach cone, then on the cticle
velocities u, v, w

lT~ = 1 the additional
are equal to 0.2 Assume a plane wing form-

ing an infinitely small angle o with the z-axis and an angle
CT with the X--S. The normal velocity Im(ue-i~) along it
will have a constsmt value. Whence using equation (3.1), the
following is obtained:

{ s~
Sm(Oe-io)=-~Im~ 1)~(dw-ids)+e(dw + ids) = const

*.() (4.1)

.

2Along those parts of the Mach cone where dw = O, u and iv
will likewise be constant because from equation (3.1) for T = e a

it follows that do = - + (eioids - ids/e-ti) = O.
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Let parts of the
nitely small angle to
(fig. 2). The region

5

arrow-shaped plane wing inclined at an infi-
the X,Z plane extend beyond the Mach cone
of influence of the extending parts of the

wing fills in space the interiors of the Mach cone= drawn from each
point of the wing. In the ~,q plane, this region is represented
by ACDBEF, which is bounded by the tangents AC, AE, DB, and
BF drawn from the edges of the wing to the Mach oone and the arcs
CD end El?.

The flow outside the Mach cone evidently consists of plane
flows. Hence, in each of the regions ACG, AGE, DBH, and FHB
the velocities and the pressures will maintain constant values,
whereas on passing through the wing w will change sign. For
a wing symmetrical relative to the axis q, the boundary condi-
tions for f(T) on the corresponding arcs of the circle will be

,~=.w ~onGJZand~
}

(4.2)

w= Oon CDandEF
)

5. ARROW-SHAPED W13iGEXl?END~G BEYOND MACH CONE

Onlya plane arrcw-shaped wing with the arrow angle y (fig. 1)
symmetrical with respect to the plane x = 0, forming tith the
plane y = O a small angle 13 end finally cut along a straight line,
which shall be assumed approximately coinciding with the axis ~ = 0,
is considered.

The analysis begins with the ease where the ends of the wing
. etiend outside the Mach cone (tan Y >A). The function f(T) can

easily be constructed frcm its singularities.

i(l)o
wi.is=Af(T)=~18

~2-e-2iuo

~2e-2iuo-1
(5.1)

It is not difficult to be convinced of the validity of equa-
tion (5.1) by direct check of conditions (4.1) and (4.2) beoause
the analytic character of Af(T) within the circle ITI = 1 is
evident.

The concepts W. and cro must be expressed in terms of the

given magnitudes, the angle of attack i3 (or, what amounts to the
same thing, in terms of the vertical velocity on the wing V. = -Wt3),

and the cone angle y. From figures 1 end 2 it is readily seen that
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Atany=—
Cos O. (5.2)

The velocity V. may be expressed in terms of WO by inte-

gration of equation (3.1):

o
J( )+ ~-&gdT. -‘0= ‘o sin U. m

T ~?
i

whence

Avo
‘o =-— sin 00

The lift-force coefficient

[

-3

lg (T-e‘iuO) (~-eioO)

(T+e
-100

)(T+OioO) ~.}

Wo Mor —=— (5.3)
w sin~o

of the wing is now computed.

mall Y

Cy=~.— I
,

2
W d~

Ovzs Wtany (5.4)
..—

J -tan 7

where Y is the lift force, P the density of the gas, end
s = tan y is the area of the wing. Noting that along the parts of
the wing extending outside the Mach angle cone, w = +wO, the fol-

lowing is obtatied:

or integrating by parts

4W0

[J

1 1d(W+iS )
CY = w+myt-y-~ ~. W.

-1

(5.5)

.

b

b



*

8

NACA TM 1245

and finally

4w~

[ J

1?
CY

-$$sin2CJo —‘Wtany +=7,
dT

-2ioo)(#-e2i~o)_-1 1+T2 (T2-e

(5.6)

The integral entering equation (5.6) is most conveniently
computed by deforming the oontour of integration into an upper semi-

circle of unit radius passing around the poles T1 . ei%,

= -eioO, end T3
‘2

= i over infinitesimally small semicircles.

F&om equation (5.5) and the boundary conditions on the Maoh cone, it
is easy to see that the integrals over the arcs of the upper semi-
circle IT1 = 1 will be imaginary and evidently cancel each other.
The computation of Cy thus reduoes to the finding of the half-

residues at the points Tl, T2) and T5a By computation

whence making use of equations (5.6) and (5.3),

CF=4~A=~

r

(5.7)

M2-1 k

This equation agrees with the well-known fozmmla of Ackeret
(reference 3) for the plane wing, which is a particular caserof the
arrow-shaped wing (for 7 = fi/2).

The distribution of the lift foroe, or more accurately of the
_itude w/(AWP) proportional to the intensity of the lift force
for the arrow-shaped wing extending outside the Maoh cone, is shown
in figure 3 (c~e II). On the parts of the wing outside the Mach
cone, the intensity of the lift force is constant. Within the Mach
cone, curve II was computed by equation (5.8) obtained from equa-
tion (5.2):
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1.=—
A:$

(
1

)

Cos Go &
sin 00 -,:arctan_—

Sfll ~0 1+9#
(5.8)

On the axis of abscissas the values of t referred to half .
the wing span were laid off. The Mach cones in figure 3 are rep-
resented in the form of the dotted semicircles. The nearer the
Mach cone approaches the edges of the wi~the more intense is the
lift force at the edges (for tan y/A = 1, curve III, at the edges
of the wing w/(AWp) =m). For A/tan y = O (case of Aokeret),
the intensity of the lift force along the wing is constant. Curve IV
gives the distribution of the lift-force intensity for a wing within
the Mach cone. (See section 6.) In this case at the edges of the
wing, w/(AWP) = =.

6. ARROW-SHAPED WING LOCATED WITHIN MACH CONE

The case where the wing does not extend beyond the Mach cone
(tan y CA) is now considered. ti the plane T, the wing is rep.
resented by the segment of the real axis from -b to b where
according to equation (2.7)

2Ab
tsJly=— (6.1)

l+b2

Conditions (4.1) and (452) in the plane T assume the form:
W.o on the circle, and s=O onthewing.

J!&cmthe symmetry of the boundary conditions for M(T), it
follows~that in passing through the wing w changes sign. The
function M(T) may be continued by the principle of mirror reflec-
tion over the entire plane with cuts from -a to -l/b, from
-b tO b, and from l/b to = (fig. 4). It is sbplest to con-
struct W+ls = Af(T) from the singular points and the zeros:

“is=B‘& =Af (6.2)

where B denotes a real constant to be detemsined. Equation (6.2)

can also be checked directly. The value of V. iS foti on the

plate. For this value, the integration in equation (3.1) is carried
out over the imaghary radius. Because along the axis of imaginaries

T= -T and -d~/d~= df/dT; hence
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whence

s1
B(b+l/b)2 (1+c2)2 de

‘o=- 2A (6.3)

0 (b2+~2)(l/b2+e2) (b2+c2)(1/b2+e2)

setting

r
l-b4 = k b2 = kf tancpl “ l/me= btanq

(6.4)

the’titegral on the right side of equation (6.3) is readily trans-
formed to the oanonical form

T1.
Bb(b+l/b)2

f’

-(l-kt) sin2d2 d~‘o=- 2A ~ (l-@ein2 ~) ~’

or

where F(pl,k) and ~(~ljk)

“and seoond kind. As is lmown

91 “

J’ dq .

0 (1-p sti2q)3/2

whence

B-—=
Avo

exe elliptia integrals of the first

(ref. 4, equation (126))

—

@PIJd l-k1=—- —
k12 k12

AJkt
(6.5)

- (1-kf)/2 .ktF(~l,k) +E(ql,k)
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With the aid of equation (6.5) &cm equation (6.2),and from
equation (5.1) with the aid of equation (5.3), it is found that in
the limiting ease when the wing touches the Maoh cone (00 = O,

b=l)

W+is .2v#T2+lSC= (6.2a)

The lift-force coefficient of the wing is now computed. Era
equation (5.4) transforming with the aid of equatim (2.7) to the
variable ~,

(6.6)

The integral entering equation (6.6) may be replaced by a
contour Integral about the wimg.

CY=QL J(W+is) &
Wtany — d?

(1+?2)2

(6.7)

This integral is most simply computed by deforming the contour
of integraticm into a unit circle passing around the poles at the
points T = ii over infinitestilly small semicircles. Beoause
on the circle w is equal to 0, it is easily seen that the inte-
grals over the arcs of the circle will be imaginary- will mutuald.y
cancel. The computation of Cy thus reduces to finding the semi-

residues at the points T = *.

cy=-J!=-- L 1-F d? 2*—=—
Wtally

(b2-T2)(1/b2-#) l+?? w

whence

~ 2YCG

@ = k’F(~l,k) + E(ql,k) - (1-k’)/2
(6.8)

.
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FYom equations (5.7), (6.1),

Cy~Z/(413) Is a function of

11

and (6.8], it is seen that

G t= 79 The computations

(fig. 5) can be mrried out by assigning
parameter k. “The oenter of pressure of
of gravity of the triangle.

7. REMARKS ON DRAG

If the wing etiends beyond the Mach
the edges of the wing will be finite and

~g Y/x = 1/$, where X is the drag.

various values to the
the wing is at the center

cone, the velocities at
the efficiency of the
ti the case where the

whg is entirely within the Mach cone, then as a result of the
infinite velocities at the leading sharp edges suotian forces may
be e~eoted, which i.noreasethe efficiency of the wing.

The drag of the wing can be computed with the aid of the momen-
tum theorem applied to the volume of gas enclosed in the cylinder
about the wtng and the Mach oone, one of the bases of the cylinder
lying in the ~,q phe and the other to the left of the origin of
coordinates in the region of the undisturbed flow..

PP

X=Q
2
JJ[ U2 ++ + (M2-1) #)] dc dq (7.1)

where the integration is extended over the entire base of the
cylinder in the ~,rIplaue. In deriving equation (7.1), use is
also made of the Bernoulli integral, in which after expanding in
powers of u, v, w all terms were neglected that oontained the
additional velocities to degrees higher than the second, the adia-
batic conditim,and the equation of continuity in integral form.

Translated by S. Reissj
National Advisory Committee
for Aeronautics
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