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HEA!T TRANSFER T;ROUGH TURBULENT FRICTION “LAYERS*

By H. Reichardt

. . SUMMARY

h ~r
The Ilgeneral Prandtl numberll prl = , aside from

A
the Reynolds number determines the ratio of turbulent to
molecular heat transfer, and the temperature distribution
in turbulent friction layers. ‘q = exchange coefficient
for heat; A = exchange coefficient for momentum transfer.

A formula is derived from the equation defining the
general Prandtl number which describes the temperature as
a function of the velocity. For fully developed thermal
boundary layers all questions relating to heat transfer to
and from incompressible fluids can be treated in a simple
manner if the ratio of the turbulent shear stress to the
total stress Tt/T in the layers near the wall is known,
and if the Aq/A can be regarded as iildependent of the
distance from the wall.

The velocity distribution across a flat smooth channel
.. and deep into the laminar sublayer was measured for isothermal

flow to.establish the shear stress ratio Tt/T and to extend
the universal wall friction law. The values’ of ‘Tt/T vhicli
resulted from these measurements can be. approximately repre-
sented by a linear function of the velocity in the laminar-
turbulent transition zone.

The effect of the temperature relationship of the mate-
rial values on the flow near the wall is briefly analyzed.
It was found that the velocity at the “laminar boundary (in
contrast to the thickness of the laminar layer) is approxi-
mately independent of the tern-oerature distribution.

The temperature gradient at the wall and the distribution
of temperature and heat flow in the turbulent friction layers
were calculated’on the basis of the data under equations (2)
to {4). The derived formulas and the figures reveal the ef-
fects of the prandtl number, the Reynolds number, the exchange
quantities and the temperature relationship of the material
values.

*tlI)ieW5rmeiibertragung in turbulenten Reibungsschichten. “
Z.f.a.M.M. , vol. 20, no. 6, Dec. 1940, pp. 297-328. .

I .— ..



. .,.4
. ,.

2 NACA Technical Memorandum lfo. 104’7,

. .

That the form of the wa-kl and the pressure drop affect
the results is illustrated by the variation of the thermal
behavior of the friction layers in the pipe, channel, and
flat plate. ,--

After a discussion of the different definitions of
the heat transfer coefficient a new formula for the rate
of heat transfer is given based on the maximum temperature
difference. The new equation differs from that offered by
prarL?Ltl by an additional term that allows for the conditions
in the laminar-turbulent transition zone.

IIVTRODUCTION

A survey of the literature on heat transfer in tur-
bulent boundary layers discloses that the problem has been
treated iiinumerous studies (reference 1). Because of its
technological importance, the number of experimental projects
in which empirical or semi-empirical formulas established for
various conditions and for various applications preponderate.

The theoretical principles are but rarely treated. The
liter~ture therefore contc.ins only a few general formulae.
In Germany the formulas by Nusselt and Prandtl are most
Cenprally utilized. In the English literature it is custom-
ary to introduce the Reynolds analogy w}iich upon general-
ization by G. I. Taylor leads to approximately the same
results as the Prandtl theory.

The theories to date are based on simplifying assump-
tions, such as do not usually obtain in reality. The derived
expressions therefore required extrapolation based on exper-
imental results, the extension extending beyond the original
range of validity, The practical point of view was maintained
in arranging the semi-empirical equations
physical

and questions of the
significance became secondary.

The research programs in heat transfer involving many
technically important special cases in the turbulent region
fail to allow the deductioil of a general theory without
limitations. The solution of this problem is very closely
related to the research of the flow processes in direct
proximity of the wall.

Before proceeding to an analysis of these questions a
brief survey of the available theoretical contributions should
be of interest.

. .
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The school of Nusselt has made great strides in the

study of heat transfer problems by the use of the theory
of similarity, particularly in arranging the various SU%-
divisions in reasonable order. The great technical im-
portance of the model studies is that it does not require
the exact knowledge of the individual processes, and that
simple formulae are obtainable for practical use, even in
complicated cases,. But since no details of” the physical
mechanism are secured the results can be of a preliminary
nature only.

Reynolds (reference 2) attempted to def]ne the rules
of heat transfer from the po-int-to-point vari?,tion of the
flow pattern. He proceeds from the aSSUIIIpt~”J~that the
turbulent mechanism of heat transfer is the s:?’.]ea:. the
mechanism of the momentum transfer. But his ctinsiderations
are still incomplete for practical application ancl only
through supplementary considerations by Taylor (refercnce3)
and Stanton (reference 4) were the results of Prandtl
accomplished.

Prandtl (reference 5) also starts from the assumption
that h~at acd mo?i~enturn zre trai~sferrz~ by the same mechanism.
A complete analokgy betveen tliese phenollt’na does not exists
however, unless similar bounti.?.ryconditions obtain. whzn
the nontirnensional w’pl~ (zcrmed tho Prandtl number, Pr)
is equal to unity, and when the pressure drop is negli;;iblc
(as,for instance, in flow past a flat plate). In contrast
the momentum transfer with -pressure drop (pipes and channels)
is described by equations which differ from those of !l.cat
tr.ansfcr and momentum.

~ In order to treat the technically important case of flow
through a pipe Prandtl postulated fictitious heat sources in
the stream, by means of which a sufficient similarity of the
equations of heat and momentum transfer is o-ota,ined. The
Reynolds concept was taken, that is, that in a very thin layer
near the wall practically all of the transfer is by molecular
action and that outside .of this layer only the turbulent ex-
change mechanism is effective, ~Jhi~e the molecular conduc-
tivity may be neglected.
..”

The heat ‘source postulate then leads to a simple equation
between’the heat transfer and the resistance to flow, which
may be written in the form:

,..
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!IQ. CP T
=

am=~ x~””
m 1+ ~(Pr -1) ‘m

(1)

am heat transfer coefficient referred to the mean
temperature

Tm~ c1?
specific heat

~. - density of heat flow at the wall

‘\\
To ‘ shear stress at the wall

u mean flow velocity
m

velocity at the ‘Iboundaryll of transition from‘a
laminar to turbulent flow

To use equation (1) the ratio ‘a/”m must he known.

In the absence of experimental data of the extremely thin
well layer, Prandtl (reference 6) used the following reason-
ing to evaluate ua. In the laminar layer a linear velocity
increase exists, the slope of l~hich is fixed by the shear
at the %oundary. In the turbulent core the l/7th power
law holds for Reynolds numbers below 10G. The plane in
which the two velocities coincide is called the boundary
between the laminar layer and the turbulent zone. The
exact determination of the boundary velocity Ua is to

follow from the heat measurements.

The heat transfer data available to date indicate
that Prandtlts formula doss not hold for large Prand~l ‘
numbers. In consequence there have been proposed various
corrections to this formula in order to meet the require-
ments of practice.

The basis of the discrepancies lies in the idealiza-.
‘tion of the transition from lariiinar to turbulent flow.
This transition is naturally continuous, hence an inter-
mediate la,yer exists in which the viscous and turbulent
.she.ar stresses are of the same order of magnitude. Since
the transition to turbulence occurs
has not been possible so

close to the wall, it
far to measure the velocity dis-

tribution in the intermediate layer with sufficient accuracy.
Von K~rm~n (reference 7) has estimated the exchange conditions
in the transitional region based on an extrapolation of
Nikurad.sets velocity measurements in the direction of the
Wall. Based on his postulates, von K&rm&n gives the formula
for the heat transfer coefficient as:



NACA l!echnica,l Memorandum No. 1047 5

al
— = 1 + U= [(Pr-1) + h in (l+c (Pr-1))]
a (2)

where
,-

al heat transfer coefficient for Pr - 1

a, b, c, constants (reference 8)

An improvement of the theory has been carried out by
Taylor (reference 9), Starting from the postulates of
Reynolds-Taylor, the latter discusses the error of the 1~Ad~ .
analogy between heat transfer an?. momentum transfer for %’ ,,Y
flow accompanied by pressure drop.

C?c
Taylor calculates the

temperature profile which corresponds to a velocity profile
m~asurzd by Stanton at Pr = 1. The temperature profile
differs somewhat from the velocity profile, that is, the
temperature gradient at the wall (and hence also the heat
traris?cr coefficient) is lower by ssvcral y~’rcent that the
wall velocity gradient.

Of great practical interest is the variation of the
heat transfer coefficient for non-isothermal flow in which
the material values vary with temperature. Apparently this
problem has not yet been solved ~.nalytically. The theories
to date imply isothermal flow (material properties not a
function of temperature or space). Since large temperature
differences do occur in practice, the proper mean magnitudes
of the material properties are
expressions (reference 10).

introduced into the isothermal

While the present report was in the press, tWO further
a,rticles dealing with turbulent heat transfer have appeared.
one by Mattioli (reference 10a) and the other by Hofmann
(reference 10b).

Starting from special theoretical concepts with respect
to the turbulent mechanism, Mattioli extrapolates the tur-
bulent velocity distribution into the semi-laminar zone in
order to deduce from this velocity concept the presumption
of equal exchange quantities for heat transfer and momentum
transfer the m~gnitude of the turbulent heat transfer. ~-
careful analysis of the difficult derivation shows that the
important phenomena near the boundary are not adequately
defined. In addition to the semi-laminar layer there is
presumed to exist a wall layer (which is established from
the heat transfer measurements of Btihnc and from other fluid
flow measurements mentioned above) which is much greater in
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thickness than the laminar layer, Mattioli is therefore
forced to assume a substaritial exchange in his wall layer.
Since the Mattioli theory connot desqribe accurately this
exchange near the ‘Jvall! the temperature change in the wall
layer is put proportional to (Pr)m, where m is established
from heat transfer measurements.

It is worth noting, nowever, that Mattioli quantitatively
(allows for effect of temperature on the viscosity. For this
purpose a generalized distance parameter is introduced in a
manner similar to that employed in the present report (see
equation (30)).

Hofmann calculates the temperature distrilmtion and
the heat transfer coefficient with special consideration
of the laninar layer whereby the usual simplifying postu-
lates are retained. The concept of a thermal boundary
bet’ween the turbulent cor~ and a boundary layer is also
adopted and the thickness of this layer is discussed. In
contrast with von K&m~n, progress is made in that the lam-
inar layer thickness fo-r high Prandtl numbers is introduced.
The arbitrarily chosen velocity distribution near the wall
lies above the test points of the present report.

The position taken by Hofmann that the heat transfer
depecds solely on the velocity distribution and on the
Prandtl mixing len~th requires a correction. Basic to
every theory is a hypothesis of the turbulent diffusion
of h?at. If the ratio of the exchange quantities for heat
and momentum transfer is chosen (Hofmann tacitly presumes
the identity of these quantities), then the laws of heat
transfer follow at once direct from the velocity profile
witlhout the aid of any turbulence theory, hence without
the help of the Prandtl mixing length, which in consequence
drops out again in the course of the Hofmann calculation.

TIE3 PROBLEMS

In order to avoid subsequent corrections and to -pre-
sent the hydrodynamic theory of the turbulent heat transfer
coherently the following assigilments are to be solved:

1. TO derive a general equation for heat transfer into
which the technologically important boundary con-
ditions and the flow phenomena, particu-larly in
the transitional layer, can be introduced.
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2. To measure the flow pr.o.cesses-.neay the wall for
technologically Impo’r.tant”c-ases.,particu-larly.

.
-. smooth surfaces, rough” surfaces, almost isothermal

flow”,”non-isothermal flow, and- so forth.
. .

3* To introduce the obtained data on wall adjacent
flow into the general expression to build special
formulae which can be checked by heat transfer
measurements.

The following statements are ma’de relative to these
problems: . .“

The presentation of the general theory should be clear
from a physical point of view and it should be simple in
order that it may be utilized in practice.

The derivation of a generally applicable equation for
heat transfer iS carried through in a simple manner. In
contrast the measurement of the flow distribution near the
wall presents considerable difficulties. In order to obtain
practical test data especially thick .bounda,ry layers are
essential. This requirement implies Large flow sections
and low flow velocities, that is, low dynamic pressures
and low pressure drops must be mea,sured. .-

The conditions beco?e complicated if the flow is not
isothermal. Through the influence of the temperature field.,
not only the material properties but al,so the flow phenomena
are changed.

The presence of roughness introduces further’ complica-
tions. It is true,that flow on rough walls has been exten-
sively studied and the laws of the IInuclear flow!’ in pipes
are well known b~t there is no dependable knowledge of the flow
processes nea,r the wall between the protuberances .

The”’experimental exploration of the. flow distribution
near ths wall is a broad field of research. which Gag only be

accomplished piecemeal. The ~,uthor first explored the data
available near the wall. “While t-h~~e studies are not com-
plete, they have progressed far enough to enable a theoretical
treatment of the h,:at transfer at a smooth wall.

i!
A particularly important

.
sub-task consists in checking

the applicability of the theoretical formulae by means of
heat transfer measurements as the theory contains postulates
relative to the -mechanism of heat transfer which require
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confirmation.by experience. If necessary the theoretical
assumptions must be- modified to fit the experimental facts~ ,
The heat. transfer measurements-can be employed with great
benefit to clarify the .questians, of ~.urbulence structure.

THE PRANDTL NUMBER “ : -

I

The hydrodynamic- equation for the continuity of heat
flow, (equation (4’7)) is not sufficient for predicting the
temperature distribution in the friction layers.. It re-
quires another equation for the temperature which takes
into account the requirements of the system under consider-
ation. (This temperature equation, looked for, places the
continuity of heat flow equation (equation (47)) in the
position of a special condition that must always be satis-
fied.).

~
‘The Prandtl number Pr = ~ governs the form of the

temperature profile, It is logical, therefore, to begin
with. the Prandtl, number concept. To secure a @inferential
equation necessitates a determinating. equation for Pr that
holds for each point in’ the flui’d. S,jnce the individual
factors in “Pr have IIpointllsignificance, the derivation
of such an equation is possible.

Let q equal the density, of theheat flow, and T
the shearing stress of the density of momentym transfer.
Assume that the heat flow and momentum flow act in the same
direction (+-y) at a-given point, which is perpendicular
to the mean velocity u (time average) at this point. In
the system under consideration y is measured perpendic-
ular to the wall and u parallel to it.

The total momentum T consists of a portion Tm by
the molecular transfer and a portion .’rt by the turbulent
exchange motion. The same i~olds true for the heat flow.
HeilCe

T = Tm +.Tt (3)

(4)

W i’til

w coefficient of viscosity

I
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A thermal conductivity “

L . .
-*—=
‘1-.

A. e~-change coefficien-t for momentum
.,

i;
; Aq corresponding coefficient for heat’
I
1

CP ‘ specific heat
I
I
\ u, T time averages of velocity and temperature, respectively

I u’, vi velocity fluctuations in the x, y,directions, respec-
tively

Tt corresponding temperature fluctuation

du
‘m ‘Pz (5)

‘t
=A~=-Publ

dy
(6)

(7)

(8)

,

The coefficients, W, h, A, .-Lq, are defined by these equa-

tions. There presentation of ‘t and qt in terms of the

fluctuating components ‘is for the present irrelevant, but
~;ill be clarified in Chapter 9.

Equations. (5) to (8) then yield the following proportion:
.

(9)

: Accordingly the r’a:tioof turbulent to molecular heat flow is
1“ proportional to th~ ratio of turbulent to molecular shear1

stress, The proportionality factor is Prl = (A%iA)pr, a
Ilgeneral Prandtl ‘number.quotient which is called

,
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Equation (9) thus leads to an extenSion of the concept
of the Prandtl number for tur%ulent flow with PI = Aq/A Pr

instead of Pr. Only in the case irherethe exchange coeffi-
cients are the same for momentum transfer and for heat
transfer will “ Pr and Pr~ be eq’ual.

Since equation (9) refers to floy in which turbulent
and molecular shearing stresses act, it is particularly

. .suitable for the representation of the physical phe-nomena
in the transitional layer. The treatment of the heat
transfer in the present report therefore starts ~rom the..
transitional flow, the “fully turbulent core and the
laminar motion at the wall being treated as special cases.
(In the proximity ;-of‘tha wall the exchange mechanism per-
pendicular to the wall is not possible; therefore the
turbulent friction disappears and the momentum transfer is
accomplislied by internal friction only. Because of the
turbulent pressure fluctuations, the stream velocity n-ear
the wall also experiences fluctuations. The continuity
of this fluid flow is largely maintained by the lateral
transverse fluctuations, so that the wall flow glides
practically parallel to the surface. In this sense the --
viscous wall “flow is Illam.Jnarel!)

A picture of the phy-sical significance of the Prandtl
number is best obtained by observation of the transitional
layer -for extremely high values of Prt (very viscous fluids).
In thi+s case practically only turbulent heat transfer exists
(qt>> qm) at tkose places in the transition region where only

small turbulence exists (Tt << Tin). In this extreme case the

molecular heat transfer is so” sm’all’,that even a slight con-
VeC’biOil signifies a for’m of !l~hort circuit!! for the heat fkw.
Therefore the temperature profiles for high prandtl hTumbers
are It’smoothed,It

..”

Even for the special case of Prt =,1 and ~~’~1~ co~stant,
the ternperatura profile can be fixed readily. J

qt ‘t or 5 qm ~ dT—=— =—= — ‘ In this case the profiles of the
qm ‘m TT du ‘“m
temperature and vslocity agres with each othert (The con-—

dition.tha.t q ~ T is well satisfied in the friction layer
, of a flat plate.)

.--
?.. ,,.

The tem~erature distrihuttion follows from the equation

of the molecular heat stream qm = ~ u; qt must, therefore,
ay
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be replaced by (q - qm) in equation (9). Introducing the

rat io q/T equations (5) and (7) then gives:
..

(lo)

The boundary condition at the wall is to be introduced in
this gen~ral equation. That is,

()dT Vo qo ,-.
du o=. ~o,~o

and when au~mented by (11) , equation (10)

(11)

is integrated to:

du (12)

. .
.

The factor
~ (J

dT is determined by extension of the integral
70

ovtir the total vel.’ocity field of the friction Iayzr.

The temperature-velocity quotient (~): (g/~)o

is a,measure for the ar,ount of heat transferred to the wall.
The heat transfer at the. wall is obtained from the temperature
distribution.

Equation (12),although designed to calculate the temper-
ature distribution, has general application. The considera-
tions so far are based s~lely on known definitions properly
rearranged and combined and no special assumptions relative
to the flow have entered the computations except the bound-
ary condition of a laminar wall layer.

:’ The above derivation indicates that a general result can
c be secured without employing the ”hydrod~namic equations

(46) and (“47)). This is due to the fact that the basis of

/--’
—. _——
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. ... .. . . .
each theory, entirely independent of the method of calcu- ~
lation, is ‘a postulate related tb the exchange mechanism.
(For instance T! is set proportional to ur, or more
generally ‘q = A, or as in the case in point, Aq/A is

to be determined -later,) This simple hypothetical content
of the theory is seen also from the presentation of the
simple Prandtl analogy for the present subject is treated
in such a manner as to make this step possible.

To complete the temperature equation (12) the magni-
tudes AqjA, qTo/~oT and Tt/T must be known. (These

quotients are introduced later in order that the effect of
each postulate may be observed independently. Also the
various deviations bet;?een the theory and experiment reveal
at a glance the direction in which the assumptions must be ‘
modified.)

In order to carry through a calculation 4q/A is
assummed to be constant. The value of Aq/A is to be
determined from experimental data.

The quotient q?o/qoT cannot be fixed arbitrarily.

The heat stream- q is related to the temperature T
through the differential continuity equation (see equation

.(47)generalized rourier-poisson) of heat flow. But a first
approximation of the temperature distribution can be obtained
by assuming that the layer for heat transfer is of about the
same thickness as the friction layer.

In this c~se the heat flow disappears where the shear
stress is zero, while on the wall qfqo = 1 and T/T = 1.

0
Thus the total range of the friction layer can be expressed
with

. ‘lTo
—=l+k (13) ,
q. T

where k is small compared to 1 at least in proximity of
ths wall.

-—

In the turbulent friction lay’ers :the v,~locity gradient
is steep near the w’all. The largest part:kf: the velocity
region u lies iu a zone wher”e k is s’mall. So for the
integration T over u of equation (12), (qTo/qoT) m 1

———,— ..! 1. . . .!----- , ,., ,-,. , , . , ,, , , ,, , .-—-””-,,-,’ ‘“
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may be -put in. f~rst approximation. (In the entrance zones
where the- wall temperature changes .sudtienly this approxi-
mation. is not’ p.os’sihle. Tor such cases the heat boundary
layer,$s much thiniler than the friction layer and it there-
fore plays an important role in the ..variation.in heat flow.
Thermal entrance ler.gths in existing friction layers are
quite short however (see Latzico, Z.a.M.M. , Bd. 1 (1921)

268) , so that when assuming (IAAo/Po~ ) - 1 and, ,P.

?tl~ is known, the integration can- he completed. -

This procedure yields a first approximation of the
temperature distribution by means of which the heat floi~
can br? evaluated~ The heat flow distribution then affords a
second a~proximation for the temperature. distribution which
is practically adequate for the case of constant material
properties.

Ssveral quantitative conclusions can be drawn ,from
equation (12) relative to the temperature profile of various
friction layers which coincide approximately with the stress
quotient (T /T) (such as,

!
for example, the flow through a

pipe, channe or flat plate) at equal Reynolds numbers,
wh~re the velocity distribution ObeYS the IIuniversal lawtl).

At the flat plate
()
3’=0

()

dTand likewise 0.=
dy O Go

The assumption k - 0 is therefore well satisfied over the
gre<~ter part of the ‘vel-ocity field of the flat plate. No
appreciable differences obtained here between the first and
second approximation and the final solution of T. (Even
though T and q are very similar at the plate, they are
not coincident, for q depends on Pr I while 7 does not,
Therefore there vill exist for the plate, a small difference
between the actual temperature profile and the first approxi-
mation of T.) .

For flol,rwith pressure drop,a far from negligible
difference exists between the second and first approximations
(that is, between the actual profile and that of the IIplate
profilefl of the temperature.) By pressure drop (dT/dy)o <O,

but at the flat channel wall (dq/dy)o = O and in the pipe

(dq/dy)o > 0. Hence it follows for the tem~arature “distri-

butions that the pipe profile diffe~s norc from the plate
profile than tho channel profile! that is, according to equa-
tion (12), the temperature rise at the pipe wall is flatter

—
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than at the channel wall and even more so than at the flat
pl”~te (see fig. 4). I?or a quantitative treatment of model
problems it is advisable to integrate the temperature
equations by secti-ens, that is, the laminar section, the
transitional region and the real turbulent layer. The bound-
ary at the end of the laminar zone is designated by the sub-
script a, and the beginning of the turbulent layer by bo,

whence. after introducing the substitution equation (13),
equation (12) gives

o <a

A Cpo()— (u-ubo+b~ kdu)
Aq cl? t, o“ -a

((

/

()

1 \ ~T’iProl- 1-—— _
prl ~ Tjt

t

(0< T-= Ta) (12,

(Ta< T< Tbo)(12

(Tbo<T ‘~) (12,

“ (6= max. temp. difference between the wall and the flow-
ing fluid.) In addition it should be observed that k may
be disregarded for the laminar’region. A general disregard
of k in the main fluid stream is not tenable.’ The sub-
script t indicates a mean value for the tur%ulent region
(formed over u).

In the actual turbulent region it is to be noted that
for small values of Reynolds numbers ‘t/T is considerably
smaller than unit (see fig. 2) , correspondingly Tin/T is

not negligible. However to an approximation (Tt/T) =

(~t/T)t = constant. The point where ~t.7 = (Tt/~)t is

the turbulent boundary designated with bo.
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To utilize the temperature equations the variation
of (Tt/-r) and the bovridary velocities Us,’ ub : (-and:corre-
spondingly ubo) must be known. “ This in-volves ‘th”e‘flow

distribution near the walls, with limitation to the processes
at the smooth wall and to flows obeying the universal velocity
distribution equation. ““ - —.. ..—-

.

VELOCITY DISTRIBUTION AT A SMOOTH WALL ~

The measurements by Nikuradse (reference 11) have shown
that the turbulent velocity distribution can be approximately
represented by the following equation: ..

(14)

where the dimensionless sheariilg stress vsloci,ty 4s defined
by

and the dimensionless wall distance by

The constant B depends on conditions at the wall.
l?or smooth walls B is approximately 5.5. Equation (14)
is e, straight line on semi-logarithmic paper “as showrr-in
figure 1.

The velocity distribution for the laminar wall lay~r
can also be represented by means of u/u* and y*. Re-
arrangement of the Po-iseuil-le equation results in

5=Y*(1-Y (17)

... ,. ... . . .,----

where q = yfr and r is th~ “radius of the pipe or channel
for the equation in -the -su-h-layer. In general the lamiilar

I
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lay.e~ i.s so thin that v/2 may be neglected compared to
un-ity and therefore practically

u—= Y*U* (17a)

Equation (17=) is therefore tie universal equation. I
for the velocity distribution in the laminar zone. It is
shown in figure 1 as the curve which passes through the
point lo-gy* = 1, u/u* = 10.

The flow conditions in the transitional layer are not
very well established experimentally. This sublayer
adjacent to the wall is usually so thin that accurate measure
ments of the velocity can hardly be made. The closest wall
proximity was probably reached by Stanton with his surface
tube (reference 12)., ““But. even these test data are insuffi-
cient for the present arguments.

.,

Since the application of our theory is predicted on
the knowledge of the shear stress ratio (Tt/T) in wall
proximity, a wall layer of such thickness was required
as to render a measurement of the wall flow possible.

The thickness of the laminar layer ya and the bound-
ary velocity Ua are fixed by definite value’s of u/u*

and Y*; Ya increases with decreasing u* according to

equation (16). The reduction, of ~* is limited by the fact
th?.t at too low shear forces the critical Reynolds number
is undercut and so the entire flow becomes laminar. It is
therefore appropriate to introduce the Reynolds number
Re = umd/v in the place of U*. Then the thickness of

. .
the wall layer is

ya*d
Ya ‘= —

‘.

Re
N

8
(18)

where the so-called resistance coefficient ~ isdefined in

Ap
-the usual manner as: ~=c-

C‘. To=_,
(19)’

p um2 8
(~ decreases slightly with Re).



NAC.ii“Technieal M.emora~idum No. “1047 17

The thickness of the wall layer “grows with the
diameter d of the pipe or channel and decreases with
the Itey-nolds number. l?or a given Reynolds number Ya/ d
is independent of the choice of flowing me~ium.

. . The important number Ya’”s the exact value of which
is not yet known, lies below 10 according to available
measurements. Th$. critical Reynolds number is 3000, and
the corresponding t- 0.04. Herewith

,.$

,<

Yad
20

This equation reveals that even for the lowest possible
Reynolds number the stream diameter must be fairly great
in oraer that a probe can be introduced into the lam.inar
wa~l layer. (Iiith considerations to the influence of the
wall in the probe, the wall -layer should be as thick as
possible.)

But the “achievement of a sufficient. boundary layer
thickness by i~ereasing the strsam diaaeter introduces
fundamental difficulties. If the increase in diamster is
to achieve the purpose desired, the 3_eynolds number may
not be increased. (see equation 18). This means that the
velocity m,ust be decrzase d in the same proportion as the
diameter is increased. As a result the dynamic pressure
and the pressure drop ,are reduced quadratically with the
strearl di-meter, that is , with the bouncl,ary layer thickness.

This is exemplified at the dynamic pressure of the
.mea,nvelocity urn, for which introducing lie = dum/~$ we
get

.

Eu2=~ 2 Re2
~m 2pd2

(21)

To fix the order of m~gnitude of this dynamic pressure
sev.erzl numerical values are iilserted. Let Re - 3000,
d = 25 csctimcter .(utilized in measurements reported
later in this paper). For air as the flowing medium
(M = 1.8 x 10-4, p = 1.2 X 10-3) it is

.g 2
‘m - 2 x 1O-3 mm H20

2
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The pressure drap to be measured is Of the same order of
magnitudes and is equal to ‘p Umz at Re = 3000 for

At = 100 d. For flowigg water these pressures are about
four tifileslarger and only when utilizing a viscous oil
does the magnitude become equal to 1 millimeter of water.
If these pressures are to be measured to within 1 percent
the~ the sensitivity of the manometer mus”t be in the range
lU-” . to 10-5 millimeters of water.

The problem of precise measurement of the flow phenomena
close to the wall for non-isothermal flow involves the tech-
nical difficulty of measuring extremely small pressure differ-
ences. (The velocities can be determined without the use of
pressure m.ea.surements. In the boundary layer itself a hot
wire anemometer or a thread anemometer can he used in place
of a pitot tube. These devices must be calibrated and the
calibration at best depends on pressure measuring devices.
In addition pressure drop measurements are des-ired to check

- the effective shear stress. ) Such measurements’ can be made
with the micromanometer designed-~y the author which has an
upper limit of sensitivity of 10 millimeters of water
(reference 13).

.. TbAe turbulent flOW measurements reported here were made
in a rectangular channel 25 centimeters high, 1 millimeter
~,ride?.nd 16 millimeters long and with a maximum VelOCity Of
80 centimeters per second. l?ine pitot babes and hot wires
were lltilized. The hot wire anemometer was calibrated in
the i>arabolic distribution of a 3 centimeter high X 30 centi-
meter wide laminar channel in which at si~,ilar distances from
the wall, the same To obtained as in the turbulent channel.
-fo was evaluated from the maximum ~7elocity as well as from
the p’ressure drop.

The measurements .yere made very difficult because the
low velocities were ee.sily disturbed by i?xternal causes.
l?or instance, small tem’lerature differences between the
air stream and the wall (induced by unavoidable fluctuations
in room temperature) caused observable changes in the veloc-
ity distribution. Therefore the turbulent velocity profile
was almost alwa’~s S3 izhtly unsymmetrical and thus u* w2s
different on the upper and lower wall... .“ ..

On the top of that the recorded preksfire drops-yiel’ied
an average u* Twhich was too great as compared with the
results of other authors. The channel flow o%viously was
not completely developed (in a tube the ~ength of 64 diam-
eters would have I)eeilsufficient. ) But since the pressure
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I

drop was held constant for all test points, it was
possible to determine the mean u* by comparison with
indis”putabl’e measurements of other authors at higher.”
values of y+. For this purpose measurements of Nik-
u-radse were utilized omitting those for which the wall
correction was questionable. .(Similarly the measurements
of the Stockholm report which do not lie in the range of
others of Nikuradsets measurements and are obviously too
high, have been omitted. )

The results of these measurements near the boundary
are shown in figure 1. The u/u* points approach the
laminar curve very gradually. It is reached at approxi-
mately u/u* = 1.5, a value which is substantially lower

than that usually assessed.

The value us/u * = 1.5 is however still uncertain
and it must finally be based on much more accurate measure-
ments.

It is also tru~, that an accurate determination of
the l.iinitwhere du/dy x (du/dy)o is not possible from

velocity measurements. For this purpose heat transfer
measurements at high Prandtl numb~rs-will serve better
to ,o.etermine the l~minar boundary. l?rom heat transfer
measr.rements by 3{{hne it would e,ppear that us/u* is
somewhat larger th~n 2.

The recorded vslocity distribution in the transitional
region can be approximated at:

u
a= ~,

U* b=”fl and

ua is the velocity at the laminar boundary and ub a

suitably selscted ~el~city at the turbulence bcundary.,
● *

(22)

IL —— ---.— ——.—
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As before q/2 can be neglected compared to 1 apd ‘
equation (22) then becomes a universal law. In figure 1
equation (22) is presented for a = 2, b = 15. The curve
is dashed above u/u* 15, where it loses its physical
significance. The measurements are satisfactorily rep-
resented hy this equation. .

It remains to be explained why the velocity distri-
bution in the transitional zone was approximated-by
equ-.tion (22) although some other similar function had
been possible.

The ratio Tt/T is required. To fix the ratio,
differentiate equation (22):

(1 - ~) d.y*

b- u/u*=—

b-a

d“+ w du ‘m—2— — =—
dy* #2 dy To

(23)

(24)

The total shear stress for developed flovl with pressure
drop is

T = To (1 - q) (25)

(near the wall one may s~t 7 - ‘o). Then, solving,

one obtains:

‘m “db - u
T= ub - Ua

‘t u - ‘a— =—
T Ub - Ua (27)

Since eouation (22) is confirmed quite well by the measure-
ments for Ua< u< Ub the true variation of Tt should

(26)
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not differ much from equation (27). An uncertainly
exists, ~of course, at the limits a and b.

There follows from equation (27) by introducing the
often used ratio ~ = u/u “

u
‘t ~ V-a
—=
?, b -a

(i’7a)

.

where U is the maximum velocity at the edge of the friction
layer. u/u* is, in accordance with equation (14) a function
of r* (that is, the va}ne of ‘y* at the border of the
friction layer based on t!le distance r from the walk).
!The relation between Re and r* is given by the identi,ty.

~

Re=~
U ru*r*=——

2 Um U* ‘J

where

(28)

‘m mean velocity

‘m—= Q
u m

a function of Re

Figure 2 shows ‘t/T for different values of u)

with Reynolds numbers as the parameter as calculated from
equation (27a) for the transitional layer and by equation
(14) for the turbulent region. The constants a and b
werz chosen at 2 and 15.5W respectively.

The actual ‘-t/T distribution no doubt di,ffers from
that shown in figure 2 for small values of ~. But the
difference between the velocity distribution as expressed
by equation (22) and the laminar curve is less than the
scatter- of the experimental points (see fig. 1) so that
nothing certain may be said relative to the a,ctua’1 Tt/T

variation near the laminar boundary nor of the laminar
bo~~tiary itself.

.
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Details of the variation of Tt/’T- play at first no

part. In contrast with earlier work in which the fr’i”ction
layer was divided into two regions in which ‘t/ T varied

from-O to 1, it should for the first suffice to approxi-
mately describe the processes in the transitional Zone.

The earlier division of the friction layer into a
laminar and a turbulent region is indicated by two vertica14
linss in figure 2. ‘The dotted line represents Re = 4 x 10
and a = 2 and the dot dashed line represents Re = 4 x 104
but a = 8.8, which is the value chosen by Prandtl in 1928.
Tt/T was defined as zero up to a = 2 (or 8.8) and unity
for greater values af Y*.) At high Prandtl numbers where
the transitional layer can he regarded as part of the tur-
bulent zone core with respect to heat transfer (s-ee equation
(9)) a = .2 is in good agreement while a = 8.8 ‘results in
a heat transfer rate which is too small.

THX EFFECT OF TEMPERATURE RELATIONSHIP OF THE

MATERIAL VALUES ON THIl FLOW PHENOMTJ?A

If the material values are functions of the temperature
then the flow distribution across a section will be changed
as mentioned above and also reduction in temperatures in the
direction of flow causes hydrodynamic changes for all fluids
which are compressible. In this instance, in principle at
least, there exist no velocity profiles which are similarQ
the same statement holds for the temperature profiles both ,
considered as a function of length.

Since the magnitudes of the temperature difs?ere’nces and
the differences in the temperature coefficients of each prop?
erty enter into the evaluation of the profiles, a general
solution of the problem is ha,rdly possible and the study re~
stricted to the simple case of similar temperature profiles
which are practically achieved at relatively low differences.

If the viscosity of an isothermal friction layer is
changed. from ~1 to’” V2 and if the remainder ‘o”f’the. va~i-
ables, particularly u* do not change, then equat’ion (14)
reveals a parallel displacement of the turbulent velocity
profile (see fig. .3a) with a velocity difference of

V2
Au = 5.75 u* in

q

—- .,, .,, . ...

(29)

,,,,. , . ,.
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From this it follows that the viscosity has practically
no influence in the fully turbulent region, but affects
solely the boundary velocity near the wall. (The tur-
bulent flow slides at the wall at a higher or lower
velocity equal in magnitude to Au.) \

If the viscosity in the turbulent core of the iso-
thermal flow plays no part its influence for non-isot~ermal
flow is limited to the effect due to Its variation. vis-
cosity variations in the turbulent core are not great, for
the temperature variations are not great. We may, there-
fore, generalize the laws established for isothermal flow
by omitting the effect of viscosity in the turbulent core
and by replacing the isothermal viscosity V in equation
(14) by a suitably defined lamina.r layer viscosity VZ.

I

Ilecently the resistance measurements of Rohonczi
(reference 14) for non-isothermal flow of hot water
being cooled in a tube wero published. The mcij,sur~]nents
could not be adequately correlated if the friction factors
were plotted against Zeynolds numbers in which the viscosity
is evaluated at the mean fluid temperature. In contrast
the correlation is satisfactory if the viscosity V. iS

evaluated at the wall temperature.

Tb.e rest of tb.e discrepancies can be eliminated if
a viscosity slightly less than that corresponding to the
wall is employed in the Reynolds numbers. As far as the
author could determine the results of Rohonczi can be
satisfactorily correlated and are in agreement with those
of Blasius-Nikuradse if the Reynolds number is referred
to the mean laminar l~,yer viscosity vl a>d a “is put

equal to 2. (Rohonczi chose V. as the correct viscosity

due to an error in conclusion from similarity reasonin~
in l,~hichthe differential equation for isothermal flow
was applied to non-isothermal. flow. Iiladditio~ the VI

values of Rohonczi do not achieve coincidence of the iso-
thermal and non-isothermal results. Up to this time the
thiokness of the laminar sub-layer was chosen too thick,
res~llting in a sublayer temperature which was too high
and a value of vt IPrhicb.is too 10W. Only for one set of
data at high Reynolds num-oer will the results yield to
adequate correlation, )

Consider next the iilfluence of a uniform viscosity
variation on the flow conditions near the wall. If the
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friction velocity U* is not changed, then the boundary
velocities Ua = a U* Ub = b U* are maintained since

a and b are universal constants. That is, onl~ the
layer thicknesses change to

In figure 3a the velocity profiles for un~form changes
of viscosity are shown in which. for the sake of simplicity,
the transitional layer is included with the turbulent core.
Curve 1 is the original profile. Reducing the viscosity
yields profile 2 with one-half the laminar layer thickness.
Increasing the viscosity by 50 percent yields profile 3
with a corresponding laminar- layer thickness of 1.5 of
the original layer.

The case of a locally variable viscosity such as obtains
in non-isothermal flow stipulates a generalization of the
dimensionless distance: y* = yu*/T I?or the viscous wall
layer the following simple possibility presents itself:

f

dy
Y* u*_

v

o

—

U*= /2
j P(J

(30)

The applicability of this concept must be established bj~
experiment. But it may be stated that this concept (equa-
tion (30)) is more satisfactory than the oriq~~e,~. e-~d that
one can predict well those c~ses in which the p.-cverv~-
temperature quotient is not too great bj? empioyiug equa-
tion (30).

The ratio u/u* can be generalized by re-arrangement
of equation (3) for the laninar wall layer.

pd;r Pdu—. =
V’ -rO

.-

The following indentity holds for the laminar layer:
.,

‘,
.,
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so

mus

the

1

pJl*

yu*/v is repla

t be replaced by

universal repre

Jpdu=u*
I

Qy= Y* -
u

o . 0 .

ced by u* r
dy
— = yw, then

. P 4 v

P:U’JO‘du inorder‘0
sentation of the Poiseuille

u/u*

preserve

law.

(31)

Under the postulate that there exists a certa’in
critical number in this representation, the laminar
bouadary of thenon~isothcrmal flow must be a,t the same
v,alue as for the isothermal flow y * = a, For the ratio

%JU* equation (31) then gives 0

u ,Cj, 2rlp:i
—=
U*

Po+ Pa
(32)

if in the first epproximntion p(T) p.nd T(u) are linear.
At constant density us/u* = a. ‘as was the casz for iso-
thermal flow.

In incompressible fluids the laminar boundary velocity
thsrefore always approximates to the same value au* no

ma,tter what the viscosity variation in the laminar layer
may be. The integration limit Ua in equations (12a) to
>—.
(l~r-.) can therefOre be retained for non-isothermal flow
also.

The effect of the visc~sity expresses itself in the
thickness of the laminar layer, according to equations
(30) and (31):

a

Ya=$ J’.dy*=i&y+.J
o 0

(33)

These ratios are expressed qualitatively in figure
3b, that is, for specified values of U* and PO at the
wall. The viscosity in the sub-layer is smaller in Profile
2, gre?.ter in Profile 3, than the viscosity W. for iso-
thermal flow illustrated in velocity Profile 1.
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It is seen that the papallel shift of the turbulent
profile in the non-isothermal case is much less than by
the uniform variation of W. The velocity change may be
expressed approximately from equation (14) as.:

Au = 5.75 u* in
u)()d—
‘a )

Because of the neglect of the transitional layer this
shift is less than the true Au. An improvement is

L

possibly obtainable with the integral
J ()

k~md~

WOT
o ‘o

THE TEMPERATURE DISTRIBUTION AND THE TEMPERATURE

GR4D1ENT AT A SMOOTH WALL

To further evaluate equations (12a) and (12c)
P~o/vo~ is substituted for cpo pr/cp pro and the

(34)

dimensionless ratios V = u/u, * = T/Q introduced.

To simplify the calculation a constant Prandtl
number Pr (~) and a constant specific heat Cp- is

u

introduced for the transitional layer. For the turbulent
region itself

‘P
is equal to Cpt 9 a constant. Further

the ratio of the exchange quant ties is assumed identical.
(I?or completely laminar flow the ratio Aq/A loses of

course its significance.)

Defining a mean Prandtl number for the laminar layer as

and putting

(35)

(36)
J
o 1+ (PrJ-1)+

I., , , . ,,
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it follows from equations (12a) to (12c) upon the intro-
duction of equation (27a) and the application of pr-~o =
Aq/A Pro ‘ afid ‘Yrll = Aq/A Prl that: “ .,

I

From equation (37c) the temperature gradient at the wall
is:

—.. — . . . .,

where el is the value of e for q= 1 multiplied by

Cpt/’po” (See equation (36). ) .

The qua~ltities ‘Ja = a u*/U and ‘$5 =, b u~U are
known functions of Re (see equations (14) and
(28)) if a and b ~~e ~~~ed. On the other hand, the
m2,terial values P1’~ =.nd Pr= must be defined more

explicitly. (To be discussed later. )

In equations (3i’c) and (38) CobO was replaced by cOb

because a sligkf variation while defining the turbulence
boundary he,s practically no effect on the calculation of
ths total temperature. (At the boundary position mho

the temp. difference over the turbulent region is greater bY

. — -— —
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~.
.: ... .’ .,

..cpb-cp~ .’

()

,.. ., .,. .
~o -d&.”’”” ‘ .;,’,..,,,.,

-.
Prio dcp O

%ha’n at ~b~;.:yhi~e t’heCt.e,mp.difference .,,, ,,. .
in the transitional zone is reduced by approx, the same
amount. ) .. ..,-,-.“, ...

In addition to the very small error terms, the
expression

. .
:.. . .

. . .
.. (CP - “’” ‘ ()““bo)(l-l/prfo) ~

t

.is also emmitted, since it is smaller than 0,02 (see fig. 2)
even for the largest (Tm/~)t at small Reynolds numlers.

,.
The number- el; accounts. for the effect of the variation

of q/T on the temperature gradient at the wall. Since
this term is less than unity (see fig. 10) it plays no }
important part except at low Prandtl numbers as is seen
from. equation’ (38). The integration of equation (36)
between b and unity usually suffices to calculate el
r.nd by this operation Prl and CP disappear:

,..,.
1

el -
J

kdv (39a)
‘, b.,

Whilethe. er,rors due to: th.~ i,nacc-uracy’of th:e spe’ci-
fication. of ‘‘t/T ‘“by means. of eqti~.tion (27) tend to dis-

appear for high Pr, for prl = 1 the only term which
is in error is el (for Tt/T is eliminntc.d) to the

e::tont thnt the errors due, to-the material vi~,lue$can
be discounted.

,.

,.0. :,

I’or Prt-= 1

, “! Cpf
el —k dO-

0“ CP
(39b)

,. ..,..“ .
Here the integration from Otob for..pipe flow is
approp~iate~’ if t’hb Re~nolds number is -small (in this
G*ent .“k- ~in t’he tra.n’s.it:ion~lzone ~annot be neglected. ).,;

.,,.. .-..,-.’.. ..’..,

.- —. .——.-.—.. . -. .—-... ......--—--- .-—— . I———.—
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I?or constant material values an’d for Q~’=Qa,.

_.-q/T - .qo/To (e ‘~) eq~~ations (38a) to (37c) and (38)9

give the Prandtl approximations:
,

()d$
4

((-J<““*< #“a) (40a)
mo=~

\

od~4
Go

=Cpa+ * (V-”va,) “(*ac 8 <1) (40b)

(41)

. (Prandtl employed Pr instead of Prl. He also used
llm and Tm ras referecce values rather than U and ~.)

The fourth term of squatior. (36) Which (accounts far
tyL~ conditions in the transitional layer is particularly
impgrtant for average values of the I?randtl n’umber. But
r.t hi:%h Vtl~U2S of Prt’ the fourth term is. small conl-
p~.red with the third ‘and for constant material’ v~,lues
Prnodtlls equation (41! is approximately obtained again.

prt -. 1, and constant mfi.tsri,~lV?-lu.esequation
(38) ~~mplifies to:

. .

(“)
@a + ~b

prl Q = 1+ el -i-
d+ 0 2

(Pr’-l) “ . (42)

,..

In flow with pressure drop, conside~ation of the heat
flow dist~:ibution w;ich ~nters into the el term yields.,
a smaller temperature increase at the wall than by the
assumption q/T = qo/To. For instance (d$/d~P)o is not
.

equal to unity at Prl = 1
5

and Re = 4.10 but in a
channel is only about 0.94 a’nd in th”e pipe approximately
0.91 (see fig. 10).

In figure 4 (da/dcp)o is -presented ’as ~ function of

Pr f for constant material values with .Re as the param-
eter, a = 2 and b = 15.5. The solid curves refer to

:,



.30 NACA -Technical. Memorandum No. 104.7
. . . ....

the flow “through a ~ipe. . For Re = 4 X .105 the dot-dashed
cur,ye”.~sthat .of-.achannel while. the dashed curves refer to
a flat plate.

..- .
.. ‘,. . ..

The asymptotic lirgit value of
high Prandtl

“(dIJ/dUl) for ‘extremely
numbers is l/~a. The temper~ture gradient at

the wall (d$/Sy)o is therefore at the most ‘lfva times
greater than the corresponding velocity gradient.

For Pr = 0.72 (air and other gases at room temp.),
(d?/dQ) - 0.8 at the plate, if

‘q = A (see equation (42)
and fig? 4).

.. .,

1 ?31ias (reference Z5) has established, for the flow
along a heated plate, that the temperature and velocity
profiles are simil=.r, that is, that (d~/d@o ““1;

This value for (do/d@). holds, however, for
(*q/A) E’r- 1. I?fom this it follows that Aq/A ‘1/0.72 -1.4.

A similar result was obtained by Lorenz and l?riedrichs
(reference 16) in their e~~~~~;fnts with air flowing through
heated pipe. Re - 105, - 0.97. This value lies

o
at pr I - 1.08 as may be seen from figure 4 (equation (12)).
I’rom this it follows that Aq/A = 1.5.

The question regarding the ratio of the exchange .
quantities, however, cannot be considered, solved, hence
no specified value Aq/A will be ascertained.

Figure 5 illustrates the temperature distribution
a(cp) for various Prl at Re = 4.104. The solid curves
indicate .the second approximation for. pipe flow, the
dashed curves represent the first approximations which
approximately correspond to the temperature distribution
along the plate. The division into three flow regions
is indicated by the’ lines qa = constant, @b = constant
(that is, for a = 2.0 and b = 1’5.5).

In figure 6 the temperature distributions of figure 5
are plotted against the dimensionless wall distance q.
For purposes of clarity only the ‘case of prl= 1 for the
first approximation (also a Hear approx. for the plate)
is -presented. This curve also represents the velocity
profile for Re = 4.104 for.the universal velocity dis-
tribution curve approximately holds for the pipe as well
as for the plate.

As to the non-isoth~rrnal proble-m the least. trouble
is in the choice of the value of

CP since the specific
heat varies but slightly with the temperature. In many

.— . . . .,, . .,,.,- .,,.,,,...,. .,,, ,, .
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cases one may write c o = c - * c t
!/

pu
1?

in which event
equation (38) is great y simplifie .

i?or a more accurate analysis the approximate range
of the pertinent temperatures must be known. Employing
the suhscripfsutilized to describe the material values
and arranging the temperatures in the order of increasing
tein_perature results in

temperatures ,
as well as the

Tu are introduced,

Here, in addition to the material value
the boundary temperatures Ta and Tb
mean temperature of the flowing fluid
(The definitions of Tu aud Tt depend on the variations
of the material values and are very complicated, (see

/derivation of equation (38) 3ut it is not necessary to
consider this matter further here.)

Since the principal mass of the fluid is turbulent
Tu and Tt are quite similar so that in general Tt can be
replaced by the known. Tu. At high Pr, temperature ~
agrees with Tt, hence ~.,,ithTu (fig. 5); but at low Pr,

‘% is substantially lower tb.an Tu. . Since ~ is applic-
able only to the term of the transitional layer, the
approxirnat’e value from fi~ure 5 will suffice.

of’ par titular izfluence on ths heat transfer is the
temperature ‘relation of the Prandtl number in the laminar
layer if a,$el-y viscol:s fluid is, involved.. (1’or viscous
fluids the major resistance to heat ‘transfer is offered by
th~ laminar layer. Since the laminar, layer thickness ya
varies with the temp. viscosity hi Story” of the fluid (see
equation 33)..and since the temp. variation of Pr is fixed
primarily hy the viscosity (Cp and ~ vary but slightly
with temp.) Ya depends on Pr/Pro. But it may not be
said that the thlckhess “of.the lamiqa~ laysr is a function
of Pr for this is a heat transfer factor and the laminar
layer tn~ckness depends on a purely hydrodynamic variable
as seen from equation 33.) Izi this event a mere estimate
of Frl by means of-a cursory temp~rature Tt may intro-
duce a ~’h”~prediction of Yrserious srror. by ineans of
equation (35) is therefore indic~tedO

To iimpiify the calculation a proportionality between
velocity and temperature f or the n,on-isothermal laminar
layer is assumed:
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.

(43)

,,

Furtker the temperature variation of
Pr

is approximated -
by the linear equation:

<
.,,

7/
Pr Pro

= ‘(l+m T) (44]

CP , Cpo

where m is an empirical constant.

Wit!l the assumptions (43) and (44), equation (35) gives

.

(45)

A first approximatioti ’to the temperature gradient
()

d+
. ...- -G’”o

at the wall is .obt’ained from figure 4’where for the
I?randtl numler ‘prI the value of the wall, Prto may
be chosen; .. ~ -

For ,a @ore, accurate solution of Pfl (to be discussed
elsewhere) the real non-linear functions T(,@) and Pr (T)
must be used instead cif~the linear relations given ‘OY,
equations and .(44-). “ ‘“ “

.,
. .,.

THE DISTRIBUTION OF TH3 HEAT FLOW DENSITY r

IN A CHANNEL AND A PIPil
.*

Ths differential equatihn f;r the equilibrium of
‘forces in a’fluid’ !~ith allowance for,the continuity equation
and Otiission of density variations reads: :

.’.

..— —— —-.——..- —.. . ....... . . . .... ------- ---! ., . ., -.,,..! I . ..-.-.. .! . I ,,!! .,
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wh ere G is the velocity vector.

The differential equation for thermal convection
and conduction is written similarly:

pcp~ +P CPV(W;T) = e+?t V2T (47)

wher e

E source of density per unit volume.

A formal analogy between the equations of momentum,
and heat exist therefore for flows with grad p # O
only in the presence of spatial heat sources in such

* flows. Ilven though the internal friction of a fluid
is small in technical applications, the variable c is
retained in the equation for future consideration of the
analogy.

Equations and (47) are next applied to the com—
pletely developed turbulent flow in a flat rectangular
ch.a_n~lelan-d in a piyeo ??or this type of flow the non–
Ur.ifOrm. terms cancel out by averaging and likewise the
derivatives of the mean velocity alon~ the principal
flow x. ..

lJith u = ii-l-u! and vi denoting the velocity and
fluctuating components of the velocity in the x and y
dircctions~ respectively, where bars represent mean vel—
ocities with +ime and the primes represent instantaneous
variations from the mean, the scalar equation for liwo–
dimensional chanilel flow in terms of mean values is ,

.

(48)

In this equation the bars are omitted from tb-e pressure
and velocity terms as was done previously. The bars are
used. only to represent the mean products of fluctuating
quantities.

.—
The mean momentum interchange – p u! v:, which may be

re,qarded as a stress attitude is id~;tiaal with the tur—
bulent shear stress T*, while ~~ is the viscous
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,, . . . ... .

shear stress T1* (Tt”
,.

is the turbulent- Inoinent:;m

transport in the -y direction. ~or.”~”~ O Tt ‘ -is
. ay:.’.”.

likewise positive, sir~ce t}.e posit-ive :a1 are associated
with the negative vt and vice versa on the average.

,, ?or the exchange, process the- higher u velocities arrive
fron 2reater ancl the low velocities from closer wall
distances. )

Hence T is the total shearing stress

f,

constant (channel)

Th~ pi-css’.lredrop is constant since the flow is fully “
dcvclopcd.

Ass-~~ii~g that no groat changes in (T! ‘J:) occur in the
direction of flow x as csrtair.ly: is tjne case for fully
dov~lop ccl “icr.pcratur e <.istr?but?o~.s, “the second term on the
left side of equation (PO) ma~- ‘De peglect~de There remains ,
ihcc, only the fluctuation prodi~ct p Cp !l?~”vr which is
equl’:alcnt to the t’~-i-b;~-leiltheat transport -~t p,erpen–
dicular to the wall, Introducing the total heat flow

aT
q -t+x —,=C fur ther affords:

dy
,,

( chaxmol] (!51)

,,
,,, .

~ 0 :-, “-’J.ILI’l Y developed flo TJ in a pipe tl~e following
equat ion ~~l_cylin<.rice.l coordii~at,es (ii~stead of equation
(49) f’Oi” the chailnel) is obtained

. . >,,
hT ap .,

~_ =_= constant
by ax . (pipe) (49a)
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and (instead of equation (51) for the channel) the
equat i.on~

,. $ (q(l–’l-l)) (
i3T \= (1--q) p cpu.~-~) (pipe) (51A),-

where q = Z(r=
r

radius of pipe or 1/2 wiclth of channel).

3y introducing the shear stres,s at the wall 76
‘there follows for the pipe and the
(49a) and (19), respectively:

channel from equations

T = To (1-?I) (chafin-cland pipe) (52)

d. q
~ = coilst~).~t u T (channel) (53)
‘-.’

~ (q(l-V)) = “cOnstailt (1–?I) u T (pipe) (53a)

T is dei’ii:ed, as before, ,7,s th e t empera,ture excess over
tha,t at the wall.

It shoulcL be noted, however, that a fully developed
tcr, pc:-atllredi:;tl-ibutioil is possible only at small excess
t CKlp Si”a’t Ur es T. Iil ge:~eral u.(b/bx)(p cp T) instead of

~
,,

P cp u ax would have to be reiclconedwith. For the f@llOF

ing it is as S-u2ed,th.%t )/change of profile remain,s within
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. .

such limits that ‘equations (53) and (53a’) rerixin applicable._.“
with sufficient accuracy. .

. ...
&i.GcJgratlotiof cauatiOns (53-~ and (53a) a-rid~~l~roducfiion

iof the limit va ucs (q ‘= q. at q =0 and ‘q = Oat 11= 1)
lilcc:njunction with the nondimensional a = T/@ and .

‘9= u,fU {-:ives:
n

A good approximation f,or”,q’lqo is o’~tained with the

application of the t~m~~raturc equations (3’7a) to (37c).
Although the introduction of the simplified temperature
equations (40a) to (41) is sufficient.

,$ .

The 7elocity distribution of the turbul~nt region
is rcpresent,ed by the well known power law:

(p.qn (55)
. .

The power la,w represents the velocity distribution

4
C\*Clibettor fOl” lar~;c llfs than tho logarithmic law and
is especially suitable for thr presc?nt calculation, In
wa~l pro::imity the l~~lociiy is ‘ofcourso less than that
cal.c~l:~t~d b;; the po1.lcrlaw slid.the error of the derivation
is ~mal~ only at hit;h ~.eynolds numbers where the power law
must be used near tkc l~all~’

i The ‘cL6eo~ equations (40a) to (41] ’and equation (55)
t~en yields approximately:.
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‘ere ‘he l-ower liDit . “Va ‘s ‘e~laced by 00 ‘ecause ‘he
value of this integral is practically zero at the limit (p
since..the exponent

a
1 +.1/rl is high and the integration

froh O to “Qa .‘“yields an integral wh’ich is very small-

!I!husthe density of heat flow for channel flow at
high Reynolds numbers ap~roximates to:

.

q (Frt-l)(l+n)qa+y
1—=. . @+l/n (chain

~~ - (Prt-l)( l+n)cpa-tl

where ~ = qn,” so.that !lI!lo may be represented as a
function. of Q*

In a similar fashion the heat flow through the fluid
in a pipe is appro~cimatelyo according to equation (54a)S

-’&l-o) = 1

(prf-l)(l+2n)( 2+n-( l+n)ql/n)qa+( l+n/2)( 2+2n-(l+2n)@n)~ ~+l/n

. . (Pr’-l)( l+2n)~a+l+; /2

(pipe) (58)

A good view of the variation of ql~o may be obtained
for the-special cases of prl = 1 and l?r? –> co as sub-
stituted. into equations (57) and (58)2

‘i ~ _,”n M2n..— =
, q.

(channel Prl = 1)

.
q ~ _ ~1+~—= (channel Prt = ‘)
q.

$ ( l-q)- =.l--(2+2n- (1+’2 n)ll)?ll+=n (pipe Fr 1 =1)
o

~ (l+TiJ = 1.-”(2 + n - (1 + n)~)~l+n (pipe Yr: = OJ)

.
..

-(57a)

(57b)

(58a)

(58b)
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The u/q_. - curves flatten out 14it4.increasing values
‘of Pr” and Re (decreasing n), tha-t is, they approach
~luo = ~ - ~ which is the limit of equations (57a) and

.-’-(.58a) for “n= O. It further fol~o~flsthat the quantities
k and e decrease with increasing Prf and Re (see
equations (13) and (39) and fig. 10)..

j?igures 7 and 8 show (CI/a.o) (Q) and (a./oo) (m),

respectively, for the pipe aqd channel at Re = 4 X 104,
Figure 9 reveals (q/qo)(~) for v,arious..values of Re

at Pr 1 = 0.72 and’ Frl = 200. These curves were com-
puted for V by the trup velocity distribution as shown
in figure 1 rather than power law.

The variation of the heat flow density in proXimity
of the wall is noteworthy, wb-ere (dq/dn)o = O for the
~hanne~, but (dq/dT)o = Q.. for the pipe (see equations

, (53) and {53a)). Tk~ rise of the heat flow’ density of the
pipe beyond the value q. is due to the fact that the
total heat flow Q- q(l-~) near the wall is practically
corLsta~tP while the section through which the heat flows>
decreases with (1-~). In channel flow na cross-sectional
area. changes occur; thus the h~at flux density and the
totzl he.e% flow are always directl~ p~oportional.

---- ...

At’ mid-channel land pipe, ‘r~spectively) the variation
of the h~at flow de~sity, is characterized by,

()dq\ ~o
=.

G1 aucpm

(see equations (54) and (54a)], *U = ~ and ~~m= ~.

denoting the dimens.ionleqs magnitudes of-the mean stream
temperatures Tu and th~ mean velocity (urn), respectively.
Since these magnitudes are smallsr than unity, the negative
~lope of q/cl. is greater than unity, and is greater for
the pipe than for t’he channel.

13quations (57) and (58a) enable the calculation of
k and el (see equations (13) and (39)) through which the
sec!ond approximation to the temperature is secured. In fig-
ure 10 the el term for pipe flow is shown plotted against
pr t for different Re.

(As mentioned ..above (equation (9)) G. I“.Taylor has
computed a second approximation to the temp. distribution
for the case of Pr = 1. His arguments rest on Reynolds!
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ana$ogy. In” the calculation. ~T/ijx. is as.sumed, inde.~
~endent of the distance from .~he wall .yhi’ch corresponds
to .aq/.~y. proportional to- u (i-nste’ado,f u T).; Through-
out a correcljioi term, which is too small. results (for
inst’ante-at” “Re = 4.104 it
percent, as is the case ‘f~r
constant)). (See fi~. 10.I)

COMPARISON BETWEllN

., AND HEAT

is 5 percent ~nstpad’ of 9
high Pr (~hat is”, for -T - .
..

#-

MOMENTUM INTERCHANGE

supplemental to this theory an attempt is made to
compare the differential equations “tifheat and momentum
and to indicate that fhe ‘nistoric heat sou-rce theorem
also leads to a generalization of the I?randtl number..

The similarity of the differential eauations (46)
and (47) is so obvious that it need not 3e discussed
further. However, it is necessary to analyze the
existi~g differences.

One substantial departure lies in th~ fact that the
heat equation contains no term corresponding to the
p~cssure drop in the momentum ea.uation. This difference
Ci3n, however, be removed in ~OmP cases (as prandtl has
shown) in first approximation by substituting a suitablY
chosen heat source density c.

Physically this artifice has the following signif-
icance. The momentum of a flowing fluid can be maintained
by P.pressure gradient. The h.(=atcontent of the fluid
is, in contrast, reduced by th:> transfer through-the walls,
unless !Qeat i~ produced in thr fluid its~lf (such as by
a zurrent of electricity YlowLng through the fluid), To
comnlete the a,nalo,gybetwren heat transfer and “m.ornqntum
exchange the volume heat sources must be so dispased that
the te:fiperature and velocity profiles are s~.milir; Iii,the
particular case whsre the v~lociiy distribukl?tl rt:nains
constant in th~ axial dirrction (fully cievelcp~.1 flow in
a pipe or channel) the tcm.p~ratur~ profile should be main-
tained likewise. ,, ,, ..!), ,..

,,. J., ,,
A further diff’erenoe between .e.quatians (46) and..(47)

rests on the fact that equation” (46) is a:vector equation
anL equation (47) is a scalar equation,.herice only one

,,.,.’ %“,”.-’.’’.”..

- . . ... . . ,- .... . ....—
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oornpon.en~,of, ~o.uation’”{46) can ie co.mpared,”with,equation
(47j. “The analogy, ins, therefore”, carried out. ~or fullY.
dev~lo~~ed ~lane channel’ flow. 3Y concentrating ‘on the
special ca’se”of plane:flow, the ~-roblem is munch clearer,
and af-f-o’rdsmo”re “far reaching conclusions than from ‘-
equations (46) and (47). ..

..

Yor this flow e~uations (46) and (47) give:

(49b)

(51b:

In order to avoid misinterpretations;” the mean values
are again represented by bars.

In the most general form, the ‘equations fOr T
and. a are analogous. But because fully developed
flow. has been postulated, the terms with au2/ax, .

in the heat equation remains. Th~ problem, then, is to
choose c so that the term ‘with aT/dx vanishes.

——
As ~hown above bq/by- -; a~/ax N u T (see equation

(53)). Thus for a given heat source distribution_
c =k:T, ‘a suitable choice of k will cause a~/ax

to diminish to zero for every y, withou~ in any way
modifying the temperature distribution T.— or the exchange
T! V’ e With this choice of ~ the actual temperature

. profile will be retained; it simply remedies the earlier

.. decrease in temperature in the direction of flow.

However this heat density which varies with the
distance from the wall cannot be compared with the
pressure gradient which is constant “over the section.

\ So in order to carry through the consideration of the
analogy .it is necessary. that ~ = const_ant. ~ Jn this
case also it,may be stipulated that aT/ax should
vanish at each position of y. Then the h~at flow is~
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dq—= -c
dy

= constant

Under this condition ~ is of course no longer the
actual temperature, but rather an approximation to the
temperature, which is that the postulate c = constant
yields too great a temperature gradient at the Wall be-
cause the wall layers are heated excessively by constant
source density. But in view of the fairly well compensated
temperature profiles the error must be small.

Now the identity of equations (49b) and (5~b) can
be afi.ducedby putting conformably to Pr~ndtl,
(Pr= 1) and T = B u (~ = constant).

~cp=x

But the equation T = s u is only one possible
SOlutioin. The solution is, in fact, somewhat 5Pecial,
since it not only requires the time ,?verages of the
velocity and the temperature proportional, but the
fluctuations u! and v * themselves to be proportional
at every instant.

(59)

Tf sfjul (59a)

These equations are obviously fulfilled if the mech-
anism of transfer of the u-component of the momentum and
the mechanism of heat transfer are completely simi~ara
This may occur in particular caserj.

Coqsider next the general case where the cor~~l;~~~n
coefficient between u d T2.n is less than 1*
purpose the turbulent terms in equations (49b) an:h~51b)
are expressed by A d-~/dy and cp Aq(dT/dY)*

A Aq Cp
idenkity of the equations is attained when ‘=—

P h

(that isi.Prt = 1) for each distance y from the wall
and when equation (59) is satisfied..

Equatton (59) thus represents an approxim:~; solution
of the heat equ,ation for the case defined by = 1,
In this case assumptions relative to the fluctuations of
~t and T~ are no longer required,
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The solution (eouation (59)) Sti-pulates that the fic-
titious source str~ngth c- be fix~d by:

& dp
E=- “pA~ (60)

..

~ On the basis of the postulate dqjdy = -~, the
source strength c may be defined in terms of heat
flow at the wall qo:

c = qo/r

(r is the half-width of the channel). Introducing f~e
shear stress at the wall for the pressure drop, it
follows from equation (60) that:

Aq
~~ = $ CP ~ ‘o

(61)

(62)

(This change of form of the equations has the advantage
that the form of the fluid, boundary (whether pipe, channel,
plate, and so forth) which is unessential for these con-
siderations does not affect the result. ) This equation
may be derived also, fo~ the quasi-plane case of the
“pipe. The constant P can be e~pressed by appropriate
standard values (for instance, ~ythe mavimum values)
the mixed mean Temp. of T or u~.

,.... ,.
Ah ,“Evf #. 1~.the analo~Yis not complete “for the

tqtal fluid,’ but only for the turbulent core in which
the terms of molecular conduction can be neglected,

.T~.nen equation (59) is appropriately replaced by:

,+.
T Ta =“ @ (.;‘~ Us-)~. . -. (5Sb)

.“,..

where .Ta and ‘a are time averages at !’fihep,oint of
transition to the lami.nar .flowtl, For the rest the.
calculation is the s-ame and equation (62) holds for
Pr # 1. , 50.lely $ becomes another proportionality
factor.,

For the prediction of @ the maximum values of @
or U, the temperature and velocity, respectively, can
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,
rF],,1

~“ be used. It is a.l~o possible, however, to. introduce the
sectional averages Tm

lj ‘

and urn (as was donein the
Prandtl “derivation) since th-e section of the laminar layer

1’ of the flow is negligible compared with the tots-l flow
1’ section. With Ta expressed in terms of Ua and Prl;
‘1:

.
- an equation which results upon the application o-f equation
(62) to the laminar layer, - equation (59b) gives:

P
G/u=

1+ (Pr~-l)ua/U
(64)

or

Tm/um
P = (64a)

1+ (Prl-l)ua/um

The follOWing useful conclusion can be drawn from
equations (64) and (64a) :

Cpm+coa(?+l)
‘m ‘ (65)_..* 1 + CPa(l?r I-l)

. -,

( Tm Um
am = —“ Cp ?

0’ ~ ‘ y/ The dimensionless mean temperature is
Y

I identical at prl = 1“ with the dimensionless mean velOCitY

}1 (within the framework of the present a-yproxo). With increased

;1
Pra.ndtl number ~nl approaches unity.

1{1
k Since’ it has been established that the correct heat
3 flow distribution ‘over the section is hot necessary for

the determination or the temperature distribution in first:%

,f
approximation , q/T F qo/ To and this assumption compared with
the assumption of a consta,nt. source strength, wh’ich as

‘II
shown above, is necessary to establish the analogy. From

:/
dq/dq = - c = constant, .it follows, that q = q (1-m]. on

the other hand, for completely developed flow T = To (1-~).
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~or fully-developed flow our approximations therefore
agree with the postulate of constant heat source distt$b-
ution~ The two idealizations differ, however, in their
consequences for further theoretical treatment as well
as in the justification of their physical admissihility~
although both methods of treatment agree with great com~
pleteness as a basis of the turbulent velocity profile.

(Since the heat source theorem is designed to describe
analogous phenomena which in detail are not analogous, the
theory is definitely bounded, which limits its extension.
The heat source theory is nat purposed to consider particular
force fields in detail, merely intended to reproduce and
clarify the essential characteristics of the heat flow by
comparison with known phenomena of the momentum transfer.)

HEAT VOLUME TRANSMITTED TO THE WALL

(a) Determination of the heat transfer from the
temperature gradients at the wall.

Trom the temperature rise a“t the wall the unit heat
rate at the wall follows directly at:

(66)

This equation,: - naturally general, is no”t affected by
the type of flow nor by the time or space var-iation of

‘o and (du]dT)~. .

The rate of heat transfer Q over the area 1? is
obtained. by integrating equation (66). If U is the
veloctty and @ ~he ~emperature difference of the fluid
with’ respect to the wall at the boundary of the friction
layer, the,’heat flow is: ...

.. (67)
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For an area over which @, U, and (d~/d@) o are

sensibly constant it:,follows-f.urther.-that:

(68)

where

A w resistance to flow offered by the area under. consider-
ation.

If a turbulent friction layer is involved Pro (dP/d*)o

in equation (68) is expressed by equation (38).

As to the permissible size of the area to which equa-
tion (68) can be applied in friction layers free to extend
unhindered over the surface (that is, the actual boundary
layers), @ is, in ~eneral, the constant temperature
corre~ponding to potential flow. In this case the ad-
missible size of the ,are.a is dependent on the adequate con-
stancy of U and (d~/do)o @a and @b, respectively,

of equation (38) - cpa and Ub are functions of the Re
of the velocity profile and so vary with the. arc-length x).

In flow through pipes or channels, the Reynolds number,
for fully developed v~locity profile is constant; but the
maximum temperature G decreases. Yor which reason equa-
tion (68) holds only for pipes and channels if the flow
section is sufficiently short. In long pipes the tempera-
ture drop must be accounted for, as shown in the next sec-
tion.

(b)Thjo;~~;eg:j~~~ of the he~.t loss in the friction
layer. Qu. flowing tilrough a flow section
f is

f

J
Qu =’” p Cp ~ U df

Introducing the mean flow temperature Tu (that is, the mean
temp. of the fluid mass flowing through the flow section)affords

●
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f
‘f Tu.df. .+

“T{ = —–—
Um f

.,

. or Yor constant valu’es of Cp and p:

Qu “ pcp!fuumf

The heat volune given off at the wall over the arc
length (X-XL), is equal to the difference Q = ~ – WI

in the flow sections f and fl. With the yostulate
that the profiles of. the velocity and temperature are
siziilar.: Tu /En = Tu/@, and %lli% = urn/U, hence

1
.

,Q-=PCP %l%liul%f~-u~f)

Zo-uation (69) can be utilized to check experimentally
the theory (similarly combincfi with equations (38) and
(68)). All quantities in equat ion (69 ) ,arc readily- mc asure-
able. A minor complication is introduced in fixing @u 1
for uh.ich. a nixing chanber is required.

.41s0 @ can be e~-aluated fron the theory. Yor the
plr.nc CaSf2:

/. ~ ~n OY1+C+Idq (three dimensional
4 -- =
u = friction layers)

v~ ~lqdq’
.,

~f’acp (1-n) d-q

I-Q figure 11, ‘u “is shown for
for the pipe as a funct ioil of Pr for
nunt crs. Tho Cffoct Of the RCyn Old S

the flat plate and
several Reynolds
nun-oer oU. *U is

o
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‘ less t.hbn the effe”ct of Pr , si~ce Cp(Re) appears in
the numerator and the denominator.

-~ ..
~“ (1) Pipe-or” channel flow.
IIl,:
J

In flow through a pipe or chanael, the development

‘/
of t:he friction layer is limited and the strength of the
final friction layer is equal to one half the distance to

i
the opposite wall. “The UaSS of fluid moved in the fully

\ developed friction layer does not change, and the heat
t giver. off by the fluid can be calculated from the reduction

of temperature.

so, when no chi~nge in cross-sectiona,l area is con-
sidered equation (6S) gives:

Q = p Cp au urn (@l-@)f (70)

On ~hc other hc.nd, t-he heat trasferrsd ?s als~ de-
fined by equation (67). Here, it nust be noted that, be-
cause of the similarity of the telnperatu~e profiles the
percentage temperature dro”p - @.!2/T over tlie length dx
is t,]~~ sr.me .at ail distnnces fror, the w::.11. Hence it

\

Ii!I,.
(

where

!./ @l gi-reilmaximuri initial temperature

1

,,i”t

!:\
,, w frictional resistance of the pertinent pipe orIll

j
channel lenqth.

1
.

i .

(71)



48 - NACA Technical Memorandum No; 10-4’7

(At small’’t.emperature differences @~-6 equation
(71) changes to equation (68)).

By equating equation and (71), the reduction
of the mean temperature is:

(72)

Here the dimensionless variable U* defined in equation
(.82) is introduced and” s is the perimeter of the” section
f.

For pipes sff = 4/d for flat rectangular channels

~han~e~/~el~~t= pipe diameter, b = channel width, h=
s/f

.
, b>bh).

(2) BounLary layer flow.

If the flow aiong a wall is not bounded, the friction
“layer can develop unhindered, and while the boundary layer
increases in thickness in the direction of flow, the maxi-
mum temperature @ on the boundary of the friction layer
remains, in general, unchanged.
&

If the surfac.~ of the body has the ‘temperature @ of
the fluid, then the heat flow density at a particular point

~.in the friction layer is equal to pcp@u. But the cool-
‘.lng e,ctio”flof the wall lowers the temperature by ~- T. The
“cold stream” through the section f of the boundary layer
at the point in question is therefore:

f

Q= P Cp J
(O-T) U d f (74)

o

where

Q heat volume absorbed by the body surface up to the
particular point x in unit time.

By introducing the dimensionless value of the mean
flow temperature, equation (74) gives:

.
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Q.= p Cp @urn (l-$u)f
.,----- .,

49

(75)

the value of au for any given velocity profile is
approximately defined by the theory.

. At constant maximum velocity U the heat absorbed
over a length x-x, is fixed by the increase-in secfion
of the bound~ry layer thidkness in the direction of flow$
since Vm and +U vary but little (Wm increases” and
(l-+u) decreases with the -Re of the boundary layer).

“The effect of Pr on the heat transfer is expressed
by the factor (l-au). With increasing Pr the tempera-
ture profile becomes more blunt-nosed and o approaches
unity.

I?rom the momentum lost in t}le boundary layer relative
to potential flow the flow resistance M of the body can
be written in ~ similar manner to tl~at used for the heat
diffusion Q

w = p u urn (l-wu)f (76)

f

Herein CPU is defined by ‘Ou Qm f =
[

V2 d f. The differ-
,

ence between the equations lies in the velocity U in
potential flow which, in general, is not constant like ~
hut varies with the arc-length x,

3ut the analogy between eq-~ations (75) and (76) is to
be carried out for a surface area over which El and U
are constant (a pressure drop is to be avoided). If
f-fl is eliminated, and if I>u, and “ vu are the mean

values ovfir the particular arc length: .

(77)

.“

Here the hea-t transfer is expressed by the heat loss in the
friction layer, while in equation (68) it appears in terms
of the temperature gradient at the wall. C;;paring equations
(58) and (77) yields:
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1 - Qn
,$ = 1 .—

u (78)

()
Pro ~

o

~or prl’ = Pro = 1, (dW/d*)o = 1 and hence ‘U = ‘u,“o
which is due to the similarity of the velocity and temper-
ature profiles for zero pressure drop. Pro (d9/d~) o

in-

creases with increased Pr and % > 1.

For the rest, eque.tion (78) is easily verified for the
simple friction layer (equations (40a) to (41)).

[c) Heat transfer coefficients.

The heat transfer coefficient u is defined by
Newton:s law of cooling:

‘1 AQ = a (T-TO) Al? (79)

in which the heat transfer per unit time through the
boundary area Al? is put proportional to the temperature
difference (T- To) of the fluid and of the wall.

Originally the proportionality factor a was thought
of as a pure material value comparable with the thermal
conductivity and in the older literature was designated as
the ‘touter thermal cond-&ctivityll. With the increase of
experimental data, it became more and more apparent that
the flow phenomena adjacent to the wall contributed greatly
to the heat transfer and. varied in a complicated manner
therewiih. Hence the cooling law is only apparently simple,
that is, when the simple form of equa,tiort (29) is maintained
all of the problems of h.e~t transfer by convection are con-
densed in the factor.a,.

This naturally does not help to clarify the physical
phenonena and later research has produced other axioms which
throw light on the mechanism of heat transfer. For the prac-
tical” application of research data it is, however, advantageous
if complicated relations can be expressed by a single coeffi-
cient,.the value of yhich is obtainable from graphs or tables~

.
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In equation-(79) the fluid temperature T remains
undefined. - What temperature between .To and Tmax to

use-”is p-urely”a matter of expediency, OQly one point-is
necessary, nanely; that the fluid temperature employed is
adequately defined. The reference temperature must be
relatively constant over the area under consideration.
Since this condition holds ti-ue in all cases only. over a
small area Al’ -the heat -transfer coefficient must be
defined as local qfi,antity.

. .
.-

In the &arlier d-eYivations the heat transfer coeffi-
cient was based on the mean temperature Tm.

The calcul~t’ion of a heat transfer coefficient ‘

am = qoiTm .by means of equation (66) requires an express-

Tm (du)ion for — — from the theory, if 70 is referred to
‘~ (dt)o

the mean velocity um. Such an equation can be obtained
from equation (37c) after forming a mean value of the”
velocity and the:temperature over the section of the
turbulent region. Since this section is not much smaller ‘
than the total flow section it can be approximated to:

.
This ‘equation applies so much more as the boundary layer
is thinner, that is, as the Reynolds number is greater.

Neglecting the te-rm em and -putting ua = ub, and

‘q = A? equations.(66). and (38a)- give an expression for

~qun’t%~~
?)

which is identical with the Prandtl formula
1.

‘The mixed mean temperature Tu is’usually employed
I rather than the mean temperature !I’m

to measure.
which is difficult

This requires an equation for au = qo/Tu
?1n from the theory. Here a difficulty arises. Proper treat-

ment of equation (37c) affords a formula for (du/dT)o
in which the mean temperature of the turbulent region is
the reference temperature. But then the equation includes
a mean square value of u over the turbulent section in
place of the mean velocity across the section.

./
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“BY ‘approximation the mean of the squares of u
can, 6f course, -be replaced. by um (particularly at

high Re) j’usi as” T“u ,can be roughly approximated in-
stead of Tm~- But this also ~.cans returning to equa—

tion (38a), that is, the Prandtl formula.
;.

The difference %etween ~u and Tn pla-yed no pat,

howevel’ , in the earlier considerations. -~n view ,of the
&::pei.ir.entaldifficulties, this difference usually lies
well”vithin tb.e experimental error.- Further$ the omis–
sion of the transitional layer arid the postulate of “in—
‘rariable material values accounted for larger discrep-
ancies than this temperature difference. c.,

in developing a theoretical equation for qo/%1
which. is in accord with. experience, ten Bosch (refer-
ence (17)) proposed a semi-empirical equations The form
of the Prandtl equation was followed$- but the constants
were replaced by ‘rar.iabies whose magnitudes were deter—
nim.ed as a function of Re and Pr from measurements
available, the resulting equation bein-gi.. .

... .

qo = 0.125 C ..-—— ——. (80)
1 +, B Re–O-l Fr-O” 165 (prg–l)

P: Cp UM-TU ..

(fol’ ‘heating P - 1.4 for cool:ng fl - 1.12. Prg refers
to the layers near the wall. In the remainder of the form-
ula ~he ~roperties are fixed at the mean flow temp. )

In connection ~ritilthe theory of the present report,
th”e heat tran-sfcr coefficient is most appropriately expresse
ii~terms of”the ~a~~~~i: temperature @ , since only this
tenpcrature can” be used as a reference quantity witho--it
rose? -ration (see the derivation.

t
of equation (Z8)18YIeQ @!!r$

maximum temperature has in addition the advantage t~~
it can be neasuret witl~out the use of a mixing cup. &In
cases wher c T can he neasured more reliably than “ ,
G I:aybe Cal CUYat eil as Tu/3u, ) 13ence the definition

. .
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or in nondimensional represent ati-otiby;’dividi”ng by

Po Cpo ‘m:. .. .,
Y-’..”

,..,, .. ...- -.

a= AQ go . ,—=. - (81)
umb AF

..
po ,?pc) P:’’%Q~ ~m ~.:’

. ... . ,,, ,....
,.-

..,. ..- -
,>,

In the technical literature the heat fiow “ q. is

usually referred to P Cp Um Tu (see ~qua,tion (80)).
Further, it is customary to in”tyodu”ce the Nusselt number

.
.,

Nu = q. d/A Tu

in which q~ is referred “t-o ‘a-s the’ Heat flow A Tu/d.

These two dimensionless heat. factors are related as
follows:

!LO NTU Nu a*= .— =— =—

P Cp ‘m ‘u Re I’r Pe $U

where

‘Pe’= P ~p ‘m d = Peclet number
A

-.
Tile older Nusse.lt number had proved itself in the\

representation of cases where the heat transfer phenomena
were not to be separated--- But , for those cas’es where
statements can be made relative to the local heat transfer,
and where q. can be written directly in terms of
A (dT/dy)o it is proper to refer th’e known quantity q.

to the product Pcp’-l~ as will be seen in subsequent .
derivations.

Y .>..

In certain~e-ases it .~ay be desi-rable to compare the
two dimensionless groups. But, in generals both Nu and Pe
are superfluous “i~.awell’ fo-und’edformula for the dimensdon.-
less group is available.qo/p Cp-u T .,-
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‘In ‘ord~’r-that
qo/Po

unnecessarily the symbol
dimensionless factor a*

.. --.: ..!
-., . . . .

. . . ..-. --’

Merno~andum No. 1047

.- -----

Cpo Uh”@ need notl:be repeated

a* has been introduced. The
refers the heat volume ‘IO

transferred to the wall to a hea”t volume-----.-—....... PO ‘p ‘m Q

flowing past the wall. The njmber CL* is, therefore, a
kind of IIefficiencyn of the heat transfer. Ordinarily
~* is very small (lO-a > U* ~ 10-5, see fig. 13) so
that only a s“mall fraction of the heat becomes useful
for trans.fe.r.
‘.

“. Since a* - represents ‘a.l’;”callydefined iuantity
as well, equation (68) must be applied for the subsequent
treatment of equation .(81). Then equation (19) in con-
junction with CPm = um”/~ give”

● ✚✎✎
. .

8 ‘[ CDm- -
g* = . . .: - (82)

()
8 Fro ‘0

Go

This formula is as general as equation (68) and the
definition equation (19). It is therefore applicable
independent of the character of the flow.

Formula (82) had already been utilized to introduce
a* in equation (72) in order to establish the tempera-
ture drop which accompanies pressure drop. On the other
hand , equation (72) can equally be used to define a*.

which for a sufficiently short” section ,affqrds

(72a)

(72b)

This equation is, .wi.t~,regqrd- to e~uatiori (70) identical
with the definitio~ (equ’at:ion”s$-l”~):’for ‘a* . \

) > .. :. .< .,-.
For “t<r’buI”e~~~-~~lli~tion~ayerg the,,l?ro ‘(icP/~O)o from

equation (38) mus’t”be-introduced in equation (82). With
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cPa=a~~ and
u

%=3$ and assuming C“po - Cpfi‘cpt

‘“ (which---is perrnis.sible)

I

o.1i5 c cpm Aq~~
~* = ——— ——

1“1+a%6Y‘A+ ‘b-a)“%(-y:
..i

where ,,
Lmm? u/1-1* are known””functions of Re

,.

,(83) J

)-1’

In equation (83) all variables and coefficients are
,known except a, b, and A /.A.’

8
From flow ineasurements

a = 1.5, b = 15.5. T~le v lu~ of 1,55 may be used sinco
b occurs only in the term referring to the transitional
layer, But. the assigned value of a is very uncertain.
Hence a and Aw/.$ must be determined from measured
vtilues of a?’ accordions to equation (-83).

.Admitted.ly there cxisis a c?rtain difficulty, involving
two unknowns but cquc.tion (83) indicates that Aq/A scar~sIY
afI’ects a* at high Pr, and a has but little influence
on Q,* at I.OW Pr. Hence a, can be from heat. transfer
measurements at high Prandtl nunbers (and Aq/A from
sinilar measurements at small Prandtl numbers.

. .
Fi:;urc 12 illustrates- t~~~”fie~surement~ by ~fi~lne’

(reference (18)) and Morris and Whitmail (reference (19))
at high Prandtl numbers and the measurements by ~ohonczi
(1.C.) at 10W Prandtl numh?rs compared ,;ith predicted a*.
Tor the calculation a = ,2.,2 and .4q/A = 1 were chosen
to achieve the best correlat.ion of predicted with exper-
imeiltal results. The spread of the test points at high
Pr is under~tand;]ble beco.use of the difficulty of mecasure-
men,t at high Pr and the fact that noil-isotherma,l flow
theory is not ;:<)tcomplete.

I
?4 Tor constant or slightly variable material values

one value of Pr enters in eque.tion (83)~ For this cas
(fig. 13) shows a~ <as a function of ?rf at several
deynolds numbers. With the ~,elp of cl?* established b
equation (83), t:le heat ‘iiii’Ltision A% o? a given area
AI’ cn.11be C?.lCUla.~ed..

only
e

1.

Y

I. -., ,. ,., ---- ,,- ,-- -!----- ,,-,,,,,,.,..- ,.,,.,.-, ,,.,,,! ., ———.— —.—
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AQ=
..

Pocpoum@AF d*’ ~ (68a)

This is a form derixed from equation (81) which is
another form of equation (68). - ‘ “. ‘ ‘

The variable a* is a point function and holds only
over a ~mall area. The area must be chosen-just large
encugh so that @ is sensibly constant over it.

Equation (68a) .~.a~not 3e used for long pipes in
which the temperature changes materially. Here the heat
transfer may be computed by means of equation (70) if
the temperature reduction (@,-@) in the pipe length
under consideration is known. The end temperature @
can be predicted from equation (72) when the initial
temperature 81 is given.

As.is seen the variable a,l likewise plays -a role.
. .

3ut this is only true for long pipe lengths for here the
heat 10SS in “i”hefriction layer is decisive. Tor short
pipe sect,io~s @u ,does not enter (this is also the region
in wlfich t,h’econductance is applicable) (see equation(68a)).
Then the temperatures are practically ccnstant along the
shd~t ‘surfece length, and the h’ea% diffusion AQ is given
by- equation (68a) as a function of the temperature gradients
at the wall, which fact is included in equation (83) for
~.* ● -

.,

Translation by L. M. K. Boelter,
University of’-California. .,.

,.
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Figure 2.- The ratiort/r of the

turbulentshear stress
to the total ehear 6tress as a
funotlon of the velocityratio P =
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parameter.
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Figs. 4,5,6

Figure 4.- @:/:;@:A

of the temperature
gradient (d$/dy)o to
the velocity gradient
(da#dy)o both measured
at the wall as a
function of the
generalized Prandtl
numbex.

Figure 6.- Temperature ($) as a
function of q = (y/r)

where y = the distance from the
wall for the PIPe with Prl as the
parameter and the velocity dis-
tribution V’= $ at a fl t plate
forPr=l. Re=4x10 2
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Figs . 7,8,9,10
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Figure 10.- The variable p, as la
function of Pr with’Re

as the parameter. Flow in a pipe
with a = 2.0.

Figure 9.- Distribution of the heat
rate q/qo as a function of q in a

pipe for Prl = 0.72 and Prt = 200
with Re am the parameter.
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