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HEAT TRANSFER TEROUGH TURBULENT FRICTION LAYERS™

By He. Relchardt
- " SUMMARY

The "general Prandtl number® Pr! = :r Pr, aside from
the Reynolds number determines the ratio of turbulent to
molecular heat transfer, and the temperature distridbution
in turdbulent friection layers. A, = exchange coefficient
for heat; A = exchange coefficilent for momentum transfer.

A formula is derived from the equation defining the
general Prandtl number which describes the temperature as
a function of the velocity. JFor fully developed thermal
boundary layers all questions relating to hzat transfer to
and from incompressible fluids can be treated in a simple
manner if the ratio of the turbulent shear stress to the
total stress T4/T in the layers near the wall is known,
and if the Aq/A can be regarded as independent of the

distance from the wall,

The velocity distribution across a flat smooth channel
and deep into the laminar sublayer was measured for isothermal
flow to-establish the shear stress ratio Tt/T and to extend
the universal wall friction law. The values of Tt/T which
resulted from these measurements can be approximately repre-
sented by a linear function of the velocity in the laminar-
turbulent transition zone.

The effect of the temperature relationship of the mate-
rial values on the flow near the wall is briefly analyzed.
It was found that the velocity at the laminar boundary (in
contrast to the thickness of the laminar layer) is approxi-
mately independent of the temwerature distribution.

The temperature gradient at the wall and the distribution
of temperature and heat flow in the turbulent friction layers
were calculated on the basis of the data under equations (2)
to {4), The derived formulas and the figures reveal the ef-
fects of the Prandtl number, the Reynolds number, the exchange
gquantities and the temperature relationship of the material
values.

*U'Die Warmelbertragung in turbulenten Reibungsschichten.!
Z.f.8.M.M,, vol, 20, no. 6, Dec. 1940, pp. 297-328. .
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That the form of the wadl and the pressure drop affect
the results is illustrated by the variation of the thermal
behavior of the friction layers in the pipe, channel, and
flat plate.

After a discussion of the different definitions of
the heat transfer coefficient a new formula for the rate
of heat transfer is given based on the maximum temperature
difference. The new equation differs from that offered by
Prandtl by an additional term that allows for the conditions
in the laminar-turbulent transition zone.

INTRODUCTION

A survey of the literature on heat transfer in tur-~
bulent boundary layers discloses that the problem has been
treated in numerous studies (reference 1). Because of its
technological importance, the number of experimental projects
in which empirical or semi-empirical formulas established for
various conditions and for various applications preponderate,

The theoretical principles are dbut rarely treated. The
literature therefore contains only a few general formulae,
In Germany the formulas by Nusselt and Prandtl are most
generally utilized. In the English literature it is custom=
ary to introduce the Reynolds analogy which upon general-
ization by G. I. Taylor lcads to approximately the same
results as the Prandtl theory.

The theories to date are based on simplifying assump=-
tions, such as do not usually obtain in reality. The derived
expressions therefore required extrapolation based on exper-—
imental results, the extension extending beyond the original
range of validity, The practical point of view was maintained
in arranging the semi~cmpirical equations and questions of the
physical significance became secondary.

The research programs in heat transfer involving many
technically important special cases in the turbulent region
fail to allow the deduction of a general theory without
limitations. The solution of this problem is very closely
related to the research of the flow processes in direct
proximity of the wall,

Before proceeding to an analysis of these gquestions a
brief survey of the available theoretical contributions should
be of interest.
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REVIEW -OF PREVIOUS CONTRIBUTIONS

The school of Nusselt has made great strides in the
study of heat transfer problems by the use of tnhe theory
of similarity, particularly in arranging the various sub-
divisions in reasonable order. The great technical im-
portance of the model studies is that it does not require
the exact knowledge of the individual processes, and that
simple formulae are obtainable for practical use, even in
complicated cases. But since no detalls of the physical
mechanism are secured the results can be of a preliminary
nature only.

Reynolds (reference 2) attempted to define the rules
of heat transfer from the point-to-point varistion of the
flow pattern, He proceeds from the assumpti-a that the
turbulent mechanism of heat transfer is the szue ac the
mechanism of the momentum transfer, But his counsiderations
are still incomplete for practical application and only
"through supplementary considerations by Taylor (refercnce 3)
and Stanton (reference 4) were the results of Prandtl
accomplished.

Prandtl (reference 5) 2lso starts from the assumption
that heat and momentum are transferred by the same mechanism,
A complete analogy between tnese phenounena does not exist,
however, unless similar boundary conditions obtain, when
the nondimensional ucp/% (tsrmed ths Prandtl number, Pr)

is equal to unity, and when the pressure drop is negligible
(as, for instance, in flow past a flat plate). In contrast
the momentum transfer with pressure drop (pipes and channels)
is described by equations which differ from those of hcat
trransfer and momentum. .

In order to treat the technically important case of flow
through a pipe Prandtl postulatsd fictitious heat sources in
the strcam, by means of which a sufficient similarity of the
equations of heat and momeantum transfer is ebtained. The
Reynolds concept was taken, that is, that in & very thinlayer
near the wall practically all of the transfer is by molecular
action and that outside .of this layer only the turdbulent ex-
change mechanism is effective, while the molecular conduce
tivity may be neglected. :

The heat source postulate then leads to a simple eguation
between the heat transfer and the resistance to flow, which
may be written in the form: '



4 - NACA Technjca}'Mémorandum No, 1047
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where
o heat transfer coefficient referred to the mean
temperature

Tme Cp "specific heat
qo<\ density of heat flow at the wall
To ™ shear stress at the wall
u mean flow velocity
m
u, velocity at the "boundary" of transition from

laminar to turbulent flow

To use equation (1) the ratio w,/u, must be known.

In the absence of experimental data of the extremely thin
well layer, Prandtl (reference 6) used the following reason-
ing to evaluate wuy., In the laminar layer a linear velocity
increase exists, the slope of which ig fixed by the shear

at the boundary. In the turbulent core the 1/7th power

law holds for Reynolds numbers below 10°%, The plane in
which the two velocities coincide is called the boundary
betwcen the laminar layer and the turbulent zone. The

exact determination of the boundary velocity u, is to

follow from the heat measurements.

The heat transfer data availabdle to date indicate
that Prandtl's formula do2s not hold for large Prandtl
nunbers, In consequence there have been proposed various
corrections to this formula in order to meet the require-
ments of practice.

The basis of the discrepancies lies in the idealiza-
tion of the transition from laminar to turbulent flow,
This transition is naturally continuous, hence an inter-—
mediste layer exists in which the viscous and turbulent

.shear stresses are of the same order of magnitude. Since

the transition to turbulence occurs close to the wall, it
has not been possible so far to measure the velocity dis-
tribution in the intermediate layer with sufficient accuracy.
Von Karmin (reference 7) has estimated the exchange conditions
in the transitional region based on an extrapolation of
Fikuradsel!s velocity measurements in the direction of the
wall, DBased on his postulates, von Kirmdn gives the formula
for the heat transfer coefficient as:



"NACA Technical Memorandum No. 1047 5

a
—= = 1+ ava, [(Pr-1) + b 1n (l+c (Pr-1))] (2)
where
iy heat transfer coefficient for Pr - 1

a, b, ¢, constants (reference 8)

An improvement of the theory has been carried out by
Taylor (reference 9), Starting from the postulates of

Reynolds—-Taylor, the latter discusses the error of the Taire |
analogy between heat transfer and momentum transfer for -é—;;‘

flow accompanied by pressure drop. Taylor calculates the
temperatures profile which corresponds to a velocity profile
measurced by Stanton at Pr = 1, The temperature profile
differs somewhat from the velocity profile, that is, the
temperature gradient at the wall (and hence 2lso the heat
transfer coefficisnt) is lower by several percent than the
wall velocity gradient.

Of great practical interest is the variation of the
heat transfer coefficlent for non-isothermal flow in which
the material values vary with temperature. Apparently this
problem has not yet been solved snalytically. The theoriecs
to date imply isothermal flow (material properties not a
function of temperature or space). Since large temperature
differences do occur in practice, the proper mean magnitudes
of the material properties are introduced into the isothermal
expressions (reference 10),

While the present report was in the press, two further
articles dcaling with turbulent heat transfer have appeared,
one by Mattioli (reference 10a) and the other by Hofmann
(reference 10D).

Starting from special theoretical concepts with respect
to the turbulent mechanism, Mattioli extrapolates the tur-—
bulent velocity distribution into the semi-laminar zone in
order to deduce from this velocity concept the presumption
of equal exchange quantitics for heat transfer and momentum
transfer the magnitude of the turbulent heat transfer. &
careful analysis of the difficult derivation shows that the
important phenomena nsar the boundary are not adequately
defined. In addition to the semi~laminar layer there 1is
presumed to exist a wall layer (which is established from
the heat transfer measurencents of Biihne and from other fluid
flow measurements mentioned above) which is much greater in
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thickness than the laminar layer, Mattioli is therefore
forced to assume a sudbstantial exchange in his wall layer.
Since the Mattioli theory connot describe accurately this
exchange near the wall, the temperature change im the wall
layer is put proportional to (Pr)®, where m is established
from heat transfer measurements.

It is worth noting, however, that Mattioli quantitatively
allows for effect of temperature on the viscosity. For this
purpose a generallized distance parameter is introduced in a
manner similar to thst employed in the present report (see
equation (30)).

Hofmann calculates the temperature distribution and
the heat transfer coefficient with special consideration
of the laminar layer whereby the usual simplifying postu~
lates are retained. The concept of a thermal boundary
between thé turdbulent cord and a boundary layer is also
adopted and the thickness of this layer is discussed., In
contrast with von Kirmédn, progress is made in that the lam-
inar layer thickness fdr high Prandtl numbers is introduced.
The arbitrarily chosen valocity distribution near the wall
lies above the test points of the present report.

The position taken by Hofmann that the heat transfer
depends solely on the velocity distribution and on the
Prandtl mixing length requires a correction., Basic to
every theory is a hypothesis of the turbulent diffusion
of heat, If the ratio of the exchange quantities for heat
snd momentum transfer is chosen (Hofmann tacitly presumes
the identity of these gquantities), then the laws of heat
transfer follow at once direct from the velocity profile
without the aid of any turbulence theory, hencé without
-the help of the Prandtl mixing length, which in consequence
drops out again in the course of the Hofmann calculation.

THE PROBLEWMS

In order to avoid subsequent corrections and to pre-
sent the hydrodynamic theory of the turbulent heat transfer
cohaerently the following assignments are to be solved:

1. To derive a general equation for heat transfer into
which the technologicelly important boundary con-
ditions and the flow phenomena, particularly in
the transitional layer, can be introduced,
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2. To measure the flow processes.near the wall for
technologically important cascs, particularly.
smooth surfaces, rough surfaces, almost isothermal
flow, non-isothermal flow, and.so forth.

3¢ To introduce the obtained data on wall adjacent
flow into the general gxpression to build special
formulae which can be checked by heat transfer
measurements,

The following statements are made relative to these
problems: .

. The presentation of the general theory should be clear
from a physical point of view and it should be simple in
order that it may be utilized in practice.

The derivation of a generally applicable equation for
heat transfer is carried through in a simple manner. In
contrast the measurement of the flow distridbution near the
wall presents considerable difficultics. In order to obtain
practical test data especially thick boundary layers are
essential, This ruequirement implies large flow sections
and low flow veloclties, that is, low dynamic pressures
and low pressure drops must be measured.

The conditions become complicated if the flow is not
isothermal. Through the influence of the temperature field,
not only the material properties but also the flow phenomena
are changed.

The presence of roughness introduces further complica=
tions. It is true that flow on rough walls has been exten-
sively studied and the laws of the "nuclear flow" in pipes
are well known but there is no dependable knowledge of the flow
processes nesr the wall between the protuberances.

The expnrlmental exploration of tha flow distribution
near the wall is a broad field of research which can only be
accompllshed piecemeal. The author first explored the data
available near the wsell, While these studies are not com~
plete, they have progressed far snough to enable a theorectical
treatment of the huat transfer at a smooth wall.

A particularly important sub-task consists in checklng
the applicability of the theoretical formulae by means of
heau transfer measurements as the theory contains postulates

elative to the mechanism of heat transfer which require




8 . NACA Technical Memorandum No:; 1047 -

confirmation.by experience. If necessary the theoretical
assumptions must be modified to fit the experimental factse.
The heat transfer measurements can be employed with great
benefit to clarify the questiaons of turbulence structure.

THE PRANDTL NUMBER L

The hydrodynamic equation for the continuity of heat
flow, (equation (47)) is not sufficient for predicting the
temperature distribution in the friction layers. It re-
quires another equation for the temperature which takes
into account the requirements of the system under consider-
ation. (This temperature equation, looked for, places the
continuity of heat flow equation (equation (27)) in the
posit%on of a special condition that must always be satis-
fied.,). ‘

. fe ‘
The Prandtl aumber Pr = —7F governs the form of the

temperature profile., It is logical, therefore, to begin
wvith the Prandtl number concept. To secure a differential
equation necessitates a determinating equation for Pr that
holds for each point in the fluid. Since the individual
factors in Pr have "point" significance, the derivation

of such an equation is possibdble, ) :

Let q wequal the density of the heat flow, and T
the shearing stress of the density of momentum transfer,
Assume that the heat flow and momentum flow act in the same
direction (+y) at a. given point, which is perpendicular
to the mean velocity u (time average) at this point. In
the system under consideration y 1is measured perpendic-
ular to the wall and u parallel to it.

The total momentum T <consists of a portion Tp Dy
the molecular transfer and a portion .Tt Dby the turbulent

exchange motion, The same holds true for the heat flow.
Hence ‘

Tm + Tt (3)

4
1]

Q= g, + q4 (4)

With

" coefficient of viscosity
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A thermal conductivity
A exchange coefficient for momentum
Aq corresponding coefficient for heat
cp - specific heat

u, T time averages of velocity and temperature, respectively

u'y, v! velocity fluctuatlions in the x, y, directions, respec-

tively
T! corresponding tempesrature fluctuation
du
Tn = W = 5
m o iy (5)
du —
T, = A — = ~ ut! v! (6)
t dy P
a7
= A =
A iy (7)
A a® ET“—T (8)
Qs = C — = -c¢cpp IT' v 8
t P q dy

The coefficients w, A, A,.Aq,

tionse There presentation of Ty and ay in terms of the

are defined Dy these equa-

fluctuating components is for the present irrelevant, but
will be clarified in Chapter 9.

Equations’(5) to (8) then yield the following proportion:

Q¢ A T T
— = =% pr ;L = Pp! ;1 (9)
qm A nm m

Accordingly the ratio of turbulent to molecular heat flow is
proportional to the ratio of turbulent to molecular shear
stresss. The proportionality factor is Prt = (A /A)Pr, a
quotient which is called "general Prandtl'number%"
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Equation (9) thus leads to an extension of the concept
of the Prandtl number for turbulent flow with P! = Aq/A Pr

instead of Pr. Only in the case where:the exchange coeffi-
cients are the same for momentum transfer and for heat
transfer will - Pr .and Pr! be equal,

Since equation (9) refers to flow in which turbulent
and molecular shearing stresses act, it is particularly
.suitable for the representation of the physical phenomena
in the transitional layer. The treatment of the heat
transfer in the present report therefore starts from the
transitional flow, the "fully turbulent® core and the
laminar motion at the wall being treated as special cases.
(In the proximity yof "the wall the exchange mechanism per-
pendicular to the wall is not possible; therefore the
turbulent friction disappears and the momentum transfer is
accomplished by internal friction only. Because of the
turbulent pressure fluctuations, the stream velocity near
the wall also experiences fluctuations. The continuity
of this fluid flow is largely maintained by the lateral
transvergse fluctuations, so that the wall flow glidcs
practically parallel to the surface. In this sense the -
viscous wall flow is "laminar.")

A piéture of the physical significance of the Prandtl
number is best obtained by observation of the transitional
layer for extremely high values of Pr' (very viscous fluids).
In this case practically only turbulent heat transfer exists
(qt>> qm) at those places in the transition region where only

small turbulence exists (Tt << Tm). In this extreme case the

molecular heat transfer is §o small, that even a slight con=-
vection signifies a form of "short circuit" for the heat flow.
Therefore the temperature profiles for high Prandtl Humbers
are "smoothed,!

Even for the special case of Pr! =,1 and q/T = constant,
the temperature profile can be fixed readily. It is ’
— o2 oy 4 .dm pdl .. In this case the profiles of the
q T T T du

m m m

tenperature and velocity agree with each other, (The con-

~

dition.that q = T is well satisfiéd in the friction layer
of a flat plate.) .

-

.

' THE GENERAL TENPERATURE EQUATION

The temperature distribution follows from the eguation
. aT
A —t .

of the molecular heat stream gqm = s
y

Q4 must, therefore,

|
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be replaced by (g - g, ) in eguation (9). Introducing the
ratio q/t equations (5) and (7) then gives:

Sm _ ﬁ.ig = q/T - (10)
Tm T p'du 1 +_(Prl -ll)Tt/T

The bouhdary condition at the wall is to be introduced in
this genéral equation, That is,

<_d_:?_> - Mo Qo . ‘ (11)
du’ o - AO.TO

and when augmented by (11), equation (10) is integrated to:

\q_/T,q
VAL u- 7\ QT
T-To=\3u/ f . {ﬁT du (12)
N o <.Jl Pr- t
The factor < ;> is determined by exténsioﬁ of the integral

over the total wvelocity field of the friction layer.

. am
The temperature-velocity quotient [~ =
du/o dy 0
is 2 measure for the amount of heat transferred to the wall,
The heat transfer at the wall is obtained from the temperature
distribution,

Equation (12),although designed to calculate the temper-
aturc distribution, has general application, The considera-
tions so far are based solely on known definitions properly
rearranged and combincd and no special assumptions relative
to the flow have entered the computations except the bound-
ary condition of a laminar wall layer.

The above derivation indicates that a general result can
be secured without employing the 'hydrodynamic equations

(46)-and (47)). This is due to the fact that the basis of
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- .

each theory, entirely independent of the method of calcu~
lation, is 'a postulate related to the exchange mechanism.
(For instance T!' is set proportional to u', or more
generally Ay = A, or as in the case in point, Aq/h is

to be determined ‘later,) This simple hypothetical content
of the theory is seen also from the presentation of the
simple Prandtl analogy for the present subject is treated
in such a manner as to make this step possible.

To complete the temperature equation (12) the magni-
tudes Aq/A, qTo/qu and Ti¢/T must be known. (These

quotients are introduced later in order that the effect of
each postulate may be observed independently. A4Also the
various deviations between the theory and experiment reveal
at a glance the direction in which the assumptions must be
modified.)

In order to carry through a calculation 4q/4 is
assummed to be constant. The value of Aq/A is to Dbe
determined from experimental data.

The quotient qT,/q,7 cannot be fixed arbitrarily.

The heat stream gq 1is related to the temperature T

through the differential continuity equation (see equation
.(47) generalized Fourier-Poisson) of heat flow. But a first
approximation of the temperature distribution can be obtained
by assuming that the layer for heat transfer is of about the
same thickness as the friction layer. '

In %his case the heat flow disappears where the shear
stress is zero, while on the wall gqfq, = 1 and T/To = 1.

Thus the total range of the friction layer can be expressed
with

= 1 4+ k (13)

where k 1is small compared to 1 at least in prozximity of
the wall,

. In the turbulent friction layers the velocity gradient
is steep near the wall, The largest part of the velocity
region u lies in a zone where k is small, So for the
integration T over u of equation (12), (qﬁo/qu) ~1
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may be put in, first approximation. (In the entrance zones
where the. wall tempcrature changes .suddenly this approxi-
"mation is not possible. For such cases the heat boundary
layer /is much thinner than the friction layer and it there-
fore plays an important role ia the.varlation in heat flow,
Thermal entrance lerngths in existing friction layers are
quite short however (see DLatzko, Z.a.M.M., Bd. 1 (1921)

P. 268), so that when assuming (pA /B2 ) ~ 1 and,

T,/7 is known, the integration can be completed,

This procedure yields a first approximation of the
temperature distribution by means of which the heat flow
can be evaluated, The heat flow distribution then affords a
second approximation for the temperature distribution which
is practically adequate for the case of constant material
properties.

Several quantitative conclusions can be drawn from
equation (12) relative to the temperature profile of various
friction layers which coincide approximately with the stress
guotient (T,/7T) (such as, for example, thc flow through a
pipe, channel or flat plate) at equal Reynolds numbers,
where the velocity distribution obeys the "universal lawh),

N

At the flat plate <9_§) = 0 and likewise il) =0,

dy/o dy/o

The assumption k ~ 0 is tnercfore well satisfled over the
greater part of the velocity fiecld of the flat plate. No
appreciable differences obtained here between the first and
second approximation and the final solution of T, (Bven
though T and q are very similar at the plate, they are
not coincident, for g depends on Pr' while 7T does not,
Therefore there will exist for the plate, a small difference

between the actual temperature profile and the first approxi-
mation of T.) '

For flow with pressure drop,a far from negligible
difference exists between the second and first approximations
(thet is, between the actual profile and that of the "plate
profile" of the temperature.) By pressure drop (dT/dy)o<:O,

but at the flat channcl wall (dq/dy), = O and in the pipe
(dq/dy), > 0. Hence it follows for the temperature distri-

butions that the pipe profile differs more from the plate
profils than the channel profile, that is, according to equa-
tion (12), the temperature rise at the pipe wall is flatter
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than at the channel wall and even more so than at the flat
plate (see fig. 4). Tor a quantitative treatment of model
problems it 1s advisable to integrate the temperature
equations by sections, that is, the laminar section, the
transitional region ond the real turbulent layer. The bound-
ary at the end of the laminar zone is designated by the sub-
script a, and the beginning of the turbulent layer by bo

whence, after introducing the substitution eguation (13),
equation (12) gives

/dd\

&
B A 0(1 1)

< > JF ‘/ 1+ (Pr'_ ) T8 (Ta < B Ty ) (12

bAg

(o<tr<m,) (12
p,?\

Ac
( Po (u-ub +f kdu)
t,

du‘
® .
’ dT/o JF JF ’ Ve (Tpo= 2 <9) (12
T <1"\1'_ ( />
T/

(© = max. temp. difference between the wall and the flow=-
ing fluid.) In addition it should be observed that k may
be disregarded for the laminar region. A general disregard
of k in the main fluid stream is not tenable, The sub-
script t indicates a mean value for the turbulent region
(formed over u).

In the actual turbulent region it is to be noted that
for small values of Reynolds numbers Tt/T is consideradbly
smaller than unit (see fig. 2), correspondingly Tm/T is

not negligible., However to an approximation (T4/T) =
(Tt/T>t = constant. The point where Tt/T = (Tt/-,-)t is

the turbulent boundary designated with b,
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To utilize the tcemperature eguations the vgriatiqn
of (74/71) and the bovndary velocities wum, up- {and corre-
spondingly ubo) must be known, This involves ‘the flow

distribution near the walls, with limitation to the processes
at the smooth wall and to flows obeying the universal velocity
distribution equation. C - -

VELOCITY DISTRIBUTION AT A SMOOTH WALL

The measurements by Wikuradse (reference 11) have shown
that the turbulent velocity distribution can be approximately
represented by the following equation:

F:* IF-_;

= 5.75 = y* + B (14)

where the dimensionlcess shearing stress velocity is defined

by
u* =J/Ez ' ‘ ~ (15)
P .

A ' (16)

The constant B  depends on conditions at the wall,
For smooth walls B is apnroximately 5.5. ©Equation (14)
is = straight linc on semi-logarithmic paper u§ shown- in
figure 1. .

The velocity distribution for the laminar wall laycr
can also be represented by means of u/u* and y*%*. Re-
arrangement of the Podiseuille eguation results in

j% =~yf <l - g) ‘ (17)

where n = y/r and r is thé ‘radius of the pipe or channel
for the equation in -the sub-layer, In general the laminar
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layer is so thin that n/B may be neglected compared to
unity and therefore practically

u
i v* (172)

Equation (17a) is therefore the universal equation.
for the velocity distribution in the laminar zone, It is
shown in figure 1 as the curve which passes through the
point logy* = 1, u/u* = 10,

The flow conditions in the transitional layer are not
very well established experimentally. This sublayer
ad jacent to the wall is usually so thin that accurate measure
ments of the velocity can hardly be made. The closest wall
proximity was probadbly reached by Stanton with his surface
tube (referemce 12), " But. even these test data are insuffi-
cient for the present arguments,

Since the application of our theory is predicted on
the knowledge of the shear stress ratio (T4/T) in wall

proximity, a wall layer of such thickness was required
as to render a measurement of the wall flow possible.

The thickness of the laminar layer y, and the bound~-
ary velocity wuas are fixed by definite values of ufu*
and y*; 1y, increases with decreasing u* according to

equation(lG). The redﬁction‘of a* is limited by the fact
that at too low shear forces the critical Reynolds number
is undercut and so the entire flow becomes laminar. It is
therefore appropriate to introduce the Reynolds number

Re = uyd/¥ in the place of wu*. Then the thickness of
the wall layer is

R ya*d .
= ' (18)

Va Req/z7g

where the so-called resistance coefficient Qisdefined in
Ap _ ¢ pup
Al 2 d

To

. P up®
(¢ decreases slightly with Re).

the usual manner as:

(19)'

m|ww
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The thickness of the wall layer grows with the
diameter d& of the pipe or channel and decreases with
the Reynolds number, For a given Reynolds number ya/d
is independent of the choice of flowing medium,

. The important number ya*, the exact value of which
is not yet known, lies below 10 according to available
measurements. The.critical Reynolds number is 3000, and
the corresponding { ~ 0.04. Herewith

a
7a < 30 (20)

This equation reveals that even for the lowest possible
Reynolds number the stream diameter must be fairly great
in order that a probe can be introduced into the laminar
wall layer, (With considerations to the influence pf the
wall in the probe, the wall .layer should be as thick as
possible,)

But the achievement of a sufficient boundary layer
thickness by increasing the stream diameter introduces
fundamental difficulties. If the increase in diameter is
to achleve the purpose desired, the Reynolds number may
not be increased (sece equation 18). This means that the
velocity must be decrecased in the same proportion as the
diameter is increased. As a result the dynamic pressure
and the pressure drop are reduced quadratically with the
stream diameter, that is, with the boundary layer thickness,

This is exemplified 2t the dynamic pressure of the

mean velocity wup, for which introducing Re = dup/v, we
cet -
2 2
p »° Re
= 2 o ———
-5 U PEPFE (21)

To-fix the order of magnitude of this dynamic pressure
several numerical values are inserted. Let Re ~ 3000,
d = 25 centimeter .(utilized in measurements reported
later in this paper). For air as whe flowing medium
(b = 1.8 x 107%, p = 1,2 X 10-3) it is

u ® ~ 2 x 10-3 mm HpO0

w o
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The pressure drop to be measured is of the same order of
magnitudes and is equal to p uy® at Re = 3000 for

At = 100 ds TFor flowiang water these pressures are about
four times larger and only when utilizing a viscous oil
does the magnitude become equal to 1 millimeter of water.
If these pressures are to be measured to within 1 percent
then the sensitivity of the manometer must be in the range
1w-?. to 10”° nmillimeters of water.

The problem of precise measurement of the flow phenomena
close to the wall for non-isothermal flow involves the tech=-
nical difficulty of measuring extremely small pressure differ-
ences. (The velocities can be determined without the use of
pressure measurements. In the dboundary layer itself a hot
wire anemometer or a thread anemometer can be used in place
of a pitot tube. These devices must be calibrated and the
calibration at best depends on pressure measuring devices.

In addition pressure drop measurements are desired to check
the effective shear stress.,) Such measurements can be made
with the micromanometer designed by the author which has an
upper limit of sensitivity of 107 millimeters of water
(reference 13).

The turbulent flow measureménts reported here were made
in & rectsngular channel 2% centimeters high, 1 millimeter
wide and 16 millimeters long and with a maximum velocity of
80 centimeters per second, Fine pitot Hubes and hot wires
were ntiliged. The hot wirec anemometer was calibrated in
the parabolic distribution of a 3 centimeter high X 30 centi-
meter wide laminar channel in which at similar distances from
the wall, the same T, obtained as in the turbulent channel.

T, vas evaluated from the maximum velocity as well as from

the pressure drop.

The measurements were made very difficult hecause the
low velocitles were easlly disturbed by external causes.
FPor instance, small temmnerature differences between the
air stream and the wall (induced by unavoidable fluctuations
in room temperature) caused observable changes in the veloc-
ity distribuvtion. Therefore the turbulent velocity profile
was almost alwavs slightly uansymmetrical and thus u* wyas
different on the upper and lower wall.

On the top of that the recorded pressure drops yielded
an average u* which was too great as compared with the
results of other authors, The channel flow obviously was
not completely developed (in a tube the Iength of 64 diam-
eters would have been sufficient.) But since the pressure
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drop was held constant for all test points, it was
possible to determine the mean u* Dby comparison with
indisputable measurements of other authors at higher.
values of y¥. ©For this purpose measurements of Nike
uradse were utilized omitting those for which the wall
correction was questionable, (Similarly the measurements
of the Stockholm report which do not lie in the range of
g others of Nikuradse's measurements and are obviously too
i high, have been omitted.)

; The results of these measurements near the boundary
are shown in figure 1. The u/u* points approach the

laminar curve very gradually. It is reached at approxi-
mately wu/u* = 1,5, a value which is substantially lower

than that usually assessed.

The velue uy/u* = 1.5 1s however still uncertain
and it must finally be based on much more accurate measuree
ments.

It is also true, that an accurate determination of
the limit where du/dy ~ (du/dy), 1is not possible from

velocity measuremeants. For this purpose heat transfer
mensurements at high Prandtl numbers will serve better
to determine the lanminar boundary. From heat transfer
measurements by Bihne it would eppear that ua/u* is

somevhat larger than 2.

The recorded vclocity distribution in the transitional
region can be approximated at:

omaN SN
1 (bhu/u*> 72 (2 ) QE/ ya*-y*
. i} -

i (22)
b -a b-a b-a

) where

mr

i‘\

}L a = —& b = =P a

i oy = - oan

15

z*r

z u, is the velocity at the laminar boundary and uy a

suitably selected yelocity at the turbulence boundary.
. -
|| . .
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As before mw/2 can be neglected compared to 1 and
equation (22) then becomes a universal law. In figure 1
equation (22) is presented for a = 2, b = 15, The curve
is dashed above u/u* 15, wvhere it loses its physical
significance, The measurements are satisfactorily rep-
resented by this equation. .

It remains to be explained why the velocity distri-
bution in the transitional zone was approximated by
equeotion (22) although some other similar function had
bsen possible.

The ratio T4¢/T is required. To fix the ratio,
differentiate equation (22):

<}" _D-u/u*

(23)
(L = n) ay* b - a
where
. u
A (24)
A = %2 =
dy* pu dy To

The total chear stress for developed flow with pressure
drop is '

(near the wall one may sét T ~ T_). Then, solving,

one obtains:

T u
m b -1
T T o (26)
Up = Ug
Tt U = Ug
- T T (27)

Up = ug

Since® sauation (22) is confirmed quite well by the measure-
ments for U, < u< uy the true variation of T should
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not differ much from equation (27). An uncertaintly
exists, of course, at the ;imits a and D,

There follows from equation (27) by introducing the
often used ratio ® = u/U

U
Tt o ® - a .
—_— = (27&,)
T " b =~ a

where U is the maximum velocity at the edge of the friction
layer, U/u* ig, in accordanoce with equation (14) a function
of r* (that is, the value of -"y* at the border of the
friction layer based on the distance r from the walk).

The relation between Re and r* is given by the identity.

U U U ru¥*
Re =" r*:": (28)
2 up S ou u* v
where
Up mean velocity
U
?; = ® a function of Re

Figure 2 shows T./T for different values of ©

with Reynolds numbers as the parameter as calculated from
equation (27a) for the transitional layer and by equation
(14) for the turbulent region. The constants a and b
were chosen at 2 and 15.5,respectively.

The actual 7T4/T distribution no doubt differs from
that shown in figure 2 for small values of %, 3But the
difference between the velocity distribution as expressed
by equation (22) and the laminar cwurve is less than the
scatter-of the experimental points (see fig. 1) so that
nothing certain may be said relative to the actual Ty/T

variation near the laminar boundary nor of the laminar
boundary itself.
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Details of the variation of T;/T play at first no
parts In contrast with earlier work in which the friction
layer was divided into two regions in which Tg/T varied

from O to 1, it should for the first suffice to approxi-
mately describe the processes in the transitional Zzone.

The earlier divisicn of the friction layer into a
laminar and a turbulent region is indicated by two vertical
linas in figure 2. 'The dotted line represents BRe = 4 x 10
and a = 2 and the dot dashed line represents Re = 4 x 10%
but a = 8.8, which is the value chosen by Prandtl in 1928.
Ty/T was defined as zero up to a = 2 (or 8.8) and unity
for greater values af y*.) At high Prandtl numbers where
the transitional layer can be regarded as part of the tur-~
bulent zone core with respect to heat transfer (see equation
(9)) a = 2 is in good agreement while a = 8.8 Tresults in
a heat transfer rate which is too small,

THE EFFECT OF TEMPERATURE RELATIONSHIP OF THE
MATERIAL VALUES ON THE FLOW PHENOMENA

If the material values are functions of the temperature
then the flow distribution across a section will be changed
as mentioned above and also reduction in temperatures in the
direction of flow causes hydrodynamic changes for all fluids
which are compressible, In this instance, in principle at
least, there exigt no velocity profiles which are similar,
the same statement holds for the temperature profiles - -both
considered as a function of length,

Since the magnitudes of the temperature differences and
the differences in the temperature coefficients of each prop=
erty enter into the evaluation of the profiles, a general
solution of the problem is hardly possible and the study ree
stricted to the simple case of similar temperature profiles
which are practically achieved at relatively low differences.

If the viscosity of an isothermal friction layer is
changed from V; to' V2 and if the remainder of the vapi-
ables, particularly u* do not change, then equation (14)
reveals a parallel displacement of the turbulent velocity
profile (see fig. 3a) with a velocity difference of

v
Au = 5.75 u* 1n 63' (29)
1
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From this it follows that the viscosity has practically
no influence in the fully turbulent region, but affects
solely the boundary velocity near the wall, (The tur-~
bulent flow slides at the wall a4t a higher or lower
velocity equal in magnitude to A wu.)

If the viscosity in the turbulent core of the iso-

~thermal flow plays no part its influence for non-isothermal

flow is limited to the effect due to its variation. Vis-
cosity variations in the turbulent core are not great, for
the temperature variations are not great., We may, there-
fore, generalize the laws established for isothermal flow
by omitting the effect of viescosity in the turbulent core
and by replacing the isothermal viscosity V in equation
(14) by a suitably defined laminar layer viscosity Vi,

Recently the resistance measurements of Rohoncszi
(reference 14) for non-isothermal flow of hot water
being cooled in a tube werc published. The measurements
could not be adequately correlated if the friction factors
were plotted against Reynolds numbers in which the viscosity
is evaluated at the mean fluid temperature. In contrast
the correlation is satisfactory if the viscosity v, ig
evaluated at the wall temperaturec.

The rest of the discrepancies can be eliminated if
a viscosity slightly less than that corresponding to the
wall is employed in the Reynolds numbers, As far as the
author could determine the results of Rohonczi can be
satisfactorily correlated and are in agreement with those
of Blasius-Nikuradse if the Reynolds number is referred
to the mean laminar leyer viscosity V4 and a "is put

equal to 2, (Rohoneczi chose vy as the correct viscosity

due %0 an error in conclusion Ifrom similarity reasoning
in which the differential equation for isothermal flow
was applied to non-isothermsl flow. In addition the V4

values of Rohonczi do not achieve coincidence of the iso-
thermal and non-isothermal results. Up to this time the
thickness of the laminar sub-layer was chosen too thick,
resulting in a sublayer temperature which was too high

and a value of V1l «which is too low. Only for one set of
data at high Reynolds number will the results yield to
adequate correlation,)

Consider next the influence of a uniform viscosity
variation on the flow conditions near the wall, If the
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friction velocity u¥ 1is not changed, then the boundary
velocities wuy, = a u* uy, = b u* are maintained since

a and b are universal constants. That is, only the
layer thicknesses change to

_ vV ye* _ b yp*
Ya = u* Yo = u*

In figure 3a the velocity profiles for uniform changes
of viscoslty are shown in which, for the sake of simplicity,
the transiticnal layer is included with the turbulent coree.
Curve 1 is the original profile. BReducing the viscosity
yields profile 2 with one-half the laminar layer thicknesse.
Increasing the viscosity by 50 percent yields profile 3
with a corresponding laminar-layer thickness of 1.5 of
the original layer.

The case of a locally variable viscosity such as obtains
in non~isothermal flow stipulates a generalization of the
dimensionless distance: y* = yu*/7U For the viscous wall
layer the following simple possibility presents itself:

y* = u*Jf &y u* = /1o

> = [— (30)
o]

Tne =pplicability of this concept must be established by
experiment. But it may be stated that this concept (equa-
tion (30)) is more satisfactory than the orie’rnal ard that
one can predict well those cases in which the propervy-
temperature quotient is not too great by employing eyua—
tion (30).

The ratio wu/u* can be generalized by re-arrangement
of equation (3) for the laminar wall layer.

The following indentity holds for the laminar layer:
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1 ' -
— fpdu,=u"_f &2 - ' (31)
[o] [o] .

)
[o] .

So yu*/v 1is replaced by u* /1 iy - v*, then u/u*
J,

v
1 [
*.j p du in order to preserve
pou “o

must be replaced by

the universal representation of the Poiseuille law.

Undor the postulate that there exists a certain
eritical number in this ropresentation, the laminar
boundary of thenon~isothermal flow must be at the same
value as for the isothermal flow yo* = a, For the ratio
u,/u* equation (31l) then gives

Eﬁ _ Bapa (39)
u p0+ pa

if in the first spproximation p(T) 2nd T(u) are linear.
At constant density u,/u* = a as was the casec for iso-
thermal flow.

In incompressible fluids the laminar boundary velocity
therefore always approximates to the same value a, no
mabtter what the viscosgity variation in the laminar layer
may be, The integration limit wu, in equations (12a) to
(12c) can therefore be retained for non-isothermal flow
also,

The effect of the viscosity expresses itself in the

thickness of the laminar layer, according to equations
(30) &na (31):

a ' 1
1 Vo2 " u
Tgq = —F v dy* = —9—'/p — 4 { —
2= pre 20t [ g (2 (32)
0 o

These ratios are expressed qualitatively in figure
3b, that is, for specificd values of u* and pgo at the
wall., The viscosity in the sub-layer is smaller in Profile
2, greater in Profile 3, than the viscosity p, for iso~
thermal flow illustrated in velocity Profile 1,
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It is seen that the parallel shift of the turbulent
profile in the non-isothermal case 1s much less than by
the uniform variation of p, The velocity change may be
expressed approximately from equation (14) as: '

B (u
Au = 5,75 u* 1n <f“° d<ua/ (34)

Because of the neglect of the transitional layer this
shift is less than the true Au, An improvemeant is

. . - p Tnp u
possibly obtainable with the integral —_— 3 {—
S o T %o

THE TEMPERATURE DISTRIBUTION AND THE TEMPERATURE

GRADIENT AT A SMOOTH WALL

To further evaluate equations (1l2a) and (12¢)
bAg/woN is substituted for cpo Pr/fcy Pr, and the

dimensionless ratios ® = uf/U, % = T/©® 4introduced.

To simplify the calculation a constant Prandtl
number Pr(g) and a constant specific heat Cp— is
u

introduced for the transitional layer. For the turbulent
region itself Cp is equal to Cptr 2 constant. Further

the ratio of the exchangs quant. ties is assumed identical,
(For completely laminar flow the ratio Aq/A loses of

course its significance.)

Defining a mean Prandtl number for the laminar layer as

@,
| e
Pry = L f—l'lﬂ Pr 4o ' (35)
®a c
0 P -
and putting
® ¢
go Prtk
e =f 2 - 4@ (36)
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it follows from equations (12a) to (1l2¢) upon the intro-
ducu10ﬂ of equation (273) and the application of Pr' =

Ag/A Pry and Pril = /A Prqy that:
dco\ .
dﬁ/ s = Prly® , + e ~ Prl, 0, (0< 8 < 33) (37a)
®y = O D
O/dCD\ = Pr".‘,' P, +e+ :po T 1bfP la ln@.—}- (_Pr’l—l-l) coa )
\&sk ; Pg /ST Py—P,
(8, < * < 8,.)(371)
d-o\ Cho Cob -® Cpo
Pr! (—— ja=Pr'y® 4+ e+ —= 2 Pri— + —
as b’ 17 © ey 1-1/Priy in U - Cpt (Co—wb)
(85, < & <1) (37¢)
From.equation (37c¢c) the temperature gradient at the wall
ig:
Cpt
¢ /cnt A -gﬁ 1nPrig (z8)
" L 1, i r — e l 58
C—B—PO Pr! <dﬂ> 1+ e1+®a\cpoPr ) l/+ (.Qb coa) T l/Pr‘ . _

whore ey 1is the value of e for ®©= 1 multiplied by
Cpt/cpo‘ (see equation {36).) )
The quantities Vg = a u*/U and @y = bu¥U are
known functions of r* and Re (see equatlons (14) and
(28)) if a and b are fixed., On the other hand, the
material values Prqy =nd Pryg must be defined more

explicitly. (To be discussed later.)

In equations (37c) and (38) ©y, was replaced by P

becaruse a slight variation while defining the turbulence
boundary hes practically no effect on the calculation of
thg total temperature. (At the boundary position O,

the temp. difference over the turbulent region is greater by
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.

Py

. . - o
_3;7_2'<dm> than at wb- wh;le the;temp. dlfference

in the transitional zone is reduced by approxs the same
amount.)

In nddltlon to the very small error te rms, the
expression

(m —‘mboyn(i‘l/Pr'O) (%é>
t

is also emmitted, since it is smaller than 0,02 (see fig., 2)

even for the largest (T nw/T)¢ at small Reynolds numbers.,

The number  e1’ accounts_for the effect of the variation
of q/T on the temperature gradient at the wall., Since
this term is less than unity (see fig. 10) it plays no )
important part except at low Prandtl numbers as is seen
from equation (38). The integration of equation (36)
between b and unity usually suffices to calculate ea
and by this operation Pr! and Cp disappear:

1 -
et “JF kd o (392a)

) b
- While the. errors due to' the inaccuracy of the speci-
fication-of . Fy/T " by means of equation (27) tend to dis-
appear for high Pr, for Pr! =1 the only term which
is in error is ey (for Ty4/T is eliminated) to the

evtont that the errors duu:to ~the ma aterial velueg can
be discounted, .

For Prt =1

cpt -
ey ~ Jﬁ — kdo (39D)
. / D ' :

Here the 1ntegrat10n from O to B far. -pipe flow is
approprlape.‘lf the Reynolds number is .small (in this
event k- 'in the tra n51tionalzone cannot be neglected.)

3
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For constant material values mnd for @y =®
a/T ~.q /T (e ~0) equations (38a) to (37c) and (38),
give the Prandtl approxlmatlons.

(0 <8 < # ) (40a)

(&), -0

( ) = @, + -1-3%7 (p~="1p,) (8, < »< 1) (401)
amN

(da} =1, (- 1) (1)

(Prandtl employed Pr instead of Pr', He nlso used
uy oand T, as refererce values rather than U and O,)

The fourth term of esquation (36) which accounts far
the conditions in the transitional layer is particularly
important for average valucs of the Prandtl number., But
ot high valuss of Pr'" the fourth term is small come~
pared with the third 'and for constant material values
Prandtll's equation (41) is approximately obtained again,

At Pr!' ~ 1, and constant matérial values equation
(38) simplifies to:

: o, +© ) )
Pr! E_CP.> =1+ e; + ——"‘1—-2-—3 (Prt-1) " (42)
4+ :

In flow with pressure drop, consideration of the heat
flow distribution which enters into the e1l term yields

a smaller temperature increase at the wall tﬁnn by the
assumption q/f = qO/TO. For instance (dﬁ/dw) is not

equal to unity at Pr! = 1 and Re = 4, 10°  but in a
channel is only about 0.94 and in the pipe approximately
0,91 (see fig. 10).

In figure 4 (d@/dm)o is presentesd as a function of

Pr! for constant material values with _Ee as the param-
eter, a =2 and b = 15,5, The solid curves refer to
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the flow through a pipe.. For Re = 4 X 10° the dot-dashed
curve “Is that; of -2 channel whlle the dashed curves refer to
a flat plate.

The asymptotic lipit value of (dﬂ/dm)o for extremely
high Prandtl numbers is 1/®,. The temperature gradient at
the wall (d@/dy) is therefare at the most l/@ times
greater than the correspondlng velocity gradient.

For Pr = 0,72 (air and other gases at room temp.),
(as/dep) ~ 0.8 at the plate, if A, = A (see equation (42)
: .0 S q
and fig. 4). ’ . .

' Elias (reference 15) has established, for the flow
along 2 hcecated plate, that the temperature and veloc1ty
profiles are similar, that is, that (d¢/a®) 1.

This value for (ds/d®), holds, however, for
(Aq/A)Pr ~ 1, From this it follows that A4/47~1/0.72~1.4,

A similar result was obtained by Lorenz and Friedrichs
(reference 16) in their experiments with air flowing through
heated pipe. BRe ~ 10°%, (ds/dm) ~ 0.97, This value lies

at Pr' ~ 1,08 as may be seen from figure 4 (equatlon (12)).
From this it follows that A /A = 1,5.

The gquestion regarding the ratio of the exchange .
guantities, however, cannot dbe conSidereﬁ,solved, hence
no specified value Ag/A will Dbe ascertained,

Figure 5 illustrates the temperature distribution
3(®) for various Pr! at Re = 4,10% The so0lid curves
indicate-the second approximation for. pipe flow, the
dashed curves represent the first approximations which
approximately correspond to the temperature distribution
along the plate, The division into three flow regions
is indicated by the lines ®, = constant, ¥, = constant
(that is, for a = 2,0 and b = 15.5).

In figure 6 the temperature distributions of figure 5
are plotted against the dimensionless wall distance 1.
For purposes of clarity only the case of Pr! = 1 for the
first approximation (also a méar approx, for the plate)
is presented. This curve also represents the velocity
profile for Re = 4,10% for.the universal velocity dis-
tribution curve apprOX1mately holds for the pipe as well
as for the plate.

As to the non-isotherﬁal problem the least trouble
is in the choice of the value of ¢ since the specific
heat varies but slightly with the temperature. In many
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cases ome may write c?— t in which event
equation (38) is oreatfy 51mp11f1e§

For a more accurate analysis the approximate range
of the pertinent temperatures must be known., Employing
the subscriptsutilized to describe the material values
and arranging the temperatures in the order of increasing
temperature results in

0 < T1< To< TE < Tb < Tﬁ < T, < ©

a t

Here, in addition to the material wvalue temperatures,

the boundary temperatures T and Ty as well as the
mean temperature of the flowing fluid T,, are introduced,
(The definitions of Ty awmd Ty depend on the variations
of the material values and are very complicated, (see
derivation of equation (38) But it is not necessary to
consider this matter further here.)

Since the principal mass of the fluid 1is turbulent
Ty and Ty are quite similar so that in general T¢ can be
replaced by the known Ty. At high Pr, temperature iy
agrees with Tg, hence with Ty (fig. 5); but at low Pr,
Ty 1s substantially lower than T,. . Since Tg is appli=~
cable only to the term of the transitional layer, the
approximate value from figure 5 will suffice.

0f pa rticular influence on the heat transfer is the
temperature relation of the Prandtl number in the laminar
layer if a .Vevy viscous flvid is involved. (For viscous
Tluids the major resistance to heat ‘transfer is offered by
the laminar layer. Since the lamimar, layer thickness ya
varics with the temp. viscosity history of the fluid (see
equation 53) and since the temp. variation of Pr 1is fixed
primarily by the viscosity (c- and A vary but slizhtly
with temp.) Y, depends on Pr/ir But it may not be
salid that the thickhess 0of the lamlnar layer is a function
of Pr for this is a heat transfer factor and the laminar
layer thickness depends on a purely hydrodynamic variable
as seen from egquation 33.) In this event a mere estimate
of Pr1 by means of a cursory température Ty may intro-
duce & serious error. The prediction of Pr by means of
equation (35) is therefore indicated.

To éimpiify the calculation a proportionality between
velocity and tempsrature for the non-isothermal laminar
layer is assumed:
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. . ~
ds ‘ ‘
<-—\ © : : (43)
&wo . .
o . s Pr N N Wyt
Purther the temperature var1atlon of — is approximated
: . c
by the linear equation: by
N
Pr Prg,
— = (L +n T (44)
°h ®ro

where m 1is an empirical constant.

With the assumptions (43) and (44), equation (35) gives

Pr
‘=1+-c0<> + & (45)
Pr ga A
o .
N ST . as
A first approx:matlon'to the temperature gradient -Eé>
T ) P/ 0

at the wall is obtained from figure 4 where for the
Prandtl number Pr' the value of the wall, Pr'!',  may

be chosen.

For a more accurate solution of Pry (to be discussed

elsewhere) the real nopn=linear functions T(® and Pr (T)
must be used instead of the llﬂear relatlons given Dby
equations (43) and (44), :

THE DISTRIBUTION OF THZ HEAT FPLOVW DENSITY s

IN A CHAWNEL AND A PIPE

The differential equation for the equilibrium of
‘forces in a fluid with allowance for the continuity equation
and omission of den51ty variations reads:

AW
P -d—i{ +.p. a2 (¥;W) = - grad p + uVew (46)
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where w is the velocity vector.

The differential equation for thermal convection

~ and conduction is written similarly:
oT 2
pcpa+pcpv(w;T)=e+k\7T (47)
where
‘ € source of density per unit volume,
lﬁ A formal analogy between the equations of momentum,

and heat exist therefore for flows with grad p # O
only in the presence of spatial heat sources in such
flows., Even though the internal friction of a fluid

ig small in technical applications, the variable € 1is
retained in the equation for future comnsideration of the
analogye

e S e YD = &

Equations(46) and (47) are next applied to the com—
pletely developed turbulent flow in a flat rectangular
channel and in a pipe. For this type of flow the non—
uniform terms cancel out by averaging and likewise the
dorivatives of the mean velocity along the principal
flow x,. -

With w =0 + u'! and +v! denoting the velocity and
fluctuating components of the velocity ian the x and ¥y
directions, respectively, where bars represent mean vel-—
ocities with time and the primes represent instantaneous
variations from the mean, the scalar equation for two—
dimensional channel flow in terms of mean values is

3, m——— Op d%u
—— ? ! = e e —e
P oy (ut vt) dx ok oy® (48)

In this equation the bars are omitted from the pressure
and velocity terms as was done previously. The bars are
used only %o represent the mean products of fluctuating
guantities.

The mean momentum interchange — p ut! v', which may be
regarded as a stress attitude is identigal with the tur—

bulent shear stress T¢, while E% is the viscous
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..

shear stress T3, (Tt is the turbulent‘momentum

transport in the =y direction. For. §ﬁ~> 0 Tt ' is

likewise positive, since the p031t1ve u? are associated
with the negative v! and vice versa on the average.

For %he exchange, process the-higher u velocities arrive
fron zreater and the low velocities from closer wall
distanccs.)

Hence T is the total shearing stress

D )

37T dp B
— = —= = gonstant channel)
3y  ox ( ) LT

Thes pressure drop is constant since the flow is fully *
developcd.

The heat balance in two—dimonsional chanqel flow
follows from equation (47)

3T . d T 3 T 3%r
0 / —_—t— (7t q?) 4+ — (7! w!) ) =€+ A (50)
°p \ 3x 3= dy / dy*®
Assurming that no grecat changes in (T! u') occur in the
dircction of flow x as certainly,is the case for fully
deveoloped tcemperature ¢lstr-b?0¢ong, the sccond term on the
left side of equation (50) mar be neglected, Thereremains,
then, only the fluctuation product p oy Tt v? which is
egquivalent to *he turbulent heat transport —q perpen—
dicular to the wall, Introducing the total heat flow
oT
g = oy * A S~, further affords:
) m
949 - oz
= p Cpy U — €
3y P S (channel) (51)

For..Tully developed flow in a pipe the following
equation in cylindrical coordinates (instead of equation

(4S) for the channel) is obtained

or _ %2 constant ( 5 )
—m e = nstan ;
5y S pipe (49a)
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LSNP S

and (instead of equation (51) for the channel) the
equation¥ : )

B -

oT .
L (a(1-m)) - <1~n>_<p cp % 57 =) (pipe) (513)

e,
a

M

I Y e S}

§ where 10 = % (r = radius of pipe or 1/2 width of channel).

3y introducing the shear stress at the wall Ty
‘there follows for the pipe and the channel from equations
(49a) and (19), respectively:

T = T, (1-n) (channcl .and pipe) (52)

Tor thc case of fully develnped teupcrature distribution
he argument 'is confined the partial differential

f heat Tflow become ordinary differcntial equations,

ce lengths for fluid flow and heat diffusion are

] of c¢ach othor. For instancec, a sudden change

of wall %empcrature may introdice a thormal entrance in a

hydrodynnmically developed Tlow.) The sinlilarity of the

“tepnerature profiles statos that the deerease of temperaturc

per unit temporature —aT/T in distance dx at each dis—

tanze y from the wall is a constant. Theroefore —dT/dx =

coastant T« The onission of € leaves instead of equations

(51) and (51a) -

—= = constant w T (channel) (55)

y . .
— (q(1~n)) = constant (1-n) u T (pipe) (B53a)
ay

T 1is definecd, as hefore, os the temperature ercess over
that at the wall.

It should be noved, however, that a fully developed

peratire distribution 1s possible only at small excess
tenperatures T. In general wu.(8/dx)(p cp T) instead ef

oA

temy

m .
p Cp %; would have to be reckoned withe TFor the fellow—

ing 1t is assumed that change of profile remains within

.
f
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such limits that equations (53) and (53a) remain applicable
with sufficient accuracy. :

o

- ¢nveg;a31oﬁ.of cqu@tionsi(Sﬁﬁ and (53a) amd .nvroducktien
of the limit values (q = 4o @t M =0 and ‘g = 0 at n = 1)

in conjunction with the nondimenslonal s = T/8 and
B o= u/U sivesy
7
Soeo an
‘ =1 --OI : (channel) (54)
qo f‘s(P’d. 1 s
‘o
T
J s ¢(1-n)a n
ﬁL (1=m) = 1 - %= (pipe)(54a)
*0
[ & ©{1-n)d n

[¢]

A good approximation for’ qfq, is ovtained with the

application of the tcmperaturc cquations (37a) to (37c).
Althiough the introduction of the simplificd temperaturs
equations (40a) to (41) is sufficient.

The velocity distridbution of the turbulent region
is represented by thoe well known power lawd

o = o (55)

' 8
wiire 0418 > M > 0.10 for 4.10°< Re< 4,10 .

The power law veprcsents the velocity distributiom
even betber Tor large 7N's than the logarithmic law and
is especially suitable for the present calculation., In
wall proximity the velocity is ofcourse less than that
calculated by the pover lav and the error of the derivation
ig omall only &t high Reynolds numbers where the power law
must be used ncar the wrall,’

The use of eqguations (40a) to (241) and equation (55)
then yields approximately?

(58)

rsCPd'ﬂ"'.r

- ’ (1+n=-n?)(Prt—1)pa+® 541/n
-~ '
f (1+ 20)((Pr'— 1), + 1+ e)

0
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Here the lower limit_'cpa is replaced by O. 3Because the
value of this integral is practically zero at the limit ¢
since .the exponent 1 +, l/n is high and the integration
from © %o P, ylelds an integral which is very small,

Thus the density of heat flow for channel flow at
high Reynolds numbers approximates to?

Prt-1)(1+ + .
8oy BN RIRLY pakafn (i) (s7)
4 - (Pr!=1)(1+n)gpa+l

where ¢ = n, so that q/q, mnay be represented as a
function. of n.

In a similar fashion the heat flow ﬁhrough the fluid
in a pipe is approximately, according to equation (54a):

q
— (1-m)
0

(Pr1=1)(1+2n)( 24n—( 1+n)o /™), +( 1+n/2) ( 2+2n=( 1+2n)e*™) ¢

_ pi+i/n
(Pr!-1)(1+2n)p,+1+n/2

(pipe) (58)

A good view of the variation of q/qo may be obtained
for the special cases of Pr! = 1 and Pr'! —» ® as sub-—
stituted into equatlons (57) and (58)%

',jL =1 _'n1+en (channel Pr! = 1) (57a)
q'O
+
N R e ( channel Pr! = ) (57D)
q.O
2 1+an
= (1~n)y =1~ (2+2n — (1+ 2 n)n)n" (pipe Prt=1) (58a)
e}
q n 1+n
— (14m) = 1.—(2 + n = (1 + n)n)n" (pipe Pr!=o) (58D)

- -~
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The afq, - curves flatten out with increasing values

Pr and Re (decreasing =n), that is, they approach
4, = I -~ M which is the limit of equations (57a) and
8a) for. m= 0, It further follows that the quantities
k and e decrease with increasing Pr' and Re (see
equations (13) and (39) and fig, 10).

Figures 7 and 8 show (q/a ) (®) and (q[qo) (n),

respectively, for the pipe and channel at Re = 4 % 10%,
Figure 9 reveals (q/q J(n) for various.values of Re

at Pr!' = 0,72 and’ Pr’ = 200, These curves were com-
puted for @ by the true velocity distribution as shown
in figure 1 rather than power law,

The variation of the heat flow denqlty 1n proximity
of the wall is noteworthy, where (da/dn), for the
channel, but (dq/dn) = q, for the pipe (see equations

(53) and (53a)). The rise of the heat flow density of the
pipe beyond the value g is due to the fact that the
total heat flow Q ~ gq(l-n) near the wall is practically
constant, while the section through which the heat flows,
decreases with (1-n), In channel flow no cross-sectional
aresa cnanges occur; thus the heat flux density and the
total heat flow are alwaye directly proportional,

At mld—channel {and pipe, rpspectlvely) the varlatlon
of the heat flow density. is characterized by,

dd\ do
an, 1 " £ um
| . Ty Up
(see equations (54) and (54a)), 9, = ?; and © = =

denoting the dimensionless magnitudes of the mean stream
temperatures T, and the mean velocity (u ), respectively.
Since these magnitudes are esmaller than un1ty, the negative
«lope of q/q is greater than unity, and ies greater for
the pipe than for the channel,

Equations (57) and (58a) enable the calculation of
k and e1 (see equations (13) and (39)) through which the
second approximation to the temperature is secured. In fig-
ure 10 the e1 term for pipe flow is shown plotted against
Prt for different Re.

(As mentioned .above (equation (9)) G. I. Taylor has
computed a second approzimation to the temp. distribution
for the case of Pr = 1, His arguments rest on Reynolds!

—



NACA Technical Memorandum No, 1047 39

analogy. In the calculation. 3T/3x . is assumed inde-
péndent of the di:+ance from.fhe wall which corresponds

to .9q/3dy proporiional to.  u (1n§tead of u T).. Through-
out a correctlop term, which is too small, results (for
instance at Re = 4, lO4 _it is 5 percent instead of 9
percent, as is the case for high Pr (that is, for -T ~
conetant)). (See fig. 10.)

COMPARISON BETWEEN MOMENTUM INTERCHEANGE

AND HEAT TRANSFER

Supplemental to this theory an attempt is made to
compare the differential equations ¢f heat and momentum
and to indicate that the historiec heat source theoren
also leads to a generalization of the Prandtl number.

The similarity of the differential equations (46)
and (47) is so obvious that it need not be discussed
further, However, it ie necessary to analyze the
existing differences,

One substantial departure lies in the fact that the
heat equation containe no term corresponding to the
pressure drop in the momentum eguation., This difference
can, however, be removed in =ome cases (as Prandtl has
shown) in first approximation by substituting a suitabdbly
chosen heat source density c¢. ’

Physically this artifice has the following signif-~
icance. The momentum of a flowing fluid can be maintained
by & pressure gradient. The hrat content of the fluid
is, in contrast, reduced by the transfer through-the walls,
unless heat is produced in the fluid itself (such as by
a current of electricity flowing through the fluid), To
comvlete the analogy between heat transfer and momentum
exchange the volume heat sources must be so dispdsed that
the temperature and velocity ‘profiles are similar; In the
particular case where the vploc1iy distributicn renalins
constant in the axial direction (fully develcned {low in
a pipe or channel) the tnmperature profile qhoqu be maine~
talned llkerse. ' . A " '

& further alfFerence between equat10n° (46) and .(47)
rests on the fact that equation- (46) is a:vector equation
and equation (47) is a scalar equation,.herce only one

o
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gomponent of équation” (46) can be compared with, equation
(47). "The ahalogy is, therefore, carried out.for fully
devélodped plane channel" flow. ?y conCPntratlng ‘on the
special cacser of plane flow, the problem is much clearer,
and affords more far reaching conclusions than from '
equations (46) and (47).

For this flow equations (46) and (47) give:

2T _ 3 (48— D
= = - Ty} = 22 (49v)
oy By . ay put v ) ox

- — 2T \
—_—F em— N\ —— _pcpT'v’):—E‘*‘pCpuS—; (51b1

In order to avoid misinterpretations, the mean values
are again represented dy bars.

In the most general form, the equations for T
and. c are analogous., But because fully developed
flow has been postulated, the terms with Ju2/dx,

d N , —
3y (w )3T (T v) “drop out, while the term with 3% (uT).

in the heat equation remains. The prodlem, then, is to
choose € soO that the term with oT/d0x vanishes.

As shown above 3q/dy~ -u 07/dx ~ u T (see equation
(53))._ Thus for a given heat source distridution
€ =k uTl, a suitable choice of k will cause bT/Bx
to diminish to zero for every y, without in any way
‘modifying the temperature distribution T or the exchange
TV v! , With this choice of € the actual temperature
profile will be retained; it simply remedies the earlier
decrease in temperature in the direction of flow,

However this heat density which varies with the
distance from the wall cannot be compared with the
pressure gradient which is constant ‘over the section,
So in order to carry through the consideration of the
analogy .it is necessary. that € = constant. . In this
case also it may be stipulated that 3T/dx should
vanish at each position of y, Then the heat flow is:
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dg
—= = ~ ¢ = constant
dy

Under this condition T is of course no longer the
actual temperature, but rather an approximation to the
temperature, which is that the postulate ¢ = constant
yiclds too great a temperature gradient at the wall be-
cause the wall layers are heated excessively by constant
cource density. But in view of the fairly well compensated
temperature profiles the error must be small.

Now the identity of equations (49b) and (51b) can
be adduced by putting conformably to Prandtl, W Cp = A
Pr=1) and T = B u (B = constant).

But the equation T = B u is only one possible
solution, The solution is, in fact, somewhat special,
since it not only reguircs the time averages of the
velocity and the temperature proportional, but the
fluctuations u' and v' themselves to bhe proportional
at every instant, :

T=8% (59)
T! = § u! (59a)

These equations are obviously fulfilled if the mech~
anism of transfer of the u-component of the momentum and
the mechanism of heat transfer are completely similar.
This may occur in particular cases.

Consider next the general case where the correlat%on
coefficient between u and T is less than 1« To thisg
purpose the turbulent terms in equations (49b) and (51b)
are expressed by A du/dy and cp Aq(dT/dY)' The

A Ag ¢
identity of the equations is attained when -—=-—&X~E

B
(that is,. Pr' = 1) for each distance y £from the wall
and when eguation (59) is satisfied.

Equation (59) thus represents an approximate solution
of the heat equation for the case defined by Fr'! = 1,
In this case assumpbtions relative to the fluctuations of
u! and T! are no longer required.
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~ The solution (eouwation (59)) stipulates that the fic-
titious source strength ¢ be fixed by:

A, dyp
- —9
€ = o —_— 0
_BcpAdx (60)

- On the basis of the postulate dq/dy = - € the
gource strength € may be defined in terms of heat
flow at the wall g4¢ .

€ = q_o/r (61)

(r is the half-width of the channel). Introducing the
shear stress at the wall for the pressure drop, it
follows from equation (60) that:

Aq
q_°=BcpTTo (62)

(This change of form of the equations has the advantage
that the form of the fluid boundary (whether pipe, channel,
plate, and so forth) which is unessential for these con-
siderations does not affect the result.) This equation
may be derived also, for the gquasi-plane case of the

"pipes The constant B can be expressed by appropriate
standard values (for instance, by the mavimum values)

the mixed mean temp., of T wor u,.

‘At . Br! # 1,.the analogy -is not complete for the
tetal fluid, but only for the turbulent gore in which
the terms of molecular conduction can be neglected,

Then equation (59) is appropriately replaced by:

. - T w Ty = B (G.; uéJ (5¢b)

where T, and wu, are time averages at Ythe point of
tLransition t0 the laminar .flow", For the rest the
calculation is the same and equation (62) holds for

Pr # 1.  Solely B Dbecomes another proportionality
factor.

For the prediction of P the maximum values of ©
or U, the temperature and velocity, respectively, can
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o ikl
SN { oG

be used. It is also possible, however, to introduce the
sectional averages Ty and u, (as was done-in the
Prandtl derivation) since the section of the laminar layer
of the flow is negligivle compared with the total flow

: section, With T, expressed in terms of wug and Pr':

T, = B Pr'! u, (63)

‘- an equation which results unon the appllcatlon of equation
(62) to the laminar layer, = equation (59b) gives:

p = o/v (64)
1+ (Pr'-1)u,/vU

or

T/ g

1+ (Pr'—l)ua/um (642)

The following useful conclusion can be drawn from
equations (64) and (84a):

o
@+ coa(Pr 1)

by = (65)
- 1+ @ (Prt-1)

. )
<6m = T%; @m = T?/ The dimensionless mean temperature is V///

identical at Pr'!' = 1 with the dimensionless mean velocity
(within the framework of the present approx ). With increased

Prandtl number ®, approaches unity.

o

e

Since it has been established that the correct heat
flow distribution over the section is not necessary for
the determination or the temperature distribution in first
approximation, q/T 5 q,/7T, and this assumption compared with
the assumption of a constant  source strength, which as
shown above,is necessary to establish the analogy. From
dq/dn = = ¢ = constant, it follows that q = g l1-n)s On

the other hand, for complétely developed flow T = T, (1-m).

-

TR s e e e

Ll S¥h
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For fully developed flow our approximations therefore
agree with the postulate of constant heat source distrib-
ution, The two idealizations differ, however, in their
consequences for further theoretical treatment as well
as in the Jjustification of their physical admissibility,
although both methods of treatment agree with great conm=~
pleteness as a basis of the turbulent velocity profile.

(Since the heat source theorem is designed to describe
analogous phenomena which in detail are not analogous, the
theory is definitely bounded, which limits its extension.,

The heat source theory is not purposed to consider particular
force fields in detail, merely intended to reproduce and
clarify the essential characteristics of the heat flow by
comparison with known phenomena of the momentum transfer,)

HEAT VOLUME TRANSMITTED TO THE WALL
(a) Determination of the heat transfer from the
temperature gradients at the wall.

From the temperature rise at the wall the unit heat
rate at the wall follows directly at:

df\ cpoTo

-, (

e dy./o < > (66)
This equation,:- naturally general, is not affected by

the type of flow nor by the time or space variation of
To and (du/aT),

The rate of heat transfer Q over the area F is
obtained by integrating equation (66). If U 1is the
velocity and © the temperature difference of the fluid
with respect to the wall at the boundary of the friction
layer, the ‘heat flow is:

[] 3 A
Q = 2o 2 437, (67}

gs?)U
das/o0
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For an area over which ©, U, and (dUVdG)O are

sensibly constant it . follows_ further. that:

c )
AQ = _Spo " AW (68)
U
o)
Pr, i—\
\d%/0
where
AW resistance to flow offered by the area under consider-—

ation.

If a turbulent friction layer is involved Pro (d®ds)

in equation (68) is expressed by equation (38).

As to the permissible size of the area to which equa-
tion (68) can be applied in friction layers free to extend
unhindered over the surface (that is, the actual boundary
layers), @ is, in general, ths constant temperature
correcponding to potential flow, In this case the ad-
missible size of the nrea igs dependent on the adequate con-

stancy of U and (dm/da)o ©, and ®y, respectively,

of equation (38) -~ ®y and ®y are functions of the Re
of the velocity profile and so vary with the arc-length x) e

In flow through pipzss or channels, the Reynolds number:
for fully developed velocity profile is constant; but the
naximum temperature © decreases. TFor which reason equa=-
tion (68) holds only for pipes and channels if the flow
section is sufficiently short. In long pipes the tempera-
ture drop must be accocunted for, as shown in the next sec-
tion.

(p) Consideration of the hest loss in the friction
layers The heat stream Qy. flowing through a flow section
f is

b

Introducing the mean flow temperature Ty (that is, the mean
temps of the fluid mass flowing through the flow section)affords
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£ .
’ S Twgd .
T =
u
w, f

.or for constant values of op and oot

Q, = p cp Ty uy £

The heat volune given off at the wall over the arc
length (x—xl), is cqual to the différence Q = Qu - Qul

in the flow scctions f and £,. With tho postulate
that the profiles of the velocity and temperature are
siuilars Tu1/®1 = Tu/®, and uml/U1 = uy /U, hence

: Q=9 Cp ¥y Pp (Uy 8 £y = U O f) (89)

whore ¥, = T1,/0 and @, = up/U.

Eguation (69) can be utilized to check experimentally
the theory (similarly combined with cquations (238) and
(68))e All guantitics in equation (69) arc readily measure—
oblc, A minor complication is irntroduced in fixing B s
for wvhich a mixing chamber is rcquired.

Also ¥ can be evaluated from the thecorye For the

planc casesl
1

J

1
g % o dn &f ¢ dn (thrce dimensional
. = I friction layors)
P J e an

’

and Tor the flow in a pipe

1 1
J'g¢ (1-n) & n of 2 @ (1-n) dn

2. =2 - = . (pipe)
1 1 —
®, g‘ o(1-n) a n

In figure 11, ¢, 'is shown for the flat plate and
he pipe as a functioh of Pr for scveral Heynolds
s

nunbors, Tho effcct of the Reynolds number on 84 is
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* less than the effect of Pr, since ® (Re) appears in
the numerator and the denominator.

1 (1) Pipe-or channel flow.

In flow through a pipe or chanuel, the developnment
of the friction layer is limited and the strength of the
final friction layer is equal to one half the distance to
the opposite wall, -The nass of fluid moved in the fully
developed friction layer does not change, and the heat
given off by the fluid cean be calculated from the reduction
of temperature.

So, when no change in cross~sectionsal area is cone-
sidered cquation (69) gives:

Q=0 Cyp N u (9,-0)f (70)

On thec other hand, the heat transferred is also de-
fined by equation (87). Here, it nmust be noted that, be-—
caunse of the similerity of the temperatunre profiles the
percentage temperaturc drop - dT/T over the length x
is the sname at all distances from the wall., . Hence it

also applies to the mean tcempgasreture!

©,
In — = coastant (x-x1)

G
and equation (67) yields

(@,-0)
cp W
b W
Q = o (71)
©1\ /dm
In -6-} Prot--'-"
oy \g /0
.% where
\!
¥
3 3, given maximum initial temperature
I . : .
; w frictional resistance of the pertinent pipe or

channel length,

===
e
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(4% small 'temperature differences @;-© equation
(71) changes to equation (68)).

By equating equations (70) and (71), the reduction
of the mean temperature is:

®%> o* s
1 _—_— e .— -
N (@ % T (x-x3) (72)

Here the dimensionless variable a* defined in equation
(82) is introduced and s 1is the perimeter of the section
£,

For pipes s/f = 4/d for flat rectangular channels
s/f = 2/h (4 = pipe digmeter, b = channel width, h =
channel height, b>>h).

(3) Boundary layer flow.

) If the flow along a wall is not bounded, the friction
layer can develop unhindered, and while the boundary layer
increases in thickness in the direction of flow, the maxi-
mum temperature @ on the boundary of the friction layer
remains, in general, unchanged.
4

If the surface of the body hag the temperature © of
the fluid, then the heat flow density at a particular point
~in the friction layer is equal to p cy ©; . But the cool~
ing a2ctioa of the wall lowers the temperature by ®- T, The
"cold stream" through the section f of the boundary layer
at the point in question is therefore:

£
Q:QCPI(Q—T)udf (74)
9]

where

Q heat volume absorbed by the body surface up to the
particular point =x 1in unit time.

By introducing the dimensionless value of the mean
flow tempecrature, equation (74) gives:
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-

L Q=p ey ®uy (-8 )f (78)

3

the value of +#, for any given velocity profile is
approximately defined by the theory.

St

P et e TS

At constant maximum velocity U the heat absorbed
over a length x-x, is fixed by tlhe increase in section
of the boundary layer thicdkness in the direction of flow,
since ®y and ¥, vary but little (¥, increases and

(1~#4) decreases with the - Re of the boundary layer).

P T
v
*

. ‘The effect of Pr on the heat transfer is expressed
by the factor (1-~%,). With increasing Pr the tempera-

ture profile becomes more blunt-nosed and +$ approaches

unity. -

From the momentum lost in the boundary layer relative
to potential flow the flow resistance W of .the body can
be written in a similar manner to that used for the heat
diffusion Q

W= p Uuy (1-0,)f (76)
) £
Hercin @, 1is defined by ©, ©, f =‘/‘”\02 df., The differ—~

ence between the equations lies in the velocity U in
potential flow which, in general, is not constant like ©
tut varies with the arc-length x.

But the analogy between equations (75) and (76) is to
be carried out for a surface area over which ©® and U

are constant (a pressure drop is to be av01ded) It
f-f; is eliminated, and if #,; and  ®; are the mean

values over the particular arc length:

) Q
1-®y,

1=,

‘ AQ C) & (77)
$ = CPL U \

Here the heat transfer is expressed by the heat loss in the
friction layer, while in equation (68) it appears in terms

of the temperature gradient at the wall. Comparing eguations
(68) ana (77) yields:
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'ﬁu = 1 - (78)
Pro H)
das/,
For Pr'! = Pry, = 1, (d®/ds), = 1 and hence #y = %,

which is due to the similarity of the velocity and temper-
ature profiles for zero pressure drop. Pr, (d@/dﬁ)o ine

creases with increased Pr and 9y > 1.

For the rest, equation (78) is easily verified for the.
simple friction layer (equations (40a) to (41)).

{(¢) Heat transfer coefficients.

The heat transfer coefficient o is defined by
Newton's law of cooling:

AQ = o (T-T,) AT (79)

in which the heat transfer per unit time through the
bourdary area AF 1is put proportional to the temperature
difference (T - Tg) of the fluid and of the wall,

Originally the proportionality factor o was thought
of a2s a pure material value comparable with the thermal
conductivity and in the older literature was designated as
the %outer thermal conductivity", With the increase of
experimental data, it became more and more apparent that
the flow phenomena adjacent to the wall contributed greatly
to the heat transfer and varied in a complicated manner
therewith. Hence the cooling law is only apparently simple,
thaot is, when the simple form of equation (29) is maintained
2ll of the problems of heat transfer by convection are cone=
densed in the factor.q.

This naturally does not help to clarify the physical
phenomena and later resesrch has produced other axioms which
throw light on the mechanism of heat transfer., For the prac-
tical application of research data it is, however, advantageou
1f complicated relations can be expressed by a single coeffi-
cient, the value of which is obtainable from graphs or tables,

.
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In equation-(79) the fluid temperature T remains
undefined, = What temperature between .To and Tpax to

use is purely a matter of expediency. Only one point is
necessary, namely, that the fluid temperature employed is
adequately defined, The reference temperature must be
relatively constant over the area undér consideration.
Since this condition holds true in all cases only over a
small area AF -the heat transfer coefflclent must be
defined as local quantlty. . .

In the karlier derivations the heat transfer coeffi=-
cient was based on the mean temperature Tp.

The calculation of a heat transfer coefficient

ap = qo/T by means of equation (66) requires an express-

. T du

ion for 2 (du) from the theory, if T, 1is referred to
Uy (dt),

the mean velocity wup, Such an equation cdn be obtained
from equation (37¢) after forming a mean value of the
velocity and the:temperature over the section of the
turbulent region. Since this section is not much smaller
than the total flow section it can be approximated to:

Tm /4 -u, f1ln Pr't
Pry 200 ._g\ ~1l+e +u (Prt - 1)+ Ub~8a ( UL RN (38a)

Upn \dT/0 m u, -'1 1

\ Pr!

This equation applies so much more as the boundary layer
is thinner, that is, as the Reynolds number is greater,

Neglecting the term e, and putting a, = Uy, and
A, = A, equat10ns(66)'and (38a) give an expression for
q g b
ap = q,/Ty which is identical with the Prandtl formula
equatlon ?l

‘The mixed mean temperature Ty is‘usually employed
rather than the mean temperature Tp which is difficult
to measure., This requires an equation for ay = qO/Tu

from the theory. Here a difficulty arises. Proper treat—
ment of equation (37c) affords a formula for (du/am)

in which the mean temperature of the turbulent region is
the reference temperature. But then the equation includes
& mean square value of u over the turbulent section in
Place of the mean velocity across the section.

J
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By "approximation the mean of the squares of u
can, 6f course, ‘be replaced by ™ (particulariy at

high Re) quﬁ as Tu ~can be roughly approximated in—
stead of Tpe- But this also means returning to equa—

tion (38a), that is, the Prandtl formula.

The difference between Ty and Ty played no'part,

however, in the earlier considerations. -In view of the
experimental difficulties, this difference usually lies
vell within the experimental error,- Further, the omis—
gsion of the transitional layer and the postulate of in—
variable material values accounted for larger discrep—
ancics than this temperature difference,.-

In developing a theoretical equation for qO/Tu
which is in accord with exzperience, ten Bosch (refer—
cence (17)) proposed a semi—empirical equation, The form
of the Prandtl equation was followed,-  but the constants
were replaceé by variables whose nagnitudes were deter—
mined as a function of Re and Pr from measurements
available, the resulting equation being?

do 0.125 §

— = (80)
P cp wp Py 1+ B Re 0«1 py=0-185 (Prg—1)

(for heating P ~ le4 for cooling B ~ 1l.l2., Pr refers
to the layers near the wall. In the remainder of the form—
ula the properties are fixed at the mean flow temp.)

) In connection vith the theory of the present roport,
the heat transfer coefficient is most appropriately expresse
ih terms of the maximuir temperature ©, since only this

" tenperature can be used as a refercnce quantity without
reservation (see the derivation of equation (38))sy,.The,
maxinum temperature has in addition the advantage thy

it can be measurced without the use of a mixing cup. (In
cases where Ty car be measured more reliably than ©

2
©® maybe calculated as Tu/sﬁc) Honce the definition

e o8 o0
& A F

Q

3)
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or in nondimensional representation byrdividing by

Po ®po Um:?

SN e _
a = 2 == qoh — (81)
Po.Cpo Um @ & F  pgulyg Uy O

T J

In the technical literature the heat flow 4, is

usually referred to p cp up Ty (see equation (80)).
Further, it is customary to introduce the Nusselt number

Fu = q, &/ T,

in which gq, is referred  t9 as the Heat flow A T,/ de

These two dimensionless heat - factors are related as
follows:

do _ Fu  Nu _ o*
P Cp Up T, Re Pr Pe su
where
cp u, 4d
- Peg '= P°p "m = _ Peclet number
A
N The older Nusselt number had proved itself in the

representation of cases where the heat transfer phenomena
were not to be separated, But, for those cases where
statements can be made relative to the local heat transfer,
and where g, can be written directly in terms of

A (aT/dy), 1t is proper to refer the known gquantity a4,

to the product p Cp u T as will be gseen in subsequant
derivations,

In certain_cases it may be desirable to compare the
two dimensionless groups. 3Buot, in general, both Nu and Pe
are superfluous i¥.-a well founded formula for the dimension=-
less group qo/p Cp. & T is available.
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In order that q./p, Cho U ® need not. be repeated
unnecessarily the symbol o* has been introduced, The
dimensionless factor o* refers the heat volume g

transferred to the wall to a heat volume p, cp Uy e

flowing past the wall, The njmber a«* is, therefore, a
kind of "efficiency" of the heat transfer, Ordinarily
a* is very small (10-2 > o* > 10~5, see fig. 13) so
.that only & small fraction of the heat becomes useful
faoar transgfer.

Since a* ~represents a Yocally defined duantity
as well, equation (68) must be applied for the subsequent
treatment of equation (81). Then equation (19) in con-
junction with @y = uy /U give

ag CDm

8 Pr <Q9
o \d3/o

This formula is as general as equation (68) and the
definition equation (19). It is therefore applicabdle,
independent of the character of the flow.

Formula (82) had already been utilized to introduce

a* in equation (72) in order to establish the tempera=~

ture drop which accompanies pressure drop. On the other
hand, equation (72) can equallj be used to define a¥.

: O\ F -
a®* = 9. 1n (—l - .
u 64/ p o (723)

which for a sufficiently short section affards
) o {
-0

U S)

(72b)

B |y

Thig equation is, with regard to equatlon (70) 1dent1cal
with the deflnltlon (equation (81)) for a* o

For'turbuleﬂt;ﬁriqtion Iayéré the.nPro (dqyda)o from
equation (38) must be introduced in equation (82). With



3
i
E
I

NACA Téchnical Memorandum No. 1047 55

oF u* . : -
% =2l and % =% and assuning opo ~ Cp¥ ~Cpt

" (which is permissible)

0.125 { o, Aq/a

- * [ In(PrzAg/A
l+e,+a ﬁ(é_q PI'-L"'1>+ (b=2a) -u% ( n( harry q./ ) -1
U \aA U \1-A/44 Prg

where

Ey gy U/u* are known functions of Re

In equation (83) all variables and coefficients are
known except a, b, and A /Ao~ From flow measurcments
a = l.5, b = 15,5, The vglue of 1,55 may be used since
b ocecurs only in the term referring to the transitional
layer, But the assigned value of a - is very uncertain.
Hence o and A /A must be determined from measured
values of a¥ according to equation (83).

Admittedly there cxists a certain difficulty, involving
two unknowns but equaotion (83) indicates that Aq/A scarssly
affects o* at high Pr, and a has dut little influence
on o%* at low Pr. Hence a can be from heat transfer
mensurcments at high Prandtl numbers and AQ/A from
similar measurements at small Prandtl numbers.

e

FPiure 12 illustrates the ‘measurements by 3B%hne
(reference (18)) and Morris and Whitman (reference (19))
at high Prsndtl numbers and the measurements by Rohonczi
(l.ce) at low Prandtl numbers compared with predicted «*,
For the calculation a = 2,2 and Aq/A = 1 were chosecn
to achieve the best correlation of predicted with exper-
imental results., The spread of the test points at high
Pr is understandntle because of the difficulty of mecasure-
ment at high Pr and the fact that non-isothermal flow
theory is not yet complete,

For constant or slightly variable material values only
one value of Pr enters in equation (83), For this case
(fig. 13) shows a¥f as a function of Pr! at several T
Reynolds numbers. With the %elp of «a* established by
equation (83), the heat dif.usion AQ of a given area
AT can be calculated,
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AQ=p, Cyy Uy @ A F o™ "~ (e8a)

This is a form derived from equation (81) whlch 1s
another form of equation (68). -

The variable o® is a peoint function and holds only
over a small area. The ared must be chosen just large
encugh so that © 1is sensibly constant over it.

Equation (68a) .cannot be used for long pipes in
which the temperature changes materially. Here the heat
transfer may be computed by means of equation (70) if
the temperature reduction (©®;-@) in the pipe length
under consideration is known. The end temperature ©
can be predicted from equation (72) when the 1n1t1al
temperature B1 is glven.

As. is seen the variadble #, likewise plays-a role.

But this is only true for long pipe lengths for here the
heat loss in 'the friction layer is decisive. ZFor short

pipe sections %, does not enter (this is also the region
in whHich the conductance 'is applicable) (see equation(68a)).
Then the temperatures are practically ccnstant along the
short surface length, and the heat diffusion AQ is given
by equation (68a) as a function of +the temperature gradients

at the wall, which fact is included in equation (83) for
o* ’ i

139
o

Translation by L. M. K, Boelter,
University of California,
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Figure 1.- Universal velocity distribution near the wall.
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Figure 3.- Influence of viscosity changes on the
velocity distribution near the wall.
for a given wall shear stress.
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Figure 11.- The dimensionless mixed mean temper-

ature 9y = Tu/Tmax &8 a functioh of
Pr' with Re as the parameter for both pipe and
flat plate.
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Figs. 4,5,6
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Figure 5.- Temperature (§) as a
function of velocity
(¢) for flow through pipes and
along plates with Pr! 29 the
parameter, Re = 4 x 10%,

Figure 6.- Temperature ($) as a

function of n = (y/r)
where y = the distance from the
wall for the Pipe with Pr' as the
parameter and the velocity dis-
tribution ® 2 § at a flz.t plate
for Pr = 1. Re = 4 x 10
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Figure 12.- Heat transfer coefficient o’ in tubes from the
measguremente of Biine, Morrie and Whitman and

Rohonczi compared with the predicted values from equation
83. (a = 2.3, Aq/A =1.1).
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Figure 13.~ Heat transfer coefficient o® as a function of Pr
from the theory with Reynolds' number as the
parameter (properties invariable, a = 2.0, Aq/A = 1). Prandtli's
redicted results are included for a = 2.0 (gaahed) and a = 8.8

dotted).






