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N S

PERIODIC HEAT TRANSFER AT SMALL PRESSURE FLUCTUATIONS*

By H. Pfriem -

' SUMIIARY

' The effect of cyclic gas pressure variations on the
periodic heagt transfer at a flat wall is theoretically
analyzed and the differential equation describing the
process and its solution for relatively small pressure
fluctuations developed, thus explaining the periodic heat
cycle between gas and wall surface.

The processes for pure harmonic pressure and tem—
perature oscillations, respectively, in the gas space
are deseribed by .means of a constant heat transfer coef—
ficient (ay) and the equally constant phase angle (€g)

between the appearance of the maximum values of the pres—
sure and heat flow most conveniently expnressed mathemat—
ically in the form of a complex heat transfer coefficilent
(ae, equatlon“ 1°)(?ON Any eyc¢lie pressure oscillations,
can be reduced by Fouriler  analysis to harmonic oscilla—
tions, which result in spécific, mutual relationships of

heat~transfcr coefficients and phase angles for the dif—
ferent harnonics, .

The heat transfer betveen gas and cylinder wall of
recinrocating engines of any tyoe.ils important for their
functioning and dependability in servicoc. The amount of
heat transfer depends upon a numbexr of factors, such as
the geomobtric shape, the gas and wall temperatures, the
gas velocity, and so Torth. The present investigation
deals with the effect of a periodic compression of gas on
the periodic heat dtransfer, Proceeding from consideradly
simplified assumptions, tho extent.to.which the heat of
compression developed in the boundary layer immediately
-adjacent to the wall shrfacc atfects the smount of-heat
passing periodically into the wall is indicatecd.

#Der neriodische Wirmelbergang bei kloinen Drucksphﬁankungenﬂ
Forschung auf dem Gebiete des Ingenieurwesens, vol., 11, no.
2, MHarch—April 1940, pp. 67=75.
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INTRODUCTION -

The internal heat transfer hetween gas and ecylinder
wall in reciprocating engines especially of the internal
eonbustion type is of primary importance for their func—
tioning and dependability. Owing to the cyclic operating
method on all reciprocating engines, the internal heat
transfer varies with respect to time, hence, nonuniformly,
Two substantially different time intervals must be iden—
tified during a complete working cycle: namely, the heat
transfer in the cylinder, while pressure balance exists
with the ocuter atmosphers, and the heat transfer with
cylinder closed (reference 1), At pressure balance with
the outer atmosphere the internal heat transfer 1is large—
1y conditional upon aerodynamic points of view, During
the tinme interval in which the operating cylinder is
closed, the heat transfer is, in addition to the flow
processes, considerably affected also by the compressicn
or cxpansion and the combustion of the fuel,

The following deals primarily with the effect of
cyclic compression on the periocdically changing and steady
heat transfer. In consequence of the compression there
occurs in ocach element of the gas space the heat of com—
pression which in part serves to raise the gas tempera—
‘ture (internal energy) of that space clement and in part
is carried off through the cylinder walls, Since this
heat of compression originates in the same way in the
adhering boundary layer directly adjacent to the wall
surface also where it is immediately removed by the cool—
ing effect of the wall, and effect of the hzat transfer,
especially in high—speed reciprocating engines must be
doefinitely expected., The subsequent consiuerations pro—
cced from gimplified assumnptions, so that at first only
" the anticipated effect at low, periodic compression can
be computed. A more accurate calculation later cn pro-—
vides the details of the process at higher compression.

The first of the studies dealt with two—dimensional
toemperature fields, where the boundary layer thicknesses
in guestion are in general small compared to the curva-
ture of the wall surfaces (so far as corners and edges
are ignored). Then, if a very thin gas film alongside
an isotherm within the boundary layer is considered (see
fig. 1), the thermal processes taking place therein can
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be described by the first law of thermodynamics., Visu—
alizing this very thin gas film as having such a large

section that it momentarily encloses the unit weight of
vhe ges, the first law readsby way of example:

dQ = di — AvVAP (1)

where

Q (keal/ke) heat input introduced per unit weight of
thin gas film

i (kecal/ke) heat content (enthalpy)

v (m®/kg) specific volume

P (kg/me) absolute pressure in the gas film
A (kcal/mkg) mechanical equivalent of heat

The heat volume dQ remaining in the thin gas film fol—
lows from the difference of the heat volume introduced
and removed, respectively, by thermal conduction, if the
transmission by radiation can be ignored.

(y 25

dQ = —F AgdT =FA A — ; 4T

Q 4 \\ aX/
where
F (n?) cross—sectional area of the gas film

~
3¢\ | keal

Lg = —A )\EE/ Liﬁﬁ?} the difference of the heat flow

immediately before and behind the gas film

kecal
A [—ﬁ%E} thermal conductivity of the gas in the film
m

ﬂ(ﬁ) increase of temperature of the gas film against a
zero point chosen at random

x (m) position coordinate perpendiculsar to the cross—
sectional area of the gas film
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T (h) time
The cross—sectlonal area F of a gas film of small
thickness Ax 1is found, with the assumption, that it

shall enclose the unit weight of the gas, from: F Ax = v.
At disappearing thickness of this gas film, the amount of

heat introduced is
a(xfﬂi\
dx /
iQ = v ———— 47
. 3x

The variation of the heat content of the gas film is on
the other hand: di = cp d+

where

cp(kcal/kgOC) specific heat of the gas at constant
pressure

Posting these relations in the equation (1) affords:

L :
3 (x 2 3

S+ — 4T = cpdﬂ—-AvdP

v

The above developments retain thelr validity, even if
the gas volume enclosed in the considered gas element is
assumed arbitrarily small. Therefore, the above equa—
tion. remain® correct for each smallest gas particle
(mass particle),.so far as. it does not-solely enclose
individual molecules, Transforming this relation, ap-—
plicable for the present to the mass point, by means of
its velocity w = dx/dT in heat flow direction into the
usual trilinear coordinates, and assuming equal pressure
in all gas pariticles we get:

c b( EEL)
P od o _ ox ar
= l:—a—-; + v -5; } = ———é;:—— + A 3T ( 2)

The form of this differential equation of second order
is that of the conventional differential squation of heat
conduction with convection flow and three dimensionally
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divided. heat:sources. The first term+*on the:left side in
this ddifferential equation.defines the amount of heat re—
guired at instantaneons temperature changes (due to the

‘heat capacity of a gas-particle) while the second term

represents the.heat volume transported. by the motion of
the £as partlcles dn the direction of the temperature
gradient.— that is, the. heat transfer by convection in the
gas, The first term on the right side.of %he equat1on
represents the alfference in heat volunme 1ntroduced and
removed, respectively, of the gas particle by pure heat
conduction, while the second term gives the amount of heat
released by compression, It is seen that this heat of
compression occurring in the.space element independent of
the gquantity of heat removal is solely dependent on the
nomentary pressure variation.

Subseqguently, solutions of this differential equa—
tion are developed for the specific ecase of low cyclic
compression in a gas sPace directly in front of a flat
Wall. ' .

EFFEGT OF LOW CYCLIC COUPRESSION ON THE PERIODIC HEAT TRANSFER

Pressure fluctuations in gzas at rest (infinitely-
thick boundary layer.)- In the simplest case of a low
cyclic pressure fluctuation compared to the absolute pres—
sure of gas, the gas properties can-be regarded as inde—

.rendent of. the pressure and the temperature.  Moréover,

the velocity “w perpendicular %o the wall surface:can be

econsidered as dlsappearlﬂgly small. " The egquation (2). can
. then be simplified to.the’ following linear dlfferentlal

equation of the second order:

o4 o ’ (‘jpmQ + Avl ar

80 L, 8l AT gP (3)
oT T yx® Cp; 4T
where
_ AV (me e s .
a = o= [E? thermal conductivity and the subscript 1
. L - .o '

indicates the material properties of
. the gas, the subscript 2 those of the wall

Since arbitrary periodic fluctuations can always be. re—
duced to harmonic variations by series development ac—
cording to Fourier, the ensuing considerations are re—
stricted to these.
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‘Theé temperature field in the gas space.~ The first

solution concerns. the following problem: Visualize a
large ‘ghs space in front of a relatively thiek wall with
flat surface ‘and in'this”sbpace harmonic pressure varia—
tions, To be found is the periodic heat transfer at the
wall . surIace for any requlred frequency of pressure
.fluctuatlon, when’ the gas is practically at rest or when
a Very tnlck laminar boundary layer exists at the wall
surface. The pressure oscillation is to be presented by
the following equation*:

P =B, + 4Ped¥T o (a)
where
P, (kg/me) mean time value of the pressure
AP (kg/mé) amplitude’of the pressure oscillation
w (l/H) natural frequency of the pressure oscillation
J~ fictitious unit

The subsc¢éript C signifies that the considered quantity is
“conplex.

With the origin of the place coordinates pointing
‘toward the wall and at right angles to its surface, (see
fig. 1}: A partial solution.of the differential equation
(2) for a periodically changing temperature field in the
"gas space before the wall. (See reference 2 for principal
data for the development of this solution,)

B = A V]:_.é,_g._ eij [:l —_ 1_:—__;_12_'._ e“U']_X]

whence with the gas equation Py = RT

2, = £ AP m, JWT[I_ 1 = P
R N

erx] (5)

*Cf all the complex solutions, the rcal or imaginary part
by 4dtsclf prcsents momentarily  a physically possible solu-—
‘tidon., Tho Tollowing calculations arc workcd out.largely
complex by utilization of tho conventional method (see ref—
erence 1)j; but they can also be worked out real without

”
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Tl_(?KJ mean, absoluue temperature of the gas
= .. Pyg - reflectlon number df the temperature hgat waves
‘In éddit;on. ,,;~f~. o _
Cr, ' ) gw T e - b, = Dby 5a)
K:Et; AR:CD Cv, / (1+J) /'é"‘é":, pl“?:'b +_b' - (‘,a
1 2
where AT |
b =N e ¥, (kcal/mahl/aoc) heat stress capacity

PR i - - o < - - P - ' - - .
The £til1l arbitfé?& zero point of the increase of tempera—
ture of the gas is chosen equal to the momentary mean
value -of the gas temperature at the particular point.
The correctness o; “hie solution can be readily checked
by introduction 1nto'uue differential’ equation (3).

The temperature {ficld in the wall.* Sirnce there are

no heat sources_within the wall, the temperature field
obeys the differential equation of heat conduction for
solid Dbodies:

5% 07t
TT 5 oa, T (6)
oT i b

where

' O - a- . ) .

t (°0C) increase of .temperatvre of the wall relative to

its momentary mean time value

Its solution in ‘the ‘present case is:.

Ay AP | - A
_ 1 QdWTL T Pap W x_ K -1 L2 JoT 1+Pip W x (7)
1

- e
Cp, 2 .ok P

It iIs easily proved that the limit conditions at the wall

surface are actually fulfilled by the equations (5) and

- . . T ) as
(7Y, ds for x = 03 95, = tgy 'ond Ay 'a';éc'> s <ato

(Continucd from page - u)_eSﬁec1al difficulties, with some
larger ulculatlng -effort, . For the -cakculation with eonm—
plex values see for example B, H. G. M8ller. Treatment of
oscillation problems. Leipzig 1937.




8 NACA Technical Memorandum Xo. 1048

Healt flow and temperature difference between gas and
yall.— Having seen from the foregoing, that the equations
(5) and (7) actually represent the solution of the problem,
the periodically varying heat flow g any chosen point in
the gas space or in the wall can be predicted without dif-—
ficultiés. 3By way of exanmple, equation (5) affords for the
g£as Snace:

s k-1 AP . 1-p ,
c N T T
Qo = =My 3T = 3 T,ed® Klwl——iyig-ew}y (8)
- 1

with ¢ indicating the heat flow at point x in the gas
space.

According to equations (5) and (7) it also affords
the momentary difference between the temperature e OF

gas at great distance from the wall and that of the wall
surface tc, (x = 0) at

_ K—1 AP o T 1-—p13
'Gcoo""tco—" " E‘Tl J S (9)

The heat volunme de, rvenetrating periodically in the

wall surface per unit time per unit surface is according
to equation (8):

; 1 - p . .

K —

qc = __.1_ _A_ED. Tl —_—3t2 bl ‘\/J'UJ e']wT (10)
0 K P, 2

Thus with equation (9) and +/j = od (m/2)

qco

= v,/ 0 eI (/%) (4 ) (11)

the heat transfer coefficient.— Defining as in

steady temperature fields, a heat transfer coefficient
for harmonically varying processes according to rela-— -
tions: q, = ag(s; — t.), a comparison with equation (11)

furnishes the complex heat transfer coefficient e - de~

scribing the pericdic heat transfer in the present in—
stance in the form:
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B cx.c.,. = b, Jo eJ'(-TT/“), = Gy edea . (.12)
from which the absvlute value 'dw 'of this cbmpiex heat
transfer coefficient ae for the freguency w - of the
pressure oscillation at: )

ay = b,V ' (12a)

and its phase angle

€ = /4 (12b)

It is plain from equation (12a) that the heat volume
periodically transferred to the wall during harmonic
pressure oscillations 1in-a gas at rest is proportional
to the root of the freguency of the pressure oscillation

and %o the heat stress factor b, of the gas. The maxi-

num value of the heat flow hereby lies independent of the
Irequency of the pressure oscillation, always by the

amount of the phase ongle €4 = m/4 ahead of the maximum
value of the temperature difference. The two phenomena -
are not summarily predictable on the basis of the experi-
ence vith steady heat transfer. But they find their physi-—
cally plain explanation in the fact that healt sources exist
also under the effect of compression in the gas films ad-
hering directly to the wall surfaces, the heat of which,
owing to the great capacity of the wall, is immediately
carried off even during formation. The yield of these

heat sources, thet is, the compression heat produced per
unit time, is proportional to the frequency of the pres—
sure oscillation. But, since on-the other hand, the rate
of diffusion of heat sources is only proportional to the
square root of the frequency, an increase in the oscilla—
tion frequency number is reflected by a continuously de—
creasing part of the gas space before the wall subjected

Yo .thelr heat' dissipating effect. As a result the amount

of heat actually transmitted per unit time under otherwise
identical conditions is proportional to the sguare root

of the fregquency; correspondingly it affords the same re—
lationship also for the coefficient of heat transfer.

The advance by the phase angle w/4 of the heat
transfer in respect to the temperature in the gas core
is lastly due to the fact that the greatest yield of the -
heat sources . in the gas extending directly up to the wall
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surface, that is, the monentarily greatest heat of com—
pression per unit time, coincides with the steepest pres—
sure rise, and hence the temperature oscillation in the
gas core leads by the phase angle n/z.

Since gas films even at a certain distance away from
the wall surface still contribute to the heat flow and
these portions need time to reach the surface, the maxi—
nun value of the heat flow must in any case lead by a
phase angle ranging between O and m/2 relative to
the temperature oscillation; the calculation proves this
by the phase angle €4 = w/4 independent of the fre—
quency and the nature of the material. To simplify the
identification of the periodic heat transfer between a
fixed wall and a gas at rest in froant of it which mani-—
fests harmonically variable, small pressure oscillations
the two gquantities o, and € are sufficient.. Quan—

- tity @y multiplied by the greatest value of tem—

perature difference, gives the amplitude of heat flow

and €, is the phase angle, corresponding to the time dif—

ference between the -maximum value of the harmonically
variable temperature difference and that of the heat flow.
These ftwo guantities are most conveniently expressed in the
fTorn of a complex heat transfer coefficient e, which

while affording no new~physi0al knowledge provides a
suitable representation,

With the application of two real quantities ay
and €5 for the description of a harmonically variable

heat transfer, the ratio between the usually not coinci-—
dent maxinum values of heat flow and the temperature os—
cillation, as well as their relative temporary displace—
ment ¢t = EQ/w is established. The attempt to express
- these heat—transfer ratios by the. conventional representa—
tion with one real value and concurrently existing in—
stantaneous values, results in spite of the continuously
finite nagnitude of the passing heat volumes and the tem—
‘perature differences in heat-transfer coefficients, which
fluctuate between +°  and —~® during a period,
Nonharmonic temperature — heat oscillations can be
directly reduced to harmonic g¢nes by Fourier analysis,
each upper harmonic affording a new o, and. €5 which

in the present instance of cyclic compression can be
solved by means of equations (12), (12a), and (12b), re—
spectively. It is plain, that each upper harmonic



NACA Technical Memorandum No, 1048 11

manifests the same phase angle ¢€g = w/4 and has a
greater heat—transfer -coefficient oy corresponding to

the root of the multiple of its freguency relative to
the fundamental oscillation,

Numerical example and range of validityv.— The prob—
len illustrating the orders of magnitude is as follows:
Harmonic sound waves with a frequency of 500 Hertz strike
a flat. wall placed in atmospheric air. Owing to the
relatively great wave length a pressure gradient perpen—
dicular to the wall surface is discountqﬁ. With a heat
stress factor of b, = 0,08 kcal/m?h1/270, according to

equation (12a) for air under normal condition the magni—
tude of the heat—transfer coefficient, is:

ay = 0.08 ¥ 500X 27 X3600 = 8X33.4 = 267 kcal/mn °C

This heat—transfer coefficient caused by the compression
alone in air at rest is therefore of a magnitide sbtain—
able by steady heat transfer in gas only at very high
velocities but not with gas at rest. ThLis fact itself
is indicative of the great influence of the compressicn
on the periodic heat transfer in piston compressors and
heat engines,

To judge the practical admissibility of the assump-—
tion regarding the laminar flow in the gas films directly
in front of the wall, the depth effect of the wall in—

fluence upon the compressed gas- is analyzed. The gis
temperature, at a distance x 2 varies according to

equation (5) by less than 1 perceut from that at very
great distance from the wall, if

1-0P

= — : ) . = 1_p
. 21 _49 ng!g‘ 0.01, that is, when E % =& 1n O.OSLzz ()

However, according to equation (5a) the approximation

P,, ~— L+ 2Db;/b, is admissidle for the reflection

factor pP,, at a metallic wall for which always by>>b; —
On .
thus for an iron wall, for instance b,= 200 kcal/meh”!.B c

for atmospheric alr against iron:

o _1450.08

S S5 = — 0.9992 = — 1.
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For atmospheric air the temperature conduotivity factor is

a, #.0.07 n2/h; hence for a frequency of 500 Hertz

4 0.07 -3
g> in 100 =0.3656X10 m
500X 2 X3600 .

that is, the wall effect is in many practical cases con—
fined to the still—existing boundary layer, even in
larger flows. This proves the practical admissibility
of the simple assumptions of these developments for many
cases, But, in order %o be able to make reliable pre—
dictions at substantially smaller oscillation numbers

as corresponds to customary rotative speeds in engine
design the considerations are extended to include the
case of a boundary layer of finite thickness,

Pressure oscillations by turbulent sas core (finite
thickness of boundary layer).— In the following calcula—
tion the actual boundary layer flow {which in general
shows no sharp delimitation agalinst the gas space and also
is not always completely laminar) is replaced by a corre—
sponding, idealized boundary layer, manifesting a pure
laminar flow parallel to the wall surface and an expressed
sharp boundary toward the completely turbulent gas space,
The idealization is reguired only in consideration of a
simple calculation; 1% furnishes no essentially differ—
ent results from the practical conditions, since similar
conditions prevail even by partly turbulent Dboundary
layers As a result of the assumed complete turbulence
in the gas core the temperature in it will always be the
sane at any point; hence it must always be lower than the
adlabaulc compression temperature by reason of the heat
removal through the boundary layer.

Temperature field and heat flow in boundary layer.—
The temperature field within such an ideal boundary layer
of constant thickness is visualized as being composed of
two portions, as follows. The first portion is produced
as the result of the temperature variations in the turbu—
lent gas core, purely on the basis of the heat conducti-
bility of the boundary layer visualized free from heat
sources and can be presented by the following equation:

Ial(l) ® ije—(8+X)w1+4ﬂze*{6—xy¢1 2) JWTQ_§WI+F329+XW1
C = e = e
1+ plee—aawl : et Vi1 4o Ee—Swl
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v

where

® (°c) amplitude of swing of the temperature in the
turbulent gas space .

8§ (m) thickness of the idealized boundary layer

The second portion is the result aof the heat sources
distributed in the boundary layer with the stipulation
that at point =x = —8 the funection is always zero and
adapts itself at the wall surface x =0 to its reflec—
tion conditions. o7 T ‘

. O _edWT ‘ coow 3
&0(2): 0 l+'PlBé_25Wl—l_p12‘e eX\Ul__e_(gg.;.x)\le}
l-FPlze*Eéufl 2 L

_18—(8+*{)b1 + P, (6—-}:)\\!1}]-—854:{ S0

vhere

®, (°%0) amplitude of swing of the gas temperature at
pure adiabatic compressioxn.

A comparison of this relation with equation (5) gives for
§—>c -the magnitude of -the anplitude ©, at

o, - 5=l g AP
K Pl— ‘
The actual temperature field -in the boundary layer is ob—
tained as the sum , of these two portions, where the momen—
tary time average of the gas temperature is again chosen
a8 zero point of the increase of temperature.

Goed®T 7 1-p ;
1'}0 = BB\L 11 + p _‘2 5\]"1 — 5 12 [e'&wl—. e—(?&"‘X)‘“l]

-—<1~é%>-¥[e;(5+k)wl+P;ee~(5—k>w1]}9

v

0 | (13)

|
(o]
A
W
AN
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The temperature oscdllatioh at potnt x #-«§ <follows.
at: - - .

(sc)mg = @93 x 2 —5 . © (13a)

A

The gas temperature directly at the wall surface x = 0O
is on the other hand: :

jw T

—a8V¥ )
1 + plee 1 ‘ R
- <1——@—> zf“’l} (13b)
E‘)0

In a'ddition the heat flow within the boundary layer is
reprcsented according to equation(lz)by:

JwT g -
. - - 7\16\% _9ge leJw{ 1 Pm[eﬂwl + e~ (@8 +x )W, ]
-C dx 1 + plae—fi’S\L’l 2
- <l —@@—> [e“(a )by P, 5 e—(5 _X)\Ul:]}i - 82x 0 (14)
o}

whence the heat volunme transferred to the wall with
x =0 is:

- ,
_ 0,09, juw 1 Pys
- . —2 8V 2

1L +P;.e !

(qc)o {1+ 3—35\1’1 .

- <1—(—%> 2e‘5‘1’1} (14a)

The heat volume removed from the turbulent gas space is
with x = —§ according to equation (14):
@Oeijbll/jw r

'i(l—-Plg) e— 8V 4
1+ 9126“26‘w1

(qg) —8
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 Temperature field and heat flow in the wall.— Finally
in conjunction with equation (13b) the temperature oscilla—
tions in the fixed wall can:be represented by

r
v

@,e9%T 1+
te = ) - 291_2_{1 + =R,
—2

R T T e .-

4 ® -8V }. —xV¥
— —_— — 1 2 e >

\1 ®o> 2 e e i x 20 (15)

whence the heat oscillation at the wall surface x = 0:

(00 = 380\ _0edT b, Jiw 1« pla_f]-+ 260,
c’/ 0 2 ax/o 1 _ S\U 5 < L
+ P, e7 2%

— <1 - g—;) 2 e—swl} . (15a)

I+ is plain from equations (13) to (15a) that all boundary
conditions at points x =0 and =x = —8§ are Tulfilled.
Herewith the equations (13) and (15) respectively, repre—
sent the solutions of equations (3) and (6) for the given
problem, It merely involves the determination of. the
temporarily unknown amplitude © of the temperature of
the turbulent gas, space. ‘

The temperature oscillation in the turbulent gas
gore.— The magnitude of this amplitude of the temperature
in the turbulent gas core is found by application of the
first law of thermodynamics corresponding to equation (1)
to the total turbulent gas space. Hereby is:

89 L (q,) O¢vy v lae)-s a1 _ C' 9(%e)uy
da de’-s Vg s ' oaT P2 ST
where

Ot (m®) "total heat—remoédving surface of the turbulent

.gas8 gpace

Vg (n®) volume of the turbulent gas space
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-1
“

s = Vi/0y (m)  substitute layer thlckness of the turbu-—

- o lent gas .8pace. - .o
In conjunction w1th ecuations (13a) (14v), éhd (5)
there is thus afforded after a few e;gmentary transfor—
mations: o

-t ._— ’ .—,6'_W_.
<? - -—> (1 = Phg)® 77 (16)
_38\111)_,_3\1, 1(/1,-}' plze—'za\h 1)

12

From this it 1is readily apparent that the ﬁémperature
oscillation of the turbulent gas core is intimately re—

lated to &Y, = N/*”“ - that is, to the thickness §

- ; . ;.

and the temnerature conduct1v1uv factor aiﬂ of the

voundary layer as well as to the natural frequency

of the oscillation.. Moreover, the substitute film thicl—
ness s of the turbulent gas space is also of great in—

fluence. Equation {16) then affords in general a complex
value for certain conditions. This signifies physically

that the temperature oscillations in the gus core due to

the heat diffusion. does not take nlace in the same phase

as the pressure osdillation. :

The heat transfer onto metal walls.— At the trans—
mission of heat between gas and metal wall the reflection

factor p,, = -1, whence equation (16) gives with suf—
ficient accuracy for technical cases:
ey o
/1 - él> = — e (16a)
\ (146 ®W1 4 gy (x—e"?°% 1)

Yo

The temperature oscillation in the turbulent gas space
is tnere¢ore accordlng to equation (l8a) :

Jor (1 — =8V 1) +s¢1(1—-e"25W1)_
(1 + e¢28¥;) + sy, (1— e28V1)

< '
~g: = -
T = splz. ~ 1

Correspondingly we get with P,,=—1 . according to equa—
tion (13b) the temperature at the wall surface =x = 0 at:
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("9(5)0 = (tc)o = 0 ‘ (18)

The heat volume transferred to the wall can be formed
according to equations (1l4a) and (16a) from

1—eTR%xgsl (1 + e—368V,)

(gl = 8o 6'®T v Jjuw (19)

1+ =8 4 sy, (1 — o—28V 1)

Then the complex heat transfer coefficient is obtained
for the periodic heat transfer at low harmonic compres—
sion of a turbulent gas with the natural frequency w
before a metal wall from:

_ (:qc)o - ﬁi 8‘\,’}1[1—6—-26\111 +(S/5)5¢'1(1 o+ e--—esllfl)]
[¢] (‘ac)—-s- (tC)O $ (l — e-—S\lJl)E + (5/6)5\‘;1(1'—9—25\1’1)

(20)

For great values of 8V, = sv[§~ this relation changes
1

as 1s readily seen to the previously developed equation

(12) for infinitely thick boundary layer. On the other

hand, for very small values of & /¥

8y

A1 1+ (68/s)
Fe By / (20a)
] 1 +1/2 (8/s) ‘
; 82w
on the assumption that - << 1,
1
For \wl = 0 corresponding %o a natural freguency

of w = 0, that is, for the limit case of steady heat
transfer, equation (20) is exactly correct:

Qo = g = Pafy s 8 (20b)
° 6 § + 2s |

To this steady 1limit case there corresponds a uni—
form distribution of steady heat sources in the entire
gas space linclusive of the boundary layer before the
fixed wall. The additional term 6§/8+2s in equation
(20b) represents the effect of these heat sources exist—
ing in the boundary layer. This limit wvalue of the
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complex hecat transfer coefficient for a disappearingly
- emall frequency is therefore in full accord with fhe
real heat transfer coefficient ap to De expected from
corresponding stationary tests,

In general 6<<s in technical cases hence the
heat transfer coefficient according to equation (20):

A —28 A 8
- ?% sy,(1 + e 1) _ M ( Wl) 5> g ( 20¢)

a
' - 8
1 —e 28V, tanh,(SWl)

Theoretically the case of §>> s is also of importance,
in which case according to equation (20):

8Y 5\
A sw1(1+e-—8\b1)= A QE‘L/

C('C:'—-‘L 2"—'1‘
8 l—-é“5w1 8

. >>
WS 8 s (204a)
tanh

2
Between these limit curves for g gilven by equations
(20¢c) and (204) lie all practically possible values of

the heat transfer coefficients for low cyclic compres—
sion of gas for finite thickness of boundary layer.

Graphic representation of the results.— In fig—
ure 2 the curves, according to equatioans (20) to (204), for
finite parameter (6/s) in Gauss' numerical plane are
‘plotted dimensionless in form affording a complex Fusselt

number ¥ue = aa6/N entirely corresponding to the
steady heat transfer. The magnitude of this complex num—
ber ’Nuc' = aué /N is momentarily given as distance be—

tween fthe origin and the point of the numerical plane,
w )
which is determined by the parameber 5/-2——— and " (8/s).

The phase angle €5 o0f the complex heat transfer coef—
fleient a, agrees with that of Nug and can therefore

be taken direct as geometric angle between this distance
and the axis of the real numbers.

In refracing the curve of the complex Nusselt number
for a.certain ratio (68/s) wunder otherwise identical
conditions in relation to the frequency, the following
obtains: For w = O the complex characteristic agrees
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with the corresponding real one for steady heat transfer.
At very low, but finite frequencies the portion of the
heat volume removed from the gas core still predominctesy
the amount of the heat—transfer coefficient therefore
barely varies, and the phase angle €g' remains for the

time being very small. With increasing amplitude, the
heat of compression produced within the boundary layer
becomes consistently more important. Since it is par-—
tially produced direct at the wall surface and immedi—
ately passes to the wall surface even while being
formed,the phase angle must ultimately reach greater
values and progressively tend toward the previously com—
puted limit value /4., In correspondence with the
rising importance of the heat of compression within the
boundary layer, the value of aws/k itself increases

with the frequency. The heat—volume removal from the
turbulent gas core on the contrary becomes smaller with
increasing amplitude, as is readily apparent from equa—
tion (16) where the tempercoture of the turbulent gas core

consistently approaches the adiabatic—compression tempera—
ture.,

Discussion of the results.— The present calculations
manifest good agreement with the physical observation.
They enable the numerical prediction of periodic heat
volume transferred to a flat wall at low cyclic
compression of gas, when a boundary—layer flow of arbi—
trary, constant thicltness exists at the surface of the
wall. The assumption of a flat wall is technically ful—
filled in almost all cases, since the boundary-—-layer
thickness is almost always very small in comparison to
the curvature radius of an uneven wall. The dbdoundary-—
layer thickness itself can usually be caculated or esti-
mated from known heat—transfer coefficients for steady
neat transfer according to the relation & = Ay/ap.

The Fouriler analysis affords for any periodic pres—
sure variation a sum of pure harmonic pressure oscilla—
tions for each of which a complex heat transfer coefficlent
can be obtainedy the dissimilar heat transfer coefficients
being arranged methodically. As the thickness of the
boundary layer, its material properties and the size of
the turbulent gas space are the same for all harmonics it
simply results in a relationship with its ordinal number
(frequency). In figure 2 the end points of all vectors,
‘which represent the complex heat transfer coefficients for
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coefficients for any -chosen periodic pressure variation
. lie therefore on a curve §&/s = constant. Then, if one
of these is known &/s can be determined, ‘and on the

{ basis of this singular relationship all thé other values
can be obtained. In general the heat—transfer .doeffi-—
cient for the frequency w = 0, that is, the coefficient
existing at normal, steady heat transfer is. probably
known.

In one point the foregoing assumptions are admitted—
ly nob .entirely realized physically. For the simplifi-
cation of the differential equation (2) it had been
assumed that the gas particles within the range of a
finite temperature gradient execute no movement perpen—
dicular to the wall surface. This is especially untrue
of the gas particles of the boundary layer, since they —
even in surfaces obligque or parallel to the general
direction of the compression — by their restricted free—
dom of motion due to the viscosity; are preponderately
compressed perpendicularly to the wall surface.

This defect, while producing no essential change in
the existing data of the periodic heat traunsfer at small
pressure ogcillations is on the other hand of great im—
portance for the heat volume to be removed in a recipro—
cating engine. In subsequent developments the effect of
the periodic motion of the gas particles immediately be—
fore the wall in direction perpendicular to the wall sur—
face is to be explored thoroughly. In another article %o
be published in the near future, the action of this in—
fluence is for the time being computed indirectly from the
enorgy loss required to maintain periocdicity.

Translation by M. M. Guggenhein,
Pratt & Whitney Aircraft.
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Figure 1l.- Elementary

B layer in
the gas space before x
a flat wall.
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Figure 2.- Representation of the complex Nusselt number,
Nug = dgd/A1 in the Gauss' numerical plane for

small, periodic compression of a gas before a metal wall

(p12 = -1) by limited thickness (8) of boundary layer flow

and different value (s = VB/Ot) in thé turbulent gas space.

The straight line under 45° represents the asymptote of

the curve.

(1 block = 20 divisions on 1/30 Eng. scale)
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