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The development of the theory of flow of.gaaee, and espeo-
ially of the theory of alr resistance, affords an illuetratiop'
of how prdéreea may be retarded by a false theory, especially
when advoocated by a scholar of world renown. I refer to New-
ton's theery of air resisgtance. We have no right eo-reproaoh
this great man on this acoount. His service was very credita-
ble for those times, even though he was less fortunate in this
than in other matters.

Newton's law furnishes the right expression, that the alr
resistance l1s proportional to the squars of the velocity of the
surface presented by the objeot and to the density of the alr,
but it glves quite_ﬁpsatiefaotory results regarding the depend-
ence of the alr reeietanoe on the shape of the objeot. Aoccord-
ing to Newton'e view, the alr oconsisted of small partioles,
which mutually repelled each other as far as possible and, in
the event of equilibrium, remalned at rest with reference to
sach other. If a solid body was moved through the alr, the par-
tioles which were fﬁought to be very small in comparison with
the distances between them, were struck eingly by the moving
body, the resistance being the combined effect of all these col-

Iisions. It remained an open question as to whether the laws

* Frgg "Egitschrift des Vereines Deutsoher Ingsnieure," September
1.
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_sure veriavion ocours, there will be no apprsciable changee in

volume, wnich may accordingly be entirely neglected, in order to

" 8implify the theoretiocal oonsiderations. Volumetrio changes in

moving air exert an appreclable modifying influence on the mo-
tion, when the veloclty is comparable with the velooity of
sound. At 1/10 the velooity of sﬁund, the varictions are only
about one-helf of 1%, and are therefore entirely negligible.

That the air particles do not fly about at random-aﬁéng
each other, but combine in an airflow, is explained according to
the kinetic theory of gasea, by the assumption that, though
the individual molecules are verfectly free to move, they often
collide and exchange momenta. The resultant motion, whioh has
the mean velus of the irfegular individual motions, accoi&ingly
constitﬁtea the flow of a fluid.

Pressure from any source is transmitted in all direotions
and it is therafore ‘nadmiasible to caloulate the resistance of
a body by simply adding the reaistances of the individuel parts,
sinoce these parts exert a mutual influence on each other and
the resistance of the combined parts differs from that of the
pﬁrts taken separately. The wind pressure on & roof therefore
depends largely on the shape of the bullding it covers.

The theory of the flow of liquids, hydrodynamios, (begin-
ning in the mlddle of the eighteenth ceantury with L. Euler and
D. Bernouilll), was developed under Helmholtz, Kirohhoff, Lord
RKelvin, eto., to a high degrees of perfection, although in only
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ons direotion, whioh seemed to offer but little of usé to thg
rractical men and greatly shook his confldence through contri-
" dictory results. Thus, for example, & body mﬁving unifornly in
& fluild origlinally aﬁ rest was supposed to experience no re-—
slstance in the dirsotlon of the motlon, whiloh was contrary to
all observed facts. Caloulations were made on the basls of the
ao-called ideal 1liquid, a constant-volume fluid witaout viscosity,
because the allowance for the visoosity (whose influence on the
individual partiocles wes well known) made the a@sloulstion too
difficult. 8Sinoes the effeots of viscoslty in flulds were so
slight in comparison with the effects of inertla, this method
of caloulation ssemed to be justified.

The abova-iientioned contradictory result of the absence of
resistance was found first while investigating the flow around
& ball and eubsequently wﬁs shown to hold strictly true feor the
1deal fluid for all todies without sharp edges. Tae hydrodyn~mt
ics of the ideal fluid falled howerer in the provlem of the re-~
slstance of actual fluids, but a more thorough investigation
demonstrated that in case where the actual reslstance was very
small on acoount of the sultable shape of the todiles, the theo-
retloal prinoiples were satisfied in large measure. The shapes
of bogiaa with small reslstance are of the greatest practical
importance in tks oonstruoction of airships and airplanes. Sya-
tematio experiments in aerodynamic lgboratoriea during the last
decade have gradually developed the best shapes and shown that
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these stares, sxcepting for the ever-present skir friotlon, en-
atle the practioal realization of the theory of ro resistanoce.
The fact that the flow both divides in front of the body amnd
closes agalin bealnd it, Ia aocordance with the theory, oonsti-
tutes She mairn characterlstic of the motion of tLe ldeal flulld
about & body. The resistance of the body of an airship, =ocori-
ing to laboratory experiments, is between 1/30 and 1,/35 of the
resistance of a flat disk having the same diamster as the max-
lmam section of the airship. The small oircle in Fig. 1 repre-
sents the disk whloh would offer the same resistancs as the alr-
ship. Thls resistance may be regarded as Gue santirsliy to skin
friotion.

Before goirg furtker into detalls, I will mention briefly
the means of presentation and the most important thsorems of
hydrodynemios. The stets of flow for any given instant is known
when the pressure 28 well as the magnitude and direotion of the
veloclty are given for every point. The veloclty is crdinmarily
designated ty the three components u. v and w, according to
the axes of a right-angled sygtem of coordinates. The whole mc-
tion is known when u, v, w, and also the pressure p are giv-
en a9 funoitions of the three-space coordinates amnd of the time.
For the dlagrammatioc representation of the flows, use is made
chiefly of "streamlines" showing the direotion of all parts of
the flow. The streamlines cax be calculated from the above-

mentioned funodions.
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The typloal task of theoretical hydrodynamios is now to He-
termine, for any glvern concitione on the boundarlies of the flu~
1d (for example, for a prescribed motion of solid bodies through
it), the funotions u, v, w and p, for the whole space cocupled
b& the fluid. For thls purpose use 1s made of two types of
conditlona: _

1) The so-oalled contimuity conditlon, that in every
snall portion of spaoce just as much fluld flowa in as out, whiloh
conseqQquently preserves the constanocy of ﬁolume;

8) A dynamlo condition, that the resulting momentum of
a portion of the fluid, which oomes from the diffsrences in
pressure'and_from any other foroes aoting on the portion, equals
the mass of that porilon +times its acceleration. The methods
for ocarrying out ths caloulation cannot be given here in detall,
but the following varagraphs will contaln indlcations ooncern-
ing them. On the otter hand, several imporisnt laws will be
stated here without demonstration. They are very simple laws
whioh hold-gpqd'for only the ldeal fluld, and they furnish the
real reason why the ideal fluld can be treated mathematioaliy
80 muoh.moiq easlly than actual flulds.

One very important oonoepfion for the motion of the 1deal
fluid is ‘the "line integral of the velooity." If we imagine

. instead of the "veloolty f£ield," a "foroe field" such that sach

veloolty (of given megnitude and direotlon) is replaced by a
force of corresponding magnitude and the same direotion, then
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the line integral of this force will represent the work perform—_
ed by the force in moving a unit mass along the given line. The
line integral .of the velocity is obtained when each individual
part of the path is multiplied by the ocomponents of the velooity
felling in the direotion of the path and the products are ﬁll
added together. In the theory Qf the foroe field, the caze ls
considered when the work domne 1n moving a mas3 from a point A
40 & point B 1s the same for all paths. In this case, when
the point A is stationary, the work done between A and any
point B, and whioh acoordingly depends only on tiue loocation of

_ tte point B, 1is cailed the potential at the point B and the

whole foroe fleld is called a potential field. The same cass
also oocurs In the motion of fluids. The value of the line in-
tegral, taken from a stationary starting polnt, 1s called the
veloclty potential of tha motion and the velocity field is call-
ed the potentlal field. The velocity is then given, just as tkre
force was - given in the other ocase, both in magnitude and direc-
tion, by the.fall:of the potential. Much is gained by the intro-
ductior of the rotential, for since the veloclity ocomponents can
be decduced from the potential, 1t is then necessary to determine
orly onme functior instead of thrae.. Even the pressure in the
oase of potential motion maf be obtained by a simple formula.
Concerning the line integral of the velocity thereliﬁ an




s

..'ah

important law discovered by Lord Kelvin (Sir William Thomson),
namely, that in an ideal fluld for any given olosed line waich

=18 oontimiously formed out of the same fluid partloles, the

line integral ocan not ohange 1ts value with the lapse of time.

We will immediaetely make an important aprplloation of thié
law, If, at any instant, the whole fluid is at rest, then every'
line integral in 1t has the value zero and muet therefore, ao-
cording to Lord Zelvin, retaln the value zero for all time.

If a oclosed lins is laid through the =bove-uentioned points

A and B, 1t may ve easlly demonstrated that the assertion that
the line integral disaprears for the olosed path, is identleal
with ti:e assertion that in both diresctions. around the right

or around the laft, from A to B, +the llins integral has the
same value.. From thia we recognize that only poterntial flows
can bg generated by any kind of pressure on the surface or by
setting in mectilon bodles existing in the 1ieal fluid.

The consldsration of ocages ir which the line integral aif-
fers from’ z'ex;o, would bring us to the famous Helmholtz vortex
theory. We can nct howevér go further into this matter here.
We will only mention that there are motions in which the ohar-
acteristis cf the potential motion does not hold alorng certaln,

mostly very restrloted, regions in space. A lirne integral

yhose line exbraoces portions of this reglion, wlll then usually

"heve & value differing from zero. Ian such cases, we speak of &

vortex motion. The value of the line integral 1s called the
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nqiroulation," or, when applied to the embraced Tortex, also
te "sirengih of the vortex."
_ _ Until quite recently, 1% was thought necessary to draw the
oconolusion that vortex motions could only ocour in an ildeal
fluid when they were préaent in it from the begluning through
some sort of ast of creatlon, but that thelr production from a
condition of rest was impossible. It must not, howeQer, be for-
gotten that the ideal fluid is for us only a slmplified lmagl-
nary image of a real fluld, which always exhibits some visoosity.
A speclal Investigation,* which we can not take up here in de-
+31l, ccmomsirated that the viscosity of the fluld, even when
eéer so small, takes effectt with finite sitrength in a reglon in
the lmuedlate vicinlty of the bodies, by holding back a thir
layer of the.flowing fluld. Kelvin's law wouiﬁ not Lold good
for any line drawn_ﬁhrough this region, on acoount of the effect
of the vtaooe}ty. Ahy reglion of the fluld whose rartioles Lave
previousl&, during_thg.mption, come near the surface ¢f the ob-
ject, ocan therefofeubédome the seat of vortices. All vortex for-
mation in ‘flulds with small viscoslty 1s to be explalned in thie
néﬁner. vie shall aiso gee that, in a practically very lmporiant
case, tha theqietioal conception of vortex formation has brougkt
deoclslve progreses. _

Reguler vortioes are formed on shafp edges about which the
fluld flows. Even in the case &f perfeotly roundsd surfaoces,

like & sphere, for example, it happens after & pure poterntial

* Bse my lecture befcre the Heldelbergsr Internationalen:Math-
- ematiker-Kongress, 1904 (Proceedings of this Congress, p.484,

Leipzig, 1905), or the article "Flussigrtetsvewegung," in "Hznd-
wlrterbuck dsr Naturwissenschaften," p. 117,
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motlon is created at the bsginning, that owlng t0 reverse mo-
tions in the rear half of the surface layer, this lgyer boing
the seat of the friotion phenomena, portions of it are first
heaped up and Are then liberated into ithe f;ae fluld ag vorticas.
Hitherto it has not been poesible to assert much theoretloally
ooncerning these vortices, whioch are olosely ocomnected with the
resistance to motion, Only concerning the preliminary ocondi-
tion for thelr creation, the reverse flow in the marglnal layer,
which causes the releass of portions of this layer, i1t may be
stated that 1t is oomneoted with a retarded flow of the free
fluid along the wall, ard the detells of thls motion can be
quantitatively explained, (See H. Blasius, Z. F. Math. u. Phys.
1808, p.1l, and Hiemenz, Dingl. Polytechn. Journal, 1911, p.331l.)
It may be qualitatively explained in the following manner: The
same dlffarences in pressure, when great enough, turn back the
surface layer alreadr eomewhat retarded by frictlon. That this
ocauses an expransion of the surface layer 1s readlly seen from
Fig. 3, since there 1a no posslbllity cf escape for the reversae
flow inside the direct flow, Fig. 3 shows the inolplent forma-
tlon of a vortex. The quantitative results of these investiga-
tions are in accord with experienoe'(Hiemenz a. a. 0. and H.
: published by V.d.I.

Rubach, Mitteilungen uber Forschungsarbeiten,/No. 185, 1918. )y’

Karman (See Karman and Rubach, Physikalische Zeltschrift
1913, p.49) Las sucoeésesfully investigated the ocompleted vortices,
which, in the event of a uniform flow, show more or less regular
aeriss of alternately right and lef% rotating vortices. He has




- 11 =~

gshown %“hat only one kind of vortex configuration (Fig. 5) is
stable and that the resistance may be quite accurately calculat-
. ed by means of.purely visuél observations, namsly, by méasuring
the intervals beiween the vortices and the freduonoy of the vi-
bratory motion, whersby the result of the calcu}ation'agrsegﬁ
well with the measured reaiafaﬁoee. The relation between tke
vortex sysfem and the dimensions of the vortex—éenerating'body.
which would have determined tke praoticel appliocabllity Sf'the
theory, has not yet been theoretically estyblished.

Returning to the practiocally important probiem nf bodles
with small resisvance, I would like to take up next the investi-
gatlions on pirshlp bodies begun by my former colleague, Dr.
Georg Fuhrﬁann, who ﬁhfortunately fell in +the war. -We must
first find formulas for the airflow about the body'of an air-
ship. If the flow 1s to be considered frém a stationary stand-
point.with relation to tne airsh;p, we must seek the veloclty
distribution for which the veloolties are tangentia; to the
surface of the airship. We obtain thls kind of flow when we
imagine the fluld combinued into the-inside of the airship and
and adopt, on the front pc_ii-t_,ion of thts axis, points Where the
fluid is oontinﬁally renewed and, on the rear portion, corres-
ponding voints where the same quantities of fluid agaiA.disap—
pear. Thils flow is impossible in a physiocal fluid, but here
(since it only ooncerns the flow at points where there 1s really

no flow) it correctly represents the effect of the front part

PI




...1;'...

of the airship, whioh deflsots the fluld ouitward or all sldes
and also the effect of ths Tuer pamt; where the fluld again
flows together.— - ° - -

The mathematical fcrmulatloa of such "sovrcas" and "sinls®
is very simple. The pruoess of calculation would be very diffi-
oult,.if it were mecessary, for a given alrskhip, to find the
correct distribution of these sources and sinks. Fuhrmann pro-
cseded in suck manner, however, that he calculated the outlines
of the body of an alrship corresponding to sultable arbitrary
distributions of sources and sinks. He also caloculated the de-
tails of the flow and pressure. Concexning the connection of
the pressure with the wvelocity of flow v 1in a potential motion,
the followlng may be noted. Then the motion is steady, the
gtatlic pressure p (that is, the pressure which would be re-
corded by an instrument moving with the flow) plus the "veloolty
nressure” p %; forms a constant sum. The fvelboity pressura"
also oailed'*dynamio pressure" or "impaot pressure® 1s (as may
be concluded from the application of the above-mentioned rela-
tionship) equal to the pressure ihorease in comparison with the
statio pressﬁre, which appears in the openirg of & tube direct-
ed up-atream agalnst the flow. It is known that this relation-

shlp 1s made use of for measuring flow veloclties. P =%

"is here the density of the medium.
The pressure diatribuxions ualoulated}by Fuhrmann were ver-
ified on bodies of the calculated shape by providing these bod-
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. 1es with perforations and measurirg the pressures ocourring in
the perforations. The results, for three of these vodles, are
glven in Figs. 4 t0.6, ths linsscdenoting the salculated pressures
ard the small olrcles, the measured pressures. Ihe observation
ipdioateg on the front end a pressurse increase equal to the dy-
némlo pressure of the artificial wind in which the experiment wes
performed. The caloulatgd curve gives a like pressuie inocrease
on the rear end, which falls %o appear in the experiments. This
dliscrepancy results from the fact that in reality the flow et
the rear end does not close up commletely, as is assumed in the
theory. This .is because of the retardation of the marginsl layer
of air due to a3kin friction. In other respeots the details of
the pressure distribution for alxrship bodies of different shapes
agree very well with the theory.*

A practiocally very important result for the theory has besn
obtained in the investigation cf z2ir forces on airplane wings.
The reasonlng processes invclved may be briefly desoribed here,
ttough in a manner not corresponding to theilr ﬁistorioal evolu~
tion. '

Vhen an aerofoil with a shape similar to & bird's wing ac-
quires & 1ift by moving swiftly through the air and 18 thereby
in position to sﬁpport the weight of the airplane, the alr re-
ceives a downward pressure equal to the weight supported. Con~
sldered in detail, e fin@ on the under side of tae aerocfoll,
increased pressure in compariscn with the pressure of the undis-

turbed alr and a diminished pressure on the upper side. These

* The three small jogs in the lines rerresenting the measured
pressure distribution at 1/3 and 3/3 their length, are caused i;

dggggts in the construction of the three parts of the bullit-up
o] . ) .
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presaure differences, acting on the whole aerofoil taken togethus
produce the 1if:, |

fn"order'tbfbfféiﬁ 1;f6£;a£ion 5onoerning-the flow relations
here involved, we will first seek the value of the line integral
for a closed ourve, which passes through the field travsrsed by
the aerofoil. We shall find that the value of the line integral,
whioch we will eall the "oiraulation," generally differs from Lero
If we consider a closed curve whioh passes downward through the
alr strlp traversed by the aerofoll and again rises in the undis-
turbed fisld, then before the passage of the asrofoll thiough
tke portion of space under conslderation, the clrculation was
zero. During the paseage of the aerofoll, we can {if we refrain
from unnecessary refinements) imagine the line out by the aero-
foll. Since the pressures are different on both sides of the
cut, the line integral will gradually increase (like a pipe {ill-
ed with still water, at the ends of whioh a differernce in pres-
sure 1s suddenly created) in proportion to the increase in the
pressure differencs and to its duration. For a pipe of uniform
cross;seation, the line integral would be v1l, in which v 1is
the veloclty in the pipe and 1 thq length of the pipe. If the
density is p, a pressure difference of Py — P for the time

t 'produces a value of vi of the amount




The same equation is also given oy the strioct tneory for the oir-

oculation in the free fluid. _ i
If the wiigchord ie s and the -fiigh'i; speed V, we have,
for the time T while the line is cut, the equation

"8 =VT, henoe T ".‘%

For the circulation, we accordingly obtaln

r-=5 "% -r=——“-—-——£‘3-—(p = Rp)e
P p v

in which (p, - p,)s denotes the 1lift per unit length along the
wing, which we shall designate by a. We then have

a.=PpV...........(l)

a formla ii';dependently diacox;'ered by Kutta in Munioh and
Joukowskl in Moscow by different methods. DBut sinoe the line
can ba closed behind the wing, the circulation again becomes
const.a.nt é.nd is consequently the same for all particles of air
which have touched one and the same sprot on the wing.

The 1ift density & 1is usually gresatest in the middle of
the —ving and drops to zero toward the engis, sinoe a{ the ends
the pressure differences are equalized around the edgea. What
is sald w:l.th regard to a also applies to the distribution of
the values of I', which ocorrespond to the individual points of
the air strip touched by the wing. ‘This strip is aocordingly the
seat of vortices. The strength of %he vc->:r.'tioes in any given’

strip is measured by the ciroulation of a line encircling the in-
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dividual strip. This ciroulation 1s evidentiy ecual to the

differencs in I' on the right and left of the strip. We ttus

_ obtaln, especlally near the ends of the wings where I’ drope o

zero, relatively strong rotational motions in opproailte direc-
tions. .

If the small individual motlons of the vortices are neg-
lected, the geometrio configuratién of the vortex system is
fully known and we can therefore calculate the latter by means
of the geometrloal laws which oconnect the vortices wlth the
flow veloslitiss belonginé to them. The reliatlone are the sim-
plest when the 1ift density a and also the ciroulationm I
are distrivuted accorcding to s semi—ellipse.on tke span of the
aerofoll (Fig. 7)., In this event, *ne velccity w, of the de-

soending flow behind the wing is constant ard

: r a 4 A
s mfl = 2D o A
T T T me v (@)

in which A =7 bag s the total lift.

As a more thorougk investigation shows, this descending
rotion 1ls first partially developed in the place where the wing
is and it has, at the center of pressure of the oross-seoticn,
Just half of the above-given veloocity in the vortex tail.

In the following paragraph it will be further shown that
the theory is ocapable of determining the potential flows around

" the wiﬁg sebtions and of explaining all the detalls whioch give

rise to 1lift. These flows sre definitely conneoted with a cir-
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culation around the wing sectlon, of exactly the amcunt obitained
aouve in araation 1. Aocording to our reasoning, this 1s corrsct
since we can close together ths line paesing through the strip
touoched by the alr behind A wing element, so that it embracee

the wing seotion 1n 1ts plane. From the above-mentioned theory
of wing flow, which 1s conneoted witnh the i1deal case-of an infi-
nitely broad wing and hence of qniform flow, thé result is to be
antiolpated that it will offer no resistance in the direction of
motlon, but only develop a 1lift perpendioular to it. We express
thls result rnow by saying: "From the circwuustance that the 1lift
drops to zero toward the ends of the wings, we have (in additior
tc the former flow velocitlies, which were present sven for infi-
nitely wide wings) a downward motion at the rlace where the wing
-is, througlh whose 1influence the wkole flow, in comparison with
tkat of_an infiniteiy wids wing, 1s inclined somewhat downward
and indesd roughly about the value of the angle obtained from
the equaticn. " :
1/8 w, 3 A (3)

t = = = ] . . . . . . -
eP = T T onve

Eence the 1ift of each wing element will no longer be vertiocal,
but perpendiocular to this inoclined direotion and the flow will
therefore offer a resistance or drag compoﬁent of the value
H]
Wi =Agin B=<A % = - L e e e e . (4)
_ 3 e _—L—snpv‘b

At the same time, the necessary angle of attack for obtailr-

ing a certain 1ift density must be increased by B, in compari-
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son with tae infinitely broad wing., The reslistance Just men-
tioned vhioch, aoccording to equation 4, is prororiional to the
squars of the mesan l1lift density %, doss not st in contra~
diction to‘the assumed ebeence of friction in the medium, sinoe
1% has 1ts exact equlvalent in the klnetic energy left in the
medlum in the vortex wake behind the wlng.

It has now besn stown that, with the aid of the oaloulations
Just Indlcated on Infinitely long wings, we can fully explaln
the hltherto very enigmatical great influence of the aspect ratio
of the wings on thelr serodynamic behavior. If we take the rs-
sults of more recent meesurements on a series of asrofoils of
uniform crose—sectlon, but different aspect ratio, as obtalned
from modern laboratories, and aubtract the above-given theoret-
ical drag from the measured drag, we find tkat the remaining
drag, in relation to tre 1ift per unit of surface -%E, is al-
most exactly the samz for the differernt sxperiments snd that con-
eequently this remalning drag 1s no longer dspendent on the as-
peot ratio. The same holds true for the argle of attack of in-
finitely broad wings celcuisted in the above-glven mannsr. On
the other hand, both the remalning drag and the angle of attack
of an infinltely broad wing are dependent on the wing sectlon.
For this reason, ?he remaining drag has “een oalled the sectlon-
8l dreg. It is readily seen that, with the aid of these formuies,
we can convert the sxperimental results obtained wlth one aspect
ratio, to any other aspect ratio, so that 1n *he future it will
suffick to make orly ore experiment with only one aspect ratio.
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The results of this method &re shkown by Figs. 8 and 9, which have
" been taken from the "First Heport of the GoOttingen Aerodynamic
Laboratory“ ("Ergebniase der aerodynamischen Versuchsanstalt zu
GSttingen, I. Lieferung,” published by R. Oldenburg, Mumich,
1931). On one side is shown 1lift and drag* for a series of aero-
foils with different aspeot ratios, presented according to meas-
urements; on the other side, the conversion to the aspect ratio
1l : 5 The conversion of the angles of attack ylelds a like
good agredtment. The experimental values, which correspond to a
square aerofoll, do not, it 1s trus, fall in line, bﬁt thils 18
not strange, since the theory under consideration is only a fiust
approximaetion for very long surfaces. It is, on the contrary,
an unexpected result that 1t still holds good for an aspect
ratio of 1 : 3.

The theory hLas also been applied to biplanes and multiplanes.
(See report in "Jahrbuch, 1930, der Ges. f. luftfahrt," p.37,
where further information is given. From what is given thers,
may be found an intimation of a noteworthy rassult which bears
upon that distfibgtipp of the 1lift, on an aerofoll of any de-
sired sha?é:bf‘qébn e group of such aerofoils, which glves th@
minimum theoretioal drfag for a glven total value of the.lift.
Dr. Max Munk's solution of this problem reads: "Let us imagine
the space traversed by the.group of aerofoils (hence a strip, or

8 _system of strips, running along the flight path) as a rigld

. G% and G¥ (in Figs. 8 and 9) denote the 1lift and drag coeffi-
f

cients (L1 grag divided by the surface area and dynamioc
pressure 1/3 p'V
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formation and let us set thia in motlon in an ideal fluid with a
uniform velocity at all points, in the oppousile direotlon to the
11ft, 'The remilting flow ia the desired vortex motion and the
distribution of the pressure at the moment of starting giveas the
desired 1ift distribution. For a monoplane, we thus obtaln the
above-mentioned slliptical distribution, the veloalty of the
rigld formation being w, according to equation a."

In a final varagraph, we shall state briefly a theory of
aerofoll sections which has to&ay been developed to a high degree
of. perfection. The problem may be simplified by assuming the
flow to be uniplanar or "two-dimersional." This means that the
path of each alr particle desoribes a uniplanar curve and that,
in all parallel planes, the same phenomena occur. This 1s the
case, 1f we imagine an aerofoil of counstant cross-seotion infi-
nitely extended laterally, so that every disturbance coming from
the endm of the aerofuil (tending to make the flow spatial) is
eliminated. |

Yor the uniplanaf rotentlal flow, there 1s an especlally
efficaoious and sultable method, the "method of orthomorphic o
conformal transformatlion." It shows that, if ;B.have any uni-
planar potential fléw; we can derive other uniplanar flows frou
1%, by subjeoting the plane of the.diagram to those transforme -
tions for whioch its smellest geometiic partas Temaln similar ox
equl -angular. Through suck an equiangula: or conformal transfor-
mation, whHidh oau be applied several times in a series, nearly

all imaginable uniplanar flows can be mathematically represented
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Figs. 10 and 11 present the most common tremsforration in the
theory of wing seotions, by which a ocirole is itransformed to a
5%151355'11ﬁé' Aﬁ,ulfhé sﬁiiaﬁhﬁiné'éiroleé to confooal ellipsas
and the radll to hyperbolas.

We have long knowsn the potentlal flow about a oylindexr,
whioh, like all such flowas, generates nelther 1li1ft nor drag.

I+ has been known, however, since the time of Lord Raylelgh
(Kessengsr of Math. VII, p.14, 1877, Sec. Papers I, p.343) that
a 1lift Je generated, if a oiroulatorf motion 1s superposed on
the previously known motion. The flow thus obtained glves a
streamline formatlon 1liks Fig. 13. The above-mentloned trans-
formation was applied firet by Eutta (Illustr. aeronaut. Mittell-
ungen, 1502, p.133), who let the dlameter AB coinoide with a
chord drawn tkhrough the "rest-point"™ Q and thus obtalned the
Zow around a flat or ocambered plate. Later Joukowskl found
that very beautiful sectlions, similar to blrds' wings, were ob-
tained by giwlquthé diameter AB the position indicated in
Fig. 13. Fié.:ls saows such a wing section witk the resultant
streamlines.

Thls wing-sectlon theory - which has, in recent times,
been much further developed (See Zeltsohrift fur Flugtechnik
1818, p.111, Karman and Trefftz, 1917, p.1E?, and 1830, p.68,
Mises, 1931, .Geokeler) and now renders 17 yossible to oaloulate,
for almost any given wing seotion, not onliy the value of the
11ft and the location c¢f the center of preesure, but also the
pressure distribution in detall - agrees elso with the experi;
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ments as well as oan be expected, oonhidering that the friotfon
is neglected. Fig. 14 shows (acoording to measurements by my
co~worker, Dr. Betsz, on a Joukowskl wing section) the dependence
of 1ift and drag on the angle of attack. .In the fleld within
whioh the wing section is "good" the theoretloal -and experimen-
tal ourves run nearly parallel at a distance determined by the
frictlon. The pressure distributlons (Figs. 15 and 16) likewise
agree well on the whole. The vprincipal 59v1ation proceeds from
the faoct that, due to friotion, the theoretical circulation for
the individual angles of attack ie not fully attained_in practice.

In summing up, it may be said that the hydrodyaamioc theo-—
ries are beet confirmed by experimental resulys.for bodlies with
small resistance or drag and can aocordinglj:be used Iln place of
experimental tests. T

It is evident that the theories here.brought forward can
aleo be applied to other technical phenomaﬁa. Thus their appli-
oatioﬁ to airora&t propelliers 1s already pettled in principle*
but muet be investigafed further as 4o deveils. For their trans-
fer to turbines and pumps, there is the difficulty that our cal-
oculations heve in part assumed the adortion of amall vélooity
changes .and small angles of deflection. Useful results mey be

- expected fror the above, especlally for mackines like "Kaplan

* A. Betz, "Screw Propeller with Minimum Loss of Energy," with

an appended note by L. Prandtl, Nachrichien von der Gesellschaft

der Wissenschaften zu Gottingen. Math.-?hys. Klasae 1919, p.183.

Further, A. Betz, "The Principle of the Screw Propeller" (Die

§°rg§§5° beim Sorrauvenpropeller), "Naturwissenschaften," 1931,
O. [ ]
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wheels," rotary shovels, eto. -The calculations are at present
insuffioclent for other kinds of turbines. but even Lere advani-
ages ocan be drewn from the fundamental princirles.

Translated by the llatilonel Advisory Committes for Aeronautios.
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