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THE THEORY OF A FREE JET OF A COMPRESSIBLE GAS*

By 6. N, Abramovich
SUMMARY

In the present report the theory of free turbulence
propagation and the boundary layer theory are developed
for a plane—parallel free stream of a compressidble fluid,
In construecting the theory use was made of the turbulence
hypothesis by Taylor (transport of vorticity) which gives
best agreement with test results for problems involving
heat transfer in free Jets, .

The theory developed here considers two kinds of flowu:

1, The boundary layer of a Jjet with temperature
different from that of the surroundings and velocities
that are small by comparison with the velocity of sound
(Bairstow number Ba < 0,5).

2, The boundary layer of a jet of high velocity and
at a temperature equal to that of the surroundings,

The first deals with épmpressibility effect arising
from the difference in temperatures inside and outside the
Jjet; the second with the compr8551bility effect arising from
the high flow velocities,

The results indicated that the compressibility had
only a slight effect on the properties of the free Jjet,
Furthermore it was found that a drop in the. Jet temperature
had approximately the same effect on the prOpertles of the
jet regardless of whether the reduction was due to arti—
ficial cooling of the Jjet or to the conversion ¢f thermal
energy to kinetic at high flow velocities, - ‘

Compressibility factors (p and S§) are introduced with
the aid of which it is possible to reduce the variations in
all fundamental properties of the boundary layer under the

*Repaort No, 377, of the:Central Aero—Hydrodynamical .Insti—
tute, Mhoscow, 1939,
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influence of compressibility . to simple linear relations,
The results obtained are valid for flow velocities up to
the velocity of sound and for considerable temperature
differences (up to +1OO - 150° ¢©),

INTRODUCTION

In 1926 Toilmients paper was published (reference 1)
in which the author, on the basis of the semi-empirical
general turbulence theory of Prandtl, develcoped the theory
of so-called free turbulence -— that is, turbulence in a
free, heated stream, In the same paper, making use of his
proposed theory, Tollmien solved three problems on the
propagation of free, heated Jets:

(a) .Mhe boundary layer of an infinite plane—parallel
Jet;

(?) Plane—parallel jet escaping from a very narrow
opening;

(c) Axially symmetric jet escaping from very narrow
opening,

About 3 or 4 years later (1929-1930) Swain's paper
(reference 2) and Schlichting's paper (reference 3) extend—
ing the theory of free turbulence to the case of the wake
behind a body and developing the laws of flow in axially
symmetric and plane wakes appeared, These laws are appli-—
cable to flows not too near the body,

The work of these authors was supplemented by experi-
mental investigations of the velocity fields of flow, The
use of one empirical constant enabled the above—mentioned
theories to be brought into excellent agreement with test
results, In fact this agreement determined the success
of the Prandtl—~Tollmien free—turbulence theory and assured
it wide theoretical and practical application, In 1935
the article by Xuethe (reference 4) appeared in which an
approximate method is worked out for the computation of the
velocity profile in the initial part of a round jet_

In 1935, 1936, and 1938 four papers by the present
author were published in which Tollmients theory was ex—
tended to the case of plane—parallel flow and axially
symmetric jets escaping from openings of finite diameter
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(an approxipate theory.of the initial part of the Jet was
proposed); formulas were-worked out for the aerodynamic
computation of the plane~parallel Jet; axially symmetric
Jet flow in the open working part of a wind -tunnel with
round and elliptic sections, -hot and cold air jets, and
moreover, methods were proposed for computing the air
resistance of railway cars (in tunnels or on the oped
track), pipe systems and heat interchangers (references
5, 6, 7)., These proposals and the flow theory itself
were satisfactorily confirmed by test results and each
year find wide application to engineering practice,

The rapid development of the mechanics of turbulent
flow has prompted the application of the physical model
of the phenomena as conceived by Prandtl and Tollmien to
the solution of heat problems, those of the temperature
distribution along the jet axis and over its cross—sections
of heat diffusion from the jet to the surrounding space,
and so forth, It is interesting to note that as a direct
consequence of the Prandtl theory, in the case of a free
Jet and the wake behind a body, complete similarity is
obtained between the temperature and velocity fields, In
order to check this extremely important result Fage and
Falkner (reference 8), in 1932, made measurements of the
velocity and temperature fields in the wake behind a long
cylinder of elliptic cross section, They showed that the
theoretical velocity fields of Prandtl—Schlichting were
very well confirmed by test results while there was no
similarity of the velocity and temperature fields, and
the heat transfer from the wake to the undisturbed flow
is of greater intensity than follows from the Prandtl
theory. .

Taylor (reference 9) was the first to note the con—
tradiction revealed in the free turbulence theory of Prandtl
and presented a hypothesis according to which the tangential
turbulent stresses in the flow were to be determined by the
transverse transport of vorticity and not by the momentum
as proposed by Prandtl, The imperfection In the Prandtl
theory was also pointed out in that it took no account of
the local pressure gradients which have an appreciable
effect on the momentum interchange but not on the vorticity
transport, The above hypothesis, with regard to the tur-
bulence, was first proposed as far back as 1915 (reference
10), On the basis of this hypothesis using only one em—
pirical constant, as Prandtl did, Taylor obtained the vel—
ocity and temperature profiles in the wake behind a long
cylinder as experimentallydetermined by Fage and Falkner,
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The Taylor theory of free turbulence gave velocity pro-
files accurately, the same as those gliven by the Prandtl
theory, and at the same time removed the imperfection of
the latter theory as regards application to heat problems,
This.permits all the solutions of the problems in the field
of flow mechanics that were based on the Prandtl theory to
retain thelr vallidity, It madé 1t necessary, however, to
give preference to the Taylor theory for the further devel—
opment of the problems of free flow and the wake behind a
body, particularly 1in 'those cases when the problilems arec
concerned with temperature profiles and heat transfer,

In the present peport devoted to the further develop~—
ment of the theory of the free jet, a theory of free turbu-—
lence in a compressible gas is worked out and sozutions are
given of boundary layer problems of a free flow for the
following two cases}

(a) The boundary layer of a plane—parallel jet at
small flow velocities with a temperature different from
that of the surroundings, that is, a nonisothermal layer;

(b) Isothermal boundary layer at large (up to Bay=1)
flow veloclties,

It may be noted in conelusion that the frese turbulence
problems, in addition to being of interest in themselves,
also possess a general interest since free turbulence repre-—
sents the simplest case of turbulence free from the effect
of vigcosity, The study of free turdbulence is a necessary
preliminary stage in the study of turbulent flows in general,
It is, therefore, hoped by the author that the soluticn pro-
posed in his present paper of the problems of free turbulence
in a compressible gas possesses a certain usefulness for the
study of turbulence in other cases of compressible flow,

I, EQUATION OF MOTION FOR FREE TURBULENCE

The problem will be restricted to two—dimensional flow,
In this case the differential equation of motion in the di-
rectlon of the axis of abscissas assumes the following form:

du du . du 3%u dP (1)
p — + P& — + PV — = — | e — 1
ot Pop4 oy oy~ ox
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u, v | instantaneous velocdity components
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where

p, P, » 1instantaneous values of the density, pressure,
and viscosity

For the flow of a liquid of small viscosity about
s0lid bodies the flow, as was shaown by Prandtl as far
back as 1904, may be divided into two regions; namely,

a relatively thin layer of fluld lying close to the solid
walls — the boundary layer — in which the .effect of the
viscosity cannot be neglected, however small its value
may be, and the remalining part of the flow, in which the

vigscosity plays no part and-which is therefore subject

to the laws of flow of 1ldeal flulds, The boundary layer,
in turn, is assumed to consist of a very thin sublayer

of purely laminar flow in direct contact with the wall
(no transverse turbulent fluctuations can be developed
gince they are dissipated by the wall) and a remaining
turbulent portion of the boundary layer in which the
effect of the viscosity may be neglected, Thus the

study of the flow about solid bodies, the motion through
ripes and, in general, of all fluld flows in the presence
of rigid boundaries does not, in principle, permit neglect—
ing entirely the effect of the viscosity, This circum—~
stanee constitutes the great obstacle in the development
of the theory of turbulent flows,

The distinguishing property of free turbulent Jets
is the absence of rigid flow boundaries and hence of a
laminar sublayer, This makes it possible to neglect
entirely the effect of viscosity in all cases of free
turbulence and explains the dynamic similarity of the
Jet flows — the nondependence on the Reynolds number —
over a very wide range of Reynolds numbder,

The differential equation of motion for two—dimensional
free turbulence may thus be written in the following form:

u ou ou oP
. pﬁ-gTb-.-l' pu —g; + pv —a-—y- = - —6; (2)

,,,,,, o om - @ M owog

Due to the quasi—stationary state of the turbulent motion
2ll its characteristics may be broken up into mean and

fluctuating components: \
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on the average,:over 'a certain fimite time interval, the
fluctuating compqnent ‘s, .evidently equal to zero: '
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In the -general cade, however, this is not ‘true of the‘j
squares ‘of the fluctuqtions and their products.

In equat*on (2) thé mean values and fluctuations are
substitutsd for theg instantaneous magnitudes, To average
over the time, take account ‘of conditions (equation (Zb))

and neglect moments of the third order:

-
. )

~<p":u:' .éa_'ti_‘; plv‘ - > .

there 1s obtained the differential equatlon for thc average
turbuleat flow of a compressible fluld.

i; b %B oo ? 9;} + [57_57 %5 +up! 9:: + o ut ———1
[ - -~
Fe—== . - om! ~§§71 o3P
LI 12 S A | (N SR, T e c——
+ oy Oy+\rp > oV 5 == (3)

To estimate the order of magnitude of the individual
terms that enter the above equation it is not difficult to
see that in the case of free turbulence all terms in the
second brackets (with derivatives im- Tespsct to x) are very
small by comparison with the corresponding terms of the
third brackets (with derivatives in respect to y) if the
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~prdincipal direction of the flow coincides with the axis
of abscissas, Similarly one of the terms of the third
brackets

~ ou!
Vv o! <o
P ou

is negligibdly small, By neglecting the above small terms
the following form of the differential equation of motion
for the case of two—-dimensional purely turbulent flow is:

PR wI T B 5y 8- 2 (g

Free jets propagated in infinite space filled with
liquid at rest, and wakes behind a body surrounded by
infinite undisturbed flow, possess such small pressure
gradients that they may be neglected, With this in mind
the differential equation of motion for free turbulence
in a compressible gas ist

—

- = ?%1 —— 0u r_ asu! U
u + V — + V! D ———— 4 | — = 0 ( 4
pPusst eV le T y] )

The further steps in the solution of the problem depend
on the choice of physical model for the turbulent flow,
At the present time there are two models of interest in
their application to free turbulense, namely, those of
Prandtl and Taylor, With the aid of the Prandtl model
results agreeing with experinent are obtained for problems

in the field of Jjet mechanics (velocity fields, frictional
stress, and so forth) but strong disagreement is obtained

for heat problem solutions (temperature field, heat trans—
fer), The Taylor physlcal model gives the same solutions

as the Prandtl model for the mechanical problems and further—
more leads to solutions of the heat problems that are in

good agreement with experiments, In what follows, there—
fore, use is made of the Taylor model, The 1latter is based
on the assumption that the turbulent tangential stresses in
the flow arise from the transverse transport of vorticity,
that is, from the correlation between the vortex fluctuations
and the transverse velocity components, In two—dimensional
flow directed along the axis of abscissas the vorticity is
given by
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-

= l EE — éi (2a
v = 2‘Lby Bx] )

where the magnitude of dV/dx in free_turbulence is
negligibly small by comparison with ©Ou/dy so that

T =35 (4b)

In its transverse transport, immediately before the loss

of its individuality, the particle encounters a layer where
the value of the vorticity differs from that in the layer
from which it arrived by the amount

where 1p is the mean free path of the fluid particle
in the turbulent flow, The loss of individuality of the
fluid particle should be accompanied by a discontinuous
change (fluctuation).of vorticity of amount

w I = .}. EE'.:
2 v
hence
ouv %4
—— = 1 ——
Oy T oy= (4c)

With the loss of individuality of a given particle there
are naturally associated fluctuations of the flow velocity:

du
ul = IT—g—- (4d)
y
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and of -the fluid density: )
3p
pt = 1p — (4e)
. oy
By making use of equations (4c) and (4e) equation (4) was
reduced to the form

— N ——— e - ___‘ i
o EE + p V EE + V! 1p '§~E_E + EE EE] =0 (5)
ox oy o oy= By oy
or
— 3 ——= du | T ® [ du
U —— + V— + V! 15 — - =0 8
PR T T 3y [p by] : (8)

which is the differential equation obtained on the basis

‘of the Taylor turbulence mcdel,

With respect to the magnitude V! 7 it is necessary

to make some assumptions by which it is .associated with the
velocity of motion and with the ccordinates of the system,
It is possible, for example, to make use of the generally
accepted idea of Prandtl, namely, that the transverse
velocity fluctuaticns are of the same order of magnitude

as the longitudinal fluctuations:

Vi~ ut ,
that "is,
ou
Ve “1p —— (62)
- dy

Including the proportionality constant in the magnitude of
the free path of the particle — the mixing length  (ip) —
(equation (6)) is reduced to the more simple Fform*

ou _du = ou ¥ [ ©Ou
—_—— v — = e ——
PP TP T 3y T Ry oy L BY] )

*With. a view toward simplicity of notation the averaging bars
over the letters are omitted in what follows so that p, u,
vV, _and 1p _are to stand for their mean values in time (5,
w, V, and” 1p),
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In the special case of an incompressidle fluid (p =
constant) the following is obtained

2
u._b.E + V._ailf = 'LTE —B.EE-—.; (73.)
ox oy o8y oy

The corresponding equation derived from the turbdbulence
model of Prandtl for the free turbulence in an incompress—
idle fluid was obtained by Tollmien in 1926 in the follow—
ing form (reference 1): '

ou du 2 ou d*%u
—_—F V== = 217 — ——— b
" ox oy oy Ooy® (7v)

To take into account the fact that the constant of pro-—
portionality is determined from experimental data, it is
seen that in the case of free turbulence the Prandtl and
Taylor models give rise to the same equation of motion,

The value of the mixing lengths, as given by Prandtl
and Taylor respectively, differ by the constant magnitude

ip = / 21 (7¢)

For the purpose of retaining the form of computation adopted
by Tcllmien and others the Prandtl value of the mixing
length is assumed, The differential equation of motion for
free turbulence in a compressible gas then becomes

ou ou 2 du 9 ou
U — 4+ pV 2 = 21”7 22 2 L2z 8
PP T P %y oy oY [ by] (&)

Comparison of the above equation with the generally known
equation for stationary flow

p'u.-—-—--'l-pV—-—-—:——-—-—“Z . (8a)

reveals the presence of Mapparent" tangential stresses
the magnitude of which is given by the equation
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2 du ?d l’ bu]
T = 217 =2~ — = | 4y (81)
xy f oy ¥y L~ oy

In the case of an incompressible fluid equation (8b) re-
duges to- the generally familiar Prandtl law of furbulent

friction:
Tx ( ) (8e)

To solve equation (8) it is necessary to know a rclation
between the mixing length 1 and the qoordlnates of the
system, The absence in the case of free flow, of rigid
boundaries that damp the fluctuating motions of the par—
ticles led Prandtl to the assumption of constancy of the
mixing length in the transverse direcction of flow:

1(y) = constant (9)

It thus remains to establish the law of variation of the
mixing length along the axis of abscissas:

1 = 1(x)

The available experiment'al investligations of free flows make
it possible without any particular difficulty to determine
the form of the function 1(x), A sufficient basis for this
is' the experimentally established fact of similarity of the
boundary layers in various cross sections of a given free
flow (jets or wakes, reference 1), This similarity was
recvealed in a large numbor of experimental papers (Tollmlen
Forthmgnn Ruden, Schllchtlng, and others) by constructing
velocity profiles in nondimensional coordinates, for example,
in the form of the relation

' == () (9)
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where
u velocity at a point with ordinate ¥
Up velocity on the axis of the jet -

b width of the jet (or of its boundary layer)-in the
given cross section ]

The nondimensional velocity profiles (equation(9a)) were
found to agree for the varlous cross sections,

The similarity of the boundary layers at any two
cross- sections of a given free flow must also be obtained
with regard to geometric factors, In other words equality
is to be expected between the nondimensional mixing lengths
for the vaerious flow cross sections:

1y 1
— = — +... = constant {9Db)
by LP

It is thus sufficient to establish the law of increase of
width of Jjet along the axis of abscissas in order that the
law of increase of the mixing length be known, A very
inteoresting consideration of Prandtl permits the solution
of the relation b = b(x), It is shown by Prandtl (refer—
ence 11) that the widening of the jet (or of the boundary
layer of the jet) arises from the transverse velocity
fluctuations V', that is,

&b gy . B2 (10a)
dat ey

Because of the simllarity of the velocity profiles at the
different jet cross—sections the following equation may be
written '

ou up

— A ———

oy b
and further

1
5 ° % % - Un (10b)
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On the other hand, the rate of expansion-of the jet

db db dx

p— I e —— . (lOC)
dat dx 4t '

that is,
av db .
- 2 up — )
dt dx

Comparison of expressions (10b) and (10c) leads to the
solution of the problem of the law of increase in width
of the free Jjet and of the mixing length in the flow
direction:

32 constant -)

dx
(11)
b = x constant
1 = ¢ X

The law obtained for the increase in the mixing length
along the flow

1= ¢ X (12a)

is valid for free jets of various shapes: for the boundary
layer of an infinite two-dimensional flow, for a plane—
parallel stream, axially symmetric stream and, in general,
for those cases of free streams for which the flow profiles
are similar, In the same manner, as previously described,
the law of variation of the mixing length in a plane—
parallel wake, axially symmetric wake, and so forth, may
be obtained, In the present paper, which is devoted to
the free jet only, no consideration will be given to wakes,
By making use of the relation obtained for the mixing
length along the Jjet the differential equation for free
turbulence in a compressible fluid is reduced to the new
form

du du 2z OU O T a]
u — + pV == = 2¢ —_— — (12
P TP Sy o5 L° oy )
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This is the general equation satisfyling any case of a .
free jet of a compressible gas, The magnitude c¢ is

the only empirical constant in the theory of free tur—
bulence, In the special case of an incompressible fluid
equation (12) assumes the familiar form given in Tollmien's
paper:

]
Bu ou 2 g Ouodwu
— + TV — = 2 — = (12b
"= oy 0T 3y P )

I, DIFFERENTIAL EQUATION OF THE TURBULENT BOUNDARY
LAYER IN A FREE JET OF A COMPRESSIBLE GAS

(PLANE-PARALLEL PROBLEM)

Assume a plane—parallel flow of compressible gas
extending to infinity in OY direction (fig, 1) with
undisturbed velocity wu,, density p,, and starting
from the point O, mix with the surrounding gas at rest,
In accord with the law previously derived of the linear
increase in the width of the boundary layer b together
with the condition of similarity of velocity profiles
the velocity along any line Gp drawn from the origin
of coordinates O (the latter coincided with the point
where the boundary layer thickness b = 0) remains con-
stant as will be shown, From the similarity of the
velocity profiles it follows that the velocity at corre—
sponding points of the flow are equal, that is, for

Y o ¥=2 _ Y3 .. .2 constant
b, b, b3

there is

»+= constant

I
I
|
1
[
|
1
.

[«d
[}

But from equation (11)
b = x constant

hence for



b
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y/x = constant. S . (13a)

theré is the condition

2 . constant ) (131)
o
0.

.

which proves what was reguired, since equation (13a) is
the equation of a straight line through 0, Thus in the
turbulent boundary layer of a free .flow the rays from
a correspondingly chosen orlgin of coordinates are
"isotachs.”

The result obtained indicates that if the problem

of the free plane boundary layer 1s solved in coordinates
x and 1n = y/x 4the velocity will depend only on n:

= uof('n) . (14)
In order to eliminate the empirical constant from equation
(12) the following equation is set

2¢® = aB (15a)
and the following system of coordinates 1s chosen

X = (15v)

v
ax

uw = u,flq) : (15q)

There 1s introduced, as 1s usually done for compressibdble
flow cases, the stream function for the product of the
mean velocity by the mean density and there is obtained .

pua-?i-\«ba.ndp‘f:_bw

- = (154)
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The density of the fluid in the case of free turbulence,
for which the pressure gradients may be neglected, de—
pends only on the temperatures,

The temperature fields in free flows, as shown by
the tests of Fage and Falkner, Ruden, Olsen, and others,
are similar as the velocity fields, Otherwise expressed,
the investigations of the temperatures show that in the
free boundary layer the isotherms, like the isotachs are
straight lines from the origin, Thus the temperatures,
and hence also the densities, depend only on the non-
dimensional coordinates (¢):

t o= t, e(¢)'1

(1
P = po klp) j/ *)

On the basis of the foregoing a certain function F(¢),
the first derivative of which is equal to the principal
component of the momentum, is introduced

p U= p,ou, m (l7a)

where Po and u are the denrnsity and velocity, respec—

tively, in undisturbed flow,

Hence
v = Jpudy = p, uy ax [ Flde
that is, the formula for the stream function is
¥ = axp,u F (17v)

and for the transverse momentum:

QY [ aw]
V=ee=Z==ap.u. {F — xF! =%
P ox Po™o ox
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or

oV = apoi, [F! — F] (17e)

Substituting expressions (16), (17a), and (17c) in

the differential equation (l2) and making certain elementary
transformations of the latter,

using the expressions
Qs A 174
b T ax (174d)

the differential equation of the turdbulent boundary layer

in a plane—parallel free flow of a compressible gas in
the form is

/F!

5&__, a/- E,') a<f_'\
o K/ \n 5 K/
—3 = — K

&ep

Z 3 - (18)
oo oo | o :

At all polnts of the boundary layer except its outer (@2)
anl inner (@l) boundaries the derivative of the velocity
is not equal to zero, that is,

43\
A% 4,
Ocp

Therefore the following is obtained

and further

(191)

Thus the differential equation of the turbulent boundary
layer assumes the following form
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F,..=_F+,§_[§E'_ F|] (20)

To solve the above equation it is necessary to know the
density function «k = k(e),

In the case of an inéompressible fluid for which
kK(p) = constant = 1 and K! = pK/dp = O equation (20)
reduces to the well-known Tollmien equation:

Fi# = . F (20a)

corresponding to the case of the turbulent boundary layer
in a free plane—paraltlel flow of an incompressible gas,

In what follows equation (20) corresponding to the
compressible gas will be solved for two cases:?

. 1, Free flow at small velocitlies (up to Ba = 0,5)
with a temperature differing from that of the surrounding
space, that 1s, a nonisothermal flow,

2. Isothermal flow at large velocities (up to Ba = 1).

ITi, BOUNDARY LAYER OF NONISOTHERMAL PLAVE-PARALLEL JET -
OF COMPRESSIBLE GAS AT MODERATE FLOW VELOCITIES

l, Heat Balance in the Turbulent Strean

In the present section the flow of a compressibdble
fluid (gas) in the boundary layer of a plane—parallel
stream at moderate velocities but at temperatures differ—
ing frem those of the surrounding fluid at rest shall be
consldered, In the later sections it will be shown that
the effect of the compressibility of the gas arising from
the high flow velocities is not large, Up to values of
the Bairstow number of the order Ba = 0,5 — 0,6 the
effect of the compressibility is barely appreciadble, For
this reason the equations and results which will be ob—
tained in the present section devoted to the nonisothermal
Jet of small velocity will maintain their validity up to
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velocities of the order of 0,5 — 0,6 of the velocity
of sound

To obtain the law of temperature distribution in
the boundary layer of a free jet use is made of the
differential equation of ‘heat balance, whereln the
molecular heat conduction . and the converszon of the
energy of the viscous forces into heat is neglected
with respect to the turbulent heat transfer in the
same manner as the friction due to the viscosity in the
dynamic equation (2) was disregarded with respect to
the turbulent frlctlon Then ° -

oT o7 oT

p-g%-+pu—-b—;+fjv—a-—§_=0 (21)
where
T temperature of the fluiad
t time, seconds

It is convenicent tvo break up all the characteristics
of the turbulent flow 2ilo their mean values and fluctu—
ations about the mean values:

u="+ur, V=7V+7Vr, p=p+p!, T=T+ P! (22a)

so that on the average for a finite time interval the
fluctuating components are reduced to zero:

v|=u'=p‘=TT=O

Averaging with respect to time, while taking account of
equations (22a) and (22b) and neglecting moments of the
third order:

(P' wu! _.9\_-_.; IV' EE_.\

.. . Tox P °v J -

egquation (21) is transformed into the differential equa-
tion of heat balance for the turbulent quasi—stationary

<p of d) flow:
ot
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-~

_ 3T — = T e T _ dT1 - omi |
g u f;'+ PV —~—]+ prul ——+p ul == + up! —-H1.
o] ,

ox ox
o TTUSEY L TTTRET
+ {p!V?! — + DV o + Vpt—=—1|=0 (220)
: ¥y y ' oy -

Assuming as in the case of equation' (4d) and density
equation (4e) variations that the temperature change 1is
the discontinuity at the instant of loss of individuality
of the fluild particle transported by the flow over a dis-—

tance equal to the mean value of the mixing length (1)
resulted in ’

T! = ip 22 (224)
y

Because of the preseﬁce in equation (22c¢c) of fluctu—
ations of the temperature gradients its further transform—
ation beecomes impossible, In order to eliminate this
difficulty the equation of continuity of the flow is here
resorted to:

ot ot OX o0x ox fob:d

oy oy oy oy

which, after averaging, assumes the following form

So o P oV P
3p .\ d(pu) . alptu )+ 3(pW) . d(p'vY) _
ot ox ox dy - 3y

¢ (=22f)

Subtracting the averaged equation of continuity from the
instantaneous:

dp! , dput)  3lpta)  d(pVH) | b(p'V) _

ot ox X oy oy °

and multiplying by T' gives the following:
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T éﬂlq.mu E£§3l2+ T bLE-u) ESEZLZ+ e aiel!l
ot ox ox oy oy
whence

: b(p'T')+ b(P§|T|)+ b(EEITLl+ b(EV'T')+ 2(Vp111)

ot ox ox oy . oy
=p' 92_' + pu! _62._4- up| bT +le _bT'+-v 92-'_
ot ox ox oy oy
By averaging the latter expression and taking into account
the quasi-stationary state (a(%—T ) %;— 0) the
' t t

followingz is obtained:

s;-u,or Lay er+[ 0T+V,0T]

. dx ox oy
o(pu'T’) d(up T) 1) V’T’) d(Vo 7 T") l
—|2&LT) 1+ +
whence
-~ 0T |, —— 0T - 0T |, 0 T ouy T’
[P S+ 77 55 || 7w S+ 2O o 26D |
- 0T | @ V’T’ oWV T
+ |7 gL 26 VT AW T ] o, (23)

Neglecting, in analogy to what was done with differential
equation (3), the small terms entering the second brackets
and the term d(Vp!'Ti1)/dy in the third brackets the differ-
ential equation of heat balance in the turdbulent flow is
obtained in the sufficiently simple form:

i 9L v gy O 9GVT)

=0. 24
day ay (24)
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For the purpose of further converting this equation the
relations shall be taken into account

dp du oT

and the bars dropped from the notation, that is, P = p,
=u, T=7T V=YV shall be set, Then

oT aT
Pu‘a;“%PVQT—‘F

75— 0p v orT - an
+ V5L 0y+dy[VlT" dy]_o (26)
or
oT T ., dp ouw OT , [,  ou oT
p ———1pV Ty =Ir TJ_OT—E+[ZT .""a—v"a—y-—l (26b)

The right hand side of the above equation gives the trans—
verge gradient of the turbulent heat transfer

(27a)

oty | ey oy

oWr _,, 0p Ou 04 0 . ou OT
dy T 0y dy dy ’"?F[ ]

From this the expression for the heat transfer in the
turbulent flow of a compressible gas is obtained:

dp du JOT , Ou oT
W jr Oy d 0y dJ’+ sz dy 0 —I—const (27b)

which, 1in the particular case of an incuuspressible gasg,
%p/dy = 0 assumes the following fo.m that

du 0T

WT=IT2P‘3_V'“5JT' (27C)

In the case of free turbnlence in a compressible gas, accord-
ing to Taylor model, it 1s assumed

L=y2cx, @7d)
the differential equation or heat balance 1s written thus:
oT
p-u- 0x_+ oV —— Iy =

op Ou ou 0T
—_ 2 2
=20 ldy dy dv +_0y ( oy dy)] 0. (28)
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For the turbulence model of Prandtl

and therefore

dp Ou OT ou ar)l_ (282)

oT | LT _ .., 9
e ki i G e

Comparison of equations (28) and (28a) shows that the
Prandtl model gives o heat transfer half as great as

that given by the Taylor model, Moreover, the Prandtl
model, as shown by Taylor, leads to similarity between

the temperature and velocity flelds; & result which 1is

not obtained from the Taylor model, In view of the fact
that the results of Fage's and Ruden's tests confirm
Taylorts free turbulence model and refute the Prandtl
model, equation (28) is used as a basis for this discussion,

For an inconpressible fluld (p = constant) the egua-
tion of heat balance reduces to the followling form:

or

oT o O [0uoT .

2, Temperature end Density Distribution Laws

According to the results obtained in section II of
this report

pu = port,F’ (3); pV =p,-u,-d (9F' — F); o= pox ($);

-3 “=]3//2t:2 ;
d / F’
.~F==3$[w 0K7—>]

0%

(30)

It is assumed that the excess temperature fields (differ—
ence between the temperatures of the stream and those of
the surrounding fluid) in the various cross—sections of
the boundary layer of the free Jet are similar

AT . T — Tnm o
AT, = To—T,, ~ @ @1
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where
T temperature along a ray ¢ drawn from the origin
of coordinates (start of boundary layer of Jjet)
Ty temperature in the region of undisturbed flow
Tata temperature of the fluid at rest in the space
surrounding the Jet
Then
.. aT o8 or 00
=A é"‘ —_— = —_— —_— .
AT Ty, ox AT, ox ’ ay AT, oy (32a)

Making use of expressions (20) and (32a) to transform
equation (28) it is found that
a(F)
k3
S (32¢)

%Fj
Fe'—v'--—z__ . 0 y
= e =+ —=
and further ) ? 9%
(%) )], (%)
_F—y’._.___x___.__l_j_ o N/ .*_.,____7'___””. 39d
=*"5p 2 N S Py - L (32d)

The above equation on comparison with equation (30)
leads to the differential equation

K, 6 ” s
—+ - 0. (33)

7.

In the case of an incompressible fluid (X = constant;
K! = 0):

In 8" = const; )’ = const; 8 =c,9-+-c,. (34)
With ©(p,) = 1 at the inner boundary of the flow (in

the region of constant velocity) and 6 (pgz) = 0 at
the outer boundary, the constants of integration are:

€192+ €2 =0; e =1

whence (o — %)= 1;
€ = L ;
e — ]
Cp= — P2

91— % )
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Prom this the law of temperature distribution in the
boundary layer of a.plane—parallel flow of. an.incom-
pressidble fluid is found to be:

¢ - @z
Py " P

0= (35)

The obtained linear law of temperature distribution
is satisfactorily confirmed by Ruden's tests (fig. 2,
reference 12),

A certain amount of disagreement with the tests
occcurs only at the boundaries where the temperature
profile departs from a straight line and passes smoothly
over to the boundary values of the temperatures, The
thermal boundary layer is found to be somewhat thicker
than the dynamic boundary layer, This fact 1s explained
by the following reasoning, The linearity of the temper—
ature law is obtained on the assumption of purely turbu-
lent heat transfer with the molecular heat conduction
neglected, This agsumption was based on the analogy
with the dynamic problem whére the neglecting of the
molecular viscosity led to a velocity »rofile which was
excellently confirmed by tests, A specific character—
istic of the velocity profile was that near the bounda—
ries of the layer the velocity gradients and also the
frictional stresses were so small that allowance for the
viscosity could have no appreciable effect on the deform-
ation of the velocity profile., 1In contrast to this the
temperature field was obtained with large gradients near
the boundaries, This indicates that the molecular heat
conduction at the limits of the dynamic boundary layer is
of appreciable magnitude so that the temperature field
departs from the straight line law and the thermal bound-
ary layer will be thicker than the dynamic, Subsequently
it is attempted to perfect the temperature distridbution
law in the free jet by taking the molecular heat conduc—
tion into account, For the computation, however, of the
density and velocity fields in the boundary layer of a
free jet such refinement of the temperature law is not
Justified since the accuracy of the density field will
notv thereby be appreci:z=bly increased while:the mathemat-—
ical labor will be cou.:cera'ly completed,

On the basls of the foregoing it was preferred
to investigate the laws of flow in a compressible fluid
without allowance for the effect of the molecular heat
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conduction and to restrict the problem to the solutlon'f
of the previous dlfferentlal equations .

=

£+ %T =0 ¢36a)
whence
‘ : In (K §!') = constant
and
K-e' = ¢, (géb)

The further solution of ,equation (36b) is predicated
upon a relation between . the cdensity and temperature
functions, With this in mind Clapeyron's equation is

used? ] ‘
gRop T \ '
: (36c)

R T, [
gPo OJ
which in the case of a free jJjet with constant pressure
along and at right angles to the flow (P = P, = constant)
leads to inverse proportionality between the absolute
temperature and the densities:

P

1

Fo

To Tata + ATo

e ' -
- T el = 36(1)
po T Tata + AT
whence
P Tata * 8T,
B = o = Ha a (368)
P Taotat 84T,

Nondimensional parameters characteriz'ing the degree of
heating (or coollng) of the jet are introduced: )

AT,
t o= ——2 (372a)

Tata
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where

ATg excess temperature in the region of constant
velocity (u = ug)

Tata absolute temperature in the gas at rest surround—

ing the Jjet
This affords, in final form, the relation between the

density and temperature functions in the boundary layer
of a plane—parallel turbulent flow:

K = (37D)

Substitution of the above expression in differential equa—
tion (36b) gives

' c
8 = 1 (37¢)
1 + to8 1+t
or
a1l + %8 cyt
( L - dep : (374d)
1+ t2 1 + %
Equation (37d) 1s easily integrated:
In (1 + t8) = D, + D, (38a)

The constants of integration <D11 D,) are determined from
the boundary conditions given above:

6(ep,) = 1
e(f-Pg) = 0
resulting in

1+ t8 = (1 + t)Pa7 %= (580)
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and thus in the temperature distribution formula:

%=
AT (14t)TE TR
g = = (39)
AT, b

The above expression substituted in equation (37b) gives
the law of density distribution in the boundary layer:

1..52:32
ko= o= (1+t) PTe (4Ca)
Po
or
N s
ko= 2= (14 p)TrT¢R (40Db)
Po

3., Development of the Differential Eguation

Consider the problem of the flow of nonisothermal
jet at velocities that are small compared to the velocity
of sound (up to Ba = 0,5), ZFor this condition the density
profiles wmay be considered practically indevpendent of the
velocity profiles, The denslty will devend only on the
temperature, the character of the dependence having been
established in the foregoing as

Py—=@
1~ %2

K = L. (1 + t)w (41)
pO

The derivative of the density at a glveun point will then
be

P,—@
o0x Pr~®z 1nf1 + ¢
B* = —— = — (1 + t) __ﬁ__ )
O Qi—Pz

(a2)
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The ratio of the derivative of the density. to the value
- -0f the latter will be constant for a glven value of the
Jet- temperature

k! In(1 '+ ¢) ‘

" T T (43)
K- P11 — Pz

Returning to the general differential equation (20) of
the boundary layer in a compressible gas stream:

T o= F o4 O fa- F'] (44)
w
its swecial form for a nonisothermal jet of moderate

velocities 1s obtained as:

PN = P o~ EE&E:;t) (45)

— Pz

After introduction of a special notation for the parameter
which depends only on the temperature of the stream:

§ = Eﬁil_i_il (46a)

The differential equation will then have the following forw
FI" = — F — SF" ) (4601)

The above equation is a common linear differential equation
of the third brder whose general integral is of the form

k k. k
P = 0C,e A C,e CA g Cae Al (46¢)

€,y C5, Cz constants of integration

2, ks Toots of the characteristic equation
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2 + ak® + 1 = 0 (484)

which in this instance reduces to thé equation by Cardan,
As is usual for Jjet boundary layers equation (46c) has
five boundary conditiens,

1, At the inner boundary of the layer where ¢ = ©,

(a) The gradient of the momentum is equal to
Zero;

olpw) |

S 0 — that is, F"(e,) = O (46,)
P

(b) The momentum is equal to the momentum of
the undisturbed flow:

puU = poUo— that is, Fl(p,) =1 (46,)

(c) The transverse component of the velocity
vanishes:

Po¥o = O — that is, TFle,) = ¢, (463)

2. On the outer boundary of the layer where o = ¢,

(d) The velocity gradient is equal to zero:

o(pu
_EE_E = 0 — that is, F"(e,) = 0 (46 4)
P

(e) The velocity is equal to zero:

pu = 0 — that is, Fi(gp,) = 0 (465)

The five conditions (46, _5) are used to ascertain the three
constants of integration OC,, CO,, Oz and the values of the
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nondimensional coordinates of the-outer and inner limits
of the boundary layer ¢, and ¢,, To each value of the
compresslibllity parameter § there corresponds certain
values of the constants of integration and the nondimen—
sional coordinates,

4, Integration of the Differential Equation of

the Nonlsothermal Jet

According to the foregoing the boundary'layer of the
nonisothermal Jet ls characterized by the differential
equation
F'1 4+ SF" + F = O (47)

the integral of which is
k k. k
F=20e 1?9 4 Cge 2?4 Cye a® (48)

The wvalues of k,, k,, ki entering this integral are the
roots of the characteristic equation

k2 + sx® + 1 =0 (492a)

By means of the substitution

k = a2 (491b)

the given cubic equation is reduced to the Cardan solution:

x> + 3PX + 2q = 0 ¢49¢)
in which
P =~ §2 .
¢ = 8§+ %; (294)

The roots of this equatlon are determined by the Cardan
formula:?
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X, = u+ v, Xa ="w;u + wov, X3 WL 4 WY - (4%e)

the terms u and v Dbeing given by

TS St
u = 3/‘1 * Wfa® + PP v = /——.q ~ Ja? + P3

i

The coefficients w; and w; are th'e conjugate imaginary
cube roots of unity:

- e P )
3 3 2 ]‘ &
u=3—~l-s +—2-Z]]+/!S +—Z - 5
L 2 L 2
> (50a)
/f o ~ =
s, 27 Tes 27 ]® 8
v =3/ 18°+ ———] - / Is e ~ 5
2 _J‘ a7 L 2 ~
Since u and v are real numbers, X is the real root of

1
the Cardan equation (49c) and X, and Xj are the conjugate

imaginary roots, Correspondingly k, is the real root of
the characteristic equation (49a) and k_, and ks the con-
Jugate 1lmaginary roots,

Setting:

+ Boi, kg = ay — B.1 (500)

7, — —
Ky = a1, ¥z = ag

integral (48) is transformed into

o) = 019@1@ + C‘Ee(mv?"'ﬁ-'di)CP + Cge(“z*szi)¢ (50¢)

As is known a pair of conjugate imaginary solutions of a
linear differential equation of the third order defines a
pair of real solutions expressed in terms of trigonometric
functions: ’ )

cze(a3+53i)ﬁP > 0,e"%® cos (Bo) \
. | . -\ (50a)
Caeloz—Bzilo 5 C,e%2® sin (B o) j:
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In 1ts final form the differential equation of the bound—
ary layer may be given in the following form:

F(p)= C.e" ¥ - C.e™’ cos (B,¢) - C,e™* sin (3,9) (51a)

The magnitudes a,, a,, and B; are readily expressed in
terms of the "thermal compressibility factor® of the Jet:

s_ln@+n

Q1 — %o

For thi¢ purpose the expressions (49b) and (50a, D) are
resorted to, while taking into account the fact that S
is a small magnitude of the order of 0,05 - 0,15, Then

277*

]/ s+ 5] —s =G 45
=t/ =[5+ Z]+[s+ F]-o
=) s ][ 5]

—1+iV3 . —1—iV'3
’w1=——'2—-——1—/——’ w, = — 1V
whence
, 28»
X1=u~w=~[3+~27_}-
. 14+iV3 5,28
/\zzwlu—{—w?v:———i%}i—'?'{- 7 l (51b)
25*
A’3=w2u+w17} ____.—l..‘/_g__ l3"[" -l
and further
p Xi—S S a8
m,3 T 3 81
_X—S |1 S .13 25317 .
R i o A ERLLAIE 610)
_X—S_|1_ s, 1 258
k= —3 *l?""er' ]*“—2—[14“8—1}-
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A comparigon of equations (51a) and (51v) yields the
formules for computing a,, a;, and B, from equation
(50¢) for given values of the compressibility factors

S 283
==+ +%|

_fr_ S .57 3 25"
=y tar]s =t Ar |

In the particular case of an incompressible fluid,
S ~ 0, it 1is

(51d)

L _VE :
2

a=—1, az=§) B-z:: ’

which is in complete agreement with the corresponding
Tollmien solution:

i3 T - k3 I3
F=e *4 C.e’ cos [%?J + Cie? sin{PQ3 cp‘l (5le)

Estimating the order of magnitude of the individual terms
in equation (51d4) 1t is readily apparent that the terms
containing (S3) can be neglected since S is usually
consideradbly less than unity, Thus, for example, 1if the
temperature of the jet is 100°C higher than the surrounding
temperature, S will have the value 0,1 and §3% £ 0,001,
Thus wlthout appreciable impairment of the accuracy

S 1 s . V3
3 %T g 3 132—“'2_ (52a)
The basic function of the boundary layer then assumes °

the following form:

oy =—1-

-—-§—¢ 2. =3 ° ra
F(g)=e ° '{cle~“+cge2 cos{V; @}—{-6382 sin [V;’ 9]} (52b)

The expression in braces corresponds exactly to the Tollmien
solution for an incompressible fluid:

F,(9)=Ce”¥4-Che? cos [ ‘23 ;] 1 Cye? sin [ V; ,] (52¢)

The first derivative .of P(ep), equal to the nondimensional
mnomentum, is given by

N | A E—
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ST V3
=F(p) =e ’ l—Cxe_?+2(C+CaV3)e COS[ *.’l -
Poku
—%(czv'é‘-—cs)ﬁsm [@cp l— :
s, X2 e e 5 ;
—-—‘g—e 8 Cle"*—{~Cge"’cos[V3 '-?] 4-Ce? sin ['Q‘ ] ] (52d)

The second derivative of F(¢), which is the nondimensional
velocity gradient, 1is

F"(9) = e—%? [Cl e"*’—i—i (C,V3—C,) e% cos [-‘%3—_— cp] —
Q(CV+C'V$e%ﬁn[VB ]]-—%ge-%q[ Ce‘“%Q(Cﬂ-

+C,V3) e—fcos [—l%:‘}— q;] ——15 (C,V3—Cy) ezism [—1-/;: ?J -+

2 —_—— . ) 3 £ 3

+STe 3 [C,e"'?—-l—Cgezcos[—‘%cp]—{—Cgezsin[—z‘;—:‘aj] (52¢)
For these considerations the factor S°/9 1in the fore-—
goling equation are neglected,

There remains, on the basis of the five boundary
conditions (46,_g), the determination of the constants

of integration C,, C;, C; and the values of the non-—
dimensional coordinates of the outer and inner limits
(p,) and (p;) of the boundary layer:

CFR)=9, F (9)=1, F” (5,)=0,
F'(9)=0, F7(2,)==0

The problem of predicting the basiec function Flp) 1is
then solved,

The five boundary conditions lead to five transcen-—
dental equations with five unknowns (C,, C,, Cs, ¢,, and
P ) solvable for any particular value of the compressi-
bility factor, By applylng the transformation of variables
proposed by Tollmien

P=9—7, (53a)

these equatlions can be considerably simplified, The sudb-
gstitution is made so that
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F@=F@, F@=F@ F'@=F'@) (53b)

‘Then
S'_ s K a i "o ]
F($)=e_7',D,e " 1-D,e?cos [-1/2—3¢]+D,,e2$in[12§9”, (53c)
and hence, vhiio bearing in mind that,

—(;1=01v52=?2—"?1,F0=D1e_?’TDP COS[Vs J—]—DaezSi“l%*?TI

‘five equations with flve unknowns:

’ S ’s 2S Y]
Fou=¢g; Fo, _'—3‘F01=1; Fy ——3"F01=0; ,
(54a)
.S . v 28 o,
Fo, ———3-f‘0,=0; Fos "“—3“1:0220, ,
.which are simplified to
’ S ’ 25 ’r
Fo=1; Fo 21“["—:3‘; Fo, :—\-'T; Fy' = —0,135; F,,”” = 0. (54b)

With the first three equations of the above system the
coefficients D D,, and Dy of equation (53c) can be

expressed in terms of P,
D1‘|LD2=’*P1
D 1 = S
- l+_2—(D2+D3V 3)=1+'3—, (54C)
1 5 25
D+ (DyV3— D) = =5~ (54d)
from which
%+05 S 5 _ 1, S
Dz 15 9° ‘)'—V'g‘_l_ 1,7 ) (543)

¥With equations (54¢) the five equations of (54b) (with
account taken of equations (52) and (52e)) can be reduced
to a system of two equations with two unknowns:

—D, T DA DY T cos [V R 0|

1 _ (92 —%) 3
—5 [D,V3—Djle ? \sm[ 5 <:p,—ap1)]=—o,13s; (541)
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— Ay — & . @1 —@ - _g .
R N - P LATOR S
. P — 9 3
“"‘;_[DQVS"}‘D:«]F 2 ~sin [‘lgé(?z—:?l)] =0, (54g)

waere D,, D;, -and Dy are taken from equations (54c),

Addition and subtraction of equations (54f) end (54g)
give two rew eguations of a somewhat simpler form:

|

D,V3 e T cos [KQ—?-;(%— ?1)] —

B 7 Rl 4 9 ~
—D,V3e 7 sin [‘%@2-—%)] —0,135;

— (e — i 4] a2
2D,e” W—Dze 2 cosP/3

(55)
5 (% _91)J —

P2 — ¢

—Dye % sin []%(?2_"?1)] =0,138

Next it 1s attempted to determine the functional relation
between the constants D,, D_,, Ds, @,, 2nd ¢, -end the
compressibllity factor S makling use of the fact, as

will be shown later, that the compressibility of the air
1s of only slight effect on the free jet. Putting
D, =D,,+AD;; D, =D,y +ADy; D, =Dy, + ADj; | (562)
1= P1p+ Ay P2 == Qup - APy, J

where Djyq, Dgo, Dso, ®10, &and P, Bare known values

of the constants for the incompressidble jet:

Qﬁ=%;1=—am& Qﬁi%%§=m%ﬂ
’ (56b)
1
Dao =T

V'B‘ ==0,578, Q1o == 0,981; g =—2,04,

Ry N e L P L VT e A s

and the gmall increments (compare equations (86a) and
‘g86ec) with (84b)):
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3Ap, + S
. 9 51,7 ﬂl
(56¢)
6Ap, — 8
ADg = ~Pg ; Aoy =91~ %10, A‘Pa"'CPz"'CPao(
-

Reverting to equations (55) expanding into series while
neglecting all terms of higher degree than the second and
the products of the small increments and using the values

1.51 3,08

e = 4,51 e = 20,4
sin(—-2,62) = -~ 0,5, cos(~2,62)= — 0,865
results in
0,08285 = 0,380 Ap, — 0,25540,

4,6348

0,130Ap, — 13,60A0,
The solution of these equations leads to a functional

relation between the deformation of the boundary layer
and the compressibility factor:

~

Ap, = — 0,345; Ao, = O (57a)

which yield the corrections for the integration constants:

~ S S
AD. = 03 AD, = —3 ADr = —e 57D
1 2 " 79 a7 (570)

The constants of the auxiliary function F(ﬁ) are then
equal to

D, = - 0,0062, D, = 0,987+ 0,118; Dy = 0,587+ 0,595 (57¢c)

and the ordinates of the outer and l1lnner limits of the
boundary layer

¢, = 0,98 ~ 0,345, ¢, = — 2,04 (58)
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Equations -(67¢) and (58) give the integration constants
of the fundamental function F(yp), The first three
boundary conditions of the given problem are used:

'F(cpl) = Q1 F‘((pl) = 1, F“(CP:L) = 0 (593-)

After substitutlon of the values™ ¥, F! and F" from
equations (52b), (52d), and (52g) the first boundary
condition gives

—

S P P v 3
0, = é—iml-{ole”¢1+-cgeircos [Aéé¢1}+ Cze® sin [—§—¢1 (591)

The constants of the compressible gas are again expressed
in the form

C, =C,o + #C,, Co=0C_ + AC,, Cz = Cazp + ACsz (59¢)
where
C,o = — 0.0176, C,, = 0,1337, Oz, = 0.6876  (59d)

are the corresponding values of the constants obtained

by Tollmien for the particular case of an incompressible
flow, In the same manner, according to (58) the coordinate
of the inner boundary of the layer may be written:

1 = §yo.~ 0.34S. : (59¢)

where ¢,, = 0,981l 1is the coordinate of the inner boundary

for the incompressible fluid, Stbstitution of (59¢) and
(59e) in (59b) and use of the series up to the second power
term (due to the smallness of. §) of the exponential and
trigonometric expressions gives ’
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NE

3 %10

e .
“5~®10 [+ 0.35 sin L—

] ( (59f)

/5

, NV /3
sin L—E—wl] = sin L:é:;lo} — 0,35 cos [—§—¢10}

-/

The products and squares of small terms are disregarded
and the following relation is taken from the boundary
conditions for the incompressible gas:

10 - Lor) -
- 3 10 (W3
®y0= Cioe€ ¢10+—Ceoe 2 cos L%;¥10J+ Csoe 2 51nL7?¢1°]

whence the equation connecting the increase in the con-—
stants due to the compressibility with the compressibility
factor 8:

(60)

0,375 AC, + 1,08AC,+ 1,225 AC5 = 0,3405

1}

The second boundary condition F'(@l) 1l in combination

with equations (524) and (59b) gives
. \ o

- I = "
1= ¢ %2 i701e®1+-% (C_+C5 v3)e® cos [Jg§¢1]
©,
1. 5 J3 1 S
-3 (Co /3 — Ci)e ]

sin | =0, ;T35 (61)

Substitution of expressions (59c), (59e), and (59) in
equation (6la), while neglecting products of small
quantities, and making use of the particular form of
this equation obtained for incompressible gas yields:
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‘ P19 Jz
1 = — Cle-wloi-% (Cz°+ Cso~/3)e 2— cos [—— ]

@10 —

1. NV -
~ 3 (Cz°~f§ ~ G35)e° sin [~§—¢19]

a second equation for the relation between the increments

in the constants of the functlon F(¢) and the compress—
ibility factor: -

—0,875AC; — 0,524C; + 1,55A0, ='0,654 § (62)

The third boundary condition F"(op,) = O,

together with
equations (52e) and (61), gives

] ©?a

—3%1 —®P1.1 , . ry 3
0=2¢ 2 {}Cle 1-+—2— (CSJE—-Ca)e2 cos Eé%@l]

= % (Cs+ szﬂ;)ez sin [%é;l]‘}‘ %§ [1+§¢1} (63)

By substitution of expressions (59¢c), (59e), and (59f)
in equation (63), while neglecting the products and
squares of small terms and taking account of the fact

that in the case of incompressible gas equation (63)
assumes the form:

- o - %10 f
- 1 B '® rves

0 =.Cloe ¢104-§ (CsoVé — Gzl cos L7T¢10]

- P10 . e .
1l 1 / = . i‘\/z

the third relation between the increments of the constants
of the function F(@). and the compressibility factor is:

0,375 AC, — 1,6 AC_, + 0.32 ACz= 0,332 8§ (64)
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The solution of the system of three simultaneous equa—-
tions: .
0,375 AC, — 1,60 AC, + 0,32 AC:5 = 0,372 S,
—~0,375 AC, — 0,52 AC, + 1,55 AC_ = 0,654 S (65)

0,375 AC, + 1,08 AC; + 1,225 AC, = 0,340 S

. gives the laws of variation of the constants of .integration

of eguation (52b) under the effect of compressibility:

AC, = O

1 o, AC,=-0,14 S, AC, = 0,385 S (g5a)

hence the integration constants:

¢, = - 0,0176; GC, 0,1337 —~ 0,140 S; -

1

"

C, = 0.6776 + 0,385 § (66)

Substitution of expressions (52b) and (52e) in (66) while
neglecting the products of small quantities, the function
F and its derivatives are obtained in the final formp

F=F +AF; F!=F' +AF'; FU" = F0_ + AFN (67)
where Fo, F,!, and Fy" ‘are the walues of the functions

and its derivatives for incompressible gas (Tollmien's
solution):

- 2 e[y '+ o.comoetain L,
F0(¢)=-— 0, 0176e ™ + 0,1377e2 cos{?@—¢ + 0,6876e%sin 7g¢]
: P A P
F, t{p) = 0,0176e T+0,6623e3cos [éécp + 0,228 e? sin —;cp]
. © —~ 2
Fo"(¢)=-—0.0176e CP+O,528e'§cos [%§¢ —‘O.930e2 sin %?@]
J

and AF,. AF', and AF" are the increments of the function

-and its derivatives under the influence of compressibility,

The inerement of the function is

(67
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CP .
S 3 3 F [ :
AF = — = [¢F°+-0.42e3cos[¢g#]—-l.leezcostigw]] (671)

that of the,first de?ivative

RS

— P
z

,AF:;_.E [¢E014=F0;-O.SOéscos[%gm}——O.éSe sihEéipJFE?c)
N - . A R -

and that of the second derivative

SR o o K .
AF" = — .3§ I:cho"+2Fo! - l.Zezcos[::/_;.cpJ + 0,22e%sin [ﬁé?’-cp”(evd)

In conclusion it should be noted that the authorts
carefully conducted numerical ‘soluticn, based directly
on eguations (55), showed cowovlete agreement with the
functional results, (€7a) and (67a), approximately obtained,
notwithstanding the fact that for the numerical solution
a very large value was chosen for the compressinility
factor (S = 0,135) corresponding to the czse whasre the
jet has a temperature 150°C above the surrounding temper—
ature,

It will be recalled that the first derivative of the
function F is the momentum of the flow in the direction
of the X—axis:

pu
oun T F! (68a)
(o]

To obtain the velocity u/uo it is necessary to apply to
the law of density distribution in the boundary layer:

O, — @
e e w e - . . L& =_e_=(1+t)cpl_'<92 (68b)
. - Po

then-

u Pt
T T % (68¢)



44 NACA Technical Memcrandum No, 1058

The momentum velocity ratios in the direction of the
y—axis are

= 8 L—————— (63d)

To facilitate the comnutation of the components of
the velocity and other characteristic magnitudes of the
nonisothermal layer, table I is appended with the computed
values:

ry

Lv]

3 3
Tor To's Fol, uw g AF, < AFT; o éF"

The tables 2, 3, and 4 contain the values:

_ P! @F!—F 12
F, F', F", &, T{‘; —“r; F! - F =10

from which the velocity profiles, velocity heads, den—
sitles, and tempcratures may be computed for the follow—
ing values of the conpressibility factor:

S = - 0,074 S = 0,0605; S = 0,1115;
the given values of S correspondlng to the jet temper-

atures of —60° 60°, and 120° ¢ respectively, above
the surroundlng temperature,

5, Fundamental Properties of Roundary lLayer
of Nonisothermal dJe”

(a) Geometry of the Jeu

The nonisothermal jet, that is, having a temperature
other than the surrounding space has, as explained in the
foregoing, the interesting property that its outer bound—
ary (u = 0) remains constant for variation within very
wide limits of the temperature increment (At =1 150° C):

vy = constant = — 2,04 (69)
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- The -inner boundary (u-= u,) expands  somewhat when the
jet is cooled and compresses when heated:

p, = 0,981 — 0,345 (70)
where
In(1l+t) 15 .
§ = —————~ compressibility factor of the jet
Py~ %P -
t = At /Tata ratio of the temperature increment (At in °C)
to absolute temperature (T ¢, = 273 +
tatao C) of the surrounding fluid,

According to formula (70) the following results are
obtained: At = —60%; ¢, = 1,005; At = + 60%; ¢, = 0.960;
At = + 120%; @, = 0,9425 At = 0° — ¢, = 0,981,

The nondimensional width of the jet boundary layer
depends on the temperature difference above the surround—
ing temperature in the following manner:

b

= 3,02 - 0,345 (71)
ax

b =

The boundary that separates the initial mass of the
jet from the entrained mass is determined, as is known,
from the condition that at the partition surface (o, )
the stream function VWV, = 0, or, what amounts to the same
thing, TF(e_) = 0, The relationship between the boundary
of the core’of constant mass flow of the jet and the com—
pressibility factor was ocbtained as follows:

In the case of incompressible fluid it ig

r : =
o(wso) 0
For a compressible fluid
F = F_, + AF = + A
o ' @s Puo Py

then
F(cps) = Fo(q)s) + AF(st) = Fo(q>30+Atp3) + AF(cpso + ACP3> 4 Fo(cpao.)

+ b Fo (e ) + 8F (g, )+ 8p aF (g, ) = O
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Omission of the small magnitudes of the second order
(Ap, AF') while .bearing in mind that

Folo ) = 0O

o}
zives
1 =
BE(p ) + o By ' (o, ) = O
hence
- 0.52
AF( 3
Ap =~ (920) = = 0,298
3 F_! 0.59
o (cp:so) 5

The result is the formula for the boundary of the constant
mass flow core:

@ = — 0,185 + 0,295 | (72)
3
The same result is obtained by direct interpolation from
tables 2, 3, and 4,

(b) Velocity, Temperature, and Density Profiles

In the representation of the velocity profiles the
magnitude

©w— .,
(P:—o-v —————
F1 — ¥z

serves as ordinate, the effects of heating and cooling
of the jet can be compared from the plotted velocity
distribution curves, The curves shown in figure 3 are
for At = + 60° ¢, —60° C, ana + 120° C,

On figures 4 and 5 are shown the density and temper—
ature fields in the Jjet boundary layer for At = — 60°
and + 60° O,

o - At —
— = K(CP), — =®(CP)
Po Aty
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Figure 6 gives the field of velocity heads (F'2/k)
for At = — 60° C:

pu"‘2 FI=, —
- = (o)
Poo K

Pigure 7 finally gives the fields of transverse velocity
fields for At = — 60° C:

The ceorresponding fields obtained by Tellmi=a for the
inconmressible flu:rd (ACO = 0) are showil in *igltres 3
to 7 for comparigcn, (Zee tables II, III, and IV,)

(c) Rate of hass Flow
The quantity discharged per second in the turbulent
cowpressible jet <.2s not eictirely correspond to the values

of the stream function on accveoant of the fluctuations in
the density, The wnass flow per second is

m=fpudy = fp udy + [ p'lu'dy =W+ [ ptutdy;  {(73)

But the stream function is determined by the expression

Y= aXPoubF

while
E"‘l\ -
——X-ET = 12 B_.p_ Eu = q 1 a_‘f’_ a<’—!{—./’ -
P ay ay Po o) aCD (\:'CP

gso that the mass flow per second is

(%)
m = axpgylg [F + av/pn' —~———dp_ + constant] (7a)

A
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or in nondimensional form:

F‘)
m ro o\

= F + a\/ k! ————— do + constant (75)

M=

axpouo

~

In particular the nondimensional value of the entrained
mass of fluid sucked into the free jet from the surround—
ing space is*

1
= (%) -
— m
mn, = — [FE + a/ k! —--*—\(;;—'dth (76)

The nondimensional magnitude of the retarded mass of
flwid in the initial Jjet core is

m

3 o

— / K
m, = F, + a/ k! ~———dep (77)

dep
1

The values of F, and ¥, may be obtained from tables of
integrals and by approximate integration (for example, by
Simonson's method) the values of the integrals:

2 o] EL 33 Ei)
K > ~ K
Ay = [ k! ——Ldp; A, = /K'-—:—~dcp (73)
. O . cep
3 1

for various values of the temperature of the flow, Further—

more, assuming a few values of the turbulence factor a,
for example, taking a = 0,0845, according to the tests of
Tollmien, it is not difficult to determine the values of
the mass of the initial jet and of the entrained mass for
various values of the temperature,

*The subscript 1 hereinafter refers to the boundary of
the region of constant velocities; subscript =2 +to the
region of fluid at rest; subscript 2z to the core of
constant mass flow,
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The integral in expressions (76) and (77) may bde
integrated by parts:

o 5<F9 y . . . —
w t
! dep = —— F1 i — E_ n1g
‘/P K 5% ¢ " Ly J/? K ¢

3 3
From the boundary conditions it is known that

Fr, = 0

Moreover, according to equations (41) and (46a):

1 T @
01—, In{(l+ ¢t
K = (1+t)cPl Pz, S=—~—————-——-)—
©, — 02
hence
( ) S (ep,—p) S s
K = e M H k! = — 5 e P P Rt = Sae<@1—¢)

(79)

Omission, as in all parentheses of the preceding section,
of the terms with factor S2 1leaves

J/ﬂ (‘”> - El Fi ) = ~ SF!, (80)

whence the expression for the entrained mass:

ng=— [Flo,) — asFi(p )] (81)

A zlance at tadbles II, III, and IV corresgponding to
particular cases of the nonisothermal jet:

5

~ 0,074 (At = — 60° 0)
0.0605 (At, = + 60° C)
0.1115 (Atg = + 120° ©)

il
1
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shows the values of F'(g,) .corresponding to the

particular values of the compressibility factor S

on the assumption of a = 00,0845 for the coefficient
of jet structure (turbulence) — according to the data
of Tollmien and CAHI Therefore - - i

a 5 7ie,) = 0,05 S (82)

The values of F(p_,) for ¢ ; » — 2,04 is computed
according to formulas (67) and (67b):

Mog) = - (0.388 - 0,27 S) (83)

Lastly equatibniv(sz) and (83) added together give the
final expression for the nondimensional value of the
entrained mass of the Jjet:

m; = 0,388 + 0,22 § (84)

The initial mass of the Jjet 1s
3

F\
m = "(T)
—t—=m,=F,ta % .

axpylt, 1 d7 dp =
3
xl 3 - V.”
=Fu%w_mFﬁ__aj F.dy (85)
] b 4 [l *
According to (79) '
To=8=0 =S,
7. Y.
hence
m,=F,4-aS[F,—F.)>~F, —0,0348S. (86a)

Purther, equations (67) and (67c) give

F,=0,981 + AF (3,) 0,98 -+ 0,02 S. (86b)
Substitution of (86b) in (86a) ylelds the final expression
for the nondimensional mass of the initial part of the jet:

- M, =0,981 —0,014S. -, (87)
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The total (nondimensional) mass flow in the boundary layer
is egqual to

m,+m,=1369-+0,285. {83)

The smallness of the value of S 1indicates that the
mass flow per second for the nonlsothermal boundary
layer differs very little from that for the incom—
pressible Jjet, .

(d) Prictional Stress

In section I an expression was derived for the
frictlionel stresses in the turbulent boundary layer of
a compressible gas, which according to equation (12a)
can be written

woo (O O on
Ty =2 X7 (Tfy_ W(p-@)dyﬁ—const. (89)
But
D=ly==3 P=0% 2ct = a¥ -(’Iv—xz%
h=nce
o) 5 (L)I
o * 0 *
Ty == Apgley* . __d?— . 0—9 “"T?—J dp - const.

The nondimensioual value or tne frictional stress is

T ’dd(Fv ) ) [ 6(7—)
T—’——i——'——“g e Y.
J?

[ d 9%
2 .

dp -} const,

(90)

apy

After corresponding transformations partial integration

yields F'\)? F A\
?=x.[i():_>_] +!'[z'.[?—(?:—)J dp -} const. (91)

.Jhe values of T of greatest interest is that at the
houndary of the core of constant flow T = Ty since it
determined the energy loss due to suction of the entrained
mass, This value of T 18 evidently given by

7 (%;; p ! <€, 2
ﬁ:x{i??)3+3 ﬂ-i??> <dw, (92)
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At the inner limit of the boundary layer

O(F,)
%
=0,

d?

hence

In addition

A
where according to (79)

4= S @~ 2 == —S§.e5® ’~F),
whence
F -
(%)
® FI/__SFI
0y @ e®m-e

Since the values of § are small

SO N=1+5(,—9)
it results in

a(F'

=F"LS(-—9)F" -SF,

do
F'\
[ J = F"*-+28(g— 1) F"* +2 SF'F”,

=1—S(¢—%)

x"‘q\

T

a( _
% [ d? J =F/’-_) _{_S(\?__ $1) F//2+QSF/FI/;
W >~S

a l;_
a SF 2~ SF,"
1

1

d a 2 r}
a dp=S [ F,"d;.

3

Y

-

(93)
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With the ald of the approximate integration method and
table I the integral becomes

{-Foll’zd:? =ds4' )
. 5
wishin the limits @ = — 0,185 to @, = 0,981 (tae
given values of ¢, and ¢, correspcnd to the incom—-
pressible jet), MNoreover,at the point g, (for various
values of 8): o

F”,20,52, F,=~0,6.
whence
%, =0,27—50,32-1-0,625-4+0,4 5.

The final expression for the nondimensional value of the
frictional stress at the boundary between the initial and
entrained masses of the Jeot

3= —:;_2 =0,27+40,7S. (94)

0
2y 5

2

(e) Heat Transfer

In section VI (par, 1) the differential equation
wags cbtalned for the transverse heat transfer due to the
turbulent fluctuations in the free jet of the compressibdle

zas$
1 0“’/7._22_2"0{: ou oT 0 ou 07')] o
Crg Ty Ty oy Tay \M oy oy (95)

The heat transfer from the initial mass to the entrained

mass across 1 m® of partition surface ¢, 4is studied
3

nexts

3

op _a_ua_z ‘ou 0T 3J (95a)

W=C R P __ " — ¢

From previous results

. y=axjp; 2¢® == g¥ p=p-e(‘°‘_q’)s;

dp or
—_ eSS = AT
et Po e 3 0,? 0

a9

1+¢ NP el D
t H

g—’; =u,- €97 [F" 4 SF,
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whence
1+t 3 " (-, )8
Wop=— CP g pol,ATo2 -g—S[S /[kF +SF') e dep
!
(om0, )8 °
—~ (F" + SF')e *=pa) ] (96)
1
Use is also made of the known relation
i1+ t e(CPl.—ch}S 1
= = + 1
b e(¢1—¢2)5_1 (@1-¢2)S

fter certain simplifications, while neglecting very
small terms, equation (96) assumes the form:

Wo - SF! 3
Cp & po Uo ATo2 ®1—%2 1,
1 - 12
+[____________ + 8 FH o4 FN ((P"“CP:L)S_*'SF' (96b)
©,~ 9Pz

Further transformations give

W -9z
T x [ L+ fé__?:J iy ) (97)

aCy & Po quTo

But*

Fu(¢3> = Fo"(@s)q'AF"(Ws)

}
tf
(o]
—
g
©»
(o]
~’
+
>
©
5!
~~
RS
[o]
~

Y "30
and, further,
®; = @10 — 0,345
¢ = — 0,185 + 0,295
il
*In region o the magnitudes F'" and AF!'" assume

values of the order of Zero,
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.-

The foregéiné relations yield

sy B ( _
S SRS h %300 4 0,345
aglppouolTo  @yo — P20 ,
where .
Fo"(cPs o) = 0.52, , ¥, 0= 0,981, P20~ —-2,040

Thus .the nondimensional maghitude characterizing the
heat transfer through the boundary of-the 1nt1al rass
of the nonisotheéermal Jet is equal to - -

- W o
Wp = & = 0,172 + ©,348 (99a)
angpou AT,

The coefficlent of heat transfer from the initial mass

to the entrained mass equal to the amount of heat trans—
ferred per hour through 1 sguare meter per degree differ—
ence in temperature 1is

T

ag =.—— 7 3600 a g O ug 0.172+ 0,345} -8l (99D)
T AT, p Po To m2 hr °C
For a turbulence coeff1c1ent a = 00,0845 and g = 9,31,
1t ylelds :
ap = 3000 Cp po up(0.172 + 0,34 §) (100a)

Por air with a specific heat of the order of

c. =10,2 . .
P 4
it is

a. 720 ue (0,172 + 0,34 §) cal (100b)

T fo Yo nz hr °C

The effect of the compressibility on the heat transfer in
the nonisothermal Jjet is appreclable For example, for a
temperature difference AT = 60° C (5§ = 0,07) the heat
transfer in the compressible Jet differs from that of ‘the
incompressible fluid by adbout 15 percent,

N
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(e) Concluding Remarks on the Nonisothermal Jet

As is seen by the previous discussion the effect
of the compressibility of the fluid (gas) on the funda—
mental properties of the boundary layer of a nonisothermal
flow is insignificant, 1In particular, on lowering the
jet temperature 60° C below that of the surrounding
medium (this corresponds to an increase in the velocity
to Ba = 1,0 in a jet of high velocities) the angle of
divergence of the boundary layer increases by 0,7 per—
centy the angle of dissolution of the core of constant
mnass flow increases by 11 percent; the nondimensional
value of the entrained mass by 3,7 percent; the mass
of the initial Jjet remaing practically constant; the
frictional stresses decrease by 16,8 percent; the heat
diffusion is reduced by 15 percent,

The results obtained are evidence of the mainte-
nance of the dynamic similarity of the jet for appre-—
ciable changes in its temperature,* It has further
been shown that if 8§ = 1n(1 + t)/(¢, — ©,) is taken
as the compressibility factor of the nonisothermal jet, ®
where t = At /T,t, 1s the ratio of the temperature
increment of the jet to the absolute temperature of
the surrounding medium, the change in the fundamental
properties of the jet with S 1is linear except for the
nondimensional coordinate giving the dissolution of the
outer boundary of the Jjet which remains unchanged, It
will be shown later that the cooling of the jet at small
velocitles has the same effect on its fundamental prop—
erties (velocity profile and friction) as an increase in
the Bairstow number, '

Iv, BOﬁNDARY LAYER OF A PLANE~PARALLEL JET
AT LARGE VELOCITIES

1. General Considerations

The investigation so far involved the case of a
free turbulent jet having a temperature different from
that of the surroundings and a velocity small by com—
parison with the velocity of sound; that is, the effect
*The similarity of the jet for a wide, variation in the
Reynolds number was discussed in a previous report (ref-—
erence 6),
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of compressibility arising from the difference in tem—
perature alone was studied, The following deals with

jets of large velocities (up to the velocity of sound)
under the condition that the temperature in the reservoir
from which the Jjet escapes is equal to that of the sur-—
roundings, or otherwise expressed, the effect of compress—
ibility due to high flow velocitits will be investigated,

2, Derivation of the Density Function

The air temperature ahead of the nozzle (in the
region of small velocities) is equal to the temperature
of the surrounding mediwum, In this case there will be
no heat transfer between the jet and the surrounding
space so that the heat content of the air will be uniquely
associated with the flow velocities (the energies of the
pulsating and transverse motions are neglected):

A 2
— = e 2
cp(T T,) P (u, u”) (101)

where
Ch specific heat at constant pressure

3
A = 57 heat equivalent of mechanical work

=
g acceleration of gravity

The relation (101) expressed in nondimensional form

iy Au
B R ., 1 - { —, (101a)
T, 2gcy To

The velocity of sound in the region of undisturbed flow
reads the value -

e, = V//EE g R T, (101b)
v
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where
Cy specific heat at constant velume

cp/cy = k adiabatic coefficient

R gas constant

The Bairstow number in the undisturbed region is

Ba, = us/c, and AR = cp — cy
hence
T k-1 r w2
—— = 1+ —= Bay® |1 — <f;> ] (102)
TO 2 w uo

The foregoing expression gives the relation between the
texperature of the flow and the velocity, Particularly
in the outer boundary of the flow (region of air at rest)
where u = 0:

k-1

<
—22B = 14— Bag

At the inner boundary of the boundary layer (undisturbdbed
flow with velocity ug):

T
— = 1

To

A thermometer, however, mounted at any stationary point
of the flow will show the same temperature T, — the
temperature of the air at rest — since the velocity of

the flow drops to zero directly at the wall of the ther-
mometer, Thus a stationary thermometer in the flow shows

of the retarded air, the stagnation temperature,

The above flow considered from the point of view of
the stagnation temperature is isothermal as a result of
which it was possible to assume that no¢ heat transfer
exists and to apply the heat equation in form (101),
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The foregoing problems of free turbulence involve

isobars (the pressure gradients are negligible and not
taken into account); hence the density is inversely pro-—

portional to the absolute temperature:

T k-1 u\?
Po o . -1 4+ 27 = Baoz [1—'<f;> ] (102a)
P T, 2 v,

Therefore the density function is:
1
(102D)

k— 1 - 2
1+ ~—=Ba,” |1~ eI 1
2 k(q)/ _

k (@) =

The solution of the above equation for K gives the

density function in the form

. - k._, |l ,.\
1+ V/1+ z(k—-l)Bao‘ <1*'~3;E3aod)F'3

K =
: 2 (1+ 522 5, 7
2
N

and the irntroduction of the special fﬁncfioﬁ of the
Bairstow number:

(103)

k-1
r = 2(k-1) Baoz [1 + —~5—— Baoe] (103a)

whence the calculation of the derivative of the density
function affords

rFrpt

(104)

K V1+rPi2 [1+/1+ rF12]
3, Derivation of the Fundamental Differential Equation
With equation (104) the general differential equation

(20) is reduced to the following special form which satisfies
the problem in question,
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I rFi=zpt
Pz F+-jL L _____ —————— ] (105)
o +TF1® (1 +/1+ rP12] -
whence
~ “
Pl o= — P49 [F" —- __E ______ ]
o J1 + rF1=
and
¢ [ A
—_ B = — g e
Oep LV/l + rF'z] (1052)

FPurther transformations yield a differential equation
of the form

—. TEFIFN2
FI" = P/1 + rT12 4 — (106)
. - l +rF'=
In the special case of incompressible flow when r = 0

(equaticn (106)) reduces, as expected, to the known
Tollmien equation:

Ft# = — F (L06a)

Differential equation (106) as well as the Tollmien equa~
tion (106a) contains the five boundary conditions (46,_g)

which are applied to obtain the three constants of inte—
gration and the values of the nondimensional coordinates

of the outer and inner limits ¢, aund o, of the boundary
layer, To each value of the compressibility parameter (r)
there corresponds the values of the integration constants
and nondimensional coordinates,

Since the functional solution of equation (108) is
impossible, it is necessary to apply the method of
numerical integration to each particular value of the
compressibility parameter (r) or, what amounts to the
same thing, the Bairstow number (Ba). The most suitable
method for solving the given equation appears to be the
Adamns method which gives good agreement for the given case,
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4, Numerical Integration of Difféerential

Equations by the Adams Method

If the values of a function and its derivatives
at a certalin point are known, the values at a neighbor—
ing point (a 4+ .h) can be obtained with the aid of the
Taylor series, After the values of the functions and
its derivatives at the point (a + h) are determined, the
values at other neighboring points (a + 2h), and so forth,
can then be found, 1In general if Y = Y(a + kh) is known,
then

ha ft hs n
Yk_'_l=Yk+hY'k+EIYk+E-‘TY'k+...

Thus, passing successively from point to point, it is
possible to compute a table of values of the required
integral, that is, of the required function Y(x) over
the entire integration range, The smaller the size of
the interval h the more accurately are the values Yy
determined although, on account of thé large number of
intervals, the accumulation of errors may become con—
siderable unless a sufficient number of terms of the
Taylor series is employed, The fundamental disadvantage
of this method, which was proposed by Euler, is that it
ia necessary to compute the higher derlvatlves which,
for arbitrary form of the function '{ may yield very

complicated expressions, In such cases a considerably
less complicated method is that by Adams in which the
increment in function at a certain interval is expressed
by the first differences in the so—-called linear incre—
mehts of the function, the .second differences, in the
neighboring 1ntervals and so forth, The Adams method
does not require the higher derlvatlves and gives good
accuracy even for large integration ranges, Particularly,
as will bhe ghown later, in solving the differential equa-—
tion of motion for the compressible gas jet (equation
(106)) — the Adams method gives Very good agreement,

The linear 1ncrement in a certaln interval (a a+ h)
is given by the product

n, = h Yr, (a)
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The first difference of the linear increments of the
function in neighboring intervals- is given by

An_ ', = n_ - .

N3 n .n—1

The:second difference by

Ay, o = ANy — by
the third difference by

S o AR AR

a Mpes © A nn—g 4 M-z

and so forth,

In general if there is a table of values of the
required function at =n 4+ 1 points it is possibdble to
draw up a table of linear increments at n + 1 points,
first differences at n ©points, second differences at
(n — 1) points, third differences at (n — 2) points,
and so forth, The Adams method makes it possible to
compute the value of the function at the (n + 2)th
point, the value of the linear increment at the (n+ 1)th
point, the value of the first difference at the nth point,
the value of the second difference at the (n — 1)th point,
and so forth, By the same method it is possible to proceed
to the (n + 3)th point, and so on up to the end of the
entire integration range,

The extension of the integration table from one
interval $o0 the next by the Adams method is effected on
the basis of the following considerations:

1; The Taylor series affords the increment in the
function:
h® h3
AYn:: Yn+1—Yn= hY'n""'—g‘-Yln"‘—é—Y'"n +...

2, According to the definition of the linear
increments

= 1 = 1
n h Y n nYn

n—i n-1' ‘n—g2 —2



NACA Technical Memorandum No, 1058 63

%, Applicagtion of the Taylor series results in
the values of the derivatives in the foregoing intervals:

: 2 3 IV 4 v
Yt =yt —hoyr o+ Bl oyen Byt By
n—i n n 2 n 6 B 24
. R Iv v
- 4 2 8 .3 16 L4y
Tiyz = ¥'n — 2RY" + 2 h Yen o~ - hoY i h"Y —...
9 = o '3 IV. 81 a4 V
1 = t nooy 2 w210 4= h -
Yt o= Y= Bh Y, o RTYNG - ==k Yy =3

4, Substitution of the previous values in the ex—
pressions for the linear increments gives

3 4 5

2 h™ o h Iv h A
= - " 3 n_. 2 2 e
ﬂn~l~h Y'n h Yn+ 2 Y'n 6 Yn + 24 Yn e 0o
! 2 v AT 8 o IV 16 s 7
Mp—a = h Yn — 2h n + Pl h Y!O. -z h Yn + EZ h L eeoe
n c b oYl — 3n® Y0 o+ 2 plyen _ 27p% yIV o4 8L 48y
-z n n 2 n 24 a

5, By definition of the first and higher differences

o
k
3
1l

>
g -
1
>
3

1
3

AR s =
A'm _g =8Ny o~ b Ny 4 = Mp, * 3y o~ Np-s

6., Substitution of.the expressions obtained for
the linear increments in the differences yilelds
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n° n* _Iv

A = he Y& IR 'l 01 R N 4 —_ Ei Yv
Tn-y © n T 3 n" &' nT 2z w
s .3 4 _IV 14 .5 _V

A"n, o = h T, - h Y, 4 24 h Y,

2 =
ANy o =h ¥ , —===h Y,

7, Hext it is shown that the true increment in the
function may be expressed in terms of its linear increments
and differences:

2 3
AYpsmp+oadmn,  +B A o +Y An, (107)

-

For this purpose the coefficients «, B, and ¥ are com—
puted by comparison of the Adams series (107) with the
Taylor series: )

. s 3 4 s
! h h Iv h v
- i W< N sl I
AY = mp + a Lh Y, Yeno+ Yy o, 5 n] +
Foa 4 IV 14 .5 _V 1 s IV 26 5.V 1
+ h™ht" - h Y + == h XY +% | h ——== h Y
B L n 2 n | | n 1 n |
h® h3 h% IV h° v
A Y =h Ylo+Z— Y0 4+ = vy o4 2 + ===
n no2 n 6 ¥tia 24 ¥ on 120 T

This may be done by equating the coefficients in the two
series of terms of the same degree in h which then

i

yields the following system of equations:
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To determine, the coeffiicients.the.first-three-equations

EERY o AN b4

are employeds then

R

I
IO
® oy -

;B=_.5—;‘Y=
12

From the fourth equation the order of the computation
error may be ascertained, In the given case the error
will be of the order

S
= [_l__. -2 4+ =28 - Eﬁi\] B y 0 = 49 4 Yvn
120 24 24 144

By taking, in order to increase the 1ntegrat10n accuracy,
a term with fourth order difference 8A* Np—4, the Adams

equation, after the corresponding computations are carried
out, takes the following form:

- 1 5 2 B 43 251 ,¢
bnp = p+ 3 & Moy + 13 L PP s & Mns* 535 An, s

With the aid of the Adams series in the previous form the
increment in the function (increment of the required in—
tegral) from point to point can be accurately computed up
to the terms of the fifth order, Trial computation tables
have shown that the Adams series in form (108) is suffi—
ciently accurate ior integrating the differential equation
of motion in the boundary layer of the free compressible jet,

It is seen, from series (108), that before starting
the computations it is necessary to have prepared a table
of values of the function, its first derivative, linear
increment of the function and first; second, third, and
fourth differences, respectively, at the fifth, fourth,
third, second, and first points, In other words, in
order to start the numerical integration of differentlal
equation (POG) by “the Ad&ms method with the aid of series
(108), it is first necessary to conpute the integral for
the above five points, This initial computation is then
carried out with the aid of the Taylor series on the basis
of the fact that at the initial point the values of the
function and its derivatives are known from the boundary
conditions,
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5, Integration of the Differential Equation of the

Boﬁndary Layer of the GOmpressible Jet

The differential equation to be integrated is

————————  rFIPN2
= + 128 4 10
F FJ1+ rF TTETTE (1086)

with the boundary conditions

F(él)ﬁ=¢f: Fr{o,) =13 F'(p,) = 0;

o) = 0; F(gy) = O

As has been shown in the foregoing the first five
rows for the numerical -integration table are to be com—
puted by Taylor series, The computation is made in
sequence starting with point ¢, (the inner limit of
the boundary layer), Since the argument ¢ decreases
from ¢, to «_, the integration interval should be
taken with negative sign, Let:

Ap = h = — 0,05

With subscript o denoting the values of the function
at F and its derivatives at F!', F" F!"  and F

at point ¢, and with subscript n the corresponding
values at the point Pp nh, the Taylor series affords

h2 3

Fpp1 = Fp — h F1 + —= F " — b~ Fotn 1

- 2 6

. _ ne Ko v
F1, ., = Fo' — bF " + Y P — s F, } (109, _4)

. 2

"o - . h 1y

FU.., = F " — hFLN_ 4 Py 3
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Moreover. the differential -equation gives

: - rF'nianzntl
F‘“n+1 =—~Fn+l'\/'-l+ rF‘2n+1v+- . (1094)
1+ r¥F!
_n+l
and by further differentiating,
. i 2
LA TEM ey RTE P Py TR T
n+1 - . 2
1 +.rF nel (1+ rF n+i)
TF 1 L o ——
- D22 D31 BEL - Frg,, V1 o+ rF1R (109¢)
1 + rFr®
n+1

The differentiation is 1limited to the fourth derivative

in order to avoid the very complicated expression for

the fifth derivative, Computations show that the accuracy
thus obtained is entirely satisfactory,

The procedure of the preliminary computations is
as follows, The boundary conditions give:

Plo,) = @13 Flepy) =15  F(p,)

With a given value of ¢, for given value of the param—

. eter T

F'h(¢1) and FLV (o)

are computed, Then by means of (107, ;) and (109;_g)

the values of F, ¥!, F", PFt0_ and FIV at a neighbor—
ing (second) p01nt (¢1 - h) are obtained by (107) and
(109)., The same prooedure is- followad for all fiv%
initial points up to (¢, — 4h), The values of are
required on1¥ up to point 3, In the remaining rows of
the table is not required (for the Adams method),
By cCenoting the linear increment of the function ¥F and
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its first two derivatives F'!', F' by n = hF1 ;

{, = hF",3 u, = BF"!; tables are constructed of

the linear increments of the functions and their
differences for the computed five points, The tables
of differences are computed by the formulas given in
section 4:

n’
A ﬂn_l = nn - nnml;
AN p = Ny - My gyt Mol
3 .
A Mp—3 = T\n - 3Nn-—; + Np—z — nn-—.'.':'
A =
s = M= 4Ny 2 F 6N, o= 4Ny s+ Ny o

These formulas are also used for the differences §, Wy
where, however :

L= BEY 3 py = mEre

from the Adams series furthermore:

a2

_ 1 5 3 251 ,°*
A Yn-nn+-—2— A nn_l+1~5 A n

+ 3 A n + === A
8

~ N,
=3 n20 n—4

n—2o

follow the increments in the function and its derivatives
at the sixth, seventh, and so forth, points:

= 1 5 ,%2 3 .2 251 4
Afa=Mat g Macat 73 8 Mot 5 A M5t 556 4 Mpys
1 5 e 3 3 251 L, a -
t = — — —_— ———
ARt = L+ B'Aén_14-12 A §n_2+-8 A lna* g 0 na

AFM. = o4 1y + 5 a2 3,3 251 L4
n n Bn— Aup.g+= A + &2 A
g BTl n—2 Ty 8 Baeg T 000 Pnee

—
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each time increasing the computation table by one row,
The calculation is broken .cff. when for a given initial
value of ¢, there is obtained at the-end of the table
a point ¢, satisfying simultaneously the two boundary
conditions at the outer 1limit of.the boundary layer:

'

Fil(p,) = 05 Fi(p,) = O

If one of the derivatives becomes zero ahead of the

other it 1nd1cates that the initial value of ¢, .was.
not well chosen, '"In this case it is necessary to = °
recompute the table, assuming a new value of ¢,, and
so forth, until a successful result is obtained, The

computations carried out show that usually three to
four, avproximations are sufficient to obtain an accurate
integral table for a given value of Ba,

In the present paper the computations were carried
out for air (XK = 1,41) first for Ba = 1, Subsequently,
for the other values of 3Ba, 1t was possible to obtain
a good result in a smaller number of trials by interpo-—
lation between the known results for Ba = 1 and Ba ~0
(the latter corresponds to the solution of Tollmien which
gives the extreme values ¢, = 0,981 and ¢, = —2,04),

By this method of integration the final tables V,
VI, and VII were obtained for the values of the function
F and its derivatives ¥', F", and F!'!' corresponding
to various values of the argument ¢, Table V was obtained
for Bag, = 1,0 (p, = 0,9235:¢9, = — 2,04); tabdble VI for
Ba, = 0,9 (9, = 0,935; 0, = —2,04); table VII for Bag= 0,5
(¢1 = 0,968; ¢, = —2.04), Moreover, for comparison there
is presented table VIII in which the same magnitudes are
given for Bap ~ O (Tollmien solution), that is, for the
case of an incompressidble fluiad,

Tables V to VIII include also a number of auxillary
magnitudes

e eF! — F Fr2
—_— T — . .
( b oF Fi K 'R >

by which the longitudinal and transverse velocity com—
ponents, velocity heads, and so forth, can be computed:

» )
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' v u _f'
.—8—-—-:(9!"-—3”—.—:? ..

v . u
Po o o

v eFt — F - pu® - P1®
, 2
v, K P.%, K

6, Fundamental Prdperties of the Turbulent Boundary Layer

in the Plane—Parallel Flow of a Compressible Gas

The foregoing solution of the differential equation
of the boundary, layer of a compressible gas Jjet makes it
possible to estimate the effect of the compressibility on
a turbulent Jjet of high velocity

(a) Géometry of the High~Velocity'Jet

As is seen from the tables of numerlcal integration
the effect of the compressibility is fifst of all to
decrease the thickness of the boundary layer (region of
mixing of the jet with the surrounding fluid) with in-
creasing flow velocity; that is, the coordinate ¢,
of the boundary of the constant velocity core-(u = ug)
decreases with increase in Ba, In particular for air
(K = 1,41) the following values of ¢, for various
values of Ba are obtained: .

Ba, = 1 g, =.0,923
Ba .= 0,9 : @y = 0.934
Ba, = 0,5 " ¢, = 0,966
Ba ~ O'(incompress— ¢, = 0,981

ible £luid)

The relation between ¢, and 3Ba in terms of the
factor of compressibtility:

K - 1
r = 2(K - 1) Ba,® [1 + Ba,® } (110)




.NACA Technical Memorandim No, 1058 71

can be approximated by the linear expression

- - . P L

@, = 0.981 [1 — 0,06 r] (111)

In caontrast to ¢, the coordirate of 'the outer limit o,
(v = O) of the .boundary layer . -, - remains constant with
change in the flow velocity:

¢, = constant = - 2, 04

In view of the foregoing the nondimensional width
of the boundary layer is connected with the compress1—
bility factor by the relation

y

b= 2 =302 [1-o002r) (112)
a x i .

A very important geometric characteristic of the
Jet 1s the surface separating the initial mass flowing
under the plane OA, figure 1, from the associated mass
consisting of. the particles entrained frow the surround-
ing flow of the gas at rest, This partition:surface
should also be a flow surface since it,'is the boundary
of the 1n1t1al stream of constant mass flow.per second,
The value' of the stream functlon aW on the surface
should be equal to zero: -

ws =0 C (113)

But according to equation (17b).

PR e Y= ax‘oouo?‘

'hence it 13 seen that on the partltlon surface at the’
boundary of the constant flow core

Flo,) = 0 (113Db)

The foregoing expression is thus the fundamental condition
for determining the partition surface of the jet, It is
seen that the boundary of. the core of constant flow is a

HEETU R
o,
]
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plane the position of which is determined by the value
of the nondimensienal coordinate
o, [F] = o (0) (113c)

The integration tables in which the values of F(y) are
glven afford, by interpoelatiom, the corresponding valuess

Ba = 1 v, = = 0,205
Ba = 0,9 ¢, = — 0,200
Ba = 0,5 g, = — 0,192
Ba'« O (incompress—: és = - 0,185

ible fluid)

It is interesting to note that the relation between
., and r is also linears:

¢ = —.0,185 [1 - 0,11 r] (114)

Moreover,. it has been shown that in coantrast to the
boundary layer width which decreases with increase in
the flow velocity, the width of the core of constant
mass flow increases with increase in velocity, The
latter effect is explained by the deformation of the
profile of velocity heads in the boundary layer due to
the effect of the compressibility of the gas at high flow
velocities,

() Velocity Preofiles

For greater clearness in compariag the velocity
fields obtained for various values of Ba it is netessary
to choose an absolute (independent of 3Ba) system of co-
ordinates, Lay off on the axis of ordinates:

P~

5 = - %2

Py — ¢,

and on the axis of abscissas

pu Pt u
Polo Yo
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Then for all values of Ba the values of the coordinates
on the inner (p, = 1) and outer (¢, = 0) 1limits of the
boundary layer are the same, regardless of the fact that
the true coordinate of the inner limit ¢, changes with
change in Ba, .

Figure 8 gives the curves F!, FI/K for Ba = 1
along with the curve F'! corresponding to the incompress—
ible filuid (X = 1) for comparison, As may be seen the
velocity profile of the boundary layer becomes fuller
with increase in the velocity in the undisturbed region
(Ba = 1) while the F' profile becomes less full, In
general, however, a weak effect of the compressibility
on the veloc1ty proflle of the jet is observed up to
Ba = 1,

Figure 9 shows the same curves for Ba = 0,5, The
character of the curves is the same but the effect of
the compressibility is now so weak that it may be practi-
cally neglected, '

Figure 10 gives the densfty curves 1in the boundary
layer for Ba = 0,5 and Ba = 1,

Figure 11 gives the welocity heads F'!'®/K for
Ba =1 and Ba ~ O,

Figure 12 shows a comparison of the transverse

velocity component distribution:

A= X D
v

for air at Ba = 1 “and for the 1ncompre531b1e fluld
(Tollmien result), .

(c) Rate of Flow Discharge
As established in. a previous part of this paper the

nondimensional rates 6f Zas flow are subject to formula
(75) which, applied to the entrained mass, gives

‘r ’ la é (Er

_ <)
i- o t,a + & L/‘K, 5t (115)
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The nondlmen51onal magnitude of the initial mass in the
jet is - : ' ,

my=F, +a f —~—" dep ‘ (118)
1
The integral tables'give the values ‘F;(Bao) and F,(Ba,)
and approximate integratioa of the values of the integrals

e a(i‘.‘.) ,
K
Ap = f k! ————mdo
3 a(z:)
Al = [ k' 3 K dep

for various values of 3Ba,, Further, assuming with Tollmien
a = 0,845, it is necessary to determine the magnitudes

al,, ad, and find the values of .the entrained and initial
masses, (Computation shows that the values of aA, and

ad, are relatively very small,)

It is interesting to note that initial mass, entrained
mass, and tetal mass flow through the boundary in the
boundary layer of the plane—-parallel flow of the high-—
velocity jet are linear functions of the compressidbility
factor:

(a) Initial mass:

~—

m, = 0,981 [1 — 0,06r ] (117)
(b) Entrained mass:
my, = 0,388 [1 — 0,10r) (118)

(c) Total mass rate of flow;
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m, + m, = 1.569-[1 - 0,07 r] . (119)

In the pafticular case of an incbmpreséiblé-gas the con-—
ventional Tollmien values are: ' .
m

, =.0.981, m, = 0,388, my + m, = 1,369

(d) Frictional Stresses

According to .formula (93) the nondimensicnal frictional
stresses at the boundary of the core of .constant mass flow
is:

2
F! bl |
(%) T Aw
3
P 3 P

With the use of the available integral tables the magnitudes
corresponding to the various values of the compressibility
factor 1r are obtained by the trapesoidal method, It 1is
interesting to note that for the stregses also a linear
,relation obtains:

Ty —_ o
——E— = Ty = 0.27 [1 - 0,167 rl (121)
0
apo -"-é‘—
where " 0,27 = T is the nondimensional value of the

frictional stress in the incompressible .fluid,

(e) Conclusions with Regard to the High Velocity Jet

The laws of variation of the fundamental properties
of the turbulent boundary layer of a plane—parallel stream
of compressible gas (air) at high flow velocities have
been obtained in the foregoing, As in the case of the
"heated! jet the most interesting result obtained was
that the effect of the compressibility on the fundamental
properties of the high—velocity jet is negligible, This
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conclusion is valid up to flow velocities attaining
the velocity of sound (Ba = 1), .

In particular, on passing from small values of the
Bairstow number (Ba ~ O0) to Ba = 1, the angle of di-
vergence of the boundary layer decreases by ‘2 percent;
the angle of dissolution of the core of constant mass
flow increases by 11 percent; the nondimensional magni-
tude of the entrained mass decreases by 10 percent; the
nondimensional magnitude of the initial mass decreases
by 6 percent; and lastly the nondimensional value of the
frictional stress at the boundary of the core of constant
mass flow decreases by 16,7 percent, The effect of the
compressibility on-the properties of the jet is so small
that at Ba = 0,5 1t may be entirely neglected without
impairment of the results, hence that dynamic similarity
of the stream prevails over a very wide range of variation
of the Reynolds number, the temperature above the surround-—
ings and of 3Ba, The second result in order of imvortance
is that the variation of the fundamental properties with
r is linear where r is assumed as the compressibility
factor

k-1 : ki—= 1 2
T.= 4 " Bao 1+ 5 Ba ‘ (122)

and only the outer boundary of the Jjet remaine unchanged,

V., POSSIBILITY OF DIRECT APPLICATION OF THE
PRANDTL LAW OF TURBULENT FRICTION TO
THE CASE OF COMPRESSIBLE JET
In section I of the present ihvestigation there was

obtained, for the free jet of compressible gas, the fric—
tion law .

: B Bu. & Bdu :
T = 2 1% 2 } dy - 123
tf o oy LP BY ) L )

which in those cases where the compressibility ﬁay be
neglected (p = constant) reduces to the known Prandtl
law ¢btained for incompressible gas:

.
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ol T = 5“) L - (124)

In comparing equations (123) and (124) the question
noturally arises as. to what extent the acturacy of the
compressible flow investigation is improved by introducing
the new friction law and whether thils does not lead to
a considerable complication of the prodblem, Since the
solution of the problem of the boundary layer of a high
ve1001ty jet was obtained by the new friction law (123)
it remains to be explained whether it is possible with-
out introducing large errors to simplify the given problen
by direct application of the Prandtl friction law (124),
By the latter the differential equation of motion in the case
of free turbulence is written as follows:

X oy oy NE27

pﬁ%‘};,pvf“_f:_a_.[ /_._> ] (125)

. . 1
Setting, as previously assumed:

pu pv .
Fi(e) = ; = a (pF' — F)5; 1 = cx;
Polo PoYo o
A 3 /—2—c-2— = aj kK (o)
® ax’ v oo ®
. o
the differential equation is transformesd to
1 F
_F = X 3 EN 2(_,'\
2 \K/ox \ */
LT T v R - (126)

cev o
PR

The differential equation in final form for boundary layer
of a two—dimensional free jet then is:
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. t ]
2 R K

As may be seen, the previous equation'obtained by the
application of the Prandtl friction law is considerabdly
more complicated than equation (20) which was obtained
on the basis of friction law (123) derived specially for
free jets of a compressible gas, In the case of large
velocities, as shown in section III, a density distri-
bution is obtained for which

t ™1 ]
K , rFt P (1282)

— - =

g FH2 4 F' OPIt gy pP13 Fe0]
a! :___?___ (1231)

K 1+ rF12]3/2 (14131 Fiz]

I

Substitution of the foregoing equations in equation
(127) leads to the following form of differential equa—
tion of tihe boundary layer of a free high-velocity Jjet:

Fel= F/l+ rFtz+ rPte @gha —— (129)

Comparison of the foregoing equation with the correspond—
ing equation (105) gives

—————— - FIFHR
it s . F 1 +r Fte + il

1 4 rFte

obtained with the improved friction law (123) shows con-
clusively that the direct extension of the Prandtl fric-
tion law to the compressible case not only fails to sim—
plify the study of the latter but on the contrary gives

a solution considerably more cumbersome than the one o0b—
tained by the more accurate friction law, In view of the
fact, however, that for a number of aerodynamic problems
of a compressible gas it may be more convenient to use

R
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the frictdion dlaw din the -Prandtl -form it was considered
useful for. solving equation (129), by the Adams method
and comparing the results with the solution of equation
(106). ’

' The following results wére obtained:

(a) The gualitative results of the two solutions
of the problem are the same (with increasing velocity
the nondlimensional values of the frictional: stresses
decrease, the width of the boundary layer decreases,
the velocity field is slightly deformed, and the width
of the core of constant mass flow increases,

(b) The quantitative results of the two solutions
differ negligibly, Particularly by the use of the
Prandtl friction law (equation 129) it is found that
with increase in the Bairstow number from Bay, ~ 0 +to
Ba_ = 1  the nondimensional frictional stresses decrease
by 15 percent; the boundary layer thickness decreases by
1,3 percent; the divergence angle of the core of constant
mass flow increases by 16 percent, Correspondingly with
the improved friction law (equation {106))the nondimen—
sional friction force decreased by 17 percent, the bound-
ary layer thickness decreased by 2 percent, and the di-
vergence angle of the coanstant mass flow core increased
by 9 percent,

The application of the friction law of the incom-
pressible fluid to the compressible flow thus.leads to
results that differ slightly from the results obtained
with the use of the corrected friction law, In the case
of the free Jjet, however, it is of advantage to apply
the corrected friction law since it leads to less cumber—
some, and more readlly solvable equations,

GENERAL CONCLUSIONS

- In the present paper the theory of free.turbulence
and the two—-dimensional free jet was extended to a com—
prressible fluid, In constructing the theory the tur-
bulence hypothesis of Taylor (vorticity interchange) was
used in preference to the Prandtl hypothesis (momentum
interchange), ' This was done because the former was con—
firmed by tést results on the velocity and temperature
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fields vhereas the second, while leading to the same
velocity fields as the first, strongly deviated from
the experimentally obtained temperature fields,

The differential equation of motion (12) for the
twvo—dimensional. free compressible jet leads, in the
particular case of an incompressibdle fluid, to the well- 3
known equation of Prandtl-Tollmien—Schlichting,

The boundary layer considered was that of an infi-
nite plane—parallel flow, An infinite flow of this
kind assures constancy of the beundary conditions in
the flow dirgction: (1) at the outer limit of the
boundary layer the flow velocity is equal te zero
(u = 0), {2) at the inner limit the undisturbed flow
is of constant velocity u = ug, The econstancy of the
boundary cenditioéons (of the velocities, temperatures,
densities) at the edges of the boundary layer Jjustifies
the assumption of aerodynamic similarity (similarity of
velocity, temperature fields, etc,) at the various cross—
sections of the flow, that -is, the existence of absolute
distribution laws of temperatures, velocities, densities,
frictional stresses, and so forth, as was the case with
incaompressible fluids, The absolute differential equa—
tion of motion (20) obtained for the boundary layer of
an infinite stream is solved for the two cases;

(1) Jet whose tenperature differs from that of the
surroundings and whose velocities are small in comparison
with the velocity of sound (Ba K 0,5),

(2) Jet of high velocities (up to Ba = 1) the tem—
perature of which is egual to that of the surroundings,.

The first case involved the effect of compressibility
due to the difference in the temperatures inside and out-
side the jet; the second case the effect of the compress—
ibility due to the high flow velocities,

The fundamental conclusion derived from the results
of the present investigation is that the effect of the
compressibility of the fluid on the laws of flow in the
free Jjet is small, It is alsoc of interest that a lower—
ing in the temperature of the moving fluid below that of
the surrocunding medium produces fundamentally the same
effect on the properties of the flow independent of
whether the lowering was brought about by a cooling of
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the jet or by the conversion of the heat into kinetic
energy associated with the large flow ¥elocities,

In particular: .

(a2) The nondimensional stresses obtained in the air
jet at moderate velocities and at a temperature below
that of the surroundings by 60° C were the same as for
the jet with large velocities at  Bag = 1,0 and have
a stagnation temperature equal to that of the surround-
ings, (At 3Ba = 1,0 the local temperature was lower
than the stagnatioh temperature by ébout 600,0:)

(b) The nond1mens1onal ve1001ty fields in both cases
practically agree (fig, 13),

(c) The angle of dlvergence of the core of constant
mase flow in both Jjets increasesg by the same amount of
approximately 1l percent as compared with the "incompress—
ible Jjet,

. Special .compressibility factors are introduced for
the nonisothermal jet (8) and for -the ‘jet with high
veloecities (r) and all fundamental nroperties of the
boundary layer were expressed as linear functions of
these factors, .

“he small effect of the commnressibility of the fluid
permits the conclusion that the free Jjet maintains its
dynamic similarity over a wide variation of Bairstow
number and temperature differences as well as for a Wlde
range of values of the Reynolds number’

The author has not undertaken the investigation of
Jets escaping from openings c¢f finite diameter and of
wakes behind bodies in a compressible fluid, -In these
cases the construction of a theory is effective only at
great distances from the nozzle (or bo&y) where the vel-<’
ocity and temperature difference are relatively small
and hence the effect of. compressibility practicdally,
inappreciable though the study of this effect involves
great dlfflculty, . ’

In concluding, the author wishes to express his
thanks to V, K, Solodkin for his practical assistance
in the mathematical part of this paper and to A, T,
Cherniavsky, K.IL Kozlovsky, and L, I, Orlov, who,
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under the supervision of Soledkin, carried out all the
numecrical computations,

Translation by S, Reiss,
National Advisory Committee
for Aeronautics.
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TABLE I.~ AUXILIARY FUNGTIONS OF NONISOTHERMAL JET.

v Fy Fy Y 3 A\\SF 3 ASF' 3 ASF”
0,98 09810 | 1,0000 0 0,008 —0,037 0977
0% 08988 | 09977 00746 | —0,002 —0418 0,969
0.80 08019 | 09858 0,1600 0,019 —o213 0,933
070 07021 | 09667 0,2370 0,04 —0,304 0,878
0,60 06080 | 0,8383 0,3010 0,079 —0,391 079
0,50 05152 | 09064 0,3580 0,122 — 0466 0711
0,40 04211 | 08675 0,4050 0,173 —0531 0,609
030 03430 | 0821 04430 0228 —0584 0,504
020 02619 | 07789 04730 0287 062 0,389
0,10 01868 | 07316 04770 0,365 063 0316
0 01161 | 06799 0,510 0,420 —0684 0,16

—0,10 00508 | 06297 0,5190 0487 —0,504 0,053
—020 | —00099 | 05760 0,5200 0,558 —0,693 0,001
—030 | —00647 | 05252 0,5120 0,627 — 0,682 —0,090
—040 | —01145 | 04728 0,4980 0,693 0,662 0,174
—050 | —015% | 04235 0,4800 0,757 —0633 —0,246
—060 | —01995 | 10,3731 0,459 0818 0,505 —0313
—070 | —0233 | 03280 0,4340 0,924 —0,505 —0,402
—080 | —02653 | 02833 0,4070 0,924 —0505 | —0,402
—0%0 | —ogo12 | 024% 03770 0,973 —0450 —0428
—1,00 | —03134 | 02035 0,3450 1014 —0,401 —0442
—L0 | -03822 | 01664 03120 1,050 —0,345 —0,448
—120 | —o03468 | 01345 02770 1,083 020t —0,437
130 | —03%85 | 0,062 0,2370 1,108 0288 | 0,405
~140 | —03681 | 00805 0,2040 1,182 —0,1% —0376
150 | —03750 | 00587 0,1670 1,144 —0,140 0329
—160 | —o03797 | 00412 0,1300 1,155 0,102 —0,269
—170 | —03833 | 00270 0,0930 1,161 0,068 ~90,199
—1,80 | —03853 | 00165 0,0557 1,183 —0040 | ~on7
—19 | —03870 | 00104 00177 1M —0024 | —0,02
—200 | —03874 | 00078 0,0043 1,178 —0016 0

—204 | —03880 0 0 118t —0003 0

TABLE II.- JET FUNCTIONS FOR Ato = -80Y¢.
. F F F x E e —Fl3F—=F| F2 8
* * *

1,005 1,005 10 4] 1.0 1,0 [} 0 10 1
09 ] 08989] 09951 | 00985 | 09939 | 1.0012 | —0,0010] —0,0040| 09963 |0,0754
08 | 08025) 09807 | 01836 | 00866 | 1,991 | —0,0179} —0,0181| 0,750 |0,9458
07 | o7031| 09595 | 02585 | 09793 | 09798 | —00315| —0,0322| 09401 [09153
06| 06099| 09294 | 03207 | 09721 | 09560 | —0,0523| —0,0538| 0,8885 [0,3853
05 | 05180 08045 | 03755 | 09650 | 09970 | —0,0708} —0,0734| 0,8201 |0,8549
04| 04313] 08549 | 03200 | 09579 | 0,825 | —0,0893] --0,0032] 0,7630 [0,8242
03 | 03486 0,8166 | 0455¢ | 09509 | 08535 | —0,1051 | - 0,t105] 0,6927 {0,7934
02| 02691 07635 | 0482 | 09439 | 08089 | —0,1164| —0,1233| 06176 |0,7622
01 | o1960| 07164 | 04848 | 09369 [ 07546 |-—0,1244 —0,1328| 0,5478 |0,7305
0 01264| 06631 | 05149 | 093 | 07130 | —0.1264| —0,1359| 0,4728 |0,6989
—01 | 0062 06129 | 05203 | 09232 | 0,6639 | —0,1242| —0,1345| 04068 |0.6674
02 | 00039| 05589 | 05200 | 09164 | 06099 | —0,1156| —0,1262| 03410 [0.6351
03 | —00495| 05082 | 05008 | 09095 | 05587 | —0,1028| —0,1130| 02840 |0,6026
—0.4 | —00979| 04567 | 04937 | 09030 | 0,5058 | —0,0848! —0,0039! 0,2310 :0.5704
05 | —0,1403| 04084 | 04730 | 08963 | 04557 | —00639] —00713| 0,1861 |0.5371
- 06 | —0,1788| 03583 | 04513 | 08898 | 0,4028 | —0,0362] —0,0407| 0,1443 {05042
07 | —02125] 03143 | 04251 | 08832 | 03559 | —0,0075( —0,0085| 0,108 |04711
08 | —02422| 02705 | 03971 | 0,8767 | 03086 | 0,0258| 0,0294| 0,0835 | 04375
—09 | —0,2670| 0,2308 | 03664 | 08702 | 02653 | 00503 00681] 00612 |0.4085
—10 | —0,2880| 01941 | 03341 | 08639 | 02247 | 0,0989] 01087} 0,0436 |0,3698
1,1 | —03061| 0,1575 | 03009 [ 08575 | 01837 | 01328{ 01550 00289 {03353
—1,2 | —0,3203 .0'1268 0,2662 0,8512 0,1490 0,1681 0,1975| 0,0189 |0,3008
—1,3 | —03317| 0,001 | 02270 | 08449 § 01185 | 02015 02385] 00118 |0,2657
14 | —0,3401| 00757 | 0,i947 | 0,8387 | 00902 | 02349] 02801 0,0068 |0,2308
—15 | —03468] 00552 | 01580 | 08326 | 00664 | 02639] 03170} 00037 |0,1958
—1,6 | —0,3515| 0,0387 | 0,123¢ | 08264 | 00468 | 0289%] 03504| 0,0018 |0,1507
—1,7 | —03544| 00254 | 00881 | 08203 | 00310 | o3u2] 03794} 00008 |0,1237
1,8 | —0,9558| 00155 | 00528 | 0,8143 | 0,019 | 03279] '0,4027| 0,0003 |0,0878
—19 | —0,3581 | 00081 | 0,0172 | 0,8083 | 0,0100 | 03427| 0.4249) 0,0001 0,513
2,0 | —09581| 00020 | © 03024 | 00025 | 03541| 04414f 00001 [0,0150
f_2,04] —035811 0 0 08000 | 0 03581] 04475| © 0
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TABLE III.- JET FUNCTIONS

FOR at = 60°C.

¢ F F F x R TR i .ot il A
X X =
09| 096 | 10 o |10 0 | o 0 10 (10
09 | og0| 10 00537 | 10037 | 0993 | 0001 | o00010| 09964 09781
08 | 08016 09903 | 0,1308 | 1,008 | 09807 | —0,0004] —0,0093| 09712 |09416
07 | o7011] 09731 | 0,218 | 10159 | 09579 | - 00199 —00196| 09321 |0.9060
06 | 06064] 09469 | 02837 | 1,0021 | 0,9264 | —00383| —0375 | 08772 |0,8703
05 | 05125 09154 | 03426 | 10284 | 08901 | —0,0548| —0,0533| 08149 |08342
04 | 04235] 08787 | 03918 | 1,040 | 08498 | —0,0720 —0,0696 | 0,7467 08027
03 | 03384| 08378 | 0432 | 1,000 | 0,8049 | —0,0871| —00837| 06743 |0,7642
02 | 02562| 07917 | 0,466 | 1,000 | 07540 | —0,0979( —0,0932| 05970 |0,7143
01 | 01796| 07448 | 04702 | 1,0537 | 07068 | —0,1051| —0.0997| 0.5264 |0,6944
0 | 01075 06938 | 05075 | 1,0600 | 06545 | —0,1075| —0,014| 04542 |0.6604
—~01 | 00411 06440 | 05179 | 1,0660 | 06041 | —0,1055| —0.0990| 03890 |06285
—02 | 00212 0,5%00 | 05200 | 10730 | 05499 | —00968| —0,0002| 03244 [05918
- 03 | —00776| 05387 | 05139 | 1,079 | 04990 | —0,0840| —0,0778| 0,2688 |0.5577
—04 | —01200, 0,4864 | 0,5018 | 10861 | 04478 | —00656{ —0,0604| 0,278 |05244
—05 | --0,1743| 0,4368 | 04853 | 10928 | 03097 | —00441| —0.0404] 0,746 |0.404
—06 | —02155| 03850 | 04662 | 1,0094 | 03502 | —00155| —00141{ 01348 [04573
- 07 | —02506| 03392 | 04418 | 11061 | 03067 | 00142| 4+00128| 01041 |04245
08 | —02836] 02032 | 04157 | 11130 | 02634 | 00490 | 00440| 00773 |0.3%08
—09 | —03106| 02512 | 03863 | 1,1197 | 02244 | 00845 0,0755| 00564 |0,3586
—1,0 | —03334| 02121 | 03546 | 1,1265 | 0,1883 | 01213 0,1077| 0.03%9 |03262
10 | —03532) 01730 | 03217 | 11334 | 01526 | 0,1620| 0.1437| 00264 |0.237
—1,2 | —03688] 0,139 | 02676 | 1,1403 | 01227 | 02009 0,1762| 00172 |0,2617
—13 o3m3| 01108 | 02983 | 11472 | 00066 | 02373| 02069] 00107 |02002
—14 | 03908 00s4a | 01959 | 11562 | 00732 | o02726| o:2362| o062 01984
—15 | 03981 00615 | 01741 | 11613 | 00530 | 03058| 02633| 0,033 |0,1666
—16 | 04033 00433 | 01358 | 11683 | 00370 | 03341( 0,2860| 0,0016 |0,1356
—1,7 | 04064{ 00285 | 00873 | 11755 | 00242 | 0.3580| 0.3045| 0,0007 |0,1042
18 | 04089| 00173 | 00582 | 1,18%6 [ 00146 | 03776 03193| 00003 |0,0736
—19 | o04106| 00109 | 00182 | 11892 | 00092 | 03899 03279} 0,0001 |0,0449
|20 | o4106| 0008t | 0 | nis71 | 00068 | 03943 03294/ 00001 |0,0121
—204] 04106 o o 11200 | o 04106/ o03420| o 0

TABLE IV.- JET

FUNCTIONS FOR atg = 130°C

¢ F F Fr x E |epr—rleE=f 21 e
0942] 0542 | 10 o |10 1,0 0 0 L0 |10
09 | o8901| 10 00386 | 10048 | 09952 | 00009 00000 09952 |0,9834
08 | 08013} 09939 | 01253 | 10162 | 09781 | —0,0062] —0,0061| 09721 {09842
07 | 07004] 09783 | 02044 | 10272 | 09524 | —0,0156| —0,0152| 09318 {09073
06 | 06051| 09535 | 02713 | 1,0393 | 09174 | —0,0330| —0,0318| 08748 |0.8677
05 | os5105| 09233 | 03316 | 1,0511 | 08784 | —0,0489| —0,0465| 0,811 |0,8300
04 | 04206| 08877 | 03824 | 1,060 | 08351 | —00655| —00616| 07413 |0,7926
03 | 0335| 08477 | 04243 | 1,051 | 0,785 | —0,0802] —0,0746] 06684 |0,7556
02 | 02513] 08024 | 04586 | 1,0873 | 0,7380 | —0,0908| —0,0835| 0,5921 |0.7180
01 | 01734] 07556 | 04652 | 1,099 | 06872 | —00978| —0,0889| 0,5192 |0,6831
0 | 01004 07054 | 05051 | 11121 | 06343 | —-0,1004] —00903| 04474 |0,6473
—01 | 00328 06558 | 05170 | 11248 | 0,5830 | —0,0984| —00375| 03824 |06117]
02 | —00306| 06018 | 05200 | 11375 | 05291 | —0,0898] —0,0789| 03140 |05770
—03 | —00883| 05503 | 05153 | 11504 | 04784 | —0,0767) —0,0667| 02632 |0,5424
04 | —0,1408] 04976 | 05045 | 11635 | 04277 | —0,0582; —0,0500! 02128 |0,5082
05 | —0,1871| 04475 | 04891 | 1,767 | 03803 | —0,0367| —00312{ 0,1702 |04T44
—06 | —02004| 03951 | 04707 | 11900 | 0,3320 | —0,00771 —00065{ 0,1312 |04413
07 | —02664| 0348 | 04474 | 12035 | 02807 | 00224 00186 01010 |0s082
08 | —02003| 03018 | 04220 | 12172 | 02480 | 0,0579| 00476 0,0748 03755
09 | —03272] 02589 | 03020 | 12310 | 02103 | 00942 00765| 00544 |0:3433
—1,0 | —03507| 02189 | 03614 | 12450 | 01758 | 01318] 0,1059| 00385 |03113
—1,1 | —03710] 01788 | 03287 | 1,2600 | 01419 | 0,743 0.1383] 00254 |02778
—1,2 | —03872| 01448 | 02032 | 12740 | 01137 | 02134| 0,1675] 00165 (02473
—1,3 | —04002] 01148 | 02520 | 12880 | 00891 | 02510] 0,945 00102 |0.2174
—14 | —04101] 00878 | 02180 | 13026 | 00674 | o0.2872| 02005| 00059 |0,1870
—1,5 | —04175| 0,0639 | 0,792 | 1,3320 | 00480 | 03217} 02415] 0.0031 [0,1576
—16 | —04229| 00450 | 0,1400 | 13474 | 00334 | 03509| 02604| 00015 |0,1277
—1,7 | —04261| 0029 | 01004 | 1.3627 | 00217 | 03758| 02758 0,0007 |0,0976
18 | —04290| 00180 | 00601 | 13782 | 00131 | 0396| 02878| 00002 |0.0684
1,9 | —04305| 00113 | 00185 | 1,3038 | 00081 | 04090| 02935| 00001 |00396
—20 | —04305] 00084 | o | 14000 | 00060 | 04137] 02955| 0,0001 |00111
—2,04) —0,4305) 0 0 )14 | 0 04305! 03080 o 0
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{TABLE V.= BASIC FUNCTIONS FOR Bag = 1.0. TABLE V(a).- AUXILIARY FUNCTIONS FOR Bag = 1.0.
» , N F . o’ —F Ft
a/n ¢ F F P F nin ? * - w—F -
.
. 0 0923 1,00 1,00 0 0 1,000000
0,923 0,923000 1,000000 0 —1,292200 1
1 0,873 0,873027 0,998414 0,062860 —1,.219354 0,823 0,9982 0,9956 —0,005331 —0,005341 0,985817
H 2 0,823 0,823210 0,993778 0,121941 —1,141705 2 0,723 0,9932 0,0888 —0,018875 —0,019004 0,946376
1 3 0,773 0,773697 0,986378 0,177036 —1,060580 3
[ 4 0,723 0,724626 0976143 0,228006 —0,977252 0,623 0,9856 0,9626 —0,037245 —0,037789 0887141
-
5 0573 0.676124 0,963557 0,274762 —0,892915 4 —
. 0623 0,628308 ey 0317269 - 0808650 0,523 0,9758 0,9358 —0,057524 0,058951 0,913826
7 o.s;g 0,581285 0931895 0,355643 —0,725433 5 0,423 0,9645 0,9034 —0,077316 —0,080162 0732153
8 0,6 0,535149 0,913241 0,389875 —0,644099 6 '
9 0473 0480087 0.802073 0420096 0565365 0,323 0,9523 0,8657 —0,094762 --0,099509 047276 |
10 0423 0,445873 0,871294 0,446463 —0,489797 7 0,223 0,9396 0,8239 —0,108485 —0,115459 0562003 | o
1 0373 0,402878 0,848388 0,460158 —0,417885 8
12 0,323 0,361055 0,824438 0,488317 —0,349931 0.123 0,9269 0,783 —0,117578 - 0,126851 0482403 | +3
13 0273 0,320447 0,799612 0,504203 —0,286158 9 _ . 2
1 0223 0281108 0774070 0517004 0296710 0023 09145 0,7299 0,121505 0,132865 0407519 B
15 0,173 0,243049 0,747960 0,526947 —0,171613 10| _oor7 0,9028 06793 —0,120041 —0,132965 033%27 |
16 0,123 0,206313 0,721421 0,534237 —0,120842 a
» ¢1 {] ! t] l .
17 0073 0170012 0604578 0539090 0074289 ! 0177 0,8918 0,6274 —0,113213 —0,126949 0279218 | B,
18 0,023 0,136859 0,667548 0,541734 —0,031810 12 —0.277 0,8819 0,5747 —0,101240 —0,11479 0,226474 x
H 19 | —o00 0,104160 0,640437 0542346 -+0,006783 o
I 2 | —0,077 0,072813 0613346 0,541115 0,041721 131 _pam 0,8729 05217 —0,084478 —0,096779 0181071 | B
: o1 | —o0,127 0,042824 0,586354 0,538226 0,073216 4| _oar . . o
f 2| a7 0014173 0,559549 0533845 0101545 . 0,8651 0,4603 0,063388 0073272 0,142613 B
i 23 | —0227 | —0013136 0,532993 0,528120 0,126950 15| o577 0,8567 0,4188 —0,038509 —0,044950 o027 | R,
£ 24| —0277 | —0,030131 0,506756 0,521191 0,149703
» 0 " '3 () ]G . - o
. % | —032 | —ooe3s17 0480891 0513191 0170042 0,677 0,8526 0,3682 0,010436 0,012240 0,084048 5
: 2% | —0377 | _—o087227 0,455451 0,504225 0.188220 17| o777 0,8479 03206 +-0,020203 +-0,023827 0062635 | %
: 27 1 —0427 | —0,109373 0,430182 0,494401 0,204462 C
2 | —0477 | —0,130284 0,406020 0,483808 0,218985 18| —0877 0,8440 0,2754 0,052742 0,062491 0,045591 g
2 | —05277 | —o,149085 0,382111 0,472528 0,231989 19| _ogr 0.8409 0331 0086504 0.102871 0032295 | B
30! —0577 | —0,168506 0,358778 0,460632 0,243657 ' " ' ’ oo ]
| —0677 | —0202122 0,313971 0,435229 0,263629 20 —107 0,8386 0,1939 0,120771 0,144015 002167 | @
2| —0777 | —023138 0.271793. 0,408024 0,280012 al
a3 | _osrr | —oassr2 0.232417 0379320 0.203660 1,177 0,8368 0,1581 0,154834 0,185031 0,014655
34| —0987 | —0.277970 0,195073 0,349363 0,305194 21 177 0,8355 0,1260 0,187948 0,224953 0,009268
35 | —1077 | —0295872 0,162582 0,318342 0,315029 2
3% | —1177 | —o0310593 0,132336 0.286407 0,323442 —1.377 0,8347 009778 0219376 0,262820 0,005560
87| —1217 | 0322447 0.105324 0253699 0330596 2| —1477 | 08341 007346 0248379 0297781 0,003132
38 | —1377 | —o0331764 0,081618 0,220329 0,336603 .
i 39 | ~1,477 | —o,338884 0,061276 0,186417 0341531 25 | —1577 0,8337 0,05320 0274198 0,328893 0,001640
i 40 { —1577 | —0344135 0044348 0,152059 0,345442 e
! 41| —1677 | —0347868 0,030877 0,117360 0,348435 » 1677 | 08334 0,03706 0,296087 0.355276 0,000794
) 2| —1777 | —o0350428 0,020885 0,0823%9 0,350637 27| —1,777 0,8334 0,02506 0,313315 0,375948 0,000363
43| —1877 | —0,352159 0,014402 0,047254 0,352225 " ,
s | —1em | _oasazs 0011440 0011970 . —187 0,8334 0,01728 0.325126 0,390134 0,000172
5y —20 —0.354000 0 0 - 2| —1977 | 08340 0,01370 0,326000 0,392000 0000160 | @
]
—2.04 08340 0 0,326009 0,392000 0
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TABLE VI.- BASIC FUNCTIONS FOR Bag = 0.9.

e v F F F F
nn
0 0934 0934000 1.00 0 —1,236624
1 0.884 0,884026 0,998482 0,060176 —1,168140
2 0834 0,834201 0994042 0,116818 —1,095812
3 0,784 0,784668 0,986862 0,169762 —1,020711
4 0,734 0,735558 0977130 0,218895 - 0943871
5 0,684 0,686996 0965037 0264152 —-0,866263
6 0,634 0,639080 0,950780 0305526 —0,788765
7 0584 0,591950 0,934550 0343044 —0,712178
8 0,534 0,545664 0,016538 0,376771 —0,637192
9 0,484 0,500322 0,896933 0,406801 — 0564401
10 0,434 0,455993 0875019 0,433255 —.0,494290
1 0,384 0,41275] 0,853663 0,456280 —0,427252
12 0,334 0,370647 0,830344 0,476038 —0,363573
13 0.284 0,320732 0,806112 0.492695 —0,303458
14 0,234 0,290048 0,781122 0,506443 —0,247031
15 0,184 0,251632 0,720418 0,525038 —0,145390
16 0,134 0214504 0.729418 0,525938 —.0,145390
7 0,084 0.178695 0,702959 0532063 —0,100106
18 0,034 0,144212 0,676249 0,536007 —-0,058384
19 ] —006 0,110720 0,649393 0,537957 —0,020086
2 | —o,066 0079271 0622483 0,538069 +0,014958
21 | —0116 0048823 0,505616 0536510 0.046922
2 | —0,166 0,019708 0,568856 0,533426 0.076026
23| —0216 | —0,008067 0,542296 0,528951 0,102454
24 | —0266 | —0034525 0,515982 0523218 0126430
25 | --0316 [ —0,050671 0,489992 0,516343 0,148149
2% | —0366 | —0083531 0,464367 0,508438 0,167823
271 —0416 | —0,106113 0,439162 0,409591 0,185627
28 | —o0466 | —0127454 0414422 0,489903 0,201764
29 | —0516 | —0,147566 0,390185 0479441 0,216385
30 | —0566 | —O0,166480 0,366489 0,468286 0,229655
31 ] —0666 | ~0200830 0,320846 0,444128 0,252695
32| —0766 | —0.230735 0,277733 0417872 0,271854
33 | —0866 | —0,256465 0,237331 0,380862 0.287904
34| —0866 | —0,278208 0,199809 0,360375 0301420
3 | —1,066 | —0296528 0,165298 0,320649 0312816
36 | —1166 | —0,311461 0,133015 0,297876 0,322385
37 | —1,966 | —0,323418 0,105750 0,265232 0,330332
a8 | —1,366 | —0332721 0,080892 0,231861 0,336799
39| —1466 | —0,339710 0,059398 0,107918 0341908
40 | —1566 | —0344717 0,041321 0,163524 0,345769
41 | —1,666 | —0,348088 0,026705 0,128802 0,348505
42| —1786 | —0,350173 0,015568 0,093859 0,350308
43 | —186 | —0,351319 0,007935 0,058765 0,351348
44 | —1966 | —0351876 0,003220 0,023606 0,351880
45 | —204 —0,352000 0 0 -

TABLE VI(a).~ AUXILIARY FUNCTIONS FOR Bag = 0.9,
0 0,934 1,00 1,00 0 0 10000
1 0,834 0,9985 0,9955 —0,005170 —0,005178 0,9896
2 0,734 0,9944 0,9826 —0,018345 —0,018448 0,9602
3 0,634 0,9381 0,9622 —0,036295 —0,036732 0,9149
4 0,534 0,9801 l 0,9351 —0,056233 —0,057375 0,8571
5 0,434 0,9708 05023 —0,075844 —0,078125 0,7903
6 0,334 0,9606 0,8644 —0,093312 —0,097139 0,7178
7 0,234 0,9501 0,8221 —0,107265 —0,112899 0,6422
8 0,134 0,9395 0,7764 —0,116762 —0,124281 0,5663
9 0,034 0,9292 0,7278 —0,121220 —0,130456 04922
10 { —0,066 09193 0,6771 —0,120355 —0,130920 0,4215
i —0,166 0,9102 0,6250 —0,114138 —0,125399 0,3555
12 ] —0,266 0,9017 0,5792 —0,102726 —0,113925 0,2953
13 —0,366 0,8942 0,5193 -—0,086427 —0,096653 02412
14 —0,466 0,8876 0,4669 —0,065667 - 0,073983 0,1935
15| —0,566 0,8818 0,4156 —0,040953 ~0,046443 0,1523
16 | 0,666 0,8770 0,3658 —0,012853 —0,014656 01174
17 | —0766 0,8789 0,3182 +0,017592 --0,020621 0,08837
18 —0,866 0,8696 0,2729 0,050936 0,058574 0,06477
191 —0966 0,8670 0,2305 0,085283 0,098366 0,04605
2 | —1,066 0,8650 0,1911 0,120320 0,139099 0,03158
21 —1,166 0,8635 0,1551 0,155316 0,179868 0,02077
2 [ —1,96 0,8624 0,1226 0,189539 0.219781 0,01297
23 —1,366 0,8616 0,09389 0,222223 0257919 0,00759
24 —1,466 0,8612 0,06897 0,252633 0,293350 0,00409
25 —1,566 0,8609 0,04800 0,280008 0,325250 0,00198
% | —1,666 0,8607 0.03103 0,303598 0,352734 0,00082
27 --1,766 0,8606 0,01809 0,322680 0,374948 0,00028
28 | —1,866 0.8606 0,00922 0,336512 0331020 0,00007
29 —1,966 0,8606 0,00443 0,346000 0,402000 0
30 -2,040 0,8606 0 0,352000 0,403000 0
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TABLE VII.- BASIC FUNCTIONS FOR Bag = 0.5.

TABLE VII(a).- AUXILIAR

Y FUNGTIONS FOR Ba, =0.5.

aln ¢ F F F P
0 0,966 0,966 1,0 0 —1,062600
1 0,916 0,916022 0,998695 0,051755 —1,006931
2 0,866 0,866173 0,994871 0,100695 —0,950190
3 0,816 0,816575 0,988672 0,146776 —0,892768
4 0,766 0,767343 0,980241 0,189973 —0,835025
5 0,716 0,718586 0,969722 0,230282 —0,777326
6 0,666 0,670403 0,957260 0,267710 —0,719989
7 0,616 0,622889 0,942995 0,302289 —0,663311
8 0,566 0,576129 0,927077 0,334059 —0,607562
9 0,516 0,530205 0,909634 0,363064 —0,552974

10 0,466 0,485188 0,890816 0,389380 —0,409746
1 0416 0,441143 0,870741 0,413065 —0,448052
12 0,366 0,398132 0,849551 0,434213 —0,398029
13 0,316 0,356202 0,827360 0,452897 —0,349786
14 0,266 0315409 0,804300 0,469221 —0,303412
15 0,216 0,275784 0,780477 0,483279 —0,258955
16 0,166 0,237371 0,756007 0495148 —0,216460
17 0,116 0,200195 0,731000 0,504952 —0,175936
18 0,006 0,164277 0,705543 0,512776 —0,137379
19 0,016 0,129646 0,679751 0,512776 —0,137379
20 | —0,034 0,096306 0,653702 0,522886 —0,066092
21 | —0,084 0,064280 0,627489 0,525362 —0,033293
22 | --0,134 0,033562 0,601192 0,526245 —0,002316
23 | —0,184 0,004158 0,574889 0,525623 0,026889
24 | —0,234 0,023926 0,548653 0.523585 0,054379
25 | —0,284 0,050710 0,522553 0,520210 0,080230
26 | —0,334 0,076186 0,496554 0,515585 0,104494
27 | —0,384 0,100378 0471015 0,509786 0,127252
28 | —0,434 0,123294 0,445696 0,502882 0,148560
29 | —0,484 0,144954 0,420745 0,494952 0,168493
30 | —0,534 0,165375 0,396214 0,486054 0,187109
31| —0634 0,202595 0,348603 0,465627 0,220641
32 | —0734 0,235169 0,303191 0,442078 0,249635
33 | -0834 0,263319 0,260276 0,415834 0,274503
34 | —0,934 0,287316 0,220102 0,387301 0,295637
35 | —1,034 0,307438 0,182877 0,356818 0,313372
36 | —1,134 0,323997 0,148791 0,324729 0,328029
37 | —1,234 0,337306 0,117976 0,291307 0,339895
38 | —1,334 0,347705 0,090562 0,256831 0,349256
39 | —1,434 0,355534 0,066637 0,221531 0,356386
40 { —1,534 0,361152 0,046275 0,185618 0,361568
41 | —1734 0,367178 0.016430 0,112640 0,367232
42 | —1,834 0,368320 0,007004 0,075854 0,368330
43 | —1934 0,368702 0,001261 0,038998 0,368702
4 ] —2,04 0,369000 0 0 -

0 0,966 1,00 1,00 0 0 1,0000
1 0,866 0,9996 0,9954 —0,004573 —0,004575 0,9902
2 0,766 0,9983 0,9819 —0,016543 —0,016571 0,9625
3 0,666 0,9963 0,9609 —0,032803 —0,032925 0,9197
4 0,566 0,9936 0,9331 —0,051429 --0,051760 0,8650
S 0,466 0,9903 0,8993 —0,070088 - 0,070775 0,3013
6 0,366 0,9872 0.8607 —0,087132 -—0,088262 0,7311
7 0,266 0,9838 08176 —0,101509 —0,1 03]_8! 0,6575
8 0,166 0,9802 0,7713 -—0,111871 —0,114131 0,5831
9 0,066 0,9767 0,7223 —0,117677 —0,120484 0,5097
10 —0,034 0,9733 0,6717 —0,118506 —0,121757 0,4390
11 —0,134 0,9702 0,6197 ~0,114162 —0,117668 0.3725
12 —0,234 0,9672 0,5672 —0,104474 —0,108017 0,3112
13 —0,334 0,9642 0,5148 —0,089714 —0,093006 0,2558
14 —0,434 0,9622 0,4632 —0,070106 —0,072860 0,2064
15 —0,534 0,9603 04127 —0,046225 —0,048136 0,1635
16 —0,634 0,9584 0,3637 —0,013405 —0,019204 0,1268
17 —0,734 0,9570 0,3168 -'-0,012669 -+0,013238 0,0960
18 —0,834 0,9557 0,2724 0,046219 0,048361 0,0708
19 —0,934 0,9549 0,2305 0,081716 0,085575 0,0507
20 —1,034 0,9541 0,1917 0,118338 0,124031 0,0350
21 — 1,134 0,9535 0,1552 0,155297 0,162870 0,0232
2 - 1,234 0,9532 0,1238 0,191706 0,201118 0,0146
23 —1,334 0,9528 0,0951 0,226805 0,238041 0,0086
24 —1,434 0,9527 0,0699 ©,260034 0,272944 0,0046
25 —1,534 0,9525 0,0487 0,290152 0,304621 0,0022
26 —1,634 0,9525 0,03098 0,316710 0,332504 0,0009
27 —1,734 0,9524 0,01720 0,338778 0,355710 0,0002
28 —1,834 0.9524 0,00740 0,355520 0,373289 0,0000
29 —1,934 0,9524 0,00140 0,366202 0,384504 0,0000
30 —2,040 0,9524 0 0,3690 0,38730 0

“of umpusIOoWeN TBOTUNOOL VOVK

8301

48



88 NACA Technical Memorandum No. 1058
TABLE VIII.- BASIC FUNCTICNS FOR INCOMPRESSIBLE JET.

I ' 7y ey
| on 3 F F F !
0 0,98 0,98 1,00 0 — 0,98
1 0,93 0,930021 0,998796 0,047750 — 0,930021
2 0,88 0,880160 0,995268 0,093004 — 0,889160
3 0,83 0,830531 0,989538 0,135770 — 0,830531
4 0,78 0,781241 0,981732 0,176062 - 0,781241
5 0,73 0,732391 0,971970 0,213899 — 0,732391
6 0,68 0,684077 0,960380 0.249309 — 0,684077
i 7 0,63 0,636380 0,947081 0,282019 — 0,636380
| 8 0,58 0,589394 0.932186 0,312957 — 0,589394
9 0,53 0,543187 0,915821 0,341271 — 0.543187
10 0,48 0,497832 0,898095 0,3672950 ~ 0,497832
11 0,43 0,453397 0,879128 0,391069 — 0,453397
12 0,38 0,409939 0,859027 0,412645 — 0,409939
13 0,33 0,367510 0,837897 0,432079 — 0,367510
14 0,28 0,326163 0,815852 0,449414 — 0,326163
15 0,23 0,285938 0,792991 0,464714 — 0,285938
16 0,18 0,246874 0,769413 0,478027 — 0,246874
17 0,13 0,209006 0,745221 0,489420 — 0,208006
18 0,08 0,172361 0,720502 0,498948 — 0,172361
19 0,03 0,136963 0,695357 0,506678 — 0,1366963
20 — 0,02 0,102830 Q,6693864 0,512666 — 0,102830
21 — 0,07 0,069982 0,644120 0,516980 — 0,069982
22 — 0,12 0,038422 0,618195- 0,519686 — 0,038422
23 - 0,17 0,008164 0,592177 0.520844 — 0,008164
24 — 0,22 — 0,020794 0,566135 0,520423 - 0,020794
25 -— 0,27 ~ 0,048451 0,540147 0,518786 0,048451
26 — 0,32 — 0,074810 0,514280 0,515699 0,074810
27 — 0,37 -- 0,099884 0,488599 0,511328 0,099884
28 — 0,42 — 0,123676 0,463169 0,505731 0,123676
29 — 0,47 — 0,146204 0,438045 0,498980 0,146204
30 0.52 — 0,167487 0,413286 0,491134 0,167487
31 — 0,62 — 0,206388 0,365075 0,472399 0,206388
32 — 0,72 — 0,240567 0,318925 0,450011 0,240567
33 — 0,82 - 0,270252 0,275179 0,424433 0,270252
34 — 0,92 — 0,295694 0,234130 0,396102 0,295694
35 — 1,02 — 0,317174 0,196035 0,365426 0,317174
36 - L12 -- 0,335008 0,161109 0,332789 0,335008
37 — 1,22 — 0,335008 0,161109 0,332789 0,335008
38 — 1,32 — 0,361031 0,101443 0,262988 0,361031
39 — 1,42 — 0,369918 0,076966 0,226417 0,360918
40 - 1.62 ~— 0.376548 0,056186 - 0,189076 0,376548
41 — 1,62 — 0,581283 0,039169 0,151171 0,381283
42 — 1,72 — 0,384508 0,025966 0,112873 ‘ 0,384508
43 - -- 1,82 — 0,386606 0,016603 0,074307 0,386606
44 — 1,92 — 0,387955 0,011108 0,035575 0,387955
45 — 2,02 — 0,388955 0,009494 0 —
46 — 2,04 — 0,389000 0 [} -

TABLE VIII(g).- AUXILIARY FUNCTIONS FOR INCOMPRESSIBLE JET

FOR Ba == 0,
% | or_F Fra » b or L F o
n'n L4 i 4 - nn ¢ l L4 -
0 0,93 0 1,000 16 — 0,62 — 0,0200 0,133
1 0,88 -~ 0,0042 0,990 17 — 0,72 — 00110 0,102
2 0,78 — 0,0155 0,964 18 — 0,82 0,0446 0,0756
3 0,68 — 90,0310 0,922 19 — 0,92 0,0803 0,0384
4 0,58 — 0,0488 0,869 20 — 1,02 0,1173 0,0384
S 0,48 — 0,0667 0,806 21 — 1,12 0,1546 0,0259
6 0,38 — 0,0835 0,738 22 — 1,22 0,1915 0,0166
7 0,28 — 0,0978 0,666 23 — 1,32 0,2272 0,0102
8 0,18 — 0,108/ 0,591 24 — 1,42 0,2606 0,0059
9 0,08 — 0,114t 0,520 25 — 1,52 0,2011 0,0031
10 — 0,02 — 0,1162 0,449 26 — 1,62 0,3178 0,0015
1 — 0,12 — 0,1126 0,382 27 - 1,72 0,3398 0,0006
12 — 0,22 — 0,1037 0,320 28 — 1,82 0,3364 0,0002
13 — 0,32 — 0,0898 0,264 29 ~ 1,92 0, 0,0001
14 — 0,42 — 0,0708 0,214 30 — 2,02 0,3697 0
15 — 0,52 — 0,0474 0,171 31 — 2, 0, 0
|
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Figure 1,- Boundary layer of free jet.
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Figure 2.~ Temperature and velocity fields in the boundary layer
of a jet at the distance x = D from the nozzle
according to the tests of Ruden.
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Pigure 9.- Velocity fields in the
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Figure 10.- Density fields in the
. boundary layer of a
high velocity Jet.
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Figure 1l.- Fields of velocity heads in
a high velocity jet.
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Figure 13.- Comparison of velocity

ficlds of I cooled Agh
(At = 60°) and II jet with high
velocities (Bagy = 1),
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