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SUMMARY .. .

In the present report the theory of free turbulence
propagation and the boundary layer ”theory are developed
for a plane-parallel free ‘stream of a compressible flui’do
In constructing the theory use was m’ade of the turbulence
hypothesis by Taylor (transport of vorticity) which gives
best agreement with test ,results for yroblems involving
heat transfer in free jets.

The theory developed here considers two kinds of flow:. .

1. The boundary layer of a jet with temperature
different from that of the surroundings and velocities
that are small by comparison with the veloc”ity of sound
(Bairstow number Ba~ Oe5)o

2J. The boundary layer of a jet of high velocity and
at a temperature equal to that of the surroundings.

The first deals with c,ompressihility effect arising
from the difference in temperatures inside and outside the
jet; the second with the compr~ssibility effect arising from
the high flow velocities.

The results indicated that the compressibility had”
only a slight effect on the properties ?f the free jet.
Furthermore it was found that a drop in,the. j-et..temperature
had approximately the same ef’feet on the properties of the
jet regardless of whether the reduc~ion was due to arti- -
ficial cooling of the jet or to the conversion of thermal
energy to kinetic athigh flow velocities. -

Compressibility factors (~ and S) are introduced with
the aid of which it is possible to reduce the variations in
all fundamental properties of the’ boundary lay~r ,under the

..,,_——_____— ________ ————.- .—__..-.___————————_—.— _______
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influence of compressibility-to sirn~le’linear relations.
The results obtained are valltl ’”forflow velocities up to
the velocity of sound and for considerable temperature
differences (up to &100 - 150° C),

INTRODUCTION

In 1926 To~lmien$s paper was published (reference 1)
in which the author, on the basis of the semi-empirical
general turbulence theory of Prandtl, developed the theory
of so-called free turbulence — that is, turbulence in a
free, heqted stream, In the same paper, making use of his
proposed theory, Tollmien solved three problems on the
propagation of free, heated jets:

(a) The boundary layer of an infinite plane-parallel
jet:

(b) Plane-parallel jet escaping from a very narrow
opening;

‘(c) ,Axially symmetric jet escaping from very narrow
opening.

.

About 3 or 4 years later (1929–1930) Swainls paper
(reference .2) and Schlichti’ng!s paper (reference 3) extend-
ing the theory of free turbulence to the case of the wake
lehind a body and developing the laws of flow in axially
symmetric and ylane wakes appeared. These laws are appli-
cable to flows not too near the body.

,.

The work’ of these authors was supplemented by experi–
mental investigations of the velocity fields of flows The
use of one empirical constant enabled the above-mentioned
theories to be brought into excellent agreement with test
results. In fact this agreement determined the succ?ess
of the Prandtl-Tollmien free-turbulence theory and assured
it wide theoretical and practical application. In 1935
the article by Kuethe (reference 4) appeared in which an
approximate method is worked out for the computation of the
velocity profile in the initial part of a round jet.

In 1935, 1936, and 1938 four paper: by the present
author were published in which Tollmien!s t-heory was ex-
tended to the case of plane-parallel flow and axially
symmetric jets escaping fror, openings of finite diameter
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(an approxi~ate theory,of the initial part of the jet was
pr+gpo~ed); f~rrn-ula~ were-worked out for the aerodynamic
commutation of the plane-par’til-l~”ljet’; axially symmetric
jet flow in the o~en working part of a wind tunnel with
round and elliptic sections, -hot and cold air jets, and
moreoverl xnethods were proposed for computing. the air
resistance of railway cars (in tunnels or on the open
track), pipe systems and heat interchangers (references
~ 6, 7). These proposals and the flow theory itself
w~re satisfactorily confirmed by test results and each
year find wide application to engineering practice.

“The rapid development of the mechanics of turbulent
flow has prompted the application of the physical model
of the phenomena as conoeived by Prandtl and Tollmien to
the solution of heat problems, those of the temperature
distribution along the jet axis and over its cross-sections
of heat diffusion from the jet to the surrounding space,
and so forth. It is interesting to note that as a direct
consequence of the Prandtl theory, in the case of a free
jet and the wake behind a body, complete similarity is
obtained between the temperature and velocity fields. Iit
order to check this extremely important result rage and
Falkner (reference 8), in 1932, made measurements of the
velocity and temperature fields in the wake behind a long
cylinder of elliptic cross section, They showed that the
theoretical velocity fields of Prandtl—Schlichting were
very well confirmed by test results while there was no
similarity of the velocity and temperature fields, and
the heat transfer from the wake to the undisturbed flow
is of greater intensity than follows from the ?randtl
theory, t

Taylor (reference 9) was the first to note the con-
tradiction revealed in the free turbulence theory of Prandtl
and presented a hypothesis according to which the tangential
turbulent stresses in the flow were to be determined by the
transverse transport of vorticity and not by the momentum
as proposed by Prandtla The imperfection in the Prandtl
theory was also pointed out in that it took no account of
the local pressure gradients which have an ap.preciahle
effect on the momentum interchange but not on the, vorticity
,tqan.sporte The ap.oye h~.pothesis, with regard to the tur-
bulence, was first proposed as far back as 1915 (reference
lo)* On the basis of this hypothesis using only one em-
pirical constant, as prandtl did, Taylor obtained the vel–
ocity and temperature profiles in the wake behind a long
cylinder as experimentally determined by rage and Falkner,

.
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The Taylor theory of free turbulence gave velocity pro-
files accurately, the same as those given’by the Prandtl
theory, and at the sa~e time removed the imperfection of
the latter theory as regards application to heat problems.
This,permits all the solutions ’of the problems in the field
of flow meehafiics that were based on the Prandtl theory to
retain their validity, It made it necessary, however, to
give preference to the Taylor theory for the further devel–
opment of the problems of free flow and the wake behind a
body, particularly in ‘those cases when the problems are
concerned with temperature profiles and heat transfer.

In the present -peport devoted to the further develop-
ment of the theory of the free jet, a theory of free turbu-
lence in a compressible gas is worked out and so~utions are
given of boundary layer problems of a free flow for the
following two cases;

(a) The loundary layer of a plane-parallel jet at
small flow velocities with a temperature different from
that of the surroundings, that is, a nonisothermal layer;

(b) Isothermal boundary layer at large (up to Bao=l)
flow velocities.

It may be noted in conclusion that the free turbulence
problems, in addition to being of interest in themselves,
also possess a general interest since free turbulence repre-
sents ,the simplest case of turbulence free from the effect
of viscosity. The study of free turbillence is a necessary
preliminary stage in the study of turbulent flows in general.
It is, therefore, hoped by the author that the solut.icn pro-
posed in his present paper of the problems of free turbulence
in a compressible gas possesses a certain usefulness for the
st,udy of “turbulence” in other cases of compressible flow.

10 EQUATION OP NOTION FOR TREE TURBULENCE

The problem will be restricted to two-dimensional flow,
In this case the differential equation of motion in the di-
rection of the axis of abscissas assumes the following form:



—

NACA Technical Memorandum No.. 1058 5

where
,,..>-----.“....- .

u, v instantaneous velocity components- ..

P9 PO k instantaneous values of “the density, pressure,
and viscosity

For the flow of a liquid of small viscosity about
solid bodies the flow, as was shawn hy 2randtl as far
back as 1904, may be divided into two regions; namely,
a relatively thin layer of fluid lying close to the solid
walls — the boundary layer - in which .the.effect of the
viscosity cannot be neglected, however small its value
may be, and the remaining part of the flow, in which the
,vi$cosity plays no part and’which is therefore su%ject
to the laws of flow of ideal fluids, The boundary layer,
in turn, is assumed to consist of a very thin sublayer
of purely laminar flow in direct contact with the wall
(no transverse turbulent fluctuations can be developed
since they are dissipated by the wall) and a remaining
turbulent portion of the boundary layer in which the
effect of the viscosity may be neglected- Thus the
study of the flow about solid bodies, the motion through
pipes and, in general, of all fluid flows in the presence
of rigid boundaries does not, in principle, permit neglect-
ing entirely the effect of the viscosity This circum-
stance constitutes the great obstacle in the development
of the theory of turbulent flows,

The distinguishing property of free turbulent jets
is the absence of rigid flow boundaries and hence of a
laminar suhlayer; This makes it possible to neglect
entirely the effect of viscosity in all cases of free
turbulence and explains the dynamic similarity of the
jet flows - the nondependence on the Reynolds number -
over a very wide range of Reynolds number,

The differential equation of motion for two-dimensional
free turbulence may thus be written in the following form:

. . . 0 . ..- ...- ... ,. i. ..., ~.

Due to the quasi–stationary state of the turbulent
all its characteristics may be broken up into mean
fluctuating components: \

(2)

motion
and
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u= u+u~
. .(.,------. . . . .... ,.&,,,.! .... .-. . .. .. ..

v= 7 +, Vf....- , ,.,. . ....-,’.1 (2a).:,:....’-

P= ~+ f)l”
.-...,- ,. ,,-,,.,“. .,... -,‘.”G,

.. ,,,. P= T+P~ ,,. ..“ ,. .,
,:..”:.. :’: .,.- -’1‘

On the averager’:ove~ ,8,certain finite tfm.e‘itite’rval,the

fluctuating comp.memt Ls,.evident.1$ equal..to’ zero: ‘
.,,. -b.,.--- ,, t.~ -1 :,,... --.

,.-.,~.-. .....,, .’-, ,._ . -.-J‘ ,.,. >.---
-,.,.: .,....-. ‘:V1 =.Ul,= >~1p? ‘ ~.

..
~:. ,..” .,.’. ,(2:)

,, .,!z.- ..-/
. :4 .. . ,..!

. . .:- .,, .. .
,.. . r..

In the-gener”al ca~e, however, this i’s not true if t.lie:,
squares ‘of t-he “fluctuations and their’ products.’ - ‘..

,. ,, ,-, . .,,.+..’. . . . -’..

In equati~n (2) the mean values and fluctuations are
substitut~d for, t-Kc instantaneous magnit-udes. To average
ovz<r the ti’me, take account of. condition’s (e,quati”on(~b))
and neglect mom-ents of’ th:e‘th’ird order.: , ‘

. . -., ,’-. I .,..

. .,., .
there ‘i-s:?btai’ned the ‘differential equat,ion <or the a~srage
turbu’leilt flow of a compressible fluid”:’ , ,.

.. ,.

‘ To estimate the order of magnitude of the individual
terms that enter the above equation it is not difficult to
see that in the case of free turbulence ,all terms in the
second bra,ck”ets (vith- ~eriv.ativ-es im.-re”s~”~ctto-x), “are’‘very
small ‘by con-paris-on wi.t’h”the ‘~orre.sp.on~ing t-erms of the
third brackets (with derivatives ln”res~bct”to y) if the
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~pincipal direction o.f.t&e f.l$w coincides with the axis
of abscissas. Similarly one of t~~=terms of the third
brackets

. .

is negligibly small, By neglecting the above small terms
the following form of the differential equation of motion
for the case of two-dimensional purely turbulent flow is:

I?ree jets propagated in infinite space filled with
liquid at rest, and wakes behind a body surrounded by
infinite undisturbed flow, possess such small pressure
gradients that they may be neglected, With this in mind
the differential equation of motion for free turbulence
iil a compressible gas is:

-——___—__ —____—_—

--a; ––– aii
pu=+pv=+v! [75*J+P’:;]=O (4)

L dy

The further steps in the solution
a

of the ’problem depend
on the choice of physical model for the turbulent flow.
At the present time there are two models of interest in
their application to free turbulence, namely, those of
Prandtl and Taylor. With the aid of the Prandtl model
results agreeing with experin.ent are obtained for problems
in the field of jet mechanics (velocity fields, frictional
stress, and so forth) but strong disagreement is obtained
for heat problem solutions, (temperature field, heat trans-”
fer)s The Taylor physical model gives the same solutions
as the Prandtl model for the mechanical problems and further-
more leads to solutions of the heat problems that are in
good agreement with e,xperiments,,c In what follows, there-
fore, use is made of the Taylor model,- Tli’e’l’Zitt-e”ris based
on the assumption that the turbulent tangential stresses in
the flow arise from the transverse transport of vorticity,
that is, from the correl~.tion between the vortex fluctuations
and the transverse velocity components. In two-dimensional
flow directed along the axis of abscissas the vorticity is
given by

Ilm1111111-mm-
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(4a)

where the magnitude of h7/ ax in free turbulence is
negligibly small by comparison with hil/by so that

I aii
G= ---2 hy (=4b)

In its transverse transport, immediately before the loss
of its individuality, the particle encounters a layer where
the value of the vorticity differs from that in the layer
from which it arrived by the amount

where IT is the mean free path of the fluid particle
in the turbulent flows The loss of individuality of the
fluid particle should be accompanied by a discontinuous
change (fluctuation) of vorticity of amount,,

B
From equation (4b) it is clear, however, that

1 but~1.__
2 by

hence

(4C)

With the loss of individuality of a given particle there
are naturally associated fluctuations of the flow velocity:
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and of ‘the fluid density: ‘ “ ..
,. —-. ,.. ,., ;..;-?.>,, .-. s-. . ..!.... ‘- 4.,

ap
P’ ‘~T—

‘by ,
(4e)

By making use of equations (4c) and (4e) equation (4) was
reduced to the form

,, ,. ,,,
. . ,... . .,. .

——_—
4’--b%p : + tiii

+ ;-7LU+‘r lT P’--–+----
1

= o (5)
by L bya by by

or

(6)

which is the differential equation obtained on the basis
‘of the Taylor turbulence acdel. ,,

—-—.—
With r~spect to the nagnitude Vt IT it is necessary

to make some assumptions by which it is associated with the
velocity of motion and with the coordinates of the systeLl_
It is possible, for exanp~e, to make use of the generally
accepted idea of Prandtl, nanely, that the transverse
velocity fluctuations are of the same order of magnitude
as the longitudinal fluctuations:

. . ,,
V!-’tit ,’

that ‘is,
. .

(6a)

Including the proportionality constant i,n the magnitude of
the free path of the par,ticle – the mixing, length (IT) -
(equation (6)) is reduced to t,hemores imple, form*

(7)

.-———_ —_—_— ____________________ ______________________ ____
*with, a view toward simplicity of notation the averaging bars
ovel” the letters are omitted in what follows so that p,
T _and IT

2’
—~ are *O stand for their mean values in time (p,
u, v, and TT).
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In the special case of an incompressible fluid (p =
constant) the following is obtained

au+vau
u—

a au a2u.~T —.=
ax 7Y bY ay

(7a)

The corresponding equation derived from the turbulence
model of Prandtl for the free turbulence in an incompress—
ille fluid was obtained by Tollmien in 1926 in the follow-
ing form (reference 1):

(7b)

TO take into account the fact that the constant of pr%
portionality is determined from experir,ental data, it is
seen that in the case of free turbulence the I?randtl and
Taylor models give rise to the same equation of motionc

The value of the m~xing lengths, as given by Prandtl
and Taylor respectively, differ by the constant magnitude

“

-—

(7C)

For the purpose of’retaining the form of computation adopted
hy T!ollmien and others the Prandtl value of the mixing
length is assumed. The differential equation of motion for
free turbulence in a compressible gas then becomes

P“ ;;
~aua [1+Pv~” = 21 — — P ~:ay ay ay i3Y

(8)

Comparison of the above equation with the generally known
equation for stationary flow

au a7xx
Pu=+pv:u=

bY ay
(8a)

reveals the presence of “apparent” tangential stresses
the magnitude of which is given by the equation
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! aaub
[]

?lU
~xy = 21 —— dy

by by .P TY
(8b)

In the case of an incompressible fluid equation (8b) re-
duces to the, generally famili&r Prandtl law of turbulent
friction:

(8c)

.,

To solve equation (8) it is necessary to know a relation
between the mixing length I and the coordinates of the
system, The absence ‘in the case of free flow, of rigid
boundaries that damp the fluctuating motions of the par-
ticles led Prandtl to the assumption of constancy of the
mixing length in the transverse direction of flow:

l(Y) = constqnt (9)

It thus remains to estzblish the law of variation of the
mixing length along the axis of abscissas:

1 = l(x)

The available experimental investigations of free flows make
it possible without any particular difficulty to determine
the form of the fuilction 1(X)* A sufficient basis for this
is‘the experimentally established fact of similarity of the
boundary layers in various cross sections of a given free
flow (jets or wakes, reference 1)- This similarity was
revealed in a large number of experimental papers (Tollmien,
l?~rthmann, Ruden, Schlichting, and others) by constructing
velocity profiles in nondimensional coordinates, for example,
ii the form of the relation

. u
-— = ofv
Um ;

(9a)
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u

u=

b
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velocity at a point with ordinate y

velocity on the axis of the jet .

width of the jet (or of its loundary layer);in the
given cross section

The nondimensional velocity profiles (equation) were
foufld to agree for the various cross sections,

The similarity of the boundary layers at any two
cross-sections of a given free flow must also be obtained
with regard to geometric factors, In other words equality
is to be expected between the nondimensional mixing lengths
for the various flow cross sections:

(9b)

It is thus sufficient to establish the law of increase of
width of jet along the axis of abscissas in order that the
law of increase of the mixing length be known. A very
interesting consideration of Prandtl permits the solution
of the relation b = b(x). It is shown by Prandtl (refer-
ence 11) that the widening of the jet (or of the boundary
layer of the jet) arises from the transverse velocity
fluctuations VI, that is,

( 10a)

Because of the similarity of the velocity profiles at tkie
different jet cross–sections the following equation may be
written

au Um-..—
by b

and further

(lOb)
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On the other handa the rate of expansion of the jet
,.

.-

db db dx=—— , (1OC)
z dx dt

that is,

db ~ db-— = urn-—
dt dx

)

Comparison of expressions (lOb) and (1OC) leads to the
solution of the problem of the law of increase in width
of the free jet and of the mixing length in the flow
direction:

Q . constant -)
dx !

The l>w oh.tained for
along the flow

1
(11)

b = x constant

I=cx

the increase in the mixing length

1 =Cx (12a)

is valid for free jets of various shapes:, $or the boundary
layer of an infinite two—dimensional flows for a plane-
parallel stream, axially symmetric stream and, in .genera.1,
for those cases of free streams for which the flow profiles
are similar. In the same manner, as previously described,
the law of variation of the mixing length in a plane–
parallel wake, axially symmetric wakes and so forth, may
be obtained- In the present paper$ which is devoted to
the free jet only, no consideration will be given to wakes.
By making use of the relation oltained for the mixing
length along the jet the differential equation for free
turbulence in a compressible fluid is reduced to the new
form
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This is the general equation satisfy~nfj anY case of a
free jet of a compressible gas- The uagpitude c is

the only empirical constant in the theory of free tur-
bulence, In the special case of an incompressible fluid
equation (12) assumes the familiar f~rm given in Tollmienls
paper:

au au
l.l—

ax+v~
= 2C2X2

II* DIFFERENTIAL EQUATION OF

LAY13R IN A I?RIUIJXT Ol?A

(12b)

THE TURBULENT BOUNDARY

COMPRESSIBLE GAS

(PLANE-PARALLEL PROBLEM)

Assume a plane-parallel flow of compressible gas
extending to infinity in OY direction (fig. 1) with
undisturbed velocity Uo $ density Po, and starting
from the point O, mix with the surrounding gas at rest,
In accord with the law previously derived of the linear
increase in the width of the boundary layer 3 together
with the condition of similarity of velocity profiles
the velocity along any line C@ drawn from the origin
of coordinates O (the latter coincided with the point
where the boundary layer thickness b = O) remains con-
stant as will be showna From the similarity of the
velocity profiles it follows that the velocity at corre-
sponding points of the flow are equal, that is, for

there is

‘Ul ‘J2 ‘3
= —— = —— = ● . ,=

~
constant

‘o ‘o

But from equation (11)

3 = x constant

hence for
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.’

., ------ -- ...
y/x ,= con~ta.nt.,. . .. . . (l$a)

there is the condition ‘

,, ‘u+= constant (13b)
u’. .. 0,

f,
>,

w!lich”proves what wad requlre~, s’ince equation (13a) is
the equation of a straight line through O, Thus in the
turbulent boundary layer of a free flow the ,rays from
a correspondingly chosen origin of coordinates are
ffisotachs. ”

The result obtained indicates that if the problem
of the free plane boundary layer is solved in coordinates
x and q = yjx the velocity will depend cmly on m:

u= Uof(n) (14)

In order to eliminate the empirical constant from equation
(12) the following equation is set

2C2 = a3 (15a)

and the following system of coordinates is chosen

Y
x: Cf = --

., ax
(15b)

Then

u= Uof((p) (15a)

There is introduced, as is usually done for compressible
flow cases$ the stream function for the product of the
mean velocity by the mean density and there is obtained

..,,

( 15d)
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The density of the fluid in the case of free turbulence,
for which the pressure gradients may be neglected, de–
pends only on the temperatures

The temperature fields in free flows, as shown by
the tests of Fage and Falkner, Ruden, Olsen, and others,
are similar as the velocity fieldse Otherwise expressed,
the investigations of the temperatures show that in the
free boundary layer the isother~s, like the isotachs are
straight lines from the origin. Thus the temperatures,
and hence also the densities, depend only on the non-
dimensional coordinates (q):

t = to e(cp)~
( (16)

P = Po K(V) J

On the basis of the foregoing a certain function F(cP),
the first derivative of which is equal to the principal
component of the momentum, is introduced

Pu= p. U. 31 (17a)

where Po and Uo are the density and velocity, respec—
tively, in undisturbed flow,

Hence

$= Jpudy = Po Uo ax J ~’dv

that is, the formula for the stream function is

Q= axpouoF

and for the transverse momentum:

(1’7b)
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or

Substituting expressions (16), (1’7a), and (1’7c) in
the flifferential equation (12) and making certain elementary
transformations of the latter, using the expressions

(17d)

the ciifferential equation of the turbulent boundary layer
in a plane-parallel free flow of a compressible gas in
the form is

At ail points of thz bou?:d~ry layer except its outer (6?2)
anj- inner (wl) boundaries the derivative of the velocity
is not equal to zero, that is,

Therefore the following is o“otained

L _!

and further

Thus the differential equation of the turbulent boundary
layer assumes the following form
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Frll = b

11

‘K’
-F+-&v TF’

To solve the above equation it is necessary to know the
density functiOn K = ~(q).

In the case of an incompressible fluid for which
K(q) = constant = 1 and K! = bK/bq = O equation (20)
redu’ces to the well-known Tollmien equation:

corresponding to the case of the turbulent boundary layer
in a free plane—parallel flow of an incompressible gas.

In what follows equation (20) corresponding to the
compressible gas will be solved for two cases:

1, l?ree flow at small velocities (up to Ba ~ 0-5)
wit!l a temperature differing from that of the surrounding
space, that is, a nonisothermal flow,

2. Isothermal flow at large velocities (up to Ba = 1).

111. BOUNDARY LAYER OF NONISOTHERMAL PLANE-PAR.4LLEL JXT “

Ol? COMPRESSIBLE GAS AT LODERATE I’~OW Vi?LOCITIES

10 Heat Balance in the Turbulent Stream

In the present section the flow of a compressible
fluid (gas) in the boundary layer of a plane-parallel
stream at moderate velocities but at temperatures differ—
in: frc~, those of the surrounding fluid at rest shall be
considered. In the later sections it will be shown that
the effect of the compressibility of the gas arising from
the high flow velocities is not large. Up to values of
the llairstow number of the order Ba = 0-5 - 0.6 the
effect of the compressibility is barely appreciable. For
this reason the equations and results which will be ob-
tained in the present section devoted to the nonisothermal
jet of small velocity w-ill maintain their validity up to
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velocities of the order of 0.5.- 0.6 of the velocity
of s@un&O ,..

..

To obtain the law of temperature distribution in
the boundary layer of a free jet use is made of the
differential equation. of ““heatbalance, ;~herein the
molecular heat conducti’on.and the coriversi”on of the
energy of the vi’scous forces into heat is neglected
with respect to the turlmlent heat transfer in the
same manner as the frictian due to the v%scosity in the
dynamic equation (2) was disregarded w.i.th respect to
the turbulent friction. Then “ . .

aT ?)T ?)T
+ Pv -- = o‘X+pux ?)37

(21)

where

T temperature of the fluid

t time, seconds

It is Conveni.::n: ttj brea}: Up all the characteristics
of the turbulent fl,o-.v~.il.to their mean values and fluctu-
ations about the mean values:

u= Ti+ut, v= T+vt, p =;+pt, T=~+TJ (22a)

so that on the average for a finite time interval the
fluctuating components are reduced to zero:

v! = ;-7 . ;7 . ~-i= o
,. . . .

Averaging with respect to time, while taking account of
equations (22a) and (22b) and neglecting moments of the
thi,rd order:

(
~TI

! UI _.._;
~T 1 \,

P.,,- -ax ,P’v’ -;y)

equation (21) is transformed into the differential equa—
tion Of heat balance for the turbulent quasi-stationary

6-? = ‘) ‘10’47: ~
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Assuming as in the case of equation” (4d.) and density
equation (4e) variations that the temperature change is
the discontinuity at the instant of loss of individuality
of the fluid particle transported by the flow over a dis-
tance equal to the mean value of the mixing length (IT)
resulted in

(22d)

Because of the prese~ce in equation (22c) of fluctu-
ations of the temperature gradients its further transform-
ation %econes impossible. In order to eliminate this
difficulty the equation of continuity of the flow is here
resorted to: ,,

+ a(F7)

[

+ a(~vl) a(p’;) a(pwq———— ----- + +—— .c--
1

0 (22e)
by by ay by “ =

which, after averaging, assumes the following form

Subtracting the avert.ged equation of continuity from the
instantaneous:

and multiplying by T! gives the following:
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T, y:+ T, a(pq+ T, S(PW+TI Ww.- .— +~, a(P’~) ~----— ------ =

at. ax ax ay ay

wherice

a(7p’T’)-- —--- -
at bx ax ay ay

P ~ 2U + put Qx:+fipl w aTS ~p, y:= +~vl ---+
at ax ax ay ay

By averaging the latter expression and taking into account

~Nirzzl = PI --- =the quasi-stationary state
( )

O the
at at

whence

(23)

Neglecting, in analogy to what was done with differential
equation (3), th~ s-11 terms entering the second brackets
and the term a(vpITl)/a7 in the third brackets the differ-
ential equation of heat balance in the turbulent flow is

obtained in the sufficiently simple form:

(24)
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For the purpose of further converting this equation the
relations shall be taken into account

and the Aars dropped from the notation, that is, ~ = p,
~=u, T = T, v= V shall be set. Then

(%)

ox

dT dp du dT
—=[T’.—. —.-—PU=+PV dy

[

du dT
dy dy 1

dy+ l’T”?”~”~” (26b)

The right hand side of the above equation gives the trans-

verse gradient of the turbulent heat transfer

Trom this the expression for the heat transfer in the
turbulent flow of a compressible gas is obtained:

(27a)

(27b)

which$ in the particular caso of an inc~mpressible gap,
bp/bY = o assumes the following fo.m that

du dTWT=~~’p—.—.
dy dy (27c)

In the case of free turbulence in a compressible gas, accord-
Ing to Taylor model, it is assumed

lT=f2.c.x, (27d)

the differential equation or heat balance 2s wrttten thus:

dTp.u.$L+Pv~=

[

dp du dT d=2c~x2 ——.— —
(

du dT
dy dy dv+dy . )1

—o— =0.p dy dy (28)
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For the tur?)ulence model of Prandtl

and therefore

dT dp dU dT d “’ du dT
P“ug+pv-c=c’x’

[
——

( )1~“ay dy+~ p~”~ “
(28a)

Comparison of equations (28) and (28a) shows that the
Prandtl model gives ‘a heat transfer half as great as
that given by the Taylor model. Moreover, the Prandtl .
m“odel, as shown by Taylor, leads to similarity between
the temperature and velocity fields; a result which is
not obtained from the Taylor model. In view of the fact
that the results of Fage~s and Ruden~s tests confirm
!?aylor~s free turbulence model and refute the Prandtl
model, equation (28) is used as a basis for this discussion.

For an incompressible fluid (p = constant) the egua-
tion of heat balance reduces to the following form:

dT dT d

[1

du dT
~~+v~=2c’~’— ——

dy dydy (29)

20 Temperature and Density Distribution Laws

According to the results obtained in section II of
this report

pu=pouoF’(q); pv=p,.uo.d($lf=’-q; p=p~A(y); ]

I (30)

It is assumed that the excess temperature fields (differ-
ence between the temperatures of the stream and those of
the surrounding fluid) in the various cross-sections of
the boundary layer of the free jet are similar

‘

(31)

*

---.-,—..-, ---- .,-,,--..--,-l.! --,,--.,.,,,,.,.,,-.,.!!! ,,, ,, ,. . ,!!. !!-.!. ,,,,,. . ..!. ! - !-. ,- !- m..!. . ,,...-.! !.... .! ,-... . . . . . . . .
. . . . . . .
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where

T temperature along a ray qJ drawn from the origin
of coordinates (start of boundary layer of jet)

To temperature in the region of undisturbed flow

‘ata temperature of the fluid at rest in the space
surrounding the jet

Then

AT=ATo~l;
dT

z=
ATo~, ~=ATo$. (32a)

Y

Making use of expressions (30) and (32a) to transform
equation (28) it is found that

—~~’=.’. ‘\:L.e.l_+[x. ‘{f).”] (32c)

and further

The above equation on comparison with equation (30)
leads to the differential equation

;+g=’o..-— (33)

In the case of an incompressible fluid (K = constant;
K~ = 0):

ln~’=const; t-i’=consfi e=cly+-c,, (34)

With E3(qa) = 1 at the inner boundary of the flow (in
the region of constant velocity) and O(qa) = O at
the outer boundary, the constants of integration are:

c1y2+c2=o; c~<, +(-,=l;

whence c~(f-j — yJ=l;

c2=— %
%-92 “

,, , , .. ,—,, , , , ,
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Brom this the law of temperature distribution in the
b.o.undar,ylayer of a..plan.e-parall.el.flow, of..ap.i,ncom-
pressible fluid is found to be:

(35)

!l!heobtained linear law of temperature distribution
is satisfactorily confirmed by Rudenls tests (fig. 2,
reference 12)*

A certain amount of disagreement with the tests
occurs only at the boundaries where the temperature
profile departs from a straight line and passes smoothly
over to the boundary values of the temperatures= The
thermal boundary layer is found to be somewhat thicker
than the dynamic boundary layer. This fact is explained
by the following reasoning. The linearity of the temper-
ature law is obtained on the assumption of purely turbu-
lent heat transfer with the molecular heat conduction
neglected- This assumption was based on the analogy
witil the dynamic problem where the neglecting of the
molecular viscosity lei to a velocity profile which was
excellently confirmed by tests, A specific character–
istic of the veloclty profile was that near the bounda—
ries of the layer the velocity gradients and also the
frictional stresses were so small that allowance for the
viscosity could have no appreciable effect on the deform- .
at ion of the velocity profile. In contrast to this the
temperature field was obtained with large gradients near
the boundaries. This indicates that the molecular heat
conduction at the limits of the dynamic boundary layer is
of appreciable magnitude so that the temperature field
departs from the straight line law and the thermal bound–
ary layer will be thicke’r than the dynamic. Subsequently
it is attempted to perfect the temperature distribution
law in the free jet by taking the molecular heat conduc-
tion into account. For the computation, however, of the
density and velocity fields in the boundary layer of a
free jet such refinement of the temperature law is not
austified since the accuracy of the density field will
not thereby be appreci:.hl.y increased while+the mathemat-
ical labor will be coilz.:~.er~’.ly completed.

OU the basis Of the foregoing it was preferred
to investigate the laws of flow in a compressible fluid
without allowance for the effect of the molecular heat
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conduction and to restrict the problem to the solution “’~
of the previous differential equation: ,.. .,

K’ @n’
—-i--= o
K“ ~1

whence

f in (K 6!) = constant

and

K 61 = Cl (36b)

The further .solutiop of:equation (36b) is predicated
upon a relation I?etween ,the density and temperature
functions. With this in mirid Clapeyronls equation is
used$ ,- :

P
1

= ~.~ P T-

(“
(“36c)

P. =.g:f?o To
-J

which in the case of a free Jet with constant pressure
along and at right angles to the flow (P = P. = constant)
leads to inverse proportionality between the absolute
temperature and the densities:

P T“. Tata + ATo ,-. = — = .————-
Po T ‘ata + ‘T

whence

P ‘ata + ‘ToK=--= -————-.—.
Po , Tata+9 ATo -

(36d)

(36e)

Nondimensional parameters. characterizing the degree of
heating (or cooling) of the jet are introduced:
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where

ATo excess temperature in the region of constant
velocity (u = uo)

‘ata absolute temperature in the gas at rest surround-
ing the jet

This affords, in final form, the relation between the
density and temperature functions in the boundary layer
of a plane-parallel turbulent flaw:

l+t
K = -–––––

l+flt
(3’7b)

Substitution of the above expression in differential equa-
tion (36%) gives

fjl c1———-— = -———
l+te l+t

or

d(l + to) c~t——..— —— = ———— dp
l+ta l+t

(37C)

(37d)

Equation (37d) is easily integrated:

in (1 + te) = Dlcp + Da ‘(38a)

The coristai~ts of integration (Dl, Da) are determined from
the boundary conditions given above:

O(qlj = 1

f3(q2) = o

resulting in
Y–’va——___

l-1-te = (1 + t)vl–% (38b)
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and thus in the temperature distribution formula:

T—v 2
—— ___

AT
(J. — = {l+t$”-%-— ——— —-—

ATO t
(39)

The above expression substituted in equation (37b) gives
the law of density distribution in the boundary layer:

T–”V2. .——
p

K (l+t)l Vi–v 2=—= (4ca)
Po

or

K
P=— = (1 + t)q’-v’

Po
(40b)

3. Development of the Differential Equation

Consider the -problem of the flow of nonisothermal
jet at velocities that are small compared to the velocity
of sound (up to Ba = 0,5), Yor this condition the density
profiles may be considered practically independent of the
velocity ‘profiles. The density will demend only on the
temperature, the character of the dependence having been
established in the foregoing as

??l-V————
P

K.=–-= (~ + @l-T2 (41)
P.

The derivative of the density at a given point will theil
be

91–V
— —.

@=~x= V1 ‘V2 ln[l + t’)

-& - (1 + t) —---—
V1-+P2

(42)
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!Che ratio of the derivative. ox the density .to. the -value
“--. -of the latter will be constant for a given value of the

,jet-temperature
..

.,.

K’ - ln(l’+ f) ‘-”
-- = . ——--—
K. (43)

91 -v-z” - “

Returning ‘to the’ general “diffe~ential equation (20) of
the boundary layer in a compressible’ gas stream: .

its special form fw? a nonisothermal jet of moderate
velocities is obtainsd as:

ylll=_~
_ ln(l+t) ~n

91-92

(44)

(45)

After introduction of a special notation for the parameter
which depends only on the temperature of the stre,am:

~ = In(l+ t)———.— —— (46a)
91 – V’2

The differential equation will then have the following forw

The alove equation is a common linear differential equation
of the third drder whose general integral is of the form

,-
where

c C2,1s C3 constants of integration

(46c)

k kz, “k~1s roots of the characteristic equation

. —
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k~+ak2+l=o (46d)

which in this instance reduces to the equation by Cardan,
As is usual for jet boundary layers equation (46c) has
five boundary conditions.

1. At the inner boundary of the layer where cp = ml

(a)

(b)

(c)

The gradient of the momentum is equal to
zero;

~~=o – that is, T“(ql) = o ‘ %)
ap

The momentum is equal to the momentum of
the undisturbed flow:

Pu .= Pouo- that is, Yl(cpl) = 1 (462)

The transverse component of the velocity
vanishes:

povo = o – that is, ~(ql) = V1 (463)

2. On the outer boundary of the layer where q = qz

(d) The velocity gradient is equal to zero:

(46 ~)

(e) The velocity is equal to zero:

Pu=o – that is, Fl(qa) = o (465)

The five conditions (461_5} are used to ascertain the three
constants of integration Cl, 02, C3 and the values of the

—--—. -—-,,.,,,,,.,,,,.. , , , ,,, , ,,,,,, ,,,,,,,1, , ,, , mI . , , , ,.,,,,,.. --. —., —,-,...,,,.- ——..-,., , , ,,... ,
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nondimensional coordinatf?s of the-outer and Inner limits

of ‘he ~-oundary layer 91 and Va. ho each value-of the
compressibility parameter S there corresponds certain
values of the constants of integration and the nondimen-
sional coordinates.

4* Integration of the Differential Equation of

the Nonisothermal Jet

According to the foregoing the boundary layer of the
nonisothermal jet is characterized by the differential
equation .

.

~fll+ s~ll+)jl= () (47)

the integral of which is
.

F= Clekl~ + caek~~ + G3ek3q (48)

The values of kl, ka, k~ entering this integral are the
roots of the characteristic equation

k3 + Skg+ 1 = O (49a)

By means of the substitution

–s
k = I-—

3
(49b)

the given cubic equation is reduced to the Cardan solution:

X3 + 3PX + 2q = o (49C)

in which

P=-S2

q =s’+~ ‘“’ (49d)

The roots of this equation are determined by the Cardan
formula:

-.—.. ., . ,,-
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xl = u + v, X,2 =“WIU +

the terms u amd v being

r—.—_.—..———-—-—-—
U=3 - q -;+ .J?&-+.P 3;

Memorandum No, 1058

W2V3 X.3 “=-’’W2U+ Wlv ‘
.-7

‘given

v=

lly ‘
., ,4

#

.——-— —--- —-———-

The coefficients ‘WL an’d Wa aTe th’e conjugate irnagina.ry
cube roots of unity:

J
.—

_~’+i 3-’ ““ ““i J 3’
W1 = 2

--— ; Wz=-— — i———
2 2 2

f,,’

In the present case:
._. -—— ———-. _—— —.-.--. —. —_————— .

]1
.—.-.——-——-——-——

3
u.-

J’
s’ + q + [s3”+ g’ - s’

2
)

L -: .

\

(49f)

(50a)
/-—- —————. ———-_—___ ——.____ —_—___—

,{ ———————_——

IL
; q- /’~~+:]2-s’v=3.-. s3+—

w L J
Since u and v are real numbers, Xl is the real root of
the Cardan equation (49c) and X2 and x3 are the con,ju:;ate
imasinary roots. Correspondingly kl is the real root of
the characteristic equation (49a) and ka and k“ the con–
ju~ate imaginary roots.

Setting:

\ inte~i”a,l{48) is transformed into

= Cle%~ -i-Cze (a~+~zi)v + C3e(az–@Zi)VI’(cc) (50C)

As is known a pair of conjugate imaginary solutions of a
linee.r differential equation of the third order defines a
pair of real solutions expressed in terms of trigonometric
functions:
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In its final form the differential equation of the bound-
ary lzyer may be given in the following form:

F(y)= C,e2’f+- C,e”’cos(p,q)+ C3e*’7sin (&) (51a)

The magnitudes % a a=, and pa are readily expressed in
terms of the flthermal compressibility factorn of the jet:

For this! purpose the expressions (49b) and (50a, b) are
resorted to, while taking Into account the fact that S
is a small magnitude of the order of 0s05 - 0.150 Then

.=~pp+gj-=--p+%] ;

whence

[ ~1’
Xl=u+’v=— 3J-

)

I

Lyz-=Wlu+W2V=
“’+iv3- [3+%1

(51b)

X:,=W2U+W,V= l-% ls~”%q

and further

~_-x,—s==l s 2s’
l— 3

—.

~=x,—s—. =!? 3 [ I3sl~_,iq[l,~];(51,):—~+ 81

IF--$%l-’%z[l+%

; = x,-s-=- 1
:{ 3 u
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A com~arlaon of equations (51a) and (51-U) yields the
formulas for computing al, Ua, and Pa from equation
(50c) for given values of the compressibility factor:

In the particular case of an incompressible fluid,
s-o , it is

v%
al=—], %=;, ($=--?

which is in complete agreement with the corresponding
Tollmien solution:

(51e)

Estimating the order of magnitude of the individual terms
In equation (51d) It Is readily apparent that the terms
containing (Ss) can be neglected since S is usually
considerably less than unity. Thus , for example, If the
temperature of the Jet is 100°C higher than the s~rrounding
temperature, S will have the value 0.1 and Ss = O.OO1O
Thus without appreciable Impairment of the accuracy

s 1s l::
a.=—- —, ;j2=——U,=—l--–—, - ~

3 3 2 (52a)

The basic function of the boundary layer then assumes “
the following form:

The expression in braces corresponds exactly to the Tollmien
solution for an incompressible fluid:

The first derivative .of F(cp), equal to the nondimensional
momentum, ia given by
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The second derivative of F(q), which is the nondimensional
velocity gradient, is

For these considerations the factor $a/~ in the fore-
going equation are neglected.

There remains, on the basis of the five boundary
conditions (46 ~-~), the determination of the constants

of integration Cl, Ca, C~ and the values of the non-
dimensional coordinates of the outer and inner limits
(VI) and (cfa) of the boundary laYer:

~(?l)=%, F’(+I)= 1, F“(~l)=o,

F’ (+)= o, f=’’(~,)==o

The problem of predicting the basic function F(cp) iS
then solved,

!Che five boundary conditions lead to five transcen-
dental equations with five unknowns (Cl, Ca, C3, qi, and
qa) solvable for any particular value of the compressi-
bility factor. By applying the transformation of variables
proposed by Tollmien

(53a)

these equations can be considerably simplified. The sub-
stitution is made so that
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F (~)= F(Y), F’ (~ = F’ (~), F“ (+)= F“ (?)! (53b)

Then .

and

—

s

[ II
.—-

F(j)= e–Tf D,e–~‘+D,e-ices .~? +D.1e;5jn[~?l]$ (53C)

hence, while bearing .In mind that, —

five equations with five unknowns:

F,,, = Yl; s
‘@’’—3F~1 = 1; FO1’’–$F’ ==0; 101

I

1

(54a)

&’_-$ j-F —().0]— ! F,,z’f–~F’ =002 9

which are simplified to

With the first three equations of the above system the
coefficients DX, Da, and Da of equation (53c) can be
expressed in terms of ql:

—D,++(D,+D3V%)=1+;; (54C)

Q++,17=D)=$. (54d)

fr?OEIwhich

Dl= %-1
3 +;; D,=?1+0,5 S——. .

1,5 9’
D3=~_+&.

~3
(54e)

With equations (54c) the five equations of (54b) (with
account taken of equations (52) and (52e)) can be reduced
to a system of two equations with two unknowns:

—Die–(y’-v’)
[ 1+~(D2+D, V@ey’~v’cos ~(q, –vl) –

(Q,‘Q,)
‘}[DzV~—DJe 2 sin

[

V-3—
-97(?2 -%) 1=–0,13s; (54f}
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where DX, D~, .and-D~ are taken, from equations (54c). .’
Addition and subfraction of equations (54f) and (54g)
give two Eew equations of a somewhat simpler form:

,., an
[

)
?1- v,——-

D:,~e 2
1

3-(?2—%) —

[

‘ —,in ~3-% — v,
—D,~r3e 2 ~($2-–%)

1
=—0,13s;

!1 (55)

Rext it is attempted to determine the functional relation
between the constants Dl, Da, Da, ql, and q= and the
compressibility factor S making use of the fact, es
will be shown later, that the compressibility of th”e air
is of only slight effect on the free Jetc Putting

D,= % + AD1; D,=D2~+AD,; D,=D30+AD~\

% = %0+ %’1; ?2= f?zo+ A?2) J
(56a)

where Dlo, Dao, Dso, Wos and q are known value~
ao

of the constants for the incompressible Jet:

~io — 1DIO= ~ =—0,0062,

D,O ===—;T = 0,578,

. - P.-?.-4. -’=--- -=.+. ~ . * - .,
. . . . .

D20=?10+0’5=~987
1,5 ‘ ‘

1 (56b)

%0= 0,981;Y,O= — 2,04,
I

. ..

and the smail.incr-emeats (compare equations (86a) and ‘
‘86c) with (84b)):
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Reverting to equations (55) expanding into series while
neglecting all terms of higher degree than the second and
the products of the small increments and using the values

1951
= 4.51

3.02
e e = 20,4

sin(-2062) = – 0.5, COS(-T2.62)= – 0.865

results in

0.082S.= 0.380 Aq2 v 0,255Avl

4,634S = 0,130A(p2 - 13.60Ay1

The solution of these equations leads to a functional
relation between the deformation of the boundary layer
and the compressibility factor:

Aql ~ - 0.34S; m 2 =0 (5’7a)

which yield the corrections for the integration constants:

s $
ADI : O; AD2 = -; AD3 = —

9 1,7
(5’7b)

The constants of the auxiliary function 3?(;) are then
equal to

Dl = - 0,0062, Da = 0.987+ 0.11S; D3 = 0.587+ 0.59S (57c)

and the ordinates of the outer and inner limits of the
boundary layer

V1 = 0.98 - 0.34S, ~z = – 2.04 (58)
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..-. -Equations (5’7e) and (58) give the integration constants
of the fundamental function F(q). The first three
boundary conditions of the given problem are used:

After substitution of the. values’- T, l?~ and F II from
equations (52b), (52d), and (52~) the first boundary
condition gives

,,

The constants of the compressible gas are again expressed
in the form

cl= Clo + ~cl, C2=C20 + AC2, C3 = C30 + AC3 (59c)

where

.

c 10 = – O“.0176, Cao” = 0-1337, C30 = 0-6876 (59d)

are the corresponding values of ‘the constants obtained
by Tollmien for the particular case of an incompressible
flow* In the same manner, according to (58) the coordinate
of the inner boundary of the layer may be written:

VI = Vlo,- o~34s’ (59e)

where cplo = 0.981 is the coordinate of the inner boundary

for the incompressible fluid. ~tibstitu-tion of (59c) and “
(59e) in (59b) and use of the series up to. the second power
term (due to the smallness of, S) of the exponential and
trigonometric expressions gives

:,
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‘in[=,l= sin[-~’lol- ”*3’’o’[-~lol.

~ (59f)

The products and squares of small terms are disregarded
and the following relation is taken from the boundary
conditions for the incompressible gas:

wheilce the equation connecting the increase in the con-
stants due to the compressibility with the compressibility
factor S:

0-375 ACl+ 1.09ACZ+ 1.225 AC3 = 0.340S (60)

The second boundary condition Fl((pl) = .1 in combination
with equations (52d) and (593) gives

(61)
.,

Substitution of expressions (59c), (59e), and (59) in
equation (61a), while neglecting products of small
quantities, and making use of the particular form of
this

——, ,,..,,

equation obtained for incompressible gas yields:

,.,..,,,,.,- ,,, ,,1,,,11111 11111111111111I■ llllmllmlmm¤mfi~-m~ ■ lmlmlnIIlllllnIm Ill
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a second equation for the relation between the increments
in the constants o’f‘the function” F(q) and the compress-
ibility factor: . .

-0.375ACl – 0a52AC2 + 1,55AC3 =’0.654 S (62)

The third boundary condition F1r(ql) = O, together with
equations (52e) and (61), gives

BY substitution of expressions (59c), (59e), and (59f)
in equation (63), while neglecting the products and
squares of small terms and taking account of the fact
that in the case of incompressible gas equation (63)
assumes the form:

. .. ,.

the third relation between the
of the function F(q). and the

increments of ‘the constants
compressibility factor is:

,’‘,.!.

0.375 AC1 - 1-6 ACa + ().32 AC3= ().332s (64)
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The solution of the system of three simultaneous equa-
tions:

0.375 AC I - 1.60 ACa + 0.32 AC3 = 0.372 S,
)

-O-375 AC= - 0.52 AC2 + 1.,55 AC3 = .0.654 S
)

(65)

0.375 ACl + 1.08 ACZ + 1.225 AC3 = 0.340 SJ
.,

gives the laws of variation of the can.staits of integration
of equation (523) und’er the effect of compressibility:

ACI = O, ACZ=-0,14 S, AC-3 = 0.385 S (65a)

hence the integration constants:

cl=- 0-0176; C2 = 0-1337 - 0.140 S; - .

C3 = 0.6776 +Oa385 S (66)

Substitution of expressions (52b) and (52e) in (66) while
neglecting the products of small quantities, the function
1? and its derivatives are obtained in the final form

.’

F= FO+AF; I’~=Flo+AF!; y !1= yllo + AFn (67)

. .
where Fo, Foi, and Foil ‘are the -values of the functions
and its derivatives for incompressible gas’ (Tollmienls
solution):

g
-.

[

4’
v—

Fe(q) =– J0e0176e-V+ 0.1377e2 cos $&&p + 0m68?6eZsin ->q

1

1
y

J

-

[

y
For(q)= 0e0176e–V+0. 6623e2cos f-~cp + 0.228 ez sin –2ZT

1
(67

2
v

[

J?
w

rol~(q)= -Oe01’76e-q+be528eacos
z

-2-W –“ 0.930e sin ~~
2’,

and A.F,.~$’1, and AYn are the increments of the function
Jand i%s derivatives under the influence of compressibility
The increment of the function is

.... ,,
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... ,>. .,.~ .,. .

AF=–;
[

; J

[1
qFo+ 0.q2e cos & -1.16 e;cosr~q’ ‘(6’7b)

[ 1]J

that of the first derivative ‘

and that of the second derivative

., ,. v v,

[

AI’n.- : ~~o tl+2j70 1

[1

45 “3
– 1.2eZcos –2–cp

@

[ 11
+ Oe22e sin -—Zv (67d)

3

In conclusion it should be note? that the authorls
carefully conducted numerical “s.ol~tjc,n,based di:ectly
on equations (55), showed c{)),:m~e~~~:yeement” wiih the
functional results, (F7a) aI.d”(67m\, e,pproxirnately obtained,
notwithstanding the fact that for the numerical solution
a vcr’y large value vas chosen for the compressi-ojlit.y
factor (s= 0.135) corresponding to the case whsre the
jet has a temperature 150°C above the surroundirig temper–
atureo

It will be recalled that the first derivative of the
function F is the momentum of the flow in the directioil
of the X—axis;

.

(68a)

TO obtain the velocity u/u. it is necessary to apply to
the law of density distribution in the boundary layer:

,. .,
Vi—v————

\
,- ... ...-.!, ,.- ,.,

W =“;p~”=.~l+t)wvz

o
(68b)

then “ ‘
..

u Ft
—=—
‘u0 K’ (68C)
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The momentum velocity ratios in the direction of the
y-axis are

To facilitate the computation of the components of
the velocity and other characteristic magnitudes of the
nonisothermal layer, table I is appended with the computed
values :

The tables 2, 3, and 4 contain the values:

F1 ~F~-F
F, Fl, FII, K, —; –——;

% K
~~t - ~ ;!, e

from which the velocity profiles, velocity heads, den-
sities, and temperatures may be computed for the follow-
in~ values of the cop.pressibility factor:

s =— 0.074; s = 0.0605; s = 0.1115;

the given values of S corresponding to the jet temper–
atures of —60°, 60°, and 120° C, respectively, above
the surrounding temperature,

5, Fundamental Properties of ~oundary Layer

of Nonisothermal Je’

(a) Geometry of the Je&

The nonisother~al jet, that is, having a temperature
other than the surrounding space has, as explained in the
foregoing, the interesting property that. its outer bound–
ary (u = O) remains constant for variation within very
wide limits of the temperature increrlent (At = * 150° c):

CD2= constant = — 2.04 (69)
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The -inner. boundary, (u.!=}Uo) expand”s somewhat when the
jet is cooled and compresses when heated:

91 =’ 0.981 - Oe34S (70)
. .,

where

ln(l+- t)
s = -———. compressibility factor of the jet

V1 -V2

‘,
t = Ato/Tata - ratio of the temperature increment (At in ‘c)

to absolute temperature (Tata = 27’3 i-
t~tao C) of the surrounding fluid.

Accoi-ding to formula (70) tlie following results are
obtained: At = –60°; cpl = 1.005; At = + 60°; cpl = 0.960;
At = + 120°; cpl = 0-942; At = 0° —VI = 0.9816

The nondimensional width of the jet boundary layer
depends on the temperatw.re difference above the surround-
ing ter,perature in kne following manner:

<=~=3.02- 0.34 s
ax

(71)

The boundary that se-parates the initial mass of the
jet from the entrai~ed mass is deter~,inecl, as is known,
from the conclitioil that at the partition surface (Cp3)
the stream function ~3 = O, or, what amount”s to the same
thing, I?(Q ) = 0. The relationship between the boundary
of the core30f constant rna.ssflow of the jet and the com-
pressibility factor was obtaineii as follovs:

In the case of incompressible fluid it is’

ro(qY30) = o

For a compressible fluid

1’= F. + AF, 93 = T30 + AT3 ‘-

then

F(q3) = Fo(q=)+ AY(y@ = Fo(q)o+A@+ AF(V30+ Aq3) ~Fo(q),)

+ Ac@ot(cpo )+ AF(V30) +ACP3AF’(V30) = O
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Omission of the small magnitudes of the second order
(Aq, AFT) while -bearing in mind that

Fo(cpo) = o

gives

AF(CPo) +AcP#o’(cPo) = O

hence

~ 0.52
AF(v=G)_ ~ 3 “__ g 0.29 S

Aq =--–
3 ~o%o) 0.59

The result is the formula for the boundary of the constant

mass flow core:

v= - 0.185 + 0.22S (72)
3

The same result is obtained by direct interpolation from
tables 2, 3, and 4*

(b) Velocity, Temperature, and Density Profiles

In the representation of the velocity profiles the
magnitude

q—cr~

v= —-———---
Y1 - V2

serves as ordinate, the effects of heating and cooling “
of the jet can be compared from the plotted velocity
distribution curves. The curves shOWn in figure 3 are
for At = + 60° C, -60° C, and + 120° Cc

On figures 4 and 5 are shown the density and temper-
ature fields in the jet boundary layer for At = - 60°
and + 60° Cc
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(

?he quantity
co]ll~>re~siblejet <L
of the strea,m func
the density. The

—.—
ml ‘j-p udy = j’

But the stream fun

c) Rate of kass Flow

‘j.sch:,~ged p~rL.. second in the turbulent
.>s not e;.~lrely correspond to the values
tj on on accl>dnt of the fluctuations in
illas~flow per second is

——__ -——_
fJudyi-j plllrdy =~~ Jpluldy: (73)

ction is cletermined by the expression

w axpou.oF

while

(
FI

a )
T!—,)—.-

?Xp,.
.au

-&
up OUo

so that the r,ass flow per sec ond is

“)
–d

[

F+a 1 constant
1

(’74)m ax pOuo +

I
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or in nondimensional form:

In particular the nondimensional value of the entrained
mass of fluid sucked into the free jet from the surround-
ing space is*

a
FI

2

ij

()‘K-/ 1
E2=— F2 + a n ~! –—–-dcp

@ J.
3

The nondimensional magnitude of the retarded mass of
fluicl in the initial jet core is

(76)

(77)

The values of F2 and I!’lmay be obtained from tables of
integrals and %y approximate integration (for example, bY
Sirnpsonis method) the values of the integrals:

(79)

for various values of the temperature of the flow. Further–
more, assuming a few values of tile turbulence factor a,
for example, taking a = 0.0845, according to the tests of
Tollmien, it is not difficult to determine the values of
the mass of the initial jet and of the entrained mass for
various values of the temperature.
——.———__ _——-———————————.————__——-————-——__.-_———__
*The subscript 1 hereinafter refers to the boundary of
the region of co~stant velocities; subscript 2 to the
region of fluid at rest; subscript s to the core of
constant mass flowe
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The integral in expressions (76) and (77) may be
integrated by parts:

From the boundary conditions it is known that

~~oreover, according to equations (41) and (46a):

Vi-v

K = (l+t)q’-qa; ~ = ln(l+t)
Cpl–Vz

hence

Omission, as in all parentheses of the preceding section,
of khe terms with factor S2 leaves

whence the expression for the entrained mass:

(81)

A glance at tables II, III, afid IV correspondin~ to
particular cases of the nonisothermal jet:,,

s =- 0.074 (At. = - 60° C)

S = 0-0605 (At. = + 60° C)

s = 0.1115 (At. = + 120° C)
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shows the values of Fl(q# corresponding to the

particular values of the compressibility factor S
on the assumption of a = 0.0845 for the coefficient
of jet structure (turbulence) - according to the data
of Totlmien and CAHI Therefore .

., -. .

a S FI(q3) : 0.05 S (82)
.,-

The values of ~(va) for 92 = --.2.04 is computed
according to formulas (67) and (67b):

~(q2) = - (0.388 - 0.27 S) (83)

Lastly equation; (82.) and (83) added together give the
final expression “for the- nondimensional value of the
entrained mass of the jet:

5i2 = 0.388 + 0.22 S

The initial mass of the jet is
3

~ ~J

l?li ‘J(
x

=Z1=F1+(Z x’. ) .d~=axp#,, d?
1

(84)

(85)

Ac-cordfng to (79)
1

x “
—=s’20; +==—s,

v.

hance

fil=F1+mSIF’l —F’.J,-FI- 0,034S. (86a)

~urther, equations (67) and (67c) give

F,= 0,981~ A~(Yl)~ 0,98+ 0,02S. (86b)

Substitution of (86tI) In (868) yields the final expression
for the nondimensional mass of the initial part of the jet:

fil=Oj981-0,01.4S. , (87)
,,. . . .
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The total (nondimensional) mass flow in the boundary layer
is eaual to

The smallness of the value of S indicates that the
mass flow per second for the nonisothermal boundary
layer differs very little from that for the incom-
pressible jet.

(d) Frictional Stress

In section I an expression was derived for the
friction~.1 stresses in the turbulent boundary layer of
a compressible gas, which according to equation (128)
can be written

[
au d

=2c~x~ ——
OIL

7XY ()
— G!y+collst,

,,dy dy ‘dy,
(89)

But

The nondimensiotial value or tne frictional stress is

.= fi=,~!.g)..+[x!(:-)ld?.,corlst (,(j)

2 *.

After corresponding transformations Dartlal integration
yields

,=..~~j’+(i.[d(;)j:,+c.nst. (91)
e.

~Jhe values of ~ of greatest interest &s t~at at the
boundary of the core of constant flow ? = 73 since It
determined the energy Loss due to suction of the entrained
mass. This value of 7 Is evidently given by
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At the inner limit of the boundary layer

~ F’

(-) 7.

d+ ‘0’
hence

,,=_X,[d(-$)]+JX+H].,,.
d

In addition

. —— ,
.’? X2

where according to (79)

~=es($l– u). s(y,-.4’=-~.e %)
#

whence

Since the values of S are small

es(cl— f)—l+s(y,—~).—

it results in

~ (q)

d? =F+S(q--ql)F’’+S,’,

[( 1
)=’‘)2

d—
x)

d? = F’”+ 2S(Y— ~J F’” +2 SF’F”,

[ -)J
‘,F -,

( x
x —— =p+s(9-y,) P~+2sF’F”;

d?
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With the aid of the approximate Integration-method and
table X the integral becomes

.
-. -, .(“Fo!12dq=”(j,4“

3

within the limits q) = -’ o.i85 to VI. = .0.981 (tne
giwem Taluaa of Va and VI correspond to the incom-
pressible jet). 140reo~er,at the point 93 (for ~arious
valueB. of s): .“

o
F“az.O,52, ‘ f=/:,~o,6.

wheace , ...
T3= 0,27— ;0,32+0,62 S+0,4.S.

The final expression for the nondimensional value of the
frictional stress at the boundary between the Initial and
entrained masaes of the jet

t,
7:1 = — _ :.y

U. = 0,27+ 0,7S,
/.zpo——

2

(94)

(e) Hea* Transfer

In section VI fpar. 1) the differential equation
was obtained for the trans~erse heat transfer due to the
turbulent fluctuations in the free jet of the compressible
gas:

1 d WT

[

dp du dT d

(

dll dT—— .—
Cp.g ay ‘2C’”X’ .7j-”~”7# dy fnj- dy

-—
-)1

(95)

~he heat transfer from the’ initialmass to the entrained
maem acrose 1 ma of partitibn surface T9 Is studied
next:

From previous results

)

s.e(?–Q,)s;

Y=ax~; 2c’=u~; p=p.e(~l–v)s.
ap aT *T l+t

———po. f?(y’-~)s;, ~= —“d? — “t

au—.
d?

/zOO~(?–%)s lF~/+sF,],
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wilence

Use is also made of the known relation

ek-92)5l+t 1
—————-- -..-—---—

‘— = ;b-%)s-l = (qyw, )s

+1

t

After certain ,simplifications, while neglecting very
small terr,s, equation (96) assumes the form:

wry s-fPl

I
3

-= _--.-———— -————- -

Cp g p. U. AToa 91 -92 ~

[

1 1 .3

+ –-—–- + s
J

‘ ~tl + ~11 (o_qJs+sFt

V1 -V2
1

Yurther transformations give

~?T

‘[–––1––-+ s v~ -Tz-——————————-—— a- —————— 1F“(cp3)
acp ~ PO ‘oATo 91 –Y2 V1 -V’2

But*

G FoU(q30)+AV3FIJ(@ I?l” (q30)= Foll(@+AFt’(q3)

-I-AF” ((030) = Fo” (m )
’30

and , further,

Cpl = q?~o — 0034s

v=– 0.185 + 0.2°S
3

(96)

(96b)

(97)

-——————— ———————————.—————._—————————————_——_ -_-———————
*In region q the magnitudes -Jl,lland AF t1! as sume
values of the30rder of zero.
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,. ,. .’ --’
.,-

The foregoing relations yield
.-. . -—

.’. , WT”
.—..-—--
agcppouodqo,, . .

.’

where ‘>

,, “.

= 0.”52,ti&ip30) . , ,

,.

55

F011(v30 ) + o-34S
= -——

●

+’i~’- Tio . .
. . ,,

.

91 0 = 0.981,V Tao = -2.040
.

Thus ,the nondimen”s~onal magnitude characterizing the
heat transfer t“hrou’ghthe ~oundary of’the intial mass
of the noniso’thermal jet is equal to ‘ >

,,

VT . .,

iiT = -—-——— = 0.172 + 0.34S , (99a)
%cpPo o*U A !l?O

The coefficient of> heat transfer from the initial mass
to the entrained mass equal to the amount of heat trans-
ferred per hour through 1 square meter per degree differ-
ence in temperature is -

;{ T

aT “~~ = 3600 a g Cp, p. U. ~0.1’72+ 0034S1–-~~A--- (99b)
0 m2 hr ‘C

For a turbulence coefficient a = 0.0845 and g = 9.31,
it yields

UT = 3000 Cp P’o uofo.172 + 0.34 s) (100a)

For air with a specific heat of the order of.

Cp = 0.24 .

it is

a.T
cal

= 720 PO uo (0.172 + 0.34 S) —--——. (loob)
m2’ hr ‘c

The effect of the compressibility on the heat transfer in
the nonisothermal jet is appreciable, For” example, for ,a
temperature difference ATO = 60° C (S g 0-07) the heat
transfer in the compressible jet differs from that ,of the
incompressible fluid by, about 15 percent.

.\
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(e) Concluding Remarks on the Nonisothermal Jet ,

As is seen by the previous discussion the effect
of the compressibility of the fluid (gas) on the funda-
mental properties of the boundary layer of a nonisothermal
flow is insignificant. In particular, on lowering the
jet temperature 60 0 C below that of the surrounding
medium (this corresponds to an increase in the velocity
to Ba = lmO in a jet of high velocities) the angle of
divergence of the boundary layer increases by 0.7 per-
ceilt; the angle of dissolution of the core of constant
mass flow increases by 11 percent; the nondimensional
value of the entrained mass by 3,7 percent; the mass
of the initial jet remains practically constant; the
frictional stresses decrease by 16.8 percent; the heat
diffusion is reduced by 15 percent,

The results obtained are evidence of the mainte-
nance of the dynamic similarity of the jet for appre-
cia-ole changes in its temperature**
been shown that if S =

It has further
ln(l + t)/(ql – qa) is taken

as the compressibility factor of the nonisothermal jet, o
where t = Ato/Tata is the ratio of the temperature
increment of the jet to the absolute temperature of
the surrounding medium, the change in the fundamental
properties of the jet with S is linear except for the
nondimensional coordinate giving the dissolution of the
ou”t.erbOUndary of the jet which remains unchanged. It
will be shown later that the cooling of the jet at small
velocities has the same effect on its fundamental prop—
erties (velocity profile and friction) as an increase iil
the Bairstow number-

IVe BOUNDARY LAY13R OF A PLANE-PARALLEL JET

AT LARGE VELOCITIES

1. General Considerations

!l?heinvestigation so far involved the case of a
free turbulent jet having a temperature different from
‘that of the surroundings and a velocity small by com—
parison with the velocity of sound; that is, the effect
--------------------------------------------------
*!The similarity of the jet for a wide. variation in the
Reynolds number was discussed in a previous report (ref–
erence 6)0 ‘
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of con,pressibility arising from the difference in tem-
pei-ature alone was studied. The following deals with
jets of large velocities (up to the velocity of sound)
under the condition that the temperature in the reservoir
from which the jet escap~s is equal to that of the sur—
roundings, or otherwise expressed, the effect of compress-
ibility due to high flow velocitia”<”-will be investigated:

‘ 2. Derivation of the Density I?unction

Th? air temperature ahead of the nozzle (in the
region of small velocities) is equal to the temperature
of the surrounding medium. In this case there will be
no heat transfer between the jet and the surrounding
space so that the heat content of the air will be uniquely
associated with the flow velocities (the energies of the
pulsating and transverse motions are neglected):

:g (U02 _ U2)CP(T - To) = —- (101)

where

cp specific heat at constant pressure

~
heat equivalent of mechanical workA = Z5T

g acceleration of gravity

The relation (101) expressed in nondimensional form
gives

(lOla)

The velocity of sound in the region of undisturbed flow
reads the value

,—-. —

co = / :2 g R To
J Cv

(lOlb)
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where

Cv specific heat at constant volume

c13/cv = ~ adiabatic coefficient

R gas constant

The Bairstow number in the undisturbed region is

Bao = uo/co and AR = CP
- Cv

hence

(102)

The foregoing expression gives the relation between the
tez,perature of the flow and the velocity- Particularly
in tile outer boundary of the flow (region of air at rest)
where u = O:

At the inner boundary of the boundary layer (undisturbed
flow with velocity %):

A thermometer, however, mounted at any stationary point
of the flow will show the same temperature To — the
temperature of the air at rest - since the velocity of
the flow drops to zero directly at the wall of the ther-
mometer. Thus a stationary thermometer in the flow snows—-—-——— ..————-— ——
not the actual temperature of tlie Tl=ti-but the temperature
of the retarded air, the stagnation temperature,

The above flow considered from the point of view of
the stagnation temperature is isothermal as a result of
which it was possible to assume that no heat transfer
exists and to apply the heat equation in form (101)-
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The foregoing problems of free turbulence involve
isobars (the pressure gradients are negligible and not
taken into account);.hence the density is inversely pro-
portional to the absolute temperature:

o[’-(~;)’l ‘102’)

Po=_T_=l+k–,l Ba 2——

PT
0

2

T!lerefore the density function is:

K (q) = -—---- -—-— .—--——.. (102-D)

1+
%“; [q, f;jyl

The solution of the above equation for K gives the
density function in the form

~

.— _———

1+ 1+ ~(k_ 1) Bao ~ (1+ ~;_~B20J’F ,2

K = ( )--——.———__—.— __________________ (103)
, 2

(

l+k=~ Bao.z
2 )

and the ir:troduction of the special function o; the
Bairstow number:

r
[

= 2(k-1) Bao2 1 + ~~-~ Bao2
1

(103a)

whence the calculation of the derivative of the density
function affords

K’ r~?~!l
-- =
K -—-=====——-——————-G—

J’l+rl?la rl+Jl+r?l’r2J
(104)

3= Derivation of the Fundamental Differential Equation

With equation (104) the general differential equation
(20) is reduced to the following special form which satisfies
the problem in question.
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?3 ‘p

1
r~ 12~11

F!n . . F+.- —-—— ——--—-—
1

(105)

J

----— .—--———.
av +rFt2, [l +Jl+ rFta]-’ .

whence

and

(105a)

~l~rther transformations yield a differential equation
of the form

(106)

In the special case of incompressible flow when r = O
(equaticn (106)) reduces, as expected, to the known
Tol.lmien equation:

FIll=_F (106a)

Differential equation (106) as well as the Tollmien equa-
tion (106a) contains the five boundary conditions (461_5)

which are applied to obtain the three constants of inte—
gration and the values of the nondimensional coordinates
of the outer and inner limits cpl and of the boundary
layer. TO each vaiue of the compressibi~?ty parameter (r)
there corresponds the values of the integration constants
and nondimensional coordinates.

Since the functional solution of equation (106) is
impossible, it is necessary to apply the method of
numerical integration to each particular value of the
co-repressibility parameter (r) or what amounts to the
same thingl the Ilairstow number {13a). The most suitable
method for solving” the given equation appears to be the
Adams method which gives good agreement for the given case.
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4. Numerical Integration of Differential

Equations by the Adams Method

If the values of a function and its derivatives
at a certain point are known, the values at a neighbor-
ing point (a + .h) can be obtained with the aid of the
!laylor series. After the values of the functions and
its derivatives at the point (a + h) are determined, the
values at other neighboring points (a + 2h), and so forth,
can then be found, In general’if yk = Y(a + kh) is knowil,
then

‘k+l = yk + hY~k +2: h=
yftk + ~~ ylllk+ ...

21

Thus , passing successively from point to point, it is
possible to compute a table of values-of the required
integral, that is, of the required function Y(x) over
the entire integration range. The smaller the size of
the interval h the mere accurately are the values yk
determined although, on account of the large number of
intervals, the accumulation of errors may become con–
siderable unless a sufficient number of terms of the
Taylor series ‘is employed- The fundamental disadvantage
of Lhis method, which wa”s proposed by Euler, is that it
is necessary to ccmpute the h“igher derivatives which,
for arbitrary form of the function Y may y’ield very
complicated expressions. In such cases CL considerably
less complicated method is that by Adams in which the
increment in function at a certain interval is expressed
by the first differences in the so-called lf.near incre—
ments of the function, the second differences, in the
neighboring intervals, and so forth. The Adams method
does not require the higher derivatives and gives good
accuracy even for large integration ranges. Particularly,
as will be shown later, in solving the differential equa-
tion of motion for the compressible gas jet (equation
(106)) - the Adams method gives very good agreement..

. . . .
The linear increment in a certain interval (a, a+h)

is given by the product
,. .

. . .

.. .

..
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The first difference of .thq linear increments of the
function in neighboring interva-ls. is given by

..
. .

The~second difference by

the third difference by

A3qn_3 = A%n_m – A%qn_3
6

and so forth.

In general if there, is a table of values of the
required function at n+l points it is possible to
draw up a table of linear increments at n+l points,
first differences at n points, second differences at
(n - 1) points, third i$ifferences at (n - 2) points,
and so forth. The Adams method makes it possible to
compute the value of the f~n~tion> at the (n + 2)th
point, the value of the linear increment at the (n+ l)th
point, the value of the first difference at the ntn point,
the value of the second difference at the (n - l)th point,
and so forth. By the same method it is possible to proceed
to the (n + 3)th point, and so on up to the end of the
entire integration range,

The extension of the integration table from one
interval to the next by the Adams method i.s effected on
the basis of the following considerations:

1. The Taylor series affords the increment in the
function: ~

ha hs

AYn = Yn+= -Yn= hYln+YY ln+—-Ylrln+c .,
6

2. According to the definition of the linear
increments
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5. definition of the first and hi gher differences

nn – 1

A
n- nn- 211n + mn— 22 n- 2

A3q L’Aln_2 Az~n_3

,’

11n– + 3nn_-3 21

60 Substitution of. the expressions obtained
the linear increments in the differences yields

for
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7. Next it is shown that the true increment in the
function may be expressed i% )erms of its linear increments
and differences:

.

For this purpose the coefficients a, ~, and Y are com-
puted by comparison of the Adams series (107’) with the
Taylor series:

>.-

1- 3 4 IV 5

AYn= qn + a ~h2 Y!In-> 1Ytlln++y ~_;zyv .+
nJ

r
+$

1

hs~f Iln
’41V

-h Y &:h5 Yvn
1

’41V 5V1+y~h.Y n-~hY
A L n]

This may be done by equating the coefficients in the two
series of terms of the same degree in h, which then
yields the following system of equations:



To defermine the coeffac~e.n.ts-.,the--firsthreeee quationsns!..%..“./dm.+-.4...,..--&-
are er,ployed; then

..) .,

2 12 8

From the fourth equation the order of the computation
error may be ascertained. In the given case the error
will be of the order

●

BY taking, in order to increase the integration accuracy,
a term with fourth order difference 6A4~n_a, the Adams

equation, after the corresponding computations are carried
out , takes the following form:

With the aid of the Adams series in the previous form the
increment in the function (increment of the required in-
tegi”al) from point to point can be accurately computed up
to the terms of the fifth order. Trial computation tables
have shown that t-he Adams series in form (108) is suffi–
ciently accurate #’or integrating the differential equation
of motion in the “boundary layer of the free compressible jets

It is seen, from series (108), that before starting
the computations it is necessary to have prepared a table
of values of the function, its first derivative, linear
increment of the function and firs’tj second, third, and
fourth differences, respectively, at the fifth, fourth,
third, second, and first points. In other words, in
order to start the numerical integration of differential
equation (lO&) by%he Ada-m&-method,
(108),

with t“he aid of series
it is first necessary to compute the integral for

the above five points- This initial computation is then
carried out with the aid of the Taylor series on the basis
of the fact that at the initial point the values of the
function and its derivatives are known from the boundary
conditions.
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50 integration of tha Differential Equation of the
,3’

Boundary Layer of the Compressible Jet
,-

The differential equation to be integrated is

(106)

with the boundary conditions

I?I((C2)= o; F“(q2) = 0

As has been shown in the foregoing the first five
rows for the numerical “integration table are to be com-
puted by Taylor series. The computation is made in
sequence starting with p“oint cpl (the inner limit of
the %oundary layer). Since the argument q decreases

from 91 to ~2~ the integration interval should be
taken with negative sign. Let :

Aq=h=– O.05

.
With subscript o denoting the values of the function
at F and its derivatives at F~, I?ll,Fill, and ~IV
at point VI and with subscript n the corresponding
values at the point q -- nh, the Taylor series affords

n

1? =l’n-hrln+$
h~

n+ I
Frill_ _ Fnl!l

6‘.

~“1 = ~nl
~2 IV

n+ 1 -hFnn +77n111–$Fn ~

1

(lo91_3)

2-
~11.’ = an n - hy”lll

Iy” ’”’

n+ 1 ~+~.rn . . .,
2 ,. ..
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Moreover. the differential -equation gi-v.es .
., ..-

.
-itnn+l = -’ ~n+lJ 1 + rF~an+l

ancl by further differentiating,

# rl?fl~+l+2YFIn+l F11n+lF111n+1
= ———.-—— ——..— ------

n+l —
1 -i-.rF!an+l “

,,
-.

67

rF I

+ .—
Q+l~’’2Q*&(1094)

l+rl?la n+ 1

2r2Jj’12 n+lF113n+l

- —--— .—.——- ——

(l+ Y?Yr2n+i)2

rF ~! Fll
f

——-_—_ ---
n+~ n+1 n+l. —— ——- ————— — F1

J
n+l 1 + rF12—————.———— n+ 1 (1095)

1 + rl?12 ..
n-t-1

The .differentiation “is limited to the fourth derivative
‘.In order to avoid the very complicated expression for
the fifth derivative. Computations show that the accuracy
thus obtained is entirely satisfactory-

The procedure of the preliminary computations is
as follows. The boundary conditions give:

With a given value of VI for given value of the param–
eter r

yt”n(vl) and F lV (q.)

are computed, Then by means of (1071_3) and (109/_5)

the values of F, F!, Fn, Ftn, and FIV at a neighbor-
ing (second) point (ql - h) are obtained by (107) and
(109). The same procedure is. follow&d for all fiv

& arein.itial’’points up to (CPl- 4h). The values of
required onlF~vuP to point 30 In the remaining rows of
the table is not required (for the Adams method).
BY denoting the linear increment of the function 1? and
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its first two derivatives Fl, S?ir”by T =’ hF~n;

Cn = hFlln; Vn = hFnln tables are constructed of

the linear increments of the functions and their
differences for the computed five points, The. tables
of tiifferences” a-re computed %y the fornulas given in
section 4:

A4nn_4 = qn–4qn_l+6~n a-41’)n_3+ nn_4

These formulas are also used for the differences t, ~,
whei-e, however

from the Adams series furthermore:

follow the increments in the function and its derivatives
at the sixth, seventh, and so forth, points:
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each time increasing the computation table by one row.
T~le calculation is .brok.en.oflf..”whenfor a given initial

:a;:;n;f 91 there is obtained at the-end of the table

V2 satisfying simultaneously the two boundary
conditions at the outer limit of the boundary layer:

FI(CP2,) = 0; l?ll(cp2)= o

If one of the derivatives becomes zero ahead of the
other it indicates that the initial val,ue of. ql ,.was.
not we’ll chosen.’ ‘.in this case it is necessary to- ‘ “
recompute the table, ass,uming a new value of cpl, and
so forth, until a successful result is obtained. The
computations carried out show that usually three to
four, approximations are sufficient to obtain an accurate
integral table for a given value of Bac

In the present paper the computations were carried
out for air (K = 1.41) first for Ba = 1, Subsequently,
for the other values of Ba, it was possible to obtain
a good result in a smaller number of trials by interpo-
lation between the known resul’ts for Ba = 1 and Ba - 0
(the latter corresponds to the solution of Tollmien which
gives the extreme values 91 = 0.981 and 92 = –2.04).

By this method of integration the final tables V,
VI, and VTI were obtained for the values of the function
F and its derivatives Fl, Ffl, and F1!!, corresponding
to various values of the argument Table V was obtaii~ed
for Bao = 1.0 (VI = 0*923;:v2 = –9;.04); tabl’e VI for
Bao = 0.9 (V1 = 0.935; 02 = -2.04); table VII for Bao= 0-5
(ql = 0.968; cpa = -2.04), l~Joreover,for comparison there
is presented table VIII in which the same magnitudes are
given for Bao - 0 (Tollmien solution), that is, for the
case of an incompressible fluid.

Tables V to VIII include also a number of auxiliary
magnitudes

(
CpTl - r F12

?:; cfF f _ y; __-___-; —-
.U K ) ,.

by which the longitudinal and transverse velocity com-
jjonents, velocity heads, and so forth, can be computed:

,.
, , . -. ., , .,
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.,

6. Fundamental ,Properties of the Turbulent Boundary Layer
,.

in the Plane—Parallel I?low of a Compressible Gas.-
,-

The foregoing solution of the differential equation
of the boundary. layer of a compressible gas jet makes it
possible to estimate the effect of the compressibility on
a turbulent jet of high velocity

.,

(a) Geometry of the High-Velocity Jet

As is seen from the tables of numerical integration
the effect of the compressibility is first of all to
decrease the thickness of the boundary layer (region of
mixing of the jet with the surrounding fluid) with in—
creasing flow velocity: that is; the coordinate 91
of the boundary of the constant velocity core-(u = U6)
decreases with increase in 3A, In particular for air
(K = 1s41) the following values of ql for various
values of Ba are obtained: .

.
Bao = 1 V1

= ,09923

Bao.~ (),9 . “

Bao = 0.5 cpl =0.966

Ba - 0 (incompress– 91 = 0.981
ible fluid)

The relation between cpl and 3a in terms of the
factor of compressibility:

= 2(K-
[

K-1
r 1) Bao2 1 + ~ Bao2

1
(110)



.NA.CA Technical Membranifum No. .‘1058 71

can be approximated by the linear expression”
..- .----- -.,. . ------------

Vi = 0.981 [“i- 0.06 r] (111)

In cQnYrast ‘0 ‘% tthe ooo.rditiate of “the’outer limit qz
,(U= O) of the .ho,undary layer’.”q~ J remains constant with

change i-nthe flow velocity:,,A>. .: .!.-

= constant = - 2.04Va - .. ,.’.“

In view of tlie’’’for~goingthe nondimensional width
of the boundary layer is connected wit,h the compressi—
bility factor by the iblation , ‘ .

,.’ ~ = ~b:” = 3.02 [1 - 0.02r ].’”
.,

(112)

A very important .geometr”i~ characteristic of the
jet is the surface separating the initial mass flowing
under the plane OA, figure 1, from the associated mass
consisting of. the particles entrained from” the ‘s’tiiround—
ing flow of the gas at rest. This par.tit’ion:surface
should also be a flow surface since it,’is the” boundary ‘
of the in;tial stream of constant mass flow.per second,
The valuq o; the ~tream function a$~ on the surface
shou~d be equal to zero:

.,,
. .

. (113)

But according to equation (,17h)

“.$’= axpouoy ‘ . “‘ “
.:. .,

.!
,. .’

,..,-.

hence it is seen that o,n:the partition surface at the’
boundary of the constant flow core

mp3) = o - (l13b),-,

The foregoing expression is thus t,he f.unda’mental condition
for determining the partition surface of the jet, It is
seen that the boundary o,f.the core of constant flow is a

. . .. ., i ‘-”- “’
J’j -“

.
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plane the position of which is determined by the value
of the nondirnensiona~ coo~d~nate

93 [~] ‘Q(o) (113C)

The integration tables in which the values of -F(@ are
given afford, by inter~olati~ , the correspond&~ ~ues;

Ba=l V3 = - oo~os

Ba = 0,9 93 = - 0.200

Ba = 0,5 ~ = - 0,192
.3

Ban+ O (incompress- cp = - 0,185
ible fluid) -3

It is interesting ’to note that the relation between

Y3 and r is also linear.:

V3=-. 0.185 [1- 0,11 r~ (114)

Moreoveri. it has been show: that in contrast to the
boundary- layer width which -decreases with increase in
the flow velocity, the widt,h of the core of c~nst’ant
mass flow increases with increase in velocity, The
latter effect is explained by the deformation of the
profile of velocity heads in the boundary layer due to
the effect of the compressibility of the gtis at high flow
velocities,

(b) Vel~city Profiles

Tor greater clearfiess in comparing the velocity
fields obtained for various values of Ba it is necessary
to choose an absolute (independent of Ba) system of co-
ordinates. Lay off on the axis of ordinates:

and on the axis of abscissas!.
,.

~?
FI ~ -~:=; ~ = ~

Pouo Uo

.
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Then for’ all values o’f “Ba the’ values of ‘the coordinates
on the inner (~1 = 1) and outer (?2 = O) ‘limits of the
boundary layer are the ,same, regardless of the fact that
the true coordinate of the inner limit cpl changes with
change in Ba,

Figure ~ gives the curves’ F!, I’f/K for Ba = 1
along with the curve FI corresponding to the incompress-
ible fluid (K = 1) forcomparison. As,rnay.le seen the
velocity- profile of the boundary layer becomes fuller
with increase” in the velocity in the undisturbed region
(Ba = 1) while the’ PI profile becomes less full. In
general, however, a weak effect of the compressibility
on the velocity profile of the jet is observed up to
Ba = 10

Figure 9 shows the same curves for Ba = 0.5, The
character of the curves is the same but the effect of
the compressibility is now so,weak that it may be practi–
tally neglected.

I?igure 10 gives the densi’ty curves in the boundary
layer for Ba = 0@5 and Ba = 1.

Yigure 11 gives the velocity heads 1212/K for
3a=l and Ba - 00

I’igure 12 shows a comparison of the transverse
velocity component distribution:

.

for air at Ba = 1 ““‘ and for the incompressible fluid
(!Collmien result),

(c) Rate of-l’low Discharge

As established in,,a previous “part of this paper the
nondimensional rates of gas flow are subject to formula
(75) which, applied to the entrained mass, gives ,

(115)
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The nondimensional’magnitpde of the ini$ialmass in the
jet is ..

Iiia =F1-t-a {116)

3

The integral tables ”give the values ‘F2(3ao) and Fl (Bao)
and approximate integration of the values of the integrals

AZ =

2

f
K’

()~FI
--

-—~--dq)
?Cp

3

1

for various values of Bao, Turther, assuming with Tollmien
a= 0.C845 ; it is necessary to determine the magnitudes
aAa, aAl and find the values of the entrained and initial
masses. (Computation shows that the values of aA2 and
aA ~ are relatively very small.)

It is interesting to note that initial mass, entraiilecl
mass, and total mass flow through the boundary in the
boundary layer of the plane-parallel flow of the high–
velocity jet are linear functions of the compressibility
factor:

(a) Initial mass:

G1 = 0.981 [1 - 0.06r]

(b) Entrained mass:

%2 = 0.389 [1 - O,lOr]

(117)

(118)

(c) Total mass rate of flow;
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..? ,.

ml + mz = 1-!369C1– 0.07 r] - (li9)

., ..
:- .,

In the particular case of an inc”ompressi’ble gas the con-
ventional Tollmien values’ are:

FI1 =.0.981, ;2 = 0.388, ;1 + ;2 = 1.369

(d) Tractional Stresses

According to formula (93) the nondimensional ‘frictional
stresses at the boundary of the core of -constant mass flow
is:

(1?f)bm, ‘
7.--K3

3
b—-——— +

ap !
K’

3

() 1
2

t?;

——— d~ (120)
&Q

With the use of the available integral tables the magnitudes
corresponding to the various values of the compressibility
factor r are obtained by the trapezoidal method. It is
interesting to note that for the stresses also a linear
relation, obtains:

T
3- = y--——- --

2 3 = 0.27 [1 – 0i167 rJ “ (121)
Uo

apo -T

where * 0.27 = ~~o is the nondimensional value of the
frictional stress in the incompressible .fluido

(e) Conclusions with Regard to the High Velocity Jet

The laws of variation of th,e fundamental properties
of the turbulent boundary ‘layer of aplane-parallel stream
of compressible gas (air) at high flow velocities have
been obtained in the foreg~inga As in the case of the
‘Iheatedlljet’ the most” int’kresting result obtained was
that the effect of the compressibility on the fundamental
properties of the high-velocity jet is negligible, This
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conclusion is valid UP to flow velocities attaining
the velocity of sound. (Y3a = 1)0 , .

In particular, on passing from small values of the
Bairstow number (B,a - 0) to Ba = 1, the angl”e of di- ‘
vergence of the boundary la~yer riecreases by ‘2 percent;
the angle of dissolution of the core of constant mass
flow increases by 11 percent; the nondimensional magni-
tude of the entrained. mass ,de.cr.easesby 10 percent; the
nondimensional magnitude of the initial mass decreases
by 6 percent; and lastly the nondimension.al value of the
frictional stress at the bcundary of the core of constant
mass flow decreases by 1647 percent. The effect of the
compressibility onthe properties of the jet is ‘so small
that at Fa = 0.5 it may be entirely neglected without
impairment of the results, hence that dynamic similarity
of tile stream prevails over a very wide range of variation
of the Reynolds num’her, the temperature above the s-arround-
ings and of Ba. The second result in order Of ifiaoTtance
is that the variation of the fundamental properties witil
r is linear. where r is assumed as the compressibility
factor

[

k-l
r.= 4 ~--—~ ;aoz 1 + — $ao2

2 2 1
(122)

and only the outer boundary of the jet remains unchanged.

V, POSSIBILITY 03’DIRECT APPLICATION 03’THE

PRAYDTL LAW OF TURBULENT FRICTION T’O

THE CASE OF COIV,PRESSIBLE JET

. .
In sect’ion I of the present investigation there was

obtained, for the free jet of compressible gas, the fric-
tion law

~123)

which ’in those cases” whe”r~ the compressibility-may be
neglected (p = constant) reduces to the known ~randtl
law Obtaified f~r incompressible gas:

.
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L,
.“_, . . . . .

. .

. . (124)

.In comparing equations (123) and (124) t-he ~uestion
naturally ar~ises’“as,to what extent t-he ackyiracy. of the
compressible flow investigation is improved by introducing
the new friction law and whether this does not lead to
a considerable complication of the problem. Since the
solption of the problem of the boundary layer of a high .
velocity jet was obtained by the new friction law (123,)
it remains to be explained whether it is possible with-
out introducing large errors to simplify the given problem
by direct application of the Prandtl friction law (124).
BY the latter the differential equation of notion in the case
of free turbulence is written as follows:

(125)

.,

Setting, as previouslytassumed:

the differential equation is transformed to

...

.... . , . . .. , .’

3’

(126)

The differential equation in final form for boundary layer
of a two-dimensional free jet then is:

II
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(127)

As may he -seen, the previous equation obtained by the
application of the pran~tl friction law is considerably,
more complicated than equation (20) which was obtained
on the basis of friction law (123) derived specially for
free jets of a compressible gas. In the case of large
velocities, as shown in section 111, a density distri-
bution is obtained for which

Kt.- =
K

K “
=

-i-

( 128a)

(12ab)

Substitution of the foregoing equations in equation
(127) leads to the following f~rm of differential equa-
tioil of tke ~ouniiary layer of a free high-velocity jet:

,--—---- --

Oorfi.parisvnof the foregoing equation with the correspond-
ing equation (105) gives

obtained with the improved friction law (123) shows con-
elusively that the direct extension of the Prandtl fric-
tion law to the compressible case not only fails to sim-
plify the study of the latter but on the contrary gives
a solution considerably more cumbersome than the ohe ob-
tained by the more accurate friction law. In view of the -
fact, however! that for a number of aerodynamic problems
of a compressible gas it may be more convenient to use
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the .f.r.i-ct=i-o-nclaw -i-nt:he-Prarrdt1--form,it wa-s-c-ensider ed
useful for. solving equation (’129),by the Adams method
and compar-ing the results with “the solution of equation
(106). - ,’

-i.
The follawing results were obtained:

8
(a) The qualitative ’results of the two soiutions -

of the problem are the same (with increasing velocity
the nondimensional values of the frictional” stresses
decrease, the width of the boundary layer decreases,
the ve,locity field is slightly de$ormed, and the width
of the core of con’stant mass flow increases.

(b) The quantitative results of the two solutions
differ negligibly, Particular’lyby the use of the
Pra.ndtl frict’ion law (equation 129) it is found that
with increase in the Bairstow number from Bao A O to
Ba=i ,the nondimensional frictional stresses decrease
by015 percent; the boundary layer thickness decreases by
1.3 percent; the divergence angle of the core of constant
mass flow increases 3Y 16 percent. Correspondingly with
\he improved friction law (equation (106)) the nondimen-
sional friction force decreased by 17 percent, the bound—
ary layer thickness &ecr.sased by 2 percent, and. the di-
vergence angle of the constant mass flow core increased
by 9 percents

The application “‘of t!le friction law of the incom-
pressible fluid to the compressible flow thus .lea-ds to
results that differ s-lightly from the results ,obtained
with the use of the corrected friction law, In the case
of the free jet, however, it is of advantage to, apply
the corrected friction law since it leads to less cumber–
some . and more readily solvable equations,

GENERAL CONCLUSIONS

./
In the present paper. the-theory of free, turbulence

and the two-dimensional free jet was extended to a com-
.press-ib,~efluid. In constructing the theory the tur-
bulence hypothesis of Taylor (vorti.city interchange) was
used in -preference to the Prandtl hypothesis (pomentum
interchange). ‘ This was done because the former w,as con-
firmed by test results on the velocity and temperature
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fislds whereas. the second, while lead$ng to the same
velocity fields as the first, strongly deviated from
the experimentally obtained temperature fields.

The differential equation of motion (12) for the
t,.~o-dimen~i~nal..free compressible jet leads, in the
particular case of an incompressible fluid, to the well- ~
known equation of Pra.ndtl~Tollmien-Schlicht ing.

The boundary layer considered was that of an infi-
nite. plane-parallel flow, An infinite flow of this
kind assures constancy of the bouadary conditions in ‘
the flow dir~ction: (1) at the outer limit of the
boundary layer the flow velocity is equal to zero
(u = 0),,<2) at the inner limit the undisturbed flow
is of constant velocity u = uo, The constancy of the
bo~ilda~y conditions (of the velocities temperatures,
densities) at the edges of the boundary layer justifies
the assumption of aerodynamic similarity (similarity of
vzlocitya temperature-fields, etc.) at the various cross-
sections of the flow, that is, the existence of absolute
distribution laws of temperatures, velocities, densities,
frictional stresses, and so forth, as was the case with
incampressitle fluids. The absolute differential equa-
tion o.fmotion (20) obtained for the boundary layer of
an infinite stream is solved for the two cases;

(1) Jet whose ten,perature differs from that of the
surroundings and whose velocities are small in ctimparison
with the velocity of sound (Ilas 0.5),

(2) Jet o,f high velocities (up to 3A = 1) the tem-
perature of which is equal to that of the surroundings.

The first pase involved the effect of compressibility
due to the difference in the temperatures inside and out-
side the jet; the second case the effect of the compress–
ibility due to the high flow velocities.

The fundamental conclusion derived from the results
of the present investigation is that the effect of the
compressibility of the fluid on the laws of flow in the
free jet is sma3L, It is also of interest that a lower-
ing in the temperature of the moving fluid bel’ow that of
the surrounding medium produces fundamentally the same
effect on the properties of the flpw independent of
whether the lowering was brought about by a cooling of
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the jet or by the conversion of the heat “into’kinetic
energy associated with the large f=l:ow~’,%elocit-ie-s:

In particular: I

(a) The nondimensional stres-ses’obtai,ned in the air
jet at moderate velocities and at a temperature below
that of the surroundings by 60° C were the same as for
the jet with large velocit-ies at : Bao = 1.0 and have
a stagnation temperature equal to that of the surround-
ings, (At Ba = 1.0 the local temperature was lower
than the stagnation temperature by about 60°.G;) “

,!., .’,
(3) The-nondimensional vel~city fields in both’ cases

practically agree (fig- 13)s
.,

(c) The angle?f divergence of the core of constant
mass flow in both jets increases by the same amount of
approximately lU percent as conpared with the “incompress-
ible jste

:. .. .

Special .ccmpre=sibility factors are introduced for
the nonisothermal jet (S) and for “the ‘jet wit’h high
velocities (r) and all fundamental properties of the
boundary layer were ex~ressed as linear functions of “ .
th-ese factors-

The small effect of the compressibility of the fluid
permits the conclusion that the free j’et maintains its ‘
dynaiflic similarity over a wide variation of Bairstow
number and temperature differences as well as for a wide
range of values of the Reynolds number: I

The author has not undertaken the investigation of
jets esca~ing from openings cf finite diameter and of
wakes behind bodies in a compressible fluid. ‘In these “
cases the construction of a theory is effective only at
great distances from the nozzle (or body) where the vel:’
oc~ty and temperature difference are relatively small
ancl hence the effect of .compressibility practically,
inappreciable though the study of this effect, involves
great difficulty. . . . ,.

---- .

In concluding, the author wishes to express his
thanks to V. K. Soladkin for his practical a-ssistance
in “the mathematical part of thils paper and’ to A. T.
Cherniavsky, K. L. Kozlovsky, and L. 1. Orlov, who,
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under the supervision of Solcdkin, car~i’ed out all the
numerical computations.

$
Translation by S. Reiss,
National Advisory Committee
for Aeron-autics.
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–0,4290

-0,4305

–0,4305

–0,4305

0,3486

0,3018

0,2539

0,2189

0,1733

,0,]446

0,1148

0,0878

0,0639

0,0450

0,029s

0,0180

0,0113

0,0084

0

D,3614

0,3287

0,2932

O,25XI

D,2180

0,1792

0,1400

0,1C04

0,0601

0,0185

0

0.

0,162!

0,200!

0,237[

0,272(

0,30s

0,3341

0,3W

0,377(

0,389!

0,394;

0,410(

1,2830

1,3320

1,3474

1,3627

1,3782

1,3938

1,4000

1.4003

0,0Q92

0,0068

0

0,0C60

o



}

iTABIIE*.- BABICFUNCTIONSFOR B% = 1.0.

—
M
nln ‘? F P F’ F,,,

—

o 0,223 o,2x4000 1,OolxMo o —1,292206
1 0,873 0,873027 0,993414 0,032W3 —1,219354
2 0,823 0,823210 0,993778 0,121!341 —l,1417a5
3 0,773 0,773697 0,93W78 0,177026
4 0,723

—1,C60530
0,724626 0,976143 0,228006 –0,977252

5 0,673 0,676124 0,963557 0,274762 –0,89’2915
6 0,623 0,628308 0,948737 0,317299- –0,808650
7 0,573 o,5612e5 0,931895 0,35M43 –0,725433
8 0,623 0,535149 0,913241 0,339675 —0,644099
9 0,473 0,489937 0,892973 0,42W6 -0,5W365
10 0,423 0,445873 0,871294 0,446463
11 0,373 0,402878

–0,489797
0,84838 0,4691S8 4,417885

12 0,323 0,361055 0,824433 0,488317 –0,349931
13 0,273 o,3m447 0,799612 0,504203 –0,286158
14 0,223 0,281103 0,774070 o,517a)4
15 0,173

–0,226710
0,243049 o,747mo

16
0,526947

0,123
-4,171613

o,m6313
17

0,721421 0,5342?7
0,073

—0,120342
0,170912 0,694578 0,539099

18
—0,074289

0,023 0,136659 0,667548 0,541734
19 –0,027

–0,031810
0,1041600,840437 0,542346

20 –0,077
+o,om7@3

0,0728130,613346
21 –0,127

0,541115
0,042824

0,041721
0,58~ 0,5W226

22 –0,177
0,073216

0,0141730,559549
23 –0,227

o,533a45 0,101545
–0,0131369,532m3 0,528120 0,126950

24 -0,2774,039131 0,506756
25 -0,327

0,521191 0,149703
–0,~817 0,4@I1891 0,513191 0,170042

26 –0,377–0,0372270,455451 0,504225 0,1882m
27 --0,427–0,1093730,430182 0,494401 0,204462
28 –0,477–0,130284o,4mo’m 0}483803 0,218985
2Y –0,527–0,1499850,382111 0,472528 0,231989
30 –0,577-o,lMW 0,358778 0,460632 0,243657
31” –0,677–0,2021220,313971 0,435229 0,263629
32 —0,777—0,2313860,271793. 0,408024
33

0,28CN)12
–0,877—0,2565720,23?417 0,379320

34 –0,937
0,293660

–0,2779700,195973 0,349363 0,3)5194
35 —1,077–0,2956720,1625E12 0,318342 0,315029
w —1,177–0,3105930,132336 0.2&%07 0,323442
37 —1,277 —0,3224470,105324 0,253693
* –1,377

0,3M596
-0,3317640,081618 0,220329

w
o#336m3

—1,477-0,3338840,031276 0,186417
40 –1,577

0,341531
–0,8441350,044348 o,15m59 0,345442

41 —],677–0,3476680,030877 0,11736il
42 –1,777

0,848~
—0,3504280,0208W 0,0823% 0,30637

43 —1,877–0,3521590,014402 0,047254
44 –1,977–0,3534360,011440

0,352225
0,011970 —

45 –2,04 –O,wmo o 0 —

—
N

nli

—

(

(

[

{

1(

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

TABLE.V(-a).-‘~ILIARf ltJliOTIONSFOR Bao= 1.0.

?

0,s23

0,823

0,723

0,623

0,523

0,423

0,323

0,223

0,123

0,023

–0,077

–0,177

—0,277

–0,377

—0,477

–0,577

–0,677

—0,777

–0,877

–0,977

–1,077

–1,177

–1,’277

—1 ,377

—1,477

–1 ,577

—1,677

— 1,777

–1,877

– 1,977

–2,04

%

1,Cm

0,9932

0,W32

0,9836

0,9758

0,%45

0,9523

0,9396

0,9?69

0,9145

0,9028

0,8918

0,3619

0,8729

0,2651

0,8567

0,8526

0,8479

0,6440

0,E409

0,8386

0,8368

0,8355

0,8347

0,8341

0,8337

0,8334

0,8334

0,8334

0,6340

0,8340

I

1,00

0,9@J38

0,9358

O,W-4

0,7783

0,7299

0,6793

0,6274

0,5747

0,5217

0,46’33

0,4188

0,3682

0,3205

0,2754

0,2331

0,1939

0,1581

0,1260

0,09778

0,07346

0,025M

0,01728

0,01370

0

@-F

o

-0,C05881

–0,018375

–0,037245

-0,077316

–0,094762

–0,108485

–0,117578

—0,121505

–0,HO041

–0,113213

—0,101240

–0,084478

–0,063388

–0,010436

+0,020203

0,052742

0,086504

0,[20771

0,154834

0,187948

0,219376

0,248379

0,274198

0,2S6087

0,313315

0,325126

0,826030

0,321YX?3

o

-0,C4)5341

–0,012W4

–0,037789

–0,058951

–0,030162

–0,115459

-0,126851

–O,132865

–0,132965

—0,126949

–O,114796

–0,096779

–0,073272

–0,044950

--0,012240

+0,023827

0,CW49I

0,102871

0,144015

0,1854)31

0,224953

0,262820

0,297781

0,328893

0,355276

0,375948

0,3W134

0,39201XI

0,392000
.

—_
F,:

z-
——

0,9s5317

0,946376

0,887141

0,913826

0,732153

0,647276

0,562993

0,482403

0,33S627

0,279218

0,226474

0,181071

0,142613

0,110276

0,062635

0,045591

0,032?95

0,022167

0,014655

0,CQ9268

0,005560

0,003132

0,031640

0,060172

O,ml M

o



M
[,II

o
1
2
3
4
5
6
7
PI
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

TABLE VI.- BASIC FUNCTIONS FOR B% = 0.9.
_——

?
.—

0,934
0,884
0,834
0,784
0,734
0,684
0,634
0,584
0,534
0,434
0,434
0,384
0,334
0,284
0,234
0,184
0,134
0,034
0,034

–0,016
–’0,066
–0,116
–0,166
–0,216
–0,266
--0,316
–0,24%
–0,416
–0,466
–0,516
–0,566
–0,666
–0,766
–0,866
–0,966
–1,066
–1,166
–1,266
—1,366
— 1,466
—1S66
– 1,666
—l,76b
—1 ,866
—1,966
–2,04

F

0,934000
0,834026
0,834201
0,72466s
0,733558
0,686996
0,639090
0,591950
0,545664
0,500322
0,455993
0,412751
0,370647
0,329732
0,290048
0,251632
0,2I4504
0,178695
0,144212
0,110720
0.079271
0,043823
0,019703

–0,033067
–0,034525
–0,059671
–0,083531
—0,106113
–0,127454
—0,147566
-0,166480
–0,203330
—0,230735
–0,256465
–0,278298
–0,296528
–0,311461
–0,323418
4,332721
– 0,339710
–0,344717
–0,348088
–0,350173
—0,351319
–0,351876
–o,3520fM

F’

1,00
0,S93482
0,994042
0,936362
0,977130
0,965037
0,950730
0,934550
0,916538
0,896933
0,875919
0,852663
0,820344
0,306112
0,781122
0,729418
0,729413
0,702959
0,676249
0,649393
0,622483
0,595616
0,563856
0,542296
0,515982
0,48S$92
0,464367
0,439162
0,414422
0,39018s
0,366489
0,320346
0,277733
0,237231
0,199809
0,165298
0,133915
0,105750
0,080892
0,059398
0,0-41321
0,026705
0,015568
0,007935
0,CK13220

o

F’‘

o
0,060176
0,116818
0,169762
0,218895
0,264152
0,306526
0,343044
0,37677I
0,406801
0,433255
0,456283
0,476038
0,492695
0,506443
0,525938
0,525938
0,532053
0,536007
0,537957
0,538C69
0,536510
0,533426
0,528951
o,5~3218

0,516343
0,508433
0,499691
0,489903
0,47944I
0,488286
0,444128
0,417872
0,389862
0,360375
0,329649
0,297876
0,265232
0,231861
0,197918
0,163524
0,128802
0,093859
0,058765
0,023606

0

F,,,

— 1,236624
—1,168140
– 1,095812
— I,0207I1
– 0,943871
–0,866263
–0,788765
–0,712178
–0,637192
– 0,56440I
–o,494mo
–0,427252
–0,363573
–0,303458
–0,247031
–0,1463W
–0,145390
–0,100106
–0,058384
_13,0q@331j

+0,014958
0,046922
0,076026
0,102454
0,126430
0,143149
0,167823
0,185627
0,201764
0,216385
0,229655
0,252695
0,27!854
0,287%4
0,301420
0,312816
0,322335
0,330332
0,236799
0,341!X18
0,345769
0,348595
0,330303
0,351348
0,351830

—

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

TABLE VI(a).- AUXILIARY FUNCTIONS FOR B% = 0.9.
—..

‘?

.—

0,934

0,834

0,734

0,634

0,534

0,434

0,334

0,234

0,134

0,034

—0,CH36

–0,166

–0,266

–0,366

–0,466

–0,566

–0,666

–0,766

– 0,866

–0,966

— 1,066

–1,166

—1,266

– 1,366

—1 ,466

–1,566

– 1,666

--1,766

—1,866

—1,966

-2,040

%

1,00

0,9385

0,9944

o,9a31

0,9801

0,9708

0,9606

0,9501

0,9395

0,9292

0,9193

0,9102

0,9017

0,8942

0,3376

0,3318

0,8770

0,8789

0,3696

0,8670

0,3650

0,8635

0,8624

0,8616

0,3612

0,8609

0,3607

0,8606

0,8606

0,8MM

0,8606

i-
T

.—

I ,00

0,9355

0,9826

0,9622

0,9351

0,9)23

0,8644

0,8221

0,7764

0,7278

0,6771

0,6250

0,5722

0,5193

0,4669

0,41s6

0,3658

0,3182

0,2729

0,2305

0,1911

0,1551

0,1226

0,09339

0,06897

0,04806

0,03103

0,01809

0,03922

0,00443

0

o

–0,005170

–0,018345

–0,026295

– 0,056233

–0,075344

–0,C93312

–0,107265

–0,116762

–0,121220

–0,120355

—0,114138

—0,102726

~—0,036427

–0,065667

–0,040953

–0,012853

+ 0,017992

0,050936

0,085283

0,120320

0,155316

0,189539

0,222223

0,252633

0,28CQ08

0,303598

0,322630

0,336512

0,34601XI

0,352000

0

—0,005178

–0,013448

–0,036732

–0,057375

-0,078125

–0,097139

–0,112899

–0,124231

– 0,130456

–0,130920

–O,125399

–O,113925

–0,096653

– 0,073933

–0,046443

–0,014656

+0,020621

0,058574

0,098366

0,139099

0,179868

0,219781

0,257919

0,293350

0,325250

0,352734

0,374943

o,39]om

0,4020LM

0,409000

F?
T

1,Cmoo

0,9896

0,9602

0,9149

0,8571

0,7W3

0,7178

0,6422

0,5663

0,4922

0,4215

0,3555

0,2953

0,2412

0,1935

0,1523

0,1174

0,08837

0,06477

0,M605

0,03159

0,02077

0,01297

0,00759

0,00409

0,0)193

0,@3082

0,0C028

0,KKI07

o

0



-J

—
N
n/n

—

o
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
33
36
37
38
39
40
41
42

43
44

1
TABLE vlI.- BASICFUNCTIONSFOR B% = 0.5.

‘f

0,%6
0,916
0,3M
0,816
0,766
0,716
0,666
0,616
0,566
0,516
0,466
0,416
0,366
0,316
0,266
0,216
0,166
0,116
0,(%4
0,016

–0,034
–0,034
--0,134
--0,184
–(),234
–0,284
–0,334
–0,384
–0,434
– 0,484
–0,534
– 0,634
–0,734
-0,834
–0,934
—1,034
—1,134
—1,234
–1,334
–1,4M
–1,534
—1,734
—1,834
—1 ,934
–2.04

F

0,966
0,916022
0,866173
0,816575
0,767343
0,718536
0,670403
0,622889
0,576129
0,530205
0,485188
0,441143
0,398132
0,356202
0,315409
0,275784
0,237371
0,200195
0,164277
0,129646
0,0%306
0,C64280
0,033562
0.004158
0,023926
0,050710
0,076186
0,100378
0,123294
0,144954
0,165375
0,202595
0,235169
0,263319
0,287316
0,327439
0,323997
0,337306
0,347705
0,355534
0,361152
0,367178
0,363320

O%K-QO

i-

1,0
0,998695
0,994871
0,988672
0,980241
0,959722
0,957260
0,942995
0,927077
0,909634
0,893816
0,870741
0,849551
0,827360
0,W43LM
0,780477
O,756IM7
0,731000
0,705543
0,6?975I
0,653702
0,627489
0,601192
0,574889
0,548653
0,622553
0,496554
0,471015
0,445696
0,420745
0,396214
0,348603
0,323191
0,262276
0,220102
0,182877
0,148791
0,117976
0,03CL562
0,WW37
0,046275
0,016430
0,007CW
0,001261

0

o
0,051755
o,m3695
0,146776
0,189973
0,230282
0,267710
0,302239
0,334059
0,363C64
0,3893LuI
0,413065
0,434213
0,452897
0,469221
0,48327?
0,495143“
0,504952
0,512776
0,512776
0,522346
0,525362
0,526245
0,525623
0,523585
0,520210
0,515535
0,509786
0,S2882
0,494952
0,485054
0,465627
0,&2078
0,415834
0,387301
0,356818
O,3247XI
0,231307
0,236831
0,221531
0,1Wi18
0,11%40
0,075354
0,038998

0

—1,062600
—1,006931
–0,950190
–0,892768
–0,835025
–0,777326
–0,71W89
—0,663311
– 0,607562
–0,552974
–0,309746
–0,448052
–0,398029
–0,349786
–0,303412
–0,258955
—0,216460
– 0,175936
–0,137379
–0,137379
–0,066092
–0,033293
–0,002316
0,026839
0,054379
0,08023)
o,I04494
0,127252
0,148560
0,168493
0,137109
0,22%41
0,249635
0,274503
0,295637
0,313372
0,328029
0,339895
0,349256
0,356386
0,361563
0,367232
0,368330
0,363702

—

—
h!!

nr

—

(

1

2

~

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

?b

?7

28

29

30

TABLEVII(a).-AIJXILIARY~CTIONS’FOR BI
——

?

——

0,966

0,366

0,766

0,666

0,566

0,466

0,366

0,266

0,166

0,066

–0,034

–0,134

–0,234

– 0,334

—0,434

–0,534

–0,634

4,734

–0,334

– 0,934

– 1,034

– 1,134

1,234

— I,334

– I,434

– 1,534

— 1,634

— I,734

– 1,834

— 1,934

–2,040

%

I,00

0,9996

0,9983

0,9363

0,9W

0,9903

0,9372

0,9838

0,9302

0,9767

0,9733

0,9702

0,9672

0,9642

0,s622

0,W13

0,9584

0,9570

0,9557

0,9549

0,954I

0,9535

0,9532

0,9528

0,9527

0,9525

0,9525

0,9524

0,9524

0,9524

0,9524

-

F’
T

1,00

0,?954

0,9819

0,96C9

0,9331

0,8993

0.8607

0,8176

0,7713

0,7223

0,6717

0,6197

0,5672

0,5148

0,4632

0,4127

0,3637

0,3168

0,2724

0,2305

0,1917

0,1552

0,1238

0,0951

0,0659

0,0487

o,wm93

0,01720

0,00740

0,00140

0

o

-0,(04573.

-0,016643

-0,CL326W3

–0,051429

–0,07CX188

–0,037132

–0,101509

-–0,111871

—0,117677

-0,1W06

–0,114162

–0,104474

–0,089714

–0,070106

–0,046225

4,013405

-’-0,012669

0,046219

0,081716

0,113338

0,155297

0,191703

0,2.268115

0,21XI&34

0,2W52

0,316710

0&M778

0,3555’20

o,3w02

0,36$3

—

qP— F
z

o

-0,016571

–0,032925

--0,051760

-0,070775

–0,103181

–0,114131

–0,120434

–0,121757

–0,117668

–0,108017

4,072W

—0,048135

–0,019202

+0,013238

0,048361

0,035575

0,124031

(),162870

0,2011I8

0,238041

0,272944

0,304621

0,332504

0,355710

0,373289

0,334504

0,38750

=0.5.

l,OWO

0,9902

0,SR525

0,9197

0,3650

0,3013

0,7311

0,6575

0,5831

0,5097

0,43S0

0,3725

0,3112

0,2558

0,2064

0,1635

0,1268

O,OWJ

0,0706

0,0507

0,03542

0,0232

0,0146

0,CQ36

0,0046

0,CQ22

0,0303

0,0002

0,0000

0,0000

0

o
P
I-J
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TABLE VII I.- BASIC FUNCTIONS FOR INCOMPRESSIBLE JET.

i
N
n,n

—.

o
1

:
4
5
6
7
6

1:
11
12
13

;;
16
17
18

;;
21
22
23
24
25

%’
28

%
31
32
33
34
35
36
37
38
39
40
41
42
43 “
44
45
46

?

0,98
0,93
0,88
0,83
0,78
0,73
0,68
0,63
0,58
(3,53
0,48
0,43
0,38
0,33
0,28
0,23
0,18
0,13
0,08

— 8:Y2
— 0,07
— 0,12
- 0,17
— 0,22
--0,27
— 0,32
— 0,37
— 0,42
— 0,47

0,52
— 0,62
— 0,72
— 0,82
— 0,92
– 1,02
- 1,12
— 1,22
— 1,32
— 1,42
- 1,52
— 1,62
— 1,72
-- 1,82
— 1,92
— 2,02
— 2,04

—

F F’ Ff’

n
p47i&
0;135770
0,17E4362
0,2i38W
0.249309
0,282019
0,2.12957
0,341271
0,3672SU
0,391069
0,412645
0,432079
0,449414
$::;;;

O:48942O
0,498948
0,S3M78
0,5126M
0,516989
0,519666
0,520644
0,520423
g,:;:;:;

0:511328
0,54)573I
o,4989&l
0,491134
g,:wx~

0:4$4433
0,396102
0,36$426
0,332789
0,332769
O,26293I3
0,226417
0,189076
0,151171
0,112873
0,074307
0,03557s
o
0 —

TABLE VIII(a) .- AUXILIARY FUNCTIONS FOR INCOMPRESSIBLE JET

FOR Ba=O.

T’

0,92
0,68
0,78
0,68
0,5s
0,48
0,38
0,28
0,18

— %%
– 0,12
— 0,22
— 0,32
— 0,42
— 0,52

I

yF’ — F

- ICHM2
— 0,0155
— 0,0310
— 0,0486
— 0,0667
— o,cEi35
— 0.0378
—o;lo&
— 0,114/
— 0,1162
— 0,1126
- 0,1037
— 0,0898
— 0,0708
– 0,0474

J’&
n,n ~ f’

;;
18

u
21
22
23
2A
25
26
27
28

3
31

— 0,62
– 0,72
— 0,82
— 0,92
— 1,02
– 1,12
— 1,22
– 1,32
— 1,42
— 132
— 1,62
— 1,72
— 1,82
- 1,92
— 2,02
— 2,04

yF’ — F

— 0,0203
– O,o11o

0,0446
0,0603
0,1173
0,1546
0,1915
0,2272
0,2606
0,2811
0,3178
0,3398
0,3364
0,3666
0,3697
0,3690

F’2

o
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Figure 3.. Velocity fields in the
boundary layer of a

jet at various temperatures.
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Figure 7.- Fields of
transverse

velocities in the
boundary laysr of a jet
at Pt = -60°c.
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Ff~re 4.- Density fields in the
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Figure 6.- Field.of velocity heads
in the free jet at At=-GO°C.
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Figure S.; Velocity fialds in

boundary layer of a
high velocity jet (Bao = 1).
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FiLmre 9.- Velocity fields in the

boundary layer of a
high velocity jet (Bao = 0.5).
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