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TUNNEL CORRECTION FOR COWRESSIBLE SU:BSONIC FLOW*
- By A. V. Baranoff

SUMMARY

This report presents a treatment of the effects of the tunnel
walls on the flow velocity and direction in a compressible medium
at subsonic speed by en approximate method. Solutions with numerical
calculations ere given for the rotationslly symmetric and two-
dimensional problems of the flow past bodles, as well as for the
downwesh effect in the tunnel with clrcular cross section..

1. SYMBOLS1

b wing span of the mecdel wing

T circulé.tion

h half of the tunnel height, two-dimensional case

J profile volume of the model, two-dimensional case
K Mach number squared in the undisturbed flow

q veriable of integration

R tunnel redius

o variehble of integration

T volume of the model, case of rotatlional symmetry

*g, ur Frage der Kanalkorrektur bei kompressibler Unterschall-
s’cromung, FB 1272, Zentrale fiir wissenschaftliches Berichiswesen
uber Luftfahrtforschung (ZWB) Berlin-Adlershof, July 5, 1940.

"IThis 1ist only contains symbols sppeering in the final results
(equeations (17), (25), (31), (32), (41), and (42)). Symbole used
in intermediate celculations. are explained at the point of their
introduction.
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U flow velocity = -
u increased velocity at the tumnel wall
u¥* additionel axial velocity (du_e to the constriotion of the stream)

w*  additional upwash velocity (duwe to the constriction of the stream)
&, p, or &, n ere the coordinates for the case of
rotational symmetyy or two dimensions, rendered dimensionless
by division by R or h. : R '

2. GENERAL STATEMENT OF THE PROBLEM

The effect of the tunnel walls on the flow around a body _
ecquires increased significance at high velocities as much through
campressibility as through the often unfavorable ratio of model
dimensions to tunnel diameter. In thils, the gquestion concerns
the effects on the flow speed and direction, the flrst case of
which is, possibly, that of a model, symmetrically suspended, in
a flow where there is zero 1lift, while the seccnd case-is that
of a circulatory flow past a thin profile. The differential
equation for compresgible subsonic flow should be teken &3 a basis,:
here, in the approximation form nemed after Prandtl. If @
represents the velocity pctential, in cylindrical coordinates this
equation, then, reads:

3% . 132 929 2% ;
It hImrowgg =0 )

This holds for a so-called, near parellel flow, that is a
uniform principal flow in the direction of the x-axis on which
is superimposed a flow of ordinarily small velocity.

.Now let ® be the poténtial of the flow in the medium,
unconfined, end ®* +he potential of the additiocnal flow appearing
becauge of the effects of the tunnel walls. & certainly satisfies
the differential equation (1) in the entire range of the interior
of the tumnel as a good approximation. The same canmot be said
of @ because in the vicinity of the body. the deviations from the
principel flow can be of the same order of magnitude as the
rrincipel flow, itself. The quantity, ¥, will, bowever, certainly
do at a distance from the body, that is, in the neighborhood of
the tunnel wall, possibly, Jjust as well as O * of equation (1).
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Now since the comnection between @ and ®* consists of the

at the tummel wall, the @ desired is touched only slightly

by the uncertainty in the potential @ in the vicinity of the

body as far as it succeeds, that is, in giving solutions of

equation (1) of such a kind which describe the action of the body,
which the flow moves past at a great distance from it with

sufficlent accuracy. First of all, in the following the rotationally
symmetrical and the two-dimensionel problem for the flow past a
model will be treated, for which ascertaining a correction factor

for the flow velocity or its Mach number is the object of this
investigation. In the conclusion, the probléem of downwash correction
factor is handled in comnection with that. In a formal sense the
method in ell three cases depends on the same artifice (compare
reference 1), namely, in thet the condition at the edge (reference 2)
ig satisfied, first of all, within a finite longitudinal section 21
of the tunnel cylinder, and the limit 1-—>% ig taken only then.

The solutions all appear, therefore, in the form of Fourier integrals.
It should be mentioned that in the two-dimensionel case the method

of reflection of the singularities (reference 2) leads to & solution
that is more convenient for the purpose of numerical calculation.

3. EFFECT OF THE TUNNEL WALL ON THE FLOW PAST BODIES

(CASE OF ROTATIONAL SYMMETRY)

It i1s logical to describe the disturbasnces that a body past
which there is flow, causes at some distance from itself by a
superposition of sources and sinks in which the source and sink
potentiels satisfying equation (1) are readily expressible. The
discusslion 1s limited, at this point, to the case where the body
is small enough in comparison to the tunnel radius so that its
actlon can be replaced accurately enough by that of a single
dipole. The potential of such a dipole. with the x-axis as its
exis of symmetry, figure 1, reads: '

m, x
= EJ? ~ !
Va2 + (1 - p)r2

¢ 3
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Regarding the meaning of the dipole moment my, arguments
will not be presented till gection 5.

For the additional potential &¥, which gives the action
of the tumnel walls on the flow, the following estimate ig mede:

¥ ~ P(r) X(x)
with which the following equatibn d.ei‘i\fes from (1)
l . XII

R R N )

Flrst of all, to satisfy che 'boundary condition (2) only
for jx]<1 it is necessary to seth

X"+ ¥ X=0 (5)

-in which

It is readily seen, that because of (3) and (’) X appears to
an odd power in Q* go that only :

e

enters in as a solution of (5). On account of (5) equation (L)

trangforms to

: > . ‘
P"+%P'-(1-u)£—g—l’ (7
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_ . The ‘solution of this so-called.modified.Bessel's diffevential
equa.tion is ¥

=Io<\/1-u.k——z—“r)  (8)

where I0 is the modified Bessel function of the first type and’
zero order. The corresponding function of the second type does
not enter into the question because of the requirement of
regulerity for &%, The gereral solution develops fram (6) and
(8) by swmation over all integral values of k.. With the use
of’ the dimensionless quantities

e

g =5 0=t A=y - (9)
it reads‘

P =ch I, '(1 - uf-;f\ﬁ) sin'-l;\—ﬂg- (10)
Coe N M

The definition of the coefficients Cpe follow from the
boundary condition (2). To begin with, for p =1
. ' : — ' f<S
< kn kn& l-pm . .
Yoo Lo (\/l-ul{i)sin °=3M— o - (11)
-]; Vg + 1~ |

Expanding the rlnht hand glde in a Fourler series In &, by
comparison of coefficients, after some intermediate calculation,
the following is obtained

7\'co.s;-l—qgg' acr
A ;

ViTh Y g
) o Va2 41 -y 3 (12)

Ck = - 2
EnQR | kx
. 'Io"( 1-w K.)
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- Now substituting (12) :4n (10) and taking the limit - )\—eoa ‘the
follow:mg is obtained -

]Zl - | mrf sin (g8 I, (V1 = u qp)daf cos(qa} da (13)
or® R2 It (Vi - Q) \/-.2

The inner integral in this cen be put in a form where it is
expressible by a modified Bessel's function of the second type
and first order. This is, namely, -

/“’ cos(qa) da _ ak; ( \/—':_H a)

v—a? + 1 -p 3 \/T——TL

vhere K, 18 the function mentioned. Equation (13) reduces,
by means of this, to

m. [ sin(qd T, (V1 -ngp) g Ky (VI -wa)dg

O* = (lh-)
o]
2on B2 1,' (V1 -1 q)
A new variesble of integration cen be written for i-wag

here (represented again by q in the :f'olluwmg) and ‘the expression

qg) qu a%; (a)
o}

= 3fmcos(~——-=.—x( ) a (19)
2R3V -0 f 1-uy I,(q)

u¥* =
1'e

is obtalned for the axial additional} velocity. In wind tunnels,
there is the possibility of finding the velocity at the tunnsl wall
by measurement of thc static pressure at the tunnel wall. The
increased velocity there is computed. from the twe potentials (3)
end (14) for & =0 as

S N @ |
— L. g / q“K !
=" : - I (a)- a 16)
? 25°R3 1_/1 - u3 2 Jo : Il(q) : (
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. Eliminating the dipole moment in (15) with the aid of (16),
then, at the position of the body (g = 0)

= obshE - (27)

is obtained for the correction-factor velocity where 1t can be
ascertained by measurement.(See section T for the mumerical
celculation of the factor.) The relationship (17) is independent
of Mach mumber.

4. EFFECT OF THE TUNNEL WALL ON THE FLOW PAST BODIES
(Two-Dimensional Case, see Fig. 2)

In the two-dimensional case the differential equation for the
velocity potential reads

2, 2
o<d + (l - u)_é_? = Q (18)
By2 ox?

A solution of this equation, which is associated with the
dipole, reads

s
g X .
- on xE + (l - u)yg . (19)

First of all, the moment m, is simply regerded as given; later on,
its relation to the size of the body amnd to the Mach number will

be discussed further. To fulfill the boundary conditions at the
" upper end lower tumnel wall (3 = *th) requires the introduction

of an additional potentisal fb* which likewise should satisfy
equation (18).

Through the statement

o* ~v(y) X(x)
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it 1s easy to get & general solution.  Its form'consistent with (19)
and the boundary condition reads - : o R S

) Xy knx
o* =F§__ Oy cosh( 1-p _ZX) sin - | (20)

To satisfy the boundary conditions, exactly the seme procedure
is to be observed as in the preceding section. ter taking the
limit as 1 &and by applying the dimensionless formules - g

x 1
AR R (21)
the expression : : ,
* - 00 .
me V1 - p sin(q&) cosh(V1 - pan)dg coe(qa) do
oF = : o (22)
n“h o ginh (V1 - 1 a) o @ +1-up

19 obtained.

On account of

(ae]
/ cos(qa)da i ~q Vit
= &
Qo

cc2+l-|.1' 2Vl - p

after the introduction of a new varieble of 1ntegrat4.on finally

becomes .
' m, f 3 c‘:osh(qn)dq B .
o8 = —== [ =i
wh\/1 - pdo Vi - p - (23)

The axiel additional velocity now reads

n ® /e adq
e .
u* O et s—————— ‘CO8f ~—————r— Cosh(q_‘q) e S ——— (2)4-)
wh(L - ) ~/o‘ (\/l - 6% - 1
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'~ The increased veldcity at the wall - (§ =0, n=1) is
introduced aga.in 'I‘he oorrectmn veloci‘by a'b the po:lnt (g n o)
is then ’ ) :

u

Lty o (2

vhere U 1s the incresased velocity measured at the wall.
5- DERENDEN&YiOF THE DIPOLE MOMENT ON BODY VOLUME AND MACH NUMBER

The dipole moments m, and me introduced in equations (3)
and (19) should not be set in relation to the volume of the body
that the flow passes any more. Since those potentials only contain
a single parameter, the volume of the body is the most suitable
quantity, in fact, for the definition of this parameter. The
Tlow past the body could be introduced &s a series of dipoles that
hag set to work in its interior. Fach individual dipcle signifies
& certain displacement of the outer flow, which is obtained most
eagily with the aid of the flow function. Therefore, the relation

Dbetween the potential and the flow function must be set up, first

of all. In its exact form it reads for the case of rotational
symmetry

o 3% 6_}&
-r po ar—dx

0. 30 oV (26)
P02

Py Ox or

The equations (26) are not linear on account of the dependency
between the density: p - and the veJOﬂity, however, they can be
linearized into the following form.

(262)

&
The author is obliged to DT. Ing. B. G&thert for pointing this out.
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The epproximate form (268).is equivelent to the differential
equation for ¥ obtained from (1) for & : the case .of rotational. . -
symmetry and & corresponding equation for V. The flow function
of a dipole in a uniform flow reads, therefore, in accord with (262)

we (- r?

(27)

By setting W equal to O the contour of the body past which
the stream flows 1s obtained and from this its volume/T. It is

quE

= - (28)

wiro

so that in this cese the moment is, therefore, independent of the

Mach number. For the two-dimensional case the relations corresponding
to the system (26a) may be written down readily. From the flow
function satisfying them

(1 - plmg v
2 3x2 + (1 - u)yQ

¥ =Uy - - (29)

the volume of the body past which the stream flows (volume within
gsurface of the contour past which the stream flows) is obtained as
m, 1l -4

e (30)

£l

From this is obtained the fact that the dipole moment in the
two-dimengional case is. dopendent on the Mach number. This result
is in accord with the so-called Prandtl's rule (reference 3). The
obJection could be raised agalnst this consideration that 1t :
investigates the flow past a body teking as a basis an individual
dipole de facto, which does not satisfy the Prandtl condition of
slenderness. It might, therefore, have been more acceptable to
represent the body possibly by essuming a distribubion of sources
end sinks along its axis. Now if this le done, then in the extreme
cage of & very slender body admittedly the same dependency of
the product of source strength by source-sink distence on the
Meach number 1s obtained as that for the dipole moments in
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equations ( 28) and (30) , while ‘on the ‘other ‘hend the numerical

' factors change; they become egual to 1 in both cages, that is

: Vi-p _
J'-—-—-——-*meU. S - (30e)

'I‘he dipol © mement for the case of rOuatlonal gymmetry calculated
from (28) would then be, accordingly, 50 percenk’. and that” for
the two-dimensional case according to (30) fully 100 vercent
larger then that from the second consideration.. ‘Since the bodies
thet appear practical as models are slender, as & rule, the _
advanta.ge belongs rightly to the second conslderation in évery case.

Therefore, intrcducing (28a) and (30&.) into (15) or (24), now,
the following is obtained

U = - "1 (q)
Wk = [ cos ( qé)zo(qp)---——— s (31)
2x283 1 - n o,y - T ()

for the case of rotational symmetry and
(e <]
U3 2
u¥ = cos(. 15 cosh(an) ——?—G=‘—~ dg (32)
ab= VI - p3 . VI - o 624 - 1

for the two-dimensional one. Ah the position of the body, therefore,
for £€=p =0 or & =1 =0, the following relations are obtained

* o 03268 E’I
o]
\ll-uL

U 0.1309 U .
) * n ——— ._..":]. = ....___3__9...- ..g (32&.)

° Ph\m 3n8 Vi 3n2

(31e)
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Tt is noteworthy that the factor in fromt of the integral in both
cages (equations (31) "end - (32)) shows tho same dependency on
the Mach number. e e

6. DOWNWASH ANGLE CORRECTION IN THE CLOSED TUNNEL AND IN THE OPEN JET

In the two-dimensionel case the circulatory flow furnishes
no contribution to the angle-of-attack correctlon factor at the
position of the body. On that account only the three-dimensional
problem in the. tummel of circular cross section is handled in the
following. For this the mction of the model can be approximated
by & horseshoe vortex of infinitely small span. If instead of
the velocity potential €& of such a vortex its acceleration
potential @ 1is introduced, certaln furbher advantages result,
in particuler, the poseibility of keeping the method of solution
applied up till now.

The linearized velation between & and ¢ reads, (reference 4).

N A, 33)
-Ulm Pax (33

For that very reason © is also a solution of the differential

equation (1). The Lorseshoe vortex of infinitely emall span
corresponds to the acceleration potential of a dipols with its
axig in the direction of the z-axis (fig. 3); this potential
reads '

WU (1 - ) z

c’p = -~ -
Lst \./x2 + (L - ) (y© + 29 3

(3h)

The appropriate veloclity potential can be ascertaincd from

this with (33). It reads

Bz x
o = T - === 4 1 (33)
h(y™ + 2°) | Va? + (2 -p) (3% + 27)

For given ' the Mach number excrts no influence on the

flow, this holds ag much in the plane of the wing (x = 0) =as
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also infinitely far behind the wing (x=¢). At the seme time it

is seen that € and all cross components of the velocity at an
infinite distence have double the value compared to that

at the pogition of the wing. The tunnel correction factor at an
infinite distance is valid, therefore, at the position of the wing,
too, if it is multiplied by one-helf. The additlonal potential of the
flow coming about through the action oi the Jet boundary, at en
infinite distance, is '

e
E 3
]

[
o
e
]

(36)

n

in which the upper sign holds for the closed tumnnel and the lower
gign for the open Jetb.

Now the general three-dimensional problem is to be treated.
At this point en additicnal potential ®* is introduced which
allows the boundary conditions at the edge of the Jot to be
satisfied. It 1s easlly seen that the boundary conditions(2)
are also valfd for the acceleration potential:

s {(p+0*) =0 (37)

The bouﬁdary condition for the opem Jet 1s obtained as

®+*¥ =0 (38)

The courses of calculation for the open Jet and closed tunnel
run off very much alike. It corresponds, moreover, step by step,
to the method described in sections 3 and 4. An abbreviated exposition
w1ll do here, therefore, in which only the clesed tunnel is teken
up, first of all.

On account of (34) the following is appliod .

®* - cos & B(r) X(x)
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The general solution reeds, after meking use of (9).

o

] k
o = cos v[éop + \? C) Co8 — Il \/1 -8 )]

b -

(39)

where I; i1s the modified Bessel's function of the first type and
first order.

The coefficients c¢y are determined from the boundary condi-
tions (37), vhich are satisfied only for [&| < X, If the

limit A-—>« is taken, the finel solution is obteined which after
application of the integral rerresentations for the modified Bessel's
functicne of the second type takes the form

00

. K, (a) — aK,{q)
U 8 - a
* _ _bruco cos —2 1, (qp) A Tel . dq  (k0)
27°RE /1 = b Jo 1y I;(q)

From thie with the sid of (33) the edditional upwash component
is cobtainecd

cos (qo) ) dq (41)

. | .
—Ee ) o 2 _
] ViR L. aKy(a) — oK, (q)

The corresponding upwash component in the open Jet 1is

4
v o q (Q)
W w VI g4 f cos (qo) Ki

R @

= (k2)
b 2R?

. do

The results (L1) and (42) confirm the observeticn already made,
heretofore, that there is no effect due to compressibility st the
position of the wing and at an infinite distance. In the remsinder
the same sdditional upwash prevails at e position £ Dbehind the
wing as would be present in incompressible flow at the position

Vi-1n
monotonically with increasing distance behind the wing in the open

. Since the amount of the correction velccity increases
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Jot and likewise incresses least in the closed tunnel within a
‘range compereble to the tumnnel radiue, the compressible flow,
therefore, has an sbsolutely lerger correction factor.

T- NUMERICAL RESULTS

‘In the following the results of soveral mumericel calculations
shall be compiled end discussed in deteil. The axlal velocity
u* for the case of rotationael symmetry is best celculated from
formula (15) or better still (31). For this purpose the integral

o 2

_ a7 (a)

Fqy = lq cos(q8) Io(ap) b dq (13)
2r° fo I ()

is evaluated numerically by Simpsonts rulc “see table 1).

TABLE J..- VALUES FOR F. (SEE (43).)

' P
g
0 0.25 0.5 0.7% 1.0
0 0.1268 | 0.1208 | 0.1399 | 0.160% | 0.1596
.25 L1197 R el T Tl IR S LA877
.5 056 | cammem | e eeeea 1242
» 75 . 0853 """"""""""""""" . 0710
1.0 L0652 | memmee b mmmeee | emmen .0L09
l . 5 4 03)!‘5 """""""""""""" . 0199

Next, figure U4 presents the variation of the additional
.velocity u* elong the tunnel radlus in the plane x = 0. Since
the Mach number in this cage only appears in the factor in fr-nt
qf the.;ntegral, i# is sufficient to plot only /1 - p.séga %f-.
It 1s seen that the edditional velocity toward the tummel e-ge

takes on possibly 60 percent more. The assumption ~i an additional
velocity (compare reference 5), constant over the cross section
does not prove correct, therefore.

PR
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Flgure 5 shows the variation of T 5‘— along the tunnel

axis (r = 0).

For the velocity at the tunnel wall, from a rational point
of vliew, not u¥, but the quantity U increased by the
displacement flow, is plotvted for it is certainly this increased
velocity T which 1s accessible for direct measurement. The
variation of # as & function of x appears in figure 6. For
. the two-dimensionzl case (equation (32)) it is necessary to
‘evaluate the integral

adq

Fy =%[ cos(ql) cosh{qn) ;-é-a—-:—z (4k)

The numerical %ralues' obtained by Simpsonts rule are in table 2.

Figures 7 and 8 show the variation of the additional velocity
w* elong the y-axis (x = 0) eand along the x-axis (y = 0).
Figure 9 gives the induced velocity at the tunnel wall.

The dowmwash correction factor for the closed tunnel should
be represented by means of the upwash w  according to equation (41).
In integrating with respect to o the unsulitable Integral can be
avoided by using the following relation in accord with (36)

A/"'O /Voo qug((l) - Q.Kl(cl)
ao cos{qo) dg = =«
<o - o I]'_’("-l)

Then
il ( (45)
W = ——— (1 + X b5
YR &
where g |
2
1/ VI 1 Kp(a) - ak3(q)
Kg ==~ do [ cos(qo) dq (L6)

J o «./o Il'(q')
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g
This function has been tabulated for \/. =0.. .5
. L -
in which the integral has again 'been evaluated. by Simpson‘s rule.
(see ta.ble 3.)

’T’he curve for the variation of kG is shown in figure 10.
The u’pwash for the open Jet is

BT o
wE = - — ( 1l + KF) ’ ) ("I'T)
).I.“Rc.

by which

/Vl M /' 9%, (a)
do cos{qo) ——=— dg - (48)
J o IJ_(Q.)

Teble 4 contains the numerical values.

The curvee are presented in figure 10. A comparison with
the variation calculated by I. Lotz (reference 1), for u-= 0
ond & wipg of finite wing span shows good agreement in the case-
of the open Jet, on the other hand somewhat lavrger devietions for
the closed tunnel, without assigning a reason for this different
behaviour. On the other hand the veariastion of both curves of figure 10
agree very well with the results calculated by Tenl and Taima,
(reference 5) using the Burgers method.

SUMMARY

The problem of the effect of the limitation of the Jet on
the flow past a model is hendled by proceeding from the Prandtl
linearization of the differential equation of the compressible
medimm. The disturbance which the model causes near the wall,
at the same time, is represented, approximetely, by & dipole or
horseshoe vortex. The boundary-value problem arising in this,
at the limit of the Jet is solved exactly to learm the additional
flow due to the effect of the edge of the stream. The solutions
are evaluated numerically, to the extent that they ere of lnterest.

Translated by Dave Feingold
Netional Advisory Commibtee
for Aerconautics



186

NACA TM No, 1162
REFERENCES

Iotz, I,: Correction of Downwash in Wind Tunnels of Circular
end Flliptic Sections, NACA TM No. 801, 1936.

Franke, A.,, and Weinig, ¥.: Die Korrektur der Anstrdmgeschwindigkeit
und des Anstrimwinkels in einem Hochgeschwindigkeitskenal mit
geschlossener Messtecke infolge der Verdréangungsstrimung von
Tragflilgelmodellen., FB 1171, 1939.

Prandtl, L,: General Considerations on the Flow of Compressible
Fluid., NACA TM No. 80%, 1936,

Prendtl, L.: Theorie des Flugzeugtragfliigels in zusammendriickbaren
Medium, Iuftf.-Foreschg, 13, 1936, p. 313.

Tamla, E,: Der Einfluss der Strahlgrenze in Hochgeschwindig—
" keitskanulen. FB 1007, 1938,

Teni, I.,, and Taims, M,: The Boundary Influence of a Circular
Wind Tunnel on the Pitching Moment of the Teilplane, Journ. of
the Aeronautical Research Inst., Tokyo Imperial University,

Nr. 1k1, 1936,

With regard to designations, definitions, and tables of

modified Bessel's functions see Gray, Mathews, MacRobert, A
Treative on Bessel Functiong, London, 1931.




NACA TM No,- 1162 _ 19

TABLE 2.- VALUES FOR Fp (SEE (L4).)

m
g
0 0.25 0.5 0.75 | 1.0
| o0.309 | 0.1350 | 0.1487 | 0.1771 | 0.2335
25 1283 | mmmemes 1 mmemen | meemee 2239
5 162 | memmee | cemeee | omemees 1696
N o R R e B .097h
1.0 0828 | eeeee e e | enemaa .0637
1.5 (0559 | mm-me- R TR BT .0323
TABLE .- VALUES FOR Kg (SEE (46),)
e
\_/ i—T—iJ; Kg
0 0
.2 L1197k
it .3829
.8 . 6831
1.2 .8726
1.6 9735
2.0 1.0198
3.0 1.0392
5.0 1.0208

.

TABLE 4.~ VALUES FOR kp (SEE (48))

Ned

g e
V1w %

(o)
o

L1571
- 3057
+5531
. 7186
.8183
.8730
9677
9856
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Figure 1.- Designations in the case of rotational symmetry. (x-axis is the
axis of symmetry).
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Figure 2.- Designations in the two-dimensional case.
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Figure 4.- Axial additional velocity in the plane X = 0. Case of
rotational symmetry.
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Figure 5.- Axial additional velocity along the tunnel axis. Case of
rotational symmeiry.
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Figure 6.~ Induced velocity on the tunnel wall. Case of rotational symmetry.
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Figure 7.- Axial additional velocity in the plane x = 0, Two-dimensional
case,
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Figure 8.- Axial additional velocity in center of tunnel for two-dimensional

case.
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Figure 9.- Induced velocity on the tunnel wall for the two-dimensional case.
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Figure 10.- Downwash correction factors for closed and open tunnels.




