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 WATIONAL ADVISORY COMMITTEE FOR AFERONAUTICS

TECHNICAL MEMORAKDUM NO. 1064

HETHODS OF STRESS CALCULATION IN ROEATING DISKS*

By S. Tumarkin'
' SUMMARY

The paper describes methods of computing the stresses
in disks of a given profile as well as methods of choosing
the disk profiles for a given stress distridbution for fur-
bines, turbo blowers, and so forth., A new method of in-—
tegrating the differential equations of Stodola leads to
a siuplification of the computation for disks of hyperbolic
profile. It was found possible to apply to the equations
a method analogous to the methods of Donath and Yanovsky
for disks of constant thickness, the sum and difference of
the stresses S =T + o0, D =T - 0 being replaced in the
equations by the expressions S = mo + T, D = no + r
where m and 1n are constants. There is investigated,
for the first time apparently, the problem of the choice
of profile for disks carrying lateral blades. In gontrast
to the case considered by Holzer of disks with blades at-—
tached at the rim, it is impossible in this case to assume
arbitrarily the curve of radial stresses and the edge
thickness of a disk., In a number of cases infinitely di-
verging and other unsuitable profiles occur. The dependence
of the 9rofile shape on the assumed stresses is investigated.,
An example of the improvement of a typical disk profile is
analyzéd shéwing consideradble gain in material on approach-—
ing the condition of uniform strength. The method of Holzer,
for disks with blades attached at the rim, is considerably

- simplified by dispensing with the necessity for graphical or

mechanical integration. There is considered also the possi-—
ble 1limit of tangential stresses for a given curve of radial
stresses, a factor of much value in selecting a profile.

BIREK S SR

*Report No. 262 of the Central Aero-Hydrodynamical
Institute, Moscow, 1936.
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©  INTRODUCTION

The determination of sitresses in rotating disks is a
problem that has received much attention. The problem
was worked out at first chiefly in connection with steam
turbines. The recent development of machines for moving
gases (fans, blowers, superchargers for airplane engines)
has lcd to an increased interest in the subject and has
introduced specific requirements.

R L

The papers by Yanovsky (reference 1), Volkov (in ref-—
erence 2), Cherny and Baklanov (reference 3), Rees (refer—
ence 4), and the work conducted at CAHI are witness to
Russials heightened interest in the subject. The coantinu-
ally widening application of computed disks proves the
importance of devising rational computation methods and
explaians the econstant increase in the number of investiga-—
tion papers in this field. The foreign literature oxn this
problem is extensive though of unequal merit., &t times,
no use is made of important results aiready obitained — for
exanple, the principle of Von Mises. Even such leading
investigators as Kearton (reference 5) and Ostertag (ref-—
erence 6) present extremely laborious and outmoded methods,

In the present paper methods are presented for the
computation of the stresses.in given disks and the selec-
tion of the profile of rotating disks for assumed stress
distribution at various conditions of loading. The latter
problem for disks carrying side blades is investigated
apparcntly for the first time. The problem first consid—
ered is to compute the stresses for a given disk. The
starting point here is an assumed approximation to the
shape of the disk profile with the aid of hyperbolic

. curves., '

The following method of integrating the differential
stress equations leads to a solution in a form which is a
direct generaligzation to hyperbolic disks of the method
of Donath (feference 7) for disks of comnstant thickness.
(The method of Donath is the basis of all subsequent’ work
. on flat disks.) A simple transition from the stresses at
the inner radius of the ring to those at the outer radius
are given in this method, and no recourse is had to the
construction of tables or charts, In particular, for
disks of constant thickness, this method leads to that of

Yanovsky which appears the best development of the Domnath
method-‘
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The second fundamental problem is that of selecting

‘a- profile for .a g€iven stress distribution. The problen

was first formulated by Holgzer (reference 8). THe solu—
tion of this problem becomes difficult in the case of
disks the load of which is distributed along the radius.
The occurrence of singular points in the differential
equation of the profile leads to the possivility of ob-
taining infinitely divergent profiles, and so forth., In
the casc of finite edge thickness the latter, it appears,
cannot be arbitrarily assumed as in the case of the disk
considered by Holzer, but is related in some manner with
the chosen stresses and loads. In this connection a de—
tailed investigation is made in the present paper of the
problem of the dependence of the profile shape on the
given strosses, As shown by examples, the application of
these methods leads to a certain saving in material, the
gain being most marked for a stress distribution giving
uniform strength.

Ag regards the problem solved by Holzer, other authors
such as Yanovsky (reference 1), Arrowsmith (reference 9),
have departed from the direct path followed by Holzer in
view of its technical complexity. The following shows how
a suitable seloction of the form of the functions which
give the radial stress leads to the possibility of carrying
out the gquadratures so that the solution is obtained in
the form of simple finite formulas., The computational work
is many times reduced without impairing the accuracy.
This method is particularly convenient for the disks of
steam turbines. '

In the present paper the gquestions of temperature
stresses (reference 10) are not considered, The problems
of the stresses due to unsymmetric disks or loadings are
Pressing and await full investigation. ’

The approximate equations of the stresses in disks of
varying thickness were obtained by Stodola in 1903 (refer-—
ence 11). Yot counting disks of constant and ellipsoidal
thickness, one attempt to obtain a more accurate solution
may be noted — namely, that of Cornok (reference 12), ,
who gives a general equation from which there is then de-—

‘rived the solution for hyperbolic disks. This. solution. is

comparcd with that of Stodola. For conical disks a mothod
is indicated in the form of an infinite series, The paper.
of Cornck contains errors, however, in the computation of
the mean stresses because in integrating no account was
taken of the dependence of the limits on the paramcter,
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It is noted that if the equations of Cornok were true,

-then they would provide for any profile a solution requir-

ing only two gquadratures. For coénical disks there also
would be obtained @& simple finite solution instead of the
infinite series used by Cornok.

The Questlon of the effect ‘of the assumptions made
was subjocteévby Stodola to a theoretical analysis (refer-—
ence 13). MHoreover, he checked the assumption of the

uniforn distribution of the radial stresses in the cylin-

drical sections of the disks making use of the accurate

solution of Cree for ellipsoids. (See Stodola, 89é:) L

It is interesting to follaw this comparison. THE:FETIBW—
ing conclusion may be drawn on the basis of the computa~—
tion conducted by Stodola for various shapes of ellipsaids.
In the method of Stodola no difference in stresses in
thesc cllipsoids appears because all thicknesses arec pro-
portional and the equations of Stodola are unaffected by
such variation in the thickness of the disks, The stress
curves of Orce, however, show for the various ellipsoids
a diffeorence up to 30 percent, the maximum stress in the
ellipsoids of flat shape being less than in more convex
ellipsoids.

As is naturally to be expected and confirmed by this
computation, the Stodola solution for thin ellipsoids prac-
tically does not differ from the accurate one. For ellip-—
solds approaching the spherical shape the cquations of

Stodola give stresses up to 30 percent less than the actual.
It also should be mentioned that the tests of Stodola

on resinous models of disks (reference 13) have shown that
in wide hubs the effect of bending begins to predominate,

REVIEW OF METHODS

The main paths followed in the development of the
methods are indicated. (See also reference 10.

The equations of Stodola are solvable in finite form &
‘only ‘for certain particular shapes of.profiles — for disks

of constant thickness, uniform strength, and hyperbolic,

On some of them more will be said. For trapezoidal sec—
tions (conical disks) the solution can be obtained only in
the form of an infinite series, Practically applicabdle
disks have complicated profiles, however, and for these the
equations of Stodola permit obtaining approximate solutions,

RN

™~
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To the first group the methods giving approximate

" goluttions ‘starting from the genecral form of these equations
may be referred. Here belongii the graphical method of
Stodola by which, assuming the curve of radial stresses,
the profile of the disk is found; and the method of Kellar
(in refercnce 1, p. 335), who substitutes small finite in-—
crements for the differentials, To this group also beloags
 the method of Holzer (reference 8) where & curve of radial
stresses in graphical or analytical form is assumed and

the work of Pdschl (reference 14) employing the method of
Ritz. All these solutions are practically inconvenient.
Much more simple are the methods using one of the previ-
ously mentioned types of profiles for which the integra-—
tion does not present any special difficulties.

In regard to this, three methods based on disks of
constant thickness, hyperbolic disks, or conical disks
have been developed., Gribler (reference 15) was the first
to follow this method, Recently there also has appeared
an attempt to make use of certain exponential forms of
profile (references 16 and 16a).

By substituting approximately for the profile of the

£, Grubler showed
r

that by taking into account the boundary conditions of all

such rings a sufficient number of equations is obtained

for computing the stresses over the entire disk. It is

truec that in this case the method is still inconvenient.

It has been adopted, however, by Kearton.

disk a number of hyperbolic curves y =

A now line of development was taken by Donath in 1912
(reference 7) whose method also was explained by Hacrle
(reforence 17), Donath based his computation on constant
thickness profiles from which a stepped disk is formed
approximating the given disk. Between the individual steps
the stresses undergo discontinuities which may be computed.
‘The second main feature of the method of Domath lies in the
fact that instead of the stresses themselves their sum and
differcence are used, This device has proved to B& very
convenient for reasons which will be explained and has been

T Edapted for Adisks of -constant  -thickness.. . In connection

with this method Donath constructed a rather complicated
chart with two families of curves.

The method of Donath was perfected by Grammel (refer-—
ence 18) who substituted simple graphical constructions
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“ for-Donatht!s charts and by Yanovsky (reference 1) who

proposed a convenient numericdal method. Yanovsky gave

much attention to the problem of Holzer., The methods of
Donath and Keller required several trials for satisfying
the boundary conditions. Von lises showed how the bound-—
ary conditions could be satisfied by making use of a
fundamental family of linear differential equations.

Only two trials were found necessary, the second being
facilitated by having the angular velocity equal to zero.
This device received wide application and it was suitable
for all methods — for steps of constant thickness as well
as for hyperbolic or other steps, Driessen (reference 19),
likewvise developing the method of Donath, extended somewhat
the application of the foregoing device, The method of
Cherny and Baklanov is essentially contailned in the method
of Arrowsmith, but a fuller table is given for disks of
constant thickness.

While they possess the advantage of simplicity, the
methods based on constant thickness steps are inconvenient
in that for a good approximation to the shape of the curve
a considerable number of steps are required, In view of
this fact, methods making use of hyperbolic steps continued
to be developed, The ease thereby obtained of approximat-
ing to the shape of the disks is explained by the presence
of two free parameters and also by the fact that in their
construction applied disks approach the hyperbolic shape.

Martin (reference 20) constructed a family of curves
to facilitate the computation of hyperbolic disks for cer-
tain values. of the exponent: o = 0, 1, 2. Recently, the
charts of Martin have frequently been supplemented for
other values of the exponent, (See Knight, reference 21,
and Hodkinson, reference 22.) Arrowsmith (reference 9),
dispensing with graphs, transformed the formulas of Stodola
and constructed tables that permit finding the stresses in
hyperbolic disks for the ratios of outer to inner radius
of 1.02, 1,05, 1,1, and 1.2, This does not permit making
use at all times of the fundamental advantage of the hyper-
bolic disks - namely, the small number of steps required,

. Ratios of the radii greater than 2 are encountered in the

computation and for these,'according to the method -of
Arrowsmith, no fewer than four steps would be required.

Volkov does not make use of the device of Von Mises,
and the constants of integration are not excluded ~ a fact
which complicates the computation.
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The third group of methods is associated with conical

" disks. Fischer (reference 23) and Honegger (reference 24)
present a large class of profiles, including conieal, for

which the stress equations lead to the hypergeometric
series of the Gauss equation. Honegger computed tables of

functions entering the solution. Martin (reference 25)

arrived at analogous results making use of the principle
of Castigliano in deriving his equations with the same <& o
assuiaptions as those of Stodola, In 1934 Malkin (refer-—
ence 16) showed new Torms of integrable profiles:

—-Bré ' -—Brg

Yy =« e and y = o e

upon which a computation was based. Since for the latter
profiles the equation may be transformed into a Bessel
equation, it is possible that the corresponding tadbles are
found among tables of Bessel functions, ©Some of the

tables of Malkin have already been published (reference 16a).

Holzer (reference 8) approached the computation of
disks from another direction, 3By assuming maximum stresses
it was sought to obtain the profile requiring the minimunm
expenditure of material. This was supposed to be equiva-
lent to finding the profile possessing the maximum energy
of deformation possible at the given stresses. The solu-
tion of Holgzer is unsuitable for disks not loaded at the
rim (disks with side blades). A solution is given for
this case. Holzer applies mechanical or graphical quad-
ratures for solving the problem of the choice of profile.
Other methods also were suggested by Yanovsky (reference 1).
and Arrowsmith (reference 9). The method of Holzer becomes
very simple if the forms of the functions for the radial
stresses are suitably chosen.

. It is of no value to raise the question as to which
formulation of the problem — namely, to find the profile
for given stresses or conversely — is the more correct.
In practical construction both problems are equally
important., v
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~ NOTATION
T distance of element of disk from axis (ecm)
¥y thickness of disk at radius r (cm)

g or © radial stress (kg/em®)

oy or T tangential stress (kg/cm®)

£ radial displacement of disk element (cm)
w angular velocity of disk (sec™?)
v ratio of transverse compression to longitudinal

extension (Poisson ratio)

E elasticity modulus (kg/cm®)
Y density (kg/cms)

2
o = Ywo (iﬁ%

& cm

I. STRESSES IN GIVEN DISKS — FUNDAMENTAL EQUATIONS

The first equation is found from the condition of

equilibrium of the disk element (fig. 1). The stressecs

o and T are assumed not tqQ vary along the axial direc—
tion of the disk. '
7 For the lower part of the element the radial force

is equal to rd8 y o. The resultant of the radial stresses
is equal to
d (rycds)

J,The,resultant.of,the_tangentjg} stresses is equal to

y1drde

The centrifugal force for the given element is equal to
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2
Xg— r3ydrdd

or

craydrde
From the equilibrium of the element there is obtained

4 (ryo)

- yT 4+ cry = O (1)
dr

Owing to the centrifugal force of side blades, for
example, the effect of loads distributed along the radius
must be added to the foregoing forces. This is most
simply effected by adding to the disk a certain nominal
thickness M of the same material and which does not
carry any stresses, but gives only an added centrifugal
forcee The thickness m is taken so that its centrifugal
force at any radius is equivalent to the external load.
Instead of the centrifugal forces of the element cr®ydrd$
in the equation there cnters the total centrifugal force
er® (y + m) dra® and the equation becomes

CSRIYT. v 4 oert (y+ @) = O (2)

Thus one equation has been obtained for the two vari-—
ables ¢ and T, A reclation can be obtained from Hooke's
law connecting the stresses with the deformations. For
the assumed condition of absence of axial stresses, the
deformations are obtained

m
]
td

(o - vT)

(3)

(T —ve)

ot
i
e

Both deformations can be expressed in terms of the radial
displacement of the element




Do
R

NACA TM No. 1064 : ' 10

-s\
=L
i | (4)

m
H
i
o jo
M
—

Thus
%“Ig" = % .(G - UT) (5)
- L (F
f = (% wc)J

There are two ways in which to proceed: eliminating 4
there 18 obtained the condition for ¢ and T:

Qe (1t - v0)] =0 - w7 (6)
dr
aT _ v do _ L.i_z {c - 1) (7)
dr dr r

This 1s the equation of the interrelated stresses, It is
independent of the shape of the disk profile. Xnowing

one of the stresses, the other may be found from the equa-
tion with the aid of guadratures. It should be particu—
larly noted that after the stresses ¢ and T are compubted
the values of the radial displacements at the various radii
of the disk are directly obtained from formulas (5).

By the second method, instead of this system of two
equations of the first order there is obtained a single
differential equation of the second order for the radial
displacement §., For this purpose, ¢ and T are
elimihated from equation (2) with the aid of equations (5)
to obtain

2 a . ‘ . .
d d

E+<1ny ) "dlny-.._>g+ cr<1+"l>=o (g)
dr v

If for a given profile this diéplacement equation can be
solved, the stresses may then be found by equations (5)
solved for the stresses:
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. ~N
1l —-v \dr T R
> (9)
1 - dr T/
et

The system of equations (2) and (7) or equation (8)
is the basis for computing the stresses in a given disk
as woll as for the choice of profile for given stresses,
At the various parts of the disk it is generally assumed .

that % = constant, which condition is applicable to a

large number of the steps. This permits each step to be
considered as free of external loads, but with density

increased by r+rn times., For this reason disks with-
y

out loads along the radius are considered.

Stresses in Disks for Load Applied at the Rim

In the absence of loads at the sides of the disk
n = 0, The formulas of the stresses in the form given by
Stodola for hyperbolic disks are first presented. Then
it is shown that another method of integration leads to
considerably simpler relations,

The equation of the hyperbolic profiles is

y = - (10)

Then Q_%%_X = - % and equation (8) leads to the equa-—

tion of Zuler. By integrating it, Stodola finally arrives
at the following form of the stress equations

B
1 - v*

[(3+v)ar® + Wy +U)b1r\u1—1+ W, +V)b3r%v'1‘3

(11)

B \y1“1+ (1 +\f’2")b2r‘ba_1 ]

L
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where

(l_umvé) Y&awwu“
a = —

Eg[8 - (3 + v)a)

Yy, and VY, are the roots of the quadratic equation

wé—a\v~(l+w)=o . (12)

and b; and bz are constants of integration determined
by the boundary conditions.

Another order of integration that leads to consid-
erably simpler relations between the stresses ¢ and T
is given.

Transformation of the Lineaf System of Differential Eguations
of the First Order

Eguations (1) and (?) form a nonhomogeneous system
of two linear differential equations of the first order.
A substitution may be found by which the solution of any
such srstem leads to the integration of a Riccati equa-

tion and guadratures.

Let the given system be

&g agd + BT + ¢ ~[
dr

I

(13)
T s + DT 4+ o '
dr ' '
where a, b, ¢, al, b‘, and e¢' are funetions of 1r..
By introducing the new variable
z = ko + T ’ (14)

where k may likewise de?end on T
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B vgi = o 4k + k 4o + QL
a4rF 7 dr - cdy.-- dro.
or
(-— + ak + a )0 + (bk + b")T + (ck + c') (15)

‘The value of k may be chosen so0 that the right-hand
side depends only on 2z without containing o and T
explicitly. For this it is sufficient that the ratio be-
tweenn the coefficients before o and T be the same as
in 2 = ko + T - that is,

(-- + ak + a'> ¢ (bk + bp') =k ¢ 1 (16)
Then .
%f = (bk + b')z + (ck + c') (17)

that is, instead of the system (13) there is obtained a
single linear equation for z.

Requirement (16), however, which must be satisfied
for Xk is no other than the equation of Riccati:

%E = bk” + (b' —a) k — a' (18)
r

If two particular solutions of this equation can be found -
denote them by m and n - there is obtained for each of
them the corresponding values of 2z - denote them by §
‘and D ~ and the variables ¢ and T may be expressed

by the two equations arising in place of (14):

A

"
@

“mo + T
(19)

i
g

nc + T

These equations contain two arbitrary constants. In
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this case the system (13) on the basis of equations (1)
and (7) is of the form. . . S e

11.9.=_<.1.+§;._.1.£..Z>o+1..cr
dr T dr

z .
' (20)
ar (l . d In y T
= = = - = )@ -~ =~ ~ per
dr r v dr r v
With 2 = ko + T, equations (17> and (18) for 2z and k-
become
8z - k=1, _ o(k+ v) r (21)
dr r
and
dk o L2 4 lny (L _ é_la_x> (22)
dr T dr T dr

Hyperbolic Profile

The preceding equations hold for any profile. The
first does not at all depend on the shape of the disk and

the second, for hyperbolic disks for which y = j%,
assumes the form T

8k - 1 (k® _ gk - po — 1) (23)
ar r

and evidently can be satlisfied for constant values of k
equal to the roots m and n of the quadratic equation:

k° -~ gk — pa - 1 = 0 (24)
that is,

o a®

. 2 +'A/ —— e +

m 3 /f Z Do l .
(25)

w/gf-+.vq,+1

n
i
wiR
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These roots are real and different for any value of «a.

"It is of interest .to note that equation (24) is the same

gquadratic equation which figures in the soldtion of™
Stodolas

From the linear equation (21) the values of =z are
found, For Lk = m, for exanple, :

r-

n—1 ~f b=l g
Z = 00 4+ T = @ T ¢ a4 -v/pc(m + vlre = T er

or

3 —m
mo + T =12 P [A - (m+ v)e £——~—J
3 —m

where A is the constant of integration,

Adding, by analogy, & similar equation for the other
root k¥ = n and setting

M m+ v

(26)
¥ = ¢ 212

finally. there is obtained for the relations between the
stresscs®

mg + T + Mr®

= constant
m—1
r
(27)
ng + T + Nr®
T = constant
B ' )
*¥If m = 3, which occurs for a = 5—%:; (for steel

2.42) then a logarithmic function appears in the integra-—

tion and the first of relations (27) assumes the form

360 + T + ¢(3 +v)r® in r
ra

= constant

A sinilar added note should be made to the solution. of
Stedola, }
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BEquations (27) are much simpler than the solution in
the form given by Stodola as represented by equations (11).
It is immaterial for the computation that equations (27)
are not solved for the stresses, since it is another factor

“that is essential: namely, that the equations contain only

a single constant each and thus permit easy passage fromn
the stresses at the inner radius of the disk to the stress—
es at the outer radius. :

It is possible to express directly ‘the final stresses
in terms of the initial, as was done by Arrowsmith, Equa-—
tions (27) readily permit finding these expressions in the
form

.02

il

Ag, + BT ; ~ Ckr,?

Ta

After such transformation, however, formulas (27) lose
their sinplicity and are less convenient for computations.
The coefficients of the equations of Arrowsmith are cum—
bersome and further on it is found necessary to construct
tables.

Generaligation of the Method of Donath

A relation which exists betwecn equations (27) and
the methofl of Donath is observed.

Whet equations (27) become in the case of flat disks
shall Dbe considered. Setting o = 0, there is found
m= 1, n = -1; whence

T + 0 + Mr® = constant
: (28)
T - g + Np° = Sonstant
r2

according to which ~ leading to Donath's result for flat
disks — operate with the sum and difference of the stresses
in place of the stresses themselves, The expressions for
the sum or difference of the stresses contain a single
constant each, It is therefore necessary to know their
values for one radius in order to determine their wvalues
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dvoer . the entire disk. Each stress by itself does not

‘possess this property, since it .involves two constants.

It can now be seen that in equeations (27) for hyper—
bolic disks there should be considered not only the

stresses themselves but also their combinations mo + T

and no + T, ZEquations (27) thus generalize the method of
Donath to hyperbollc disks.,

Before proceeding to the description .of the compu—
tation, the manner in which equations (27) may be derived
from Stodola's solution will be observed. Each of equa-~
tions (27) contains only a single constant. In order to
obtain a similar kind of equation from Stodola's solution
which contains both arbitrary constants, it is necessary
to solve these equations for the constants. Bearing in
mind that the roots of the quadratic equation (1l2) are
connected by the relations

' 1 + vy
+ Yo o= aj Yy Yz = ~(1 + va); ;’ff%g = —Va; ;f;*%ya = ~V¥,,
1 a

the formulas thus derived agree accurately with equations
(27).

The latter consideration permits a still further

generalization of the method of Donath, For any profile
the solution is expressed in the form

[«

i

Cipy (r) + Capz (r) + @5 (r)

T Cav, (r) + CaVs (r) +W5 (r) .

1l

where ©C, and C ard the constants of integration, 3By
solving these equations for the constants, equations sim—
ilar to equations (27) are obtained. By this method, for
exanple, the solution of Malkin for disks with'profiles

- <k
vy = o e F r¥3

might be simplified,
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Computation of Hyperbolic Ring

A fundamental and repeated operation in the computa-—
tion is the transition from the stresses at the inner
radius of the ring to the stresses at the outer radius.
Let r3, @,,and so forth, be the values at the inner ra-
dius and rg, 0, and so forth, the values at the outer

radius.

Setting Mr?2.

i
©

_ (29)
¥r® =

|
o'

Previously equation (19) was obtained

S =m0 + 71

D =no + 7T

Bquations (27) are rewritten as

S + a
;EZE“ constant‘l
v{ (30)

[

Q_t-h = constant
n—-1
T
whence
S +ag =p (8, + al)\\
(301)
Dy + ba = a (0g + o) [
or
Sz =p (8; + a,) - az
(31)
Dy = q (D + b;) - b3
where
m-1 =1
: T
p = (;ig : q = < ag:> (32)
T b o .
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Equations (31) are the fundamenfal equations giving the

Conversely, knowing § and D, ¢ and T are ob-—
tained from equation (19): .

(33)
T = D - no

-

The computation procedure is as follows: when the
values o©; and T, at the first radius are known, the
values §,; and D; are obtained by formulas (19);

S,

1

mey + Ty

Dy

i

now, + T,

Yext, pass to the second radius by formulas (31) and
finally return to the stresses by formulas (33):

Computation of Ring of Constant Thickness

In this case, since o = 0, m = 1, n = =1
S =T + 0
: ‘> (34)
D=7 -c
M= 2iEtl
PR _;.4::2‘ - . .
(342)
1 -v

N = = = ¢

4
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(35)
Ds = q(Dy+b,) — by :
p =1
(36)
o= (3
rp
oy = 227 D2
2
(37)
Ta = Dy + O3

These formulas lead essentially to the scheme of Yanovsky
for flat disks.

Computation of Disks of Ardbitrary Profile
(See following example and collection of formulas.)

Division of the profile into successive rings.- By
taking the radius along one axis and the disk thickness
along the other the profile to logarithmic scale- is
plotted., (On ordinary graph paper the values of 1lg r
and lg y may be plotted.) The obtained curve is re-
placed by a bdbroken line the sections of which correspond
to the hyperbolic parts of the profile since a straight
line in the logarithmic plo} corresponds to the equation

where the exponent o 1is the negative of the slope of the
straight line. The coefficient « for a hyperbolic sec—
tion may be found by the formula '

o = S8 V2 g€ ¥z (38)
lgrg -~ 1lg r,
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where ¥y, and yp are the thickness of the profile at
radii ‘ry and Tg, respectively. . L

In choosing the broken line, in order to decrease
the number of steps, it is sometimes useful to disjoin
the ends of the sections of the broken line, a procedure
whiclh corresponds to discontinuities in the thickness of
the disk (although the given disk does not contaln such
discontinuities).

When the value of a is known for each section, the
auxiliary magnitudes* mn, - , q, M, ¥, a, and b
are found from formulas (25) (26), (29). and (32). The
value of m may also be taken from table I and since =n
and n are the roots of the quadratic equation (24), then

n=ao - N (38')

Stresses. Principle of Von Mises. Discontinuities
in Thickness.~ Usually the radial stresses at the inner
and outer radius of the disk are given. At the inner
radius the stress is taken either equal té zero or to the
bearing pressure on the shaft and in the latter case it
should be considered as negative. (Kearton and Ostertag
erroneously take that pressure to be positive.) At the
outer radius in the absence of loads the stress is also
taken as zero. 1In the presence of blades the centrifugal
force of the latter creates a radial stress which must be
computed in advance,

Not knowing the values of the tangential stress 7T,
at the inner radius the computation, following Von Mises,
is conducted twice, TFor the first computation any arbi-
trary value To is taken., With the aid of computation
experience of the given type of machine this value can be
chosen to lie near the true value by choosing suitable

: Yw?R®
coefficlents in the expression

, which gives the

stresses in a rotating ring. The stresses in the succes-
sive rings of the disk are then computed. The stresses
"at the end of one step are taken for the initial stresses
in the following step. An exception is made in the case
where the thickness of the ring changes discontinuously at
the boundary of the two steps.

*To compute p -and ‘q slide rules with log-log
scales which raise a number to any power are convenient.
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Let y be the thickness of the disk before and

. ¥.+ Ay the thickness after the point of discontinuity;

The stresses O and T will then likéwise receive-dis-
continuous increments Ag and AT which are computed
by the formulas

Ao = - —~ézz; o .
v (39)
AT = v AC

where .0 1is the stress immediately before the point of
digeontinuity. It is recalled that the derivation of
these formulas is based on the assumption of uniform dis-
tribution of the stresses over a cylindrical section of
the disk. The equilibrium condition of an element for

dr = 0 in this case becomes

yo = (37 + ay){c + Ac)

whence there is also obtained the first of relations (39).
The second may be written on the basis of equations (5) in
view of the equality of the radial displacements before
and after the discontinuity. There is obtained

T ~po = (1 + A7) -~ v(c + AC)

whence

AT = v Ao

The second computation differs from the first essen-
tially in that this time the disk is assumed stationary:
w = 0, Hence the magnitudes ¢, M, XN, a, and b be-
come gzero., The transition formulas to the new radius are
simplified. They are written:

S2 = PSI‘L {40)

Do qD3 j

The initial tangential stress in the second computation
may likewise be chosen arbitrarily, but the initial radial
stress must be taken equal to zero.

By completing the second computation similar to the
first for the entire disk (what was said with regard to
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the discontinuities holds likewise for the second computa-
tion) the. true stresses,are obtained by multiplying all
stresses of the second computation by a certain constant
coefficient k and adding to the stresses obtained by the
first computation for corresponding radii:

Oy = 01 + k gr1
Tue (42)

Ttrue = T1 + k T11

where the coefficient k is found from the equation

Oy + kOrp = Otrue

It may be noted that the first computation corresponds
to finding a particular integral of a nonhomogeneous dif-
ferential equation and the second to the solution of the
corresponding homogeneous equation; the general solution
being the sum of the first and the second multiplied by a
constant and evidently satisfying the boundary conditions.

Computation Check
By checking, the following formulas are convenient:

1. For checking p and gq:

Q-2

rq =(§f- (44)

2. For checking a and b;

1 + 3v
m + —————

2 . 3 + v (45)
1 + 3p
3 + p

n -+

" 3. For checking the stresses at the rings:. .

MmOy + Ty + a, = plmoy + T, + a,) (46)

In the second computation since a; = ap = 0, the
following formula is used - '
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mé, + T, = plmo, + 7,) : (47)
The check is made immediately after obtaining the corre-
sponding values. The accuracy obtainabdle with the common
slide rule giving three slgnificant figures is in general
sufficient for the computation. The entire procedure
also is clear from inspection of table 2 which should be
filled in vertically in segquence. The columns for § and

D, however, are simultaneously filled in with the stresses
o and T for each step.

Example

The data for the disk that was computed by Holzer is
chosen, making certain changes introduced by Yanovsky (ref-
erence 1). It is required to compute the stresses in a
steel disk (fig. 2) with outside diameter 132 centimeters,
inside diameter of the rim 120 centimeters, outside diam-
eter of the hub 24 centimeters, inside diameter of the hud
16 centimeters, thickness of hudb 1l centimeters, and thick-
ness of rim 2,8 centimeters. The disk is to run at 3000
rpm. The load due to the centrifugal force of the blades
vnder these conditions is 400 kilograms per square centi-
meter of the outer area of the rim. The radial stress at
the inner surface of the hud is equal to zero.

The thickness of the disks at the various radii is
given as follows:

r

(cm) (em)

8 1

12 1 r .

14 6.93 Section r A
18 3.81 _ ]
22.5 2.89 i 8 ,

27.5 2.64 12 11
32.5 2.40 2 12 11
37.5 2.17 19.2 . . 3.2
42,5 1,94 3 S 19.2 3.5
47.5 1.71 40 2.1
52.5 1.50 4 40 2.1
57.5 1.30 60 1.24
60 5.8 5 60 2.8
66 J7 66
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These values are plotted on logarithmic paper (fig. 3),

- from which-it 18 seen that -with .great. accuracy_the ob-
tain curve is replaced by a broken line of five sections,
and a profile composed of three hyperbolic steps and two
of constant thickness is obtained. These data are in
columng 1 and 2 of table 2. '

The auxiliary magnitudes are computed. For the hy-
perbolic steps a is found either graphically (fig. 3?
or by formula (38). Corresponding to the value of o,
table 1 gives the value of m. Further

n = - m

With m and n known, p and gq are found by formulas
(32) and are checked by formulas (44). Find M and X
by formulas (26), compute a and b by formulas (29),
and check a and b by formula (45). Now proceed to
the first computation of the stresses.

First Step
Here are given o, = 0; T, may be arbitrarily
assumed. Assume T, = 1000 kilograms per square centimeter.

i

Sl = mO’l + Tl 1}‘0 + 1000 = 1000

D, noy + T, =-1X 0 + 1000 = 1000

i}

Pass to the next radius (r = 12):

Sz

i
"

p(S; + a;) - a5 = 1(1000 + 32.6) - 73.5 = 959.1

0,445(1000 - 8.8) + 19.8 = 460.8

[t}
i

D, a(D; + by) « b,

The stresses are

S - Dy . 959.1 - 460.8
m-n 1 - («1)

= 249

02=
Tp = Dy - no, = 460,8 - (-1) 249 = 710

The entire step is checked by formula (46),
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. Second Step .

Since there is no discontinuity in thickness between
the first and second steps, the final stresses of the
first step are taken as the initial stresses of the second:

Oy = 249 Ty = 710
and
Sy = mo1 + Ty = 3.19 x 249 + 710 = 1505, and so forth,

Account of the discontinuity in thickness must be
taken in the fifth step. Denoting the number of the step
by a superscript (for example. 61( )) will result by
equation (39)

Ao = - Y 5,0%) L | 1.56 , 548 - 1904

Yy + Ay i 2.8
whence
5 4
0'1( ) =_Og( ) + Do = 348 -~ 194 = 154
Further
AT = v Ac = 0.3(-194) = -58.2
(5) ()
Ta = Ta + AT = 817 - 58,2 = 558.8

Proceed next to the last radius to complete the com-
putation. (See table 2.)

The second computation differs from the first only in
that a and b are equal to zero.

First Step

In every case O3 = 0; T; as before is arbitrary.
Assume, for example, Ti1 = 1000 kilograms per square cen-
timeter ‘

§, = mo, + T, = 1000

L]

Dy = noy + T3 = 1000

pS; = 1 x 1000 = 1000

w
N
i

R

=]
n
1l

qD,

0.445 x 1000 = 445, and so forth.
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Table I1.- Collection of fonhulas.

: ke =g br = 49 _ ( ) f
ma=gx)/ THutl 09 “ﬁ'ﬁh;k“+’" T s : ;

; =x4q};
or from table I. ro\&—2 ) D=1—c}é
_(r\m-1  (r\s—1 Pq=(—r=) S - _

R g
m+v C ntv “_-_fr_i_"_.(I‘or a_m+0,576> . 1T "

M=ez s N=czo @) 5 TF3 \steel & #4057 (45) | ,24=Sz—2* ]

. : ) 34 . ’ 7
a=Mr b=Nrt @) moy+-1+@y=plmsy+t+a)  (46) w=Dite)

- S=mitw D=nstr (19) For steps of constant thickness: o +koy =3,
$;=p(S1+a)—a|Por first 31 a=0 e
D,=q(D;+ b;)— by | computation : 'n=11 k=t

- $=pSi| For second 14y : Check .

D =gD - (40) M=c D) For . v . ) 4

1= 9 canputation . _ M =0,65-c -_g___'__2-_l+v; Forsteel 1:—3.71
ag=2— Dt 1—v [ Steel Ny _o0175.c b 1—v el

m

; w=Dy—n 33 N=—¢ i
—n @ 1 | atnta=atnta
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True Stresses
The coefficient k 4is found from the condition that
03(5) = 400 kilograms per square centimeter. The equation
01 + KOII = Ogpye in the given case will be

. -96.6 + k 1045 = 400
whence

k =0.47H

Multiplying all ¢ and T of the second computation by
this number and adding o and T of the first computa-
tion according to equation (42):

01 + k011 Ttrue

Tp + K711 = Tyrue
yields the true stresses.

For comparison there are given on figure 2 the
stresses according to Holzer and Yanovsky, the dots indi-
cating the stresses according to table 2. Notwithstanding
that there were only & hyperbolic steps instead of 10
which were chosen in computing with constant thickness
steps almost complete agreement was obtained. It would
have been possible to decrease the number of steps still
further in the given computation without any great impair-
. ment of the accuracy. The computations were all made with
a 2B5~centimeter slide rule,.

Disks with Laterally Arranged Blades

As has been said, a lateral load on the disk is taken
into account by a nominal increase in the thickness of the
disk, the added centrifugal force being equivalent to the
external load. In other words, the density is increased
while maintaining the same loaded area, The incrsased
density over each step is generally considered coasvant.
"This is peérmissible for steps that .are not very wide. In
this case the foregoing scheme requires no changes eXxcept

2
that in computing ¢ = xg— at each step it is necessary

to take for Y
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. : quuiv,_=,yy<%_+ %)W

In the case where the lateral load corresponds to the full
centrifugal force of the blades the added thickness of the
disk TN 1is expressed through the area of the c¢ylindrical
section of the blade f at radius r, thus

N = —2‘3-5- o (48)
upa

where n is the number of blades,

If, in conducting the computation by hyperdbolic steps
vefy wide rings are used, the increase in density due to
the lateral blades cannot always be considered constant
over the step. A more accurate method for computing the
load will be indicated. It is assumed that at each step

the added thickness depends on the radius according to the
law

N =Ar€ (49)

With two parameters in the preceding formula available,
they may be chosen so that 1T very closely approaches
the added thiekness required. The substitution of this
expression in the differential equation of the stresses
hardly affects the integration.

To determine the parameters A and ¢ for the given
step, the values given by formula (48) for the outer and

inner radii of the step may be required to agree with the
true values: ‘ '

€
Ary

M
€
ry; = My

whence

_lgMe - 1g M,y
lg rag = lg.r1 . .. . .

(50)
For the case under consideration this gives

lg £ - 1g £
1g rg--lgri

=
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. The value of A further on is not directly used.

Now return to the differential equation of the .
stresses. .In system (20) there are changed only the terms
free from unknowns which are increased in the same ratio

as the density - that is, by the factor <l + D). With
¥y

the same reasoning, and setting as before
zZ = kO + 7T

it 1s noted that equation (23) for k not containing the
density maintains its form. In equation (21), however,

for =z the factor <1 + ﬂ) appears in the free term con-
Yy

taining the density. By substituting for T its value

N = Are and integrating this linear equation for both
values k= m and %k = n two equations again are derived
for the stresses analogous to equations (30):

E—i—ﬁ = constant’\
m-1
r (51)
Q_i_ﬁ = constant Y
rb-1
r -
where as before 8§ = mg + T, D = noc+ T,

The values of A and B are obtained from the pre-
vious a and b:

A=a (1 + M ﬂ)
v (52)
B=b<l+N'-n>
¥
where
Mt o= 2 =B
3+ € +n | -
(53)

N'--,———-g——:——r-nv———v.-
3 + ¢ + 1

-
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The remainder of the computatioén is not changed,

. What has been said with regard to the choice of profile,
the two computations according to Von Mises, and the dis-
continuity in the stresses remains true. '

II. CONVERSE PROBLEM -~ CHOICE OF DISK PROFILE

FOR GIVEN DISTRIBUTION OF STRESSES

This problem was considered by Holzer. (Holgzer con=-
gidered the case where the load of the disk is applied at
the rim as corresponds to the conditions of steam turbines.)
According to him, the profile should be chosen so that the
radial and tangential stresses almost over the entire disx
are near the maximum admissible for the given material, By
approximating to the condition of uniform strength economy
of material is obtained. The general procedure of Holger's
solution is the following: A curve of variation of radial
stresses 1s chosen which satisfies the boundary conditions
and risesg rapidly to a maximum value which is maintained
practically over the entire disk,(See,for example, fig. 5
or 6.) From equation (7) of the interrelated stresses:

aT do 1l + v i
SL-p &2 =220 (6 - 7)
dr dr r

the value of the tangential stress is found, the initial
value of the tangential stress (at the inner edge of the
disk) being assumed a maximum, since in practical cases
the tangential stresses usually attain a maximum at the
inner side of the hub. (See under the section on estimat-
ing the maximum tangential stresses.,) The thickness of
the profile may after this be found from differential
equation (2):

a (;YU) - 3T +Acr3 (y + 1)

T

where C and T are now known.

Holzer consmders disks for which the entire load is
concentrated at the rim, In this case the equation per-
mits separation of the variables. The initial values of
the thickness of the disk are generally given by struc~
tural considerations,
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The foregoing indicated solution of the problem is

“sﬁitaﬁlé‘fdr‘dfsks for which - the radial stress.at.the ..

outer radius does not become equal to zero. Such, for
example, are disks of steam turbines carrying blades on
the rim, (Zero stress at the inner edge of the disk has
no significance. Over a certain distance it is here,in
general, not necessary to choose a profile because the
hudb is assumed of constant thickness.) Such disks were
considered by Holzer and Yanovsky. C

The case, otherwise pertains to disks having zero
radial stress at the outer radius. Such, for example,
are the disks of blowers carrying blades at the sides or
disks without external load. For these the method of
Holzer is not directly applicable. (The reason for this
is the occurrence of singular points in the differential
equation of the profile. TFor ¢ = 0 the coefficients of
this equation become infinite.) In these cases the shape
of the radial stress curve is subject to additional re-
strictions which 1f not observed, lead to practically un-
suitable profiles -~ such as disks of infinitely increasing
thickness, disk with negative thickness, and so forth,
Moreover, even for finite edge thickness of the disk the
thickness cannot always be arbitrarily assumed as in the
method of Holger, In this case it is necessary to solve
the problem of which conditions the chosen curve nust
satisfy in order that the disk have the required edge
thickness.

- By studying the differential equation (2) of the pro-
file, criteria which determine the character of the pro-
file near the edge are obtained. Practically, they give
methods for the choice of profiles in the previously men-
tioned cases where the solution of Holzer is inapplicable,.

As was mentioned previously, in practical cases the
center hole of the disk is taken up by a hub of constant
thickness.. The investigation of the shape of the profile
may therefore be limited to the outer part of the disk.
Disks without holes will not be considered since for a
load concentrated at the rim Laval disks solve the prob-

- lem of uniform strength. 1In the case of loads distriduted

b

along the radius, the problem is solved almost in the same
manner as for a disk with hole, :
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Case cf Zero Radlal Stresses at the Outer Bdge of the Disk

In the absence of 1oads ‘over the disk radius the daif-

ferential equation of the profile becomes homogeneous.
The more simple case will be considered first.

v A A. Disks withgut external load.- Differential egua-
tion (2) which defines the disk profile in the given case
becomes

dy P
S ts V= 0 | (54)
where
P = 4o ., G =T 4 er , (55)
ar r

At the free outer radius r = R, the radial stress o
is equal to zero; hence the coeffisient p/o before ¥
here becomes infinite. If the case of finite slope of

the o curve at the edge is considered - that is, assume
49 4 0; ®» - sekting
dr

2
p _DPo* P, (R - ) + py(B - 1) +
o R -z

which means that the factor p/o has a simple pole at
r = R.

From analytical theory of linear differential equa-
tions the behavior of the integral y near a singular
point is Jjudged and thus the character of the profile is
obtained. Thus the theorem of Fuchs* applied to the sim-
ple case under consideration shows that the integral is
"proper®™ and should be of the form

Wk 2 ,
y = C(R - 1r) [1 +b,(R-1)+b(R =1} + - - -]
where C...is an arbitrary. constant and k is a certain
exponent Cee e .

The shape of the profile depends on whether k > 0,
k=0, or k< 0, If kX< 0, then evidently y--» oo,

*See, for example, Goursat, Course in Mathematical
Analysis.
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~when r-=»>R. The thickness of the disk increases infi-
nitely. (See fig., 4.) -If--k = 0,...the disk maintains a

¥y

constant thickness. PFinally, if k_>-0 the thickness of
the disk approaches zero. Which of the three cases occurs
depends on the choice of the radial stress curve and on
the initial value of the tangential stress,

" In order to obtain quantitative criteria,as well as
a general picture,the problem will dbe con51derea mgre in
detail. For slmpllficatlon of the computation, set
X = R -7

The equation of the profile becomes

ax o]
where
2. Ex) (57)
(s) X
and
P(x) = X‘E_'F Po + pi1X + paxa b e . . (58)

By integrating there is obtained
fl%dx J <%°+P1+ DXt - '->dx Po 1n x p1x+258_x2+..,
= Qe = Ce = Ce e
or
Yy = Cxpo(l + hix + h;x2 + oo e %) (59)
an integral the férm of which is that demanded by the

theorem of Fuchs. The arbitrary constant € has only
positive values.

: The foregoing expressions for the profile may be
written in a form suitable for computation:

IE:Ede
Po © %
y = Cx e (50)
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The number Po determining the c
“1s thus expressedi— - . . .

35

haracter of the profile

Po = lim <x§ > = 1lim % = 1im 4I L .
' X—=—»0 \ O x—>»0 = T-—aR - 9r ~ Or
x T ®
that is
! EE - %? + cR
Po = fri R B (61)
' _ dG)
ar / R

by which the dependence of the ty
slope of the curve of radial stre
value of the tangential stress is

The criteria given previousl

re of vprofile on the
sses and on the initial
determined.

y may be expressed in

the explicit form shown in figure 4 by using the expres-
sion for p,.

For a fuller characterizatio

consider the derivative

dy dy Po—-1
— = . =L = L0 +
dr dx x (p° €1

There are three cases

The
la,

1v.

lc.

1. P, > 0; y-—»0 for T

2. P, =0; y~—>0C for r

3. Py < O0; y-» 4+ for r

first case contains several p

Po>1; . }"‘> O, %X—é 0 for -
- : r

Po = 13 y—>0, 4y ~>» -0 for
: : dr

0 < po<1l; y—>-0, EX -3~

ar

n of the type of profile,

2
x + g x o+ - )

—~>R (fig. 4, la, b, e)
—>»R (fig. 4, 2)

- R (fig. 4, 3)
osgsibilities:

r~>R (fig. 4, la)

r~>B% (fig. 4, 1b)

for r—>R (fig. 4, 1lc)
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The préctically significant case is that for which

~ the curve of radial 'stresses approaches zero from the

positive side. The steeper the drop in the curve of
radial stresses the greater the disk expands tdward the
edge for ctHérwise equal oconditions.

Example 1. The condition that the thickness of the
disk at the edge is finite and different from zero was
obtained in the form:

T
dr in "~ ¢k - h: 4

It is8 not difficult to confirm that this condition is sat-
isfied, for example, for a solid disk of constant thick-
ness the stresses of which, as is known, are expressed by
the formulas

a3 2 2
o= StV YW (g _ %)

8 g

T =

3+ v Yw? (Ra _ 1+ 3y r2>
8 g 3 4+ v

Example 2. To determine within what limits the slope
of the radial stress - curve must be taken in order %o avoid
infinite expansion of the disk profile, The disk is of
steel - diameter 1 meter, rotations per minute 3000, initial
value of the tangential stress at the outer radius abdout
500 kilograms per square centimeter,

The preceding formulas show that the slope of the
radial stress curve must satisfy the condition

o9

IR

vw?

In this case R = 50 centimeters, ¢ = = 0.785 kilogram

per centimeter®, and there is found

H—g’{3< 29.3 kilograms per square centimeter
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that is, the drop in the ¢ curve at the edge should not

“"exceed 29.3 kilograms per square centimeter for l centi—

meter of radius. -

B, Digks with Load Distributed along the Radius.-

Taking, as before:

: do ' do O - T
x =R ~1r; (—— 0; o3 = &0 L & =T + or
! ir # PP ar r

there 1is found

(62)

Assume as before that
— p - b 3 - L) .
P(x) = x - = Py * P,X + P X+ ¢

and similarly

- 2

Consider that the "added thickness,"" as is usually the

case, is not zero: TR > 0. Integrating equation.(ez)
P . P
J pdx J pdx

y=e <C+/e dx)

Adg in the previous case
P
J = dx o
_ X ‘ =x;0(l+p1x+_. . -)
whence
—Po

o
I

(1 - P.X + - - ')

Setting
: P

dx
ax

]
. \“ .
Ko
w©
i
han)
’ ul

There i1s obtained
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I fj/‘qo *aix ¥ - -t x‘PO(l - p,x + - - Jdx
BRRRECY AT S

o o e S
I i/[’xqp°'l (gg + 1,x + Lsxz + - - r)dx

Consider the various cases:

1, P < O

In this case the expression‘for I cannot contain
logarithms and there is obtained

I=x-P° _g—_g+zllx+.-‘>
Po

By substituting in the expression for ¥
p .
y=(l+p1x+~--)(cx°_%_9,+11rx+..,>
o

Since p, < 0 for r—=>3R or x-—> 0 the thickness of the
disk y will increase infinitely if G # 0. It is neces-
sary to have the arbitrary constant C > O since when

C < 0 the thickness of the disk approaches -w: that is,
no disk is obtained. If ¢ = O the thickness of the pro-
file approaches —qo/po. That this is a positive value
will be shown. Consider the case pg < 0. Further,
according to equation (63)

T,

Since Tz > 0 and assume as before that the curve of
radial stresses drops to zero from the positive slde,

Q0 =

" qg > 0. This means that the value of the thickness of

the disk is positive.

#
(o]

2. ‘ _ P
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In this case there is obtained
T =:q§ 1n x + 1% +'? . .
vy = (1 +pyx+ - ¢+ -)(0C + qgo 1n x + I3x + - . )

It is noted that gqg > O. For'this reason the thickness

of the disk at the edge approaches negative infinity.
This case is impossible ~ that is, the assumed stresses
are not realized for any actual disk. :

3, P> 0

The thickness of the disk is

v = xF°(1 + Pyx + -+ )(C + I)

-(p .+
I =/x (Po 1)(q_o+ 11x+ « o+ el)dax

The first term in I is equal to

where

vhere

Moreover, if ©p, is an integer 1ln x may enter,
The thickness of the disk will be

=(1 +p,x+ - - +)C xFo . q° + xxp° 1n x + L x + v e )
Po

‘'where certain of the coeffigients A and Ly may vanish,.
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_Since for Po > 0

1im xP° 1n x = O
X0

andvthé thickness of the disk at the edge
. 4p
y:...._....
R Po
where ©p, and q, are positive; therefore the thickness
of the disk is negative,

Summarizing, it is nated TR # O:

1. The case py, 3 O does not correspond to any real
disk. '

Explicitly this condition is

lig-,sca-l (64)
dr R R
2. The case py< 0O or
do > ¢R - & (a5)
ar R

leads on the one hand to infinitely expanded disks and on
the other to the only possible disk of finite edge thick-
ness equal to

-

Jp = -

'dlp
O O

orxr
rp = c1: - .. (es)

I é_cz_.R
R (dr R ¢

In choosing a disk profile the slope of the radial
Sstress curve at the edge §hould be greater than a_certain
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value given by the inegquality equation (65), Moreover,

“the thickness of-the disk at the edge cannot arbitrarily

be assumed if the stresses are given, This constitutes
the essential difference as compared with the method of
Holger.

Only the last case where the disk doces not expand
infinitely is of practical interest, For this case an
expression for the thickness that is capadle of giving
numerical values can be readily obtained. It is found
that . :

rE ax
o) = = xPO(1 + hyx + - - )
The expression in the parenthesis which is denoted by
f(x) is equal to: x
E:.E_O.dx
£{x) g *

The solution for y, previously written under the
assunption that the constant of integration € Ybecomes
zero, leads to the required expression:

X

- PO Q(x)

vy = x £(x) dx (67)
U/nxp°+1 f(x)

The integral exists, since Po < 0. This expressjon gives
the thickness of the disk over its entire extent,

The practical computation is more conveniently based
on the fact that the thickness of the disk at radius a
not far from the edge may be considered equal to yp.

Taking for the new variable

z = rgy | (68)

rewrite equation (2) thus:

ag  CF -,%- _ . (89)
_— o — =
ar = z + cr ! 0 69

By integrating this djifferential equation and set-
ting )
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\
er - % '
- P = —————. |
" e
P = péar
o }‘ (70)
W = ecp . L.
2
8 = /I 4y
'
there 1s obtained r J
z = Ylgg + ¢ §) (71)
Since the value of the radius a was taken near R, set

as previously
%2a = TalalVR

and obtain the thickness of the disk at all radii by
formula (71).

It will be shown with the aid of an example that
these formulas are applicable for the choice of a disk
profile loaded by lateral blades but first, however, two
more problems are considered.

On the Limit of the Tangential Stresses

In selecting a profile both for the case considered
by Holzer and that of disks with laterally attached blades,
assume the distribution of the radial stresses as given
and the initial value of the tangential stress at the
inner edge of the disk equal to the maximum radial stress,
An essential consideration in this connection is whether
the tangential stresses may exceed the radial stresses if
so and to what extent. )

If o0, =0, T, = 0 and ¢ 1is everywhere greater

max:®
than zero, then

0< T< (1 + v) Opgx
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In selecting the profile these conditions may be consid-

“ered to be satisfied since for steel disks - for example,

T<1.3 Ojax

This limit, in the general case, cannot be lowered because,
for rapid increase in the radial stress from zero to the
maximum, T may approach this limit as nearly as is de-
sired, If, however, as O increases to the maximum the
tangential stresses do not go beyond the limit Omax then,

as will be shown, they do not exceed this limit over the
entire disk. Also an interesting remark by EHolzer should
be mentioned that at the parts where the radial stresses
remain constant the tangential stress approaches the radial
asymptotically.

All these gtatements are valid for disks independent
of their profiles and of the character of the loads. They
are based on the equation giving the relation bvetween the
stresses:

El = UEE + (1 + vp) c -7
ar ar

which itself does not depend on the shape of profile or
on the load.

Now proceed to the proof. Assuming in the above
equation o{r) %o be a known function, the tangential
stress is ohtained

T = { [‘1+v v do . 1+ v U) ar
" r‘*” ‘/ ar r .

Integrating by parts and determining the constant of inte-
gration from the conditions, o = 0; T = Ty, for r = rg,
results in

T
r N1tV - ,
T =r<?§>, - Te + VO O+ 11 +2,u/ncrv dr (72)
r ‘ .
To

The tangential stresses always remain positive since
all terms are positive.
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Set

. <%Q>1+v e

Evidently 6 1is always less than unity,
A 1-8
A -
——————rl_,_vfﬁr dr < Omax 1 v . .

To
Since, moreover, T, = Opax, it is found from equation (72)

T< (1 + v8) Opax
and

T< (1 + v) Opax (73)

Moreover, by equation (72);

14+
T><£r£> + vo

If the maxirum o 1s attained at radius r, (fig, 5),
then

+
Ty >I:<-z—lq V. D} Cmax

If the increase in ¢ is such that ry only slightly
differs from ry the tangential stress T1 will slightly
differ from (1 + v)Oyax. It is seen that the tangential
stresses, in general, may exceed the radial and the limit
set by the inequality (73) cannot be lowered without added

restrictions, The correctness of the remark by Holzer
follows from the fact that at the intervals with positive

wradialmstress;accordingﬁto_theﬁequapipn of the interrelated

stresses

constant
14D

T =« 0 &
T
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With increasing radius the difference between the two
stresses approaches zero, while the tangential stress re-
mains at all times either greater than or less than the
radial. Passing to the latter characteristic, it will be
shown that if over the interval r,, r, (fig. 5), where

the radial stress increases from zero to the maximum, T
does not exceed Opgx then the tangential stresses do not.
exceed Opgx oOver the entire disk.

From equation (72), having all of its terms positive,
it may be seen that if, without varying the initial values
To and 04 = 0, a new curve of radial stresses is taken

which everywhere lies above or coincides with the first, the
tangential stresses can only increase as a result of such
substitution. The initial curve ¢an now be changed so
that starting from peint B (fig. 5) it stays at the
level of Opax up to the end. The corresponding tangen-

tial stresses being at radius r; less than opsx Tremain

such to the end, since ¢ = constant. According to what-
was said this should all the more be true as regards the
initial tangential stresses. Thus the tangential stresses
over the entire disk do not exceed oOmax.

Simplification of Holzer's Method
for Loads Applied at the Rim

Holzer assumes a graphically given ¢ curve-or rep-
resents the parts of the curves by series:

2
O = ay + a,r + a,r + * ¢ -

To find the profile in this case it is necessary to resort
to one of the approximate methods for computing integrals.
In view of this, the solution of Holzer is considered prac-
tically complicated. ’

The solution can, however, be made very simple. It
is only necessary to seek a function to approkimate the ¢
curve at various sections so that differential equations
(7) and (1) determining the tangential stress are inte-

grated exactly and not approximately ¥

*This approach repéats the idea of the appliééinn
of constant thickness -disks or of hyperbolic disks to




YACA TM No. 1064 : 46

The simplest method would be to represent the radial
stresses by a broken 1ine applying to each part the
linear 1aw,

= kr + B

For the tangential stresses, from differential equation
(?), it is found in this case : .

(T - 0 + l_:,R.kr> ™ - constant
2 +vp

or, for practical computation:

Ts - Cp + B ry = -é-:('r1 - Oy + B Ty) (74)
where
14V
l1 ~v r
we=i=Py o= (22 (75)
2 +v T .

ifficulties are encountered, however, in computing the
profile.

If, however, there is assumed for the radial stresses
at the various sections, instead of a linear, an exponen-
tial law likewise,with twe parameters:

0’=B:!-‘k

no difficulties are met with either in computing the tan-
gzential stresses or in finding the profile. For the
tangential stresses there is obtained according to equa-
tion (7);
' i+ _
(t - Ao)r = constant (76)

compute the stresses in the glven disk. In both cases it
is easier to solve the differential equation relying on
functions for which the integration is readily carried out
than to make use of general approximation methods. This
fact is not taken into account in the methods of Keller
and Holzer. '
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where o
1 +v + k :
For the practical computation of a step:
. Ty = NOy o
1, = 2727 4 o, (78)
Q .
where
1+v
Q = (ﬂi (79) |
T

In the same manner, it is readily found from equa-
tion (1) for the profile

’ 2
in L2 = 1 NEAR A ln g - —= A(cr >
Vs L+ + k g/ 1 +v + k k + 2 o

where A denotes the increment in passing from radius
ry, to 1z for example,

T T
T\ . -2 1
A <G> = 5, - 5, and sq forth
Set for briefness

A 2.3(1 + v + k)
B2 - (80)
1 +v + k

W

it

D = 2.5(2 - k)

where the number 2.3 is the conversion factor for passing
to common logarithms. There is obtained finally,
T3

| S R 1 /er-
188 = 2o (F) + 38180 + 3 8(5) (81)
Ty, Tk b <G Aleo +3 N7 |

The above equation gives the change in.the profile thick-
ness over a section of the disk. Together with equation
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(78) it solves the problem of the choice of profile. Both

. formulas are exact and there. is thus no need for approxi-

mate integration. The computation is particularly simple
for sections where ¢ = constant. In this c¢ase the ex.-
ponent k is zero; hence A = 1 and instead of equa-
tion (78), the result is ‘ :

- 0O
T = ~te—1 + 0y - (82)

Q

In the formula for the profile thickness (81) the coeffi-
cients are simplified;

A=2.3 (1 +v)

D= 4.6
and B need not be computed, since
BAlgo =0

The computational procedure is as follows. The given
curve of radial stresses is replaced by a curve of the
type o = B rk, passing through the ends of the section.
The exponent k is found by the formula:

¥k = 1lg ==: 1lg == (83)

It is not necessary to compute B. Further, using the
initial value T, there is found by formula (78) the tan-
gential stress over the entire disk. Finally, assuming
the thickness given at any radius - usually at the rim -~
there is found the entire profile by formula (81). In the
computation only a small number of steps need be used,
since the presence in the formuyla 0 = B rk  of two arbi-
trary parameters permits close approximation to the given
form with only four or five steps.

rExampleé of Selection of Disk Profiles
Take two examples: one for the case of loads applied

at the rim, the second for a disk with laterally attached
blades.
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Example 1. (See table 3.) (Consider the problem

which was solved by Holzer, and -in somewhat changed form

also by Yanovsky. Keep the conditions in the same form
as given by Holger. -

It is required to construct the profile of a disk for
the following data: outside diameter 132 centimeters,
inner diameter of hud 16 centimeters, outside diameter 24
centimeters, number of rotations per minute 3000, load due
to the centrifugal forces of the blades produces on the
outer surface of the disk a radial stress of 400 kilograms
per square centimeter; at the inner side of the hub there
is no radial stregs, The permissible stress of the mate-
rial is 1500 kilograms per square centimeter. At the rinm
the thickness of the disk must be 2.8 centimeters.

First of all, assume the value of the radial stress,
taking it egual to 1500 kilograms per square centimeter
over practically the entire disk. As regards the edges
starting from the side of the shaft, the initial value of
the tangential stress is given here, agsuming for it, as
indicated, the maximum value: T4 = 1500 kilograms per
square centimeter.

Now compute the stresges at radius r = 12 centimeters
sinec the hub constitutes a step of constant though as yet
unknown thickness., For computing the stresses a knowledge
of this thickness is not necessary. Thus, there is found
(see first pt. table 3) for the radius 12 centimeters.

o)

]

388 kilograms per square centimeter;

T

it

1070 kilograms per sqguare centimeter

From this value of ¢ the radial stress must be increased
to its maximum value o = 1500 kilograms per square
centimeter. (See fig. 6.) Let this maximum be reached at
radius r = 18 centimeters, (Too steep an increase in ¢
leads to the same sharp drop in the thickness of the disk.)
This increase in 03, as already said, follows the law

o =¢ r¥

By formula (83) far the given step there is found




A Hub.

Step r q M N re a b S D . G T
] s o 64 32,7 — 88 1500 1500 0 1500
_;- L 12 0445 011 —0.1376 144 73,5 —19.8 1460 684 | - 388 1072

B. Variable part of profile.

step | r | o [lge| K | 2| @ | s} 2 A(—:—) o | L A(%-:) 4| B D |kl
o ] 12 | 388 |2 1070 | 276 133 | 0292 | ' 9,06
: 18 | 1500 | 3,1761 1267 | 0,844 | 2550 | 0,170 - . f 2,64
3 | & [150 [3me1] © |1 4% f1as3 | 09| O1%|a03p | o2 | L8| 29 — | 46 | 0M3B) g

62 | 1500 | 31761 o 1453 | 0,969 3030 | 202 ' ’ 0,95
o Table III.- Collection of formmlas.
Igon—lgq A=23(14v+|£ N ' ‘
Ign—lgn 83 A At hub where o = const.
B2 k=0
14v4ky B=1rvtE 80 -
i TE an +v+ (80) A=1 |
» D=323Q2 -k ey =Ty
o=("" ™) o ST
n - n_1,/= 1, fer® A=23-(14v)
: eh=he(Draseria(®) o
a=217"1 11, (78)

A~ Dot computed

¥90T

08
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k- = 18 1500 - 1g 388 _ 5 4o
lg 18 - 1g 12

(See table 3.)

For the following step (table 3, third step) o0 is
kept a2t its maximum value, 1500 kilograms per square centi-
meter,and only in the ring. from r = 62 to r = 66 centi-
meters (fourth step) is the radial stress lowered from
1500 to 400 kilograms per square centimeter. Ehis drop
is likewise made according to the law O = B r the
value, «~21.2 %being odbtained for k.

Thus assuming this variation in © ‘over the entire
disk, proceed to the computation of the tangential stress
T. Tor this purpose the auxiliary coefficients A and Q
are required (see tabdle 3); and T is computed by formula
(78) for the second, third,and fourth steps. TFor the
initial value of T for the second step T = 1070, pre-
viously obtained for the end of the first step, and so

forth, Thus, for example, there is obtained for the second
step

1.694

To find the thickness of the disk formula (81) is
applied, beginning this time with the outer edge of the
disk since there is here given the thickness y = 2.8 cen-~
timeters. Having filled in the columns of the auxiliary
coefficients in the table, there is found for the last
step, by formula (81)

. 2
V1 1 (T\ 1 er”™
lg == = A (L} + 1l + = =
g Yo 15 \G) ‘BA g G‘ 5 A U.
= — X2 X 1.751 - 0.964 X 0.574 4+ —%— x 6.56 = -0.4691
-45.8 53 .4

since “y> = 2.8 centimeters, there is obtained y; = 0.95.

Using this value as the final for the third step yields
for the initial thickness of this step y; = 2.64 centi-

meters, and so forth. The problem of finding the profile
of the disk is thus solved. From the curves of figure 6.

+ 0.496 x 1500 = 1267
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it is seen that the obtained profile and the values of the

tangential strésdses dgree ‘in a very satisfactory manner
with solution of Holzer. Thus, the width of the hubd was
obtained by the author as 9.06 centimeters as compared
with 9,32 obtained by Holzer. The author required 5
steps. By the method of Yanovsky based on steps of con-
stant thickness 12 steps were required for the solution
of this problemn. ' '

Bxample 2. {See table 4.) Take the problem of the
improvement of the disk profile of the fan (fig. 7) de-
seribed by Ostertag (reference 6). The disk makes 4000

rotations per minute. Starting from radius r = 20 centi-

meters, the effect of the blades is taken into account by
introducing an additional width of 0.7 centimeter at both
sides of the disk. The outside diameter of the disk is

86 centimeters, the inside diameter of the hub 15 centi-
meters, and the outside diameter of the hudb 19 centimeters.

For the disk considered by Ostertag, the maximum
stress 1is the radial stress Opgx = 1128 kilograms per

square centimeter. The tangential stresses are consider-
ably less than the radial. The maximum radial stress is,
however, reached in the form of a peak. All this shows
that the disk is far from being of uniform strength,

The disk profile will be improved, in the first
place, by making the tangential stresses approach the
radial, and in the second place by maintaining the maxi-
num radial stress ¢ = 1128 kilograms per square centimeter
over a consgiderable distance. At the outer edge of the
disk, in lowering the radial stress to zero, it is neces-
sary to take account of the previously derived condition
for finite thickness of the disk (65):

If it is required that the thickness of the disk at the
outer edge should, for example, be 1 centimeter - as in

‘Ostertag's example -~ then-from formula (66) the approxi-

mate value of the slope of the radial stress curve can be
found; ‘ ' ' '

| ) | . .
e MR g T 139X 1.4 X 48 Ly 59 x 48 - B2143,6 — —
= 43 43

¥ - 1
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. TABLE 4
A. Hub
r q M N r° a b s D o T
7.5 ’0_623 0.904 | -0.243 56.2 | 50.8 | -13.65 | 1128 | 1128 ‘0 | 1128
9.5 ' 90.3 | 81.5 | ~2L.9 1097 716 | 191 | 907
B. Computation of ATangential Stresses
r c | k W f.% Q( T
3-5 191 1hy u3.8 1.342 1.466 907
12.75 660 144 43.8 1.255 1.343 874
16 1128 0 0 1.25 1.337 1001
2 1128 0 0 1.2 1.267 1033
, 2 1128 0 0 1.166 1.221 1053
2 1128 -30.8 ~9.35 1.143 1.19 1067
3 1005 -67.5 -20.5 1.125 1.165 1033
L3 ;gg -95 -28.9 1.111 1.147 ?%g
) %5 -118.3 ~36 1.075 1.10 Lo
C. Commutation of Profile Thickness
r o T ro P P W TL%f. 8 z ¥y
9.5 191 907 1815 | -0.431 | -0.328|0.721 | —mmm 17980 | 2180012
12.75 660 874 8U30 | ~~.0772} . 34311 | —emme 17980 | L2600} 5.05 °
16 1128 1001 | 18080 -.0358 .51311.671 | ~~—mm 17980 | 50500| 2,79
18 1128 1018 | 20300 -.0279 578]1.783 | ————- 17980 | K3800| 2.67
20 1128 1033 | 22400 ~.0212 .625{1.869 | 0/300 | 17980 | 56400| 2,58
24 1128 1053 | 27100 -.0093 | .68%5}1.98L 110 | 16550 | 55900 2.06
28 ' 1128 1067 | 31600 .00068  .702{2.02 543 | 14670 | 51700| 1.63
32 1005 1033 | 32200 .0121 .686!1.985 723 | 12300 | L4300/ 1.38 -
{- 36 735 933 | 26500 .0328 .59311.81 1003 8750 { 31400] 1.19
38 560 865 | 21300 0536 .50511.657 | 123Q | 6550 | 23700| 1,11
Lo 355 778 | 14200 1017 .30101.435 ) 1560 | 3760 | 14950} 1.0%
- 4 - 2uy 730 | 10000 1607 .250{1,284 | 1810 | 2050 | 10340| 1.034
L2 125 680 5250 .33801 O 1 2470 0| K200 .99
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‘Assuming Ty a magnitude of the order of 500 to 700 kil-

ograms per square centimeter (for T, = 1128 kegfem®) -
yields the slope at the edge:

a
drlgr

= 130 kilograms per cubic centimeter

Pagsing to the selection of the radial etress curve
over the entire disk, first compute the hub as a step of
constant thickness, (See table 4A.) The initial values
are 0o = 0,* 7T, = 1128 kilograms per square centimeter.
There is found for the end of the hubd:; o = 191 kilogranms
per square centimeter, T = 807 killograms per square cen-
timeter,

Then inerease ¢ linearly (see fig. 7) to the maxi-
mum 1128 kilograms per square centimeter at radius r = 16
centimeters and keep it at this level yp to radius r = 28
centimebters. Then O is lowered %o zero, assuming at the
edge a drop of 130 kilograms per square centimeter per
centimeter of radius.

With the curve of radial stresses given,the tangen-
tial stress is found. TFor this purpose apply formula (74),
assuming that O at each step follows the linesar law,
For the steps for which ¢ = constant, K = 0 is obtained.

All conmputed tangential stresses are given in table
43. TFigure 7 shows the obtained curve of tangential
stress. For comparison, the curves of radial and tangen-
tlial stresses obtained by Ostertag are shown by dotted
curves. The new curves evidently much more nearly approach

- the condition of uniform strength.

There still remains to-Be'computed the thickness of
the profile corresponding to the new stresses. The thick-
ness at the outer edge is found by formula (66):

R ) 4 X ' _ ' '
Yy = ? 0 - = - 1‘39_x ; 4 43( — = 0.99 centi-
o A .Qg); - eR . 824 4 130 - 1.39 x 43 meter:
R~ \ark ~  CCam 7 T ToemR AT

*Ostertag assumes 0Oy = 10 kg/cma, taking the bearing
pressure on the shaft as positive. This pressure should
be congidered as a negative stress, The game error is re-
peated by Keartan,
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Then compute the thickness of the profile by (71) (see

“tdB1& 4C), the integral for the individual steps being
rapproximately computed by the Simpson formula:

) b .
J/nydx = D ; 2 (yo + 2yy + ¥2)

a

The obtained profile is shown on figure 7 where, for com-

parison, the profile obtained by Ostertag is indicated by

the dotted curve. It is seen that by approaching the uni-
form strength condition a considerable saving in material

results,

Translation'by S. Reiss,
National Advisory Committee
for AerOnautics.
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Figure 7.- Improvement of disk with lateral blades, Dot-
ted curves give initial profile and stresses,
improved profile and .stresses given by solid curves,
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TABLE 1
a m Difference
0.0 1,0 0.066
o1 1.066 .068
.2 1.134 .070
-3 1.205 .072
.4 0 1.277 .074
.5 1.351 .076
.6 1.427 L0777
N 1.504 , 079
.8 1.583 .080
.9 1.663 . 082
1.0 1.745 .083
1.3 1.828 .084
1.2 1.912 .085
1.3 1.996 .086
1.4 2.082 . 087
1.5 2.169 .087
1.6 2.2586 .088
1.7 2.344 .089
1.8 2.433 . 089
1.9 2.5622 .080
2.0 2.613 .090
2.1 2.703 .091
2.2 2.794 .092
2.3 2.8858 .092
2.4 2.978 .092
2.5 3.070 .093
2.6 3.163 . 083
2.7 3.256 . 094
2.8 3.349 .084
2.9 3.443
3.0

3,537

.094
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Figure 1.~ Equilibrium of
‘ - rotating disk
element.
do
E‘R>CR—I—(E @
R’ e
for r—R r—o %

T




NACA Mechnical Memorandum No. 1064 : Figs. 2,3

oT
. [¢]
h *,fwlsoo.“_‘?w,T,m - i g Y
' \T ' N \\)\T
I w/ ‘[ 1 1 e
1000 ; / : O’Tp “?
. : ! / ' T=90 ! ;
by : ! : ! ‘
750 [+ r ——
17/ T : ‘?\\\ ;
500 ' 2 X X K \#t-
250 |4/t : ' )
A : ' ' !
oYL, - T
\5 : L
E—— = —
A L T e T
, \ ; ) ) : ' . : [N SN

AAAAA J WL 1O YO RSO YT SO SIS SO WO ST WY Aol t.

81z T80 8 R0 EE AR TR0

55 60 66 r

Pigure 2.~ Stress distribution in disk.
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Figure 5.~ Selection of profile. Solid curve gives the profile and stresses
according to Holzer, dotted curve according to the method of

stepped radial stresses,
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