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1 The paper describes nethods of computing the stresses
12 in disks of a given profile as well as methods of choos-ing
:~ the disk profiles for a given stress distribution for tur-;c! hines, tur%o l?lowers, and so forth. A new method of in–

tegrating the differential equations of Stodola leads to
a si~~plification of the computation for disks of hyperbolic
profile. It was found possible to apply to the equations
a method analogous to the methods of Donath and Yanovsky
for disks of coristant thiokness, the sum and difference of
the stresses S = T + cr, J,)= T - u being replaced in the
equations by the expressions S = mu + T , D = nu + r
where n and n are constants. There is investigated,
for the first time apparently, the problem of the choice
of profile for disks carrying lateral blades. In contrast
to the case considered by Holzer of disks with blades at-
tached at the rim, it is impossible in this case to assume
arbitrarily the curve of radial stresses and the edge
thickness of a disk, In a number of cases infinitely di-

,
verging and other unsuitable profiles occur. The dependence
Pf the jy?ofile shape on the assumed stresses is investigated.
An example of the improvement of a typical disk profile is
analyzed showing considerable gain in material on approach-
ing the condition of uniform strength. The method of Eolzer,
for disks with blades attached at the rim, is considerably
simplified by dispensing with the necessity for graphical or
mechanical integration. There is considered also the possi-
ble limit of tangential stresses for a given curve of radial
stresses, a factor of much value in selecting a profile.

:> >, .. . . .. ,,. , ,,, ... -.,*,

*Report No. 262 of the Central Aero-Eydrodynamical
Institute, MOQCOW, 1936.
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.
INTRODUC!?IOI?-- ,.., !., ,,.

~,: The determination of stresses in rotating disks is a

~~:
prollen that has received much attention. !lhe problem
was worked out at first chiefly in connection with steam

y-~., turbines. The recent development of machines for moving
)“ gases (fans, blowers, superchargers for airplane engines)

has led to an increased interest in the subject and ilas
introduced spec”ific requirements.

The papers hy Yanovsky (reference 1) , Volkov (in ref-
erence 2), Cherny and Baklanov (reference 3) , ~ees (refer-
ence 4) , and the work conducted at CAHI are witness to
Russiats heightened interest in the subject. The continu-
ally widening application of computed disks proves the
importance of devising rational computation methods and
explaiils the eonst~nt increase in the number of investiga–
tion papers in this field. The foreign literature on this
problem is extensive though of unequal merit. At tililes,
no use is made of important results already obtained - for
example, the principle of Von Mises. Even such leading
investigators as Kearton (reference 5) and Ostertag (ref-
erence 6) present extremely laborious and outmoded methods.

In the present paper methods are presented for the
computation of the stresses. in given disks and the selec–
tion of the profile of rotating disks for assumed stress
distribution at various conditions of loading. !I?helatter
problem for disks carrying side blades is investigated
apparently for the first time. The problem first consid-
ered is to compute the stresses for a given disk. The
starting i~oint here is an assumed approximation to the
shape of the disk profile with the aid of hyperbolic
curves.

The following method of integrating the differential
stress equations leads to a solution in a form which is a
direct generalization to hyperbolic disks of the method
of Donath (deference 7) for disks of constant thickness.
(The method of Ronath is the %asis of all subsequent’ work

.. on flat disks.) A simple transition from the stresses at
the inner radius of the ring to those at the outer radius
are given in this me~hod, and no recourse is had to the
constructioil of tables or charts, In particular, for
disks of constant thickness, this method leads to that of
Yanovsky which appears the best development of the Donath
method.
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The second fundamental problem is that of selecting
a- profile for a given stres,s,distribution. The problem
was first formulated by Holzer (reference 8). ‘-T&” SOIU-
tion of this prollem becomes difficult in the case of
disks the load of which is distributed along the radius.
The occurrence of singular points in the differential
equation of the profile leads to the possibility of olJ-
taining infinitely divergent profiles , and so forth. Iil
the case of finite edge thickness the latter, it app~ars,
cannot 30 arbitrarily assumed as in the case of ‘the disk
considered by Holzer, but is related in some manner with
the chosen stresses and loads. Tn this connection a de-
tailed investigation is made in the present paper of the”
problem of the dependence of the profile shape’ on the
given str~sses. As shown IIy examples, the application of
these methods leads to a certain saving in mater”ial, the
gain being most marked -for a stress distribution giving
uniform strength.

As regards the problem solved by Holzer, other authors
such as Yanovsky (referen~e 1), Arrowsmith (reference 9),
have departed from the direct path followed by Holzer in
view of its technical complexity. The following shows how
a suitable seloctiop of the form of the functions which
give the radial stress leads to the possibility of carrying
out the quadrature so that the solution is obtained in
the form of simple finite formulas. The computational work
is many times reduced without impairing the accuracy.
This methocl is particularly convenient for the disks of
steam turbines.

In tho present paper the questions of temperature
stresses (reference 10) are not considered, The problems
of the stresses, due to unsymmetric disks or loadings are
pressing and await full investigation.

The approximate equati~ns of the stresses in disks of
varying tilickness were obtained by Stodola in 1903 (refer-
ence 11). Not counting disks of constant and ellipsoidal
thickness, one attempt to obtain a inore accurate solutioil
may be noted - namely, that of Cornok (reference 12),
who gives a general equation from which there is then de–
ritied t}ic ~olution for hyperbolic disks. This solution. i-s
compared with that of Stodola, For conical disks a method
is indicated in ‘the form of an infii~ite series, The paper
of Corilok contains errors, holrever , in the computation of
the nean stresses becaus~ in integrating no account was
takcu of the dependence 0$ the limits on the parameter.

A
la “ ____-> — . ...
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It is noted that if the equations of Cornok were true,
m. --then.they would provide for any profile a solution requir-

ing only two quadrature. For C’on-icaldisks ther~-a’ls o
,, w“ould ?Je obtained a simple finite solution instead of the
., infinite series used by Cornok.
}.>, The question<,, of the effect of the assumptions made
:. was su%jccted%>,y Stodola to a theoretical “analysis (refer-—— ———

ence 13). l~oreover, he checked the assumption of the
uniform distribution of the radial stresses in, the cylin-
drical sections of the disks making use of the ac T
soluti.’on of Cree for ellipsoids. (See Stodola,
It is iilteresting to follow thi,@ comparison. ,fi$,, .<..._____
ing conclusion may be drawn on the basis of the “computa-
tion coilducted by Stodola for various shapes of ellipsq~ds.
In the method of Stodola no difference in stresses in
these ellipsoids appear~. because all thicknesses aye pro-
portioil~l and the equations of Stodola are unaffected by
such variation in the thickness of the disks. The stress
curves of Crce, however , show for the various ellipsoids
a difference up to 30 percent, the maximum stress in the
ellipsoids of $lat shape being less than in more convex
ellipsoids.

AS is naturally to be expected and confirmed by this
computation, the Stodola solution for thin ellipsoids prac-
tically does not d~e”r f-r–o;”’-t-h>-’’accurateone. For ellip–
soids approaching the spherical shape the equations of
Stodola give stresses up to 30 percent less than the actual,,

It also should be mentioned that the tests of Stodola
on resinous models of disks (reference 13) have shown that
in wide hubs the effect of bending begins to predominate.

JIEVZEW OF IvIIITHODS

The main paths followed in the development of the
methods arc indicated. (See also reference 10. ) ‘

The equations of Stodola are solvable in finite form
.> ... only for’ certain particular shapes of prof,i,le.s-..for disks y

of constant thickness , uniform strength, and hyperbolic. \

On some of them more will be said. For trapezoidal see-
tions (conical disks) the solution can be obtained only in
the form of an infinite series, Practically’applicable
disks have complicated profiles, however, and for these the
equations of Stodola permit o%ta$ning approximate solutions.
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To the first g~oup the methods giving approximate
soluttoms s%a-~ti.n-gfrom the. general form of these. equations
may be referred. Here belong %the graphical nbt”ho”~“of
Stodola hy which, assuming the curve of radial stresses,
the profile of the. disk is found; and the method of Kellar
(in reference 1, p. 335)? who substitutes small finite in-
cremcnts for the differentials., To this group also belongs
the method of Holzer (reference 8) where a curve of radial
stresses in graphical or analytical form is assumed and
the work of F~schl (reference 14) employtng the method of
Ritu. All these solutions are practically inconvenient.
MuQh more simp,le are the me$h’ods using one of the previ-
Qusly mentioned types of profiles for which the integra-
tion does not present any special difficulties.

In regard to this, three methods based on disks of
constant thickness, hyperbolic disks, or conical disks
have leen devel~ped. Grfibler (reference 15) was the first
to follow this method. Recently there also has appeared
an attempt to make use of certain exponential forms of
profile (references16 and 16a).

By substituting approxirnatoly for the profile of the

disk a number of hyperbolic curves y = c Gr”&bler showed--~,

that by taking into account the boundary conditions of all
sUch riilgs a sufficient number of equations is obtained
for computing the stresses over the e~tire disk. It is
true that in this case the method is still inconvenient.
It has been adopted, however, by Kearton.

A new line of development was taken by Donath in 1912
(refe~ence” ‘7) whose method also was explained by Haorle
(reference 17) , Ilonath based his computation on con,stailt
thickness profiles from which a stepped disk is formed
approximating the given disk. 3etween the individual steps
the stresses undergo discontinuities which may be computed.
The second main feature ‘of the method of Douath lies in the
fact that instead of the stresses themselves their sum and
difference are used, Z!nis device has proved to B@ very
convenient for reasons which will be explained and has been

‘:‘-&&&p~e’dfor d~sks of-con$tant thicknes.s.,..,In, COnneCtiO.n
with this method Donath constructed a rather. complicated
chart with two farni~ies. of curves.

&he method of Donath was perfected hY Gramme~ (r~fer-

ence 18) who substituted simple graphical constructions
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-b ,,. . for ‘“Donath?s char-t’sand .%y .Yanovsky. (reference 1-) who
proposed a convenient numerical method, Ya no“vsky “ga-ke
much attention to the problem of Holzer. The methods of
Donath and Keller required several trials for satisfying

I
the boundar yconditions. Von Kises showed how the bound-
ary conditions could he satisfied hy making use of .a
fundameiltal family of linear differential equations.
Only two trials were found,necessary, the second _being
facilitated by having the angular velocity equal to zero.
This device received wide application and it was suitable
fQr all methods - for steps of constant thickness as well
as for hyperbolic or other steps+ Driessen (reference “19),
likewise developing the method of Donath, extended somewhat
the application of the foregoing dev,ioe, The method of
Cherny aild 3aklanov is essentially contained in the method
of Arrowsuith, but a fuller table is given for disks of
constant thickness.

While they possess the advantage of simplicity, the
methods based on oonstant thickness steps are inconvenient
in that for a good approximation to the shape of the curve
a considerable numler of steps are required. In view of
this fact, methods making use of hyperbolic steps continued
to %e developed, !J!heease thereby obtained of approximat-
ing to the shape of the disks is explained by the presence
Qf two free parameters and ‘also ly the fact that in their
construction applied disks approach the hyperbolic shape.

Ma&tin (referent? 20) constructed a family of curves
to facilitate the computation of hyperbolic disks for cer-
tain values. of the exponent; a = O, 1, 2, Recently, tihe
charts of Martin have frequently been supplemented for
other values of the exponent. (See Knight, reference 21,
and Hodkinson, reference 22.) Arrowsmith (reference 9),
dispensing with graphs, transformed the formulas of Stodola
and constructed tables that permit finding the stresses in
hyperbolic disks for the ratios of” outer to inner radius
of 1.02, 1.05, 1,1, and 1.2. This does not permit making
use at all times of the fundamental advantage of the hyper-
bolic disks - namely, the small number of steps required.

,. Eat%os of,,t,heradii greater than 2 are encountered in the,,
computation and’for ‘these? according’to the method of
Arrowsmith, no fewer than four steps would be required.

Volkov does not make use of the device of Von Mises,
and the constants of \ntegratlon are not excluded - a fact
which cQmp~icates the computation.

. ..——. —
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The third group of methods is associated with conical..
disks . Fischer ‘(r’efeienc”e2’3)-’”andHone Sger (ref-erence 24)
‘preselit a large class of profiles, including coni~alt for
which the stress equations lead to the hypergeometric
series of the Gauss equation. Honegger computed tables of
functions entering the solution. Martin (reference 25)
arrived’ at analQgous results making use of the Princil?le
of Cas”tigliano in deriving his equations with the same ~~.—.....
assuml~tions as tho .. In 1934 l’~alkin (refer- “-’-’
ence 16) showed new orms of integrable profiles;

= m e-$r+
i!-@r

Y and y = a e

upon which a computation was based. Since for the latter
profiles the equation may be transformed into a 3essel
equation , it is pc?ssible that the corresponding tables are
found among tables of Bessel functions. Some of the
tables of Malkin have already %een published (reference lGa).

Iiolzer (reference 8) approached the computation Of
disks from another direction, By as~uming maximum stresses
it was sought to obtain the profile requiring the minimum
expeilditutie of material. This was supposed to be equiva-
lent to finding the profile possessing the maximum ellergY
Qf deformation possible at the given stresses. The solu-
tion of Holzer is unsuitable for disks not loaded at the
rim (disks with side blades). A solution is given for
this case. Holzer applies mechanical, or graphical quad-
ratures for solving the problem of the choice of profile.
Other methods also were suggested by Yanovsky (reference 1).
and Arrowsrnith (reference 9). The method of Holzer become’s
very simple if the forms of the functions for the radial
stresses are suita%ly chosen,

It is of no value to raise the question as to which
formulation of the problem - namely, to find the profile
for given stresses or conversely - is the more correct.
In practical construction both pro%lems ’are equally
importalit.

. ...”.. ,, ,,. ,.,,,

.—
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NOTATION,.. .,. .... .“.,.,._

distance of element of disk from axis (cm) ‘

thickness of disk at radius r (cm)

or a radial stress (kg/.cm2)

Qr T tangent3.al stress (kg/cm2)

radial displacement of disk element (cm)

angular veiocity of disk (see-3)

ratio of transverse compression to Iongttudinal
extension (Poisson ratio)

elasticity modulus (kg/cmz)

density (kg/cm3)

I. STR3SSES IN GIV3N DISKS - FUNDAMENTAL EQUATIONS

The first equation is found from the condition of
equilibrium of the disk element (fig. 1). The stresses
u and T are assumed not tQ vary along the axial direc-
tion of the disk.

For the lower part of the element the radial force
is eclual to rd9 y a. The resultant of the radial stresses
is equal to

. ... . ... - ghe.resultant. of,the.tangenti~l stresses is equal to,, .,., ,,,,...........

y? drde

The ceiltrifugal force for the’ given elem,ent is equal to
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yg: ~2ydrde

g..... ..

or

cr2ydrde

Yrom tile equilibrium of the element there is obtained

d (r~a)---- .. -
dr

YT + cr2y = O (1)

Owing to the centrifugal force of side blades , for
example, the effect of loads distributed along the radius
must be added to the foregoing forces. This is most
simply effected by adding to the disk a certain nominal
thickness o of the same material and which does not
carry any stresses, but gives only an added centrifugal
force. The thickness T is taken so that its centrifugal
force at any ‘radius is equivalent to the external load.
Instead of the centrifugal forces of the element craydrde
in the equation there enters the total centrifugal force
cr2 (y + V) drde and the equation becomes

d (rya).--—-— - y7 i- cr2 (y+~)=o
dr

(2)

Thus one equation has been obtained for the two vari-
ables u and T. A relation can be obtained from Hookels
law connecting the stresses with the deformations. 1?or
the assumed condition of absence of axial stresses, the
deformations are obtained

Cr = # (U-VT)

~ (T -VU)
.... . u=E

.,..,“}

(3)

Both d.eformatio,ns can le expressed in terms of the radial
displacement ol? the element
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,. ...,. . .. .

Thus

10

(4)

(5)

There qre two ways in which to proceed: eliminating t
there is obtained the condition for (T and T:

*[r (7 . va)] =0-VT (6)

dT v Q. 1 + v (0- T)
G- dr r

(7)

This is the equation of the interrelated stresses. It is
independent of the shape of the disk profile. Knowing
one of the stresses, the other may be found from the equa–
tion t~ith the aid of quadrature. It should be particu-
larly noted that after the stresses a and T are computed
the values of the radial displacements at the various radii
of the disk are directly obtained from formulas ‘(5).

By the second method, instead of this systera of two
equations of the first order there is obtained a single
differential equation of the second order for the radial
displacement E* For this purpose, u and T are
eliniilated from equation (2) with the aid of equations (5)
tQ obtain

If for a given profile this displacement equat~on can le
sQlved, the stresses may then be found by equations (5)
solved for the stresses:
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>- .L ,....,. .... .

{

J
(9)

T
E= ------

2
(

,QL+fa
1 -v dr r~!

The system of equations (2) and (7) or equation (8)
“is the lasis for computing the stresses in a given disk
as well as for the choice of ,profile for given stresses.
At the various parts of the disk it is generally assumed

~that ~ = constant, which condition is applicable to a

large number of the steps. This permits each step to be
considered as free of external loads, but with den$ity

~t_2 times.increaseci hy ,For this reason disks with-
Y

out loads along the radius are considered.

Stresses in Disks for Load Applied at the R&m

In the absence of loads at the sides of the disk
~ 0.= The formulas of the stresses in the form given by
Stodola for hyperbolic disks are first presented. Then
it is shown that another method of integration leads to
coilsiderably simpler relations,

The equation of the hyperbolic profiles is

Y=:’
r.

(10)

dln~Then --v- = - ~ and equation (8) leads to the equa-

tion of 3uler. By integrating it, iltodola finally arrives
at the following form of the stress equations

1&,_ ..—-—. -----.—.. . ..—..—.. . . -.-..—. ——.—— —
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(1 -’-V“2) Yi2- “’- ‘
a = - -—---— ------

Eg [8 - (3 + v )a]

are the roots of the quadratic equation

12

*2 -a$- (l+va)=O (12)
.

and 1)~ and 3Z are constants of integration determined
by the boundary conditions.

Another order of integration that leads to consid-
erably simpler relations between the stresses 0 and 7
is given.

Transformation of the Linear System of Differential Equations

of the I?irst Order

Equations (1) and (’7)form a nonhomogeneous system
of two linear “differential equations of the first order.
A substitution may be found by which the solution of any
such system leads to the integration of a Riccati eq,ua-
tion aild quadrature.

Let the given system be

au = au + In + cG 1 (13)

where a,b, c,al, bl,and Cf are functions of r.
B,y introcl.ucing the new variable

,.. ,.

z =kU+T (14)

where k may likewise depen~ on r

—
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-, , -.. .. ,. ,-. Liz= ,;dk+kgli+a
-~r .,, ,~=...... dr. fir ... . ........ _.

or

‘z @&+ak+ a&+ (bk+b l)?+ (ck+ Cl)-- = (15)

“The value of
side depends
explicitly,

k may be ‘chosen so that the right-hand
only on z without containing a and T
For this it is sufficient that the ratio ”be-

tween the coefficients before IY and T be the same as
in z =kcy+ T-that is,

(g~ \
+ak+ al’

J
:(bk+bt)=k:l (16)

dr

Then >

(i~ = (bk+bt)z+ (ck+ C’) (17)
dr

that is, instead of the system (13) there is obtained a
single linear equation for z.

Requirement (16), however, which must be satisfied
for k is no other than the equation of Riccati:

dk =bk2+(b1-a) k-al (18) ,
z;

.If two particular solutions of this equation can be found -
de,note them by m and n - there is obtained for each of
them the corresponding values of z - denote them %y S
and D - and the variables a and 7 may be expressed
by the two equations arising in place of (14):

}

\.
““mcr-t-T’=’s’ ~~ ,.,.

(19)
nu+T= D

These equations contain two arbitrary constants. In
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this case the system (13) on the basis of equations (1)
and (’7) is of the form. ., ..

.tld= l,_Vdlnya T

(
----.-

dr r )dr ‘~-vcr
/.-

With z=kcr+?, equations (17) and (18) for
lecome

g&.k_=-~ z - c(k’+ V) r
dr r

and

(20)

z and k

(21)

(22)

Hyperbolic Profile

The preceding equations hold for any profile. The
first does not at all depend on the shape of the disk and

the second, for hyperbolic disks for which y = ~
rh’assumes the form

(23)

and evidently can %e satisfied for constant values of k
equal to the roots m and n of the quadratic equation:

k2 -@k - Va - 1 = O (24)
that is,

,,,,,,, m=%+
J

~a

2“

1

-4- + ~,a + 1,,

%’~~
(25)

n=
2-J-Z-

-—.- .—
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These roots are real and different for any value of a.
It- is of interest--to not-e that equation (24) is the same
quadratic equation which figures in the sol”u’tioiiof-’”’”
Stoclola.”

From the linear equation (21) the values of z ar e

found. I?or k = m, for example,

“J
or

where A is the constant of’ integration.

Aclding, by analogy, a similar equation for the other
root k = n and setting

M=c~+v -----
-m

1 (26)

N = c :+~-----
-n

..I
finally. there is obtained for the relations %etween the
stresses’:

mu + 7 + Mr2—----- -——-—- = constant
rm-l

1.

(2’7)
nu + T + Nr2—----- -—- = constant

m-l
.--—-—.-—— .--——---—-.-----4—-— --- ——---.---—--------

*1$ m . 3, which occurs for a = ~---~ (for steel

2.42) then a logarithmic function appears in the integra-
.. ..tion ai~clthe,first of relations (27).assuines the form1.. .,,,’. ,, ... .

30 + T + c(3 + v)r2 in r = constant—--—— ------ .—--—---——-
ra

A sinilar added note should be made to the solution. of
Stodola.

Q, .,,, —
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Equations (27) are much simpler than the solution in
the’ ford &i%en%y’ Sto”dola as represented hy equations.. (11).
It is immaterial for the computation that equations (.27)
are not solved for the stresses, since it is another factor
that is essential: namely, that the equations contain only
a single constant each and thus permit easy passage from
the stresses at the inner “radius of the disk to the stress-
es at the outer radius.

It is possible to express directly-the final stresses
in terms of the initial, as was done by Arrowsmith, Equa-
tions (27) readily permit finding these expressions in the
form

W2 = Acrl + B’rl -Ckrla

After such transformation, however, formulas (27) lose
their siuylicity and are less convenient for computations.
The coefficients of tbe equations of Arrowsrnith are cum-
bersome and further on it is found necessary to construct
tables.

Generalization of the Method of Donath

A relation which exists between equations (27) and
the method of Donath is observed.

What equations (27) %ecome in the case of flat disks
shall be considered. Setting a = O, there is found
m= 1, n = -1; whence

? + u + Mr2 = constant

.1

(28)

T - u + Nra . COnstant--- -—--
r2

,.,,
according to which ~ leading to Donathls result for flat
disks “- operate with the sum and difference of the stresses
in place of the stresses themselves. The expressions for
the sui~ or difference of the stresses contain a single
constant each? It is therefor~ necessary to know their
values for one radius in order to determine the~r values
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~vcr..iihc entire disk. Each stress by itself does not
“p-oss’essthis property; since it -invo.lv..eetwo constants.

It can now be seen that in equations (27) for hyper-
bolic clisks there should be considered not only the
stresses themselves but also their combinations md+’r
and no+?. Z!quations (27) thus generalize the methodof
Dona%h to hyperbolic disks.

Before proceeding to the description ,of the compu– ‘
tation, the manner in which equations (27) may be derived
from Stodolats solution will %e observed. Each of equa-
tions (27) contains only a single constant. In order to
obtaiil a similar kind of equation from Stodola!s solution
which contains both arbitrary constants, it is necessary
to solve these equations for the constants. Bearing in
mind that the roots of the quadratic equation (12) are
connected by the relations

the formulas thus derived agree accurately with equations
(27) .

The latter consideration permits a still further
generalization of the method of Donath. I?or any profile
the solution is expressed in the form

where cl and c~ ard the constants of integration. By
solving these equations for the constants , equations sim-
ilar to equations (27) are obtained. By this method, for
ekan~lZe , the solution of Nalkin for disks with” profiles

might he simplified.

~
-,. ...........,-..,.,, .. .. .. .—-.-— ..
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Computation of Hyperbolic Ring
,, ... .

A fundamental and repeated operation i“n“the c“orn~uta-
tion is the transition from the stresses at the inner
radius of the ring to the stresses at the outer radius.
Let rl~ gl,and so forth, %e the values at the inner ra-
dius and r2, aa, and so forth, the values at the outer
radius .

Setting Mra= a

Nra = b
}

Previously equation (19) was o%tained

s =MU+T

Equations (27) are rewritten as

whence

or

. . .
where

S+a.--— =
m-1 constant

r 1/
Q+_$ = constant
n- 1

r J

S2.=p(S1+a3)~a2

s)~ = q (D2 + bl) -IJ2
}., ,.....,

{29)

(30)

(30’)

(31)

(32)
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Equations (31) are the fundamental equations giving the
.,, tran.s.ition from r.a.d:ius.rl to ?.29,.

Conversely, knowing S and D, d and T are 0~--
tailleclfrom equation (19):

SDu % ..z?-
m-n

I

(33)
T =D - na

.“

The computation procedure is as follows: when the
values al and at the first radius are known, the
values $1 and !: are obtained by fOrmulas (19);

SL G mcrl + T1

D~ = nal + ?1

Next , i]ass to the second radius by formulas (31) and
finally return to the stresses by formulas (33):

Computation of Ring of Constant Thickness

In this case, since a= O, m= 1, n= -L

M.: ;-?7: ~.,.. ,,.. 1‘2”2- -’”’ “’ -’ ‘-
(34a )
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s~ =Sl+al-a~

\

(35). ,.-.,,, .,
Da = q(Di+?)l) -%2 ,-.... .. ~

J

(36)

(37)

72 =D2+(J2 J

These formulas lead essentially to the scheme of Yanovsky
for flat disks.

Computation of ZJisks of Ar%itrary Profile

(See following example and collection of formulas.)

Division of the profile into successive rings.- BY
taking the radius along one axis and the disk thickr.ess
along the other the profile to logarithmic scale” is
plotted. (On ordinary graph paper the values of lg r
and lg y may he plotted.) The o%tained cur~e is re-
placed by a broken line the sections of which correspond
to the hyperbolic parts of the profile since a straight
line in the logarithmic plot corresponds to the ec~uation

Y=~- ra ‘,

where the exponent a is the negative of the slope of the
straight line. The coefficient a for a hyperbolic sec-
tion may %e found by the formula
.. .,. .,, ...,.’ .’,!

lg y, - lg y~
a = —–--z----—-- (38)

lg rz - lg r=
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where yl and y~ are the thickness of the profile at,,.,
Ta&ii ‘“r”lan-d rz, respectively. .-

In choosing the broken line, in order to decrease
the nui,lberof steps, it is sometimes useful to disjoin
the ends of the sections of the broken line, a procedure
which corresponds to discontinuities in the thickness of
the disk (although the given disk does not contain such
discontinuities).

When the Value of a is known for each section, the
auxiliary magnitudes* m, n, and b
are found from formulas (25), (;&],q{29?l a~~” (~~). The
value of m may also be taken from table I and since m
and n are the roots of the quadratic equation (24), then

n =a-m (38’)

Stresses. Principle, of Von Mises. Discontinuities
in Thickness.- Usually the radial stresses at the inner

.—

and outer radius of the disk are giveu. At the inner
radius the stress is taken either equal tb zero or to the
bearing pressure on the shaft and in the latter case it
should be considered as negative. (Kearton and Ostertag
erroneously take that pressure to be positive.) At the
outer radius in the absence of loads the stress is also
taken as zero. In the presence of blades the centrifugal
force of the latter creates a radial stress which must be
computed in advance.

Not knowing the values of the tangential stress T*
at the inner radius the cornputati~n~ following Von 14ises,
is conducted twice, For the first computation any arbi-
trary value TO *S taken. With the aid of computation
experience of the given type of machine this value can be
chosen to lie near the true value by choosing suitable

YW2R2coefficientsin the expression — which gives the
g’

stresses in a rotating ring. The stresses in the succes-
sive rings of the disk are then computed. The st-resses
at the end of one step are, taken ,f.orthe. initial. stresses
in the following step. An exception is made “ii the case
where the thickness of the ring changes discontinuously at
the boundary of the two steps.

*To compute p and q sl$de p>es with log-log
scales which raise a number to any power are convenient.
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Let y he the thickness of the disk before and .,
y+ Ay the thickness after, the point of discontinuity.
The stresses ~’–and T will t-hen l’iketiise-rscelve-dis-
continuous increments Ao and AT which are computed
by the formulas

(39)

AT = v &u J
where .a is ,the stress immediately before the point of
di8co”ntinuity , It is recalled that the derivation of
these formulas is based on the assumption of uniform dis-
tribution of the stresses over a cylindrical section of
the disk. The equilibrium condition of an element for
fir = O in this case becomes

yo = (y + Ay)(o + AD)

whence there is also obtained the first of relations (39).
The second may be written on the basis of equations (5) in
view of the equality of the radial displacements before
and after the discontinuity. There is obtained

T-v(7= (T i-A7) -v(~ +Aa)

whence

A-r = v AD

The second computation differs from the first essen-
tially in that this time the disk is assumed stationary:
u= o. Hence the magnitudes C, M, N, a, and b be-
come zero, The transition formulas to the new radius are
simplified. They are writt,en:

(40)

!lJhe”initi&l”tan-gential stress in the second computation
may likewise be chosen arbitrarily! but the initial radial
stress must be taken equal to zero.

.

By completing the seoond computation similar to the
first for the e-otire disk (what ya~ said with regard to
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the discontinuities holds likewise for the second computa.
tion) the. true. st.re.,qsescare.o>$,ained by multiplying all
stresses of the second computation by “a ‘cer’”t’ainconstant
coefficient k and adding to the stresses obtained ly the
first computation for corresponding radii:

(42)

where the coefficient k is found from the equation

It may be noted that the first computation cOrrespOndS
to finding a particular integral of a nonhomogeneous dif-
ferential equation and the second to the solution of the
corresponding homogeneous eq+uation; the general solution
being the sum of the first and the second multiplied by a
constant and evidently satisfying the boundary conditions.

Computation Check

By checking, the following formulas are convenient:

1. For checking p and q:

r a-2

()
Pq=2 q

2. For checking” a and b;

1+3V
m+

a 3+V—=
b n + 1 +3U

3+U

(44)

(45)

3.’ For checking the stresses at the. rings:

In the second computation since al = az = O, the
following formula is used “

,
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!

(47)
., . . . . ..,.
The check is made i“&ediat el~-’~fter””&bfa~n-ing “~R~ ~orre-
sponding values. The accuracy obtainable with the ‘common
slide rule giving three significant figures is in general
sufficient for the computation. The entire procedure
also is clear from inspection “of talle 2 which should be
filled in vertically in sequence, The columns for S and
D, however, are simultaneously filled in with the stresses
a and T for each step.

Example

The data for the disk that was computed by Holzer is
chosen, making certain changes introduced by Yanovsky (ref-
erence 1). It is reqnired to compute the stresses in a
steel disk (fig. 2) with outside diameter 132 centimeters,
inside diameter of the rim 1?0 centimeters, outside diam-
eter of the hub 24 centimeters, inside diameter of the hub
16 centimeters, thickness of hub’11 centimeters, and thick-
ness of rim 2,8 centimeters. The disk is to run at 3000
rpm. The load due to the centrifugal force of the blades
under these conditions is 400 kilograms per square centim-
eter of the outer area of the rim. Tne radial stress at
the inner surface of the hub is equal to zero.

The thickness of the disks at the various radii is
given as follows:

d?d-
8“

12
L4
18
22.5
27.5
32.5
37.5
42.5
47.5
52.5
57.5
60
66

—

-f&L
L1

J
6.93
3.81
2.89
2.64
2.40
2.17
1+94
1.71
1.50
1.30

1~,~

J

.Sect@n

1

2

3

4

5

nnmmm ,-,,-.--,..,,,m., —

r

8,
12
12
19.2
19.2
40 “’””
40
60
60
66

11
II
3“.3
3.$
2.1
2.1
1.24
2.8

..,-, .,.. , ,,,,,.-—..-. .. . .
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These values are plotted on logarithmic paper (fig. 3),
--fromwhich it is seen tha-t.--itih.hgreat. accuracX-t.he,._.0>-
tain curve is replaced by a broken line of five sections,
and a profile composed of three hyperbolic steps and two
of constant thickness is obtained. These data are in
columns 1 and 2 of table 2.

The auxiliary magnitudes are computed. For the h -
perbolic steps a is found either graphically (fig. 3 Y
or by formula (38). Corresponding to the value of a,
table 1 gives the value of m. Further

n= a-m

With m and n known, are found by formulas
(32) and are checked by f~rm~~~s !44) . Find M and It
by formulas (26), comyut~ a and b by formulas (29),
and check a and % by formula (45). NOW proceed to
the first computation of the stresses.

l?irst Step

Here are given al = O; TI may be arbitrarily
assumed. Assume ‘1 = 1000 kilograms per square centimeter.

s= = moz + T1 =1.&.o + 1000 = 1000

Dl = ncrl + T1 = -1:Xo + 1000 = 1000

Pass to the next radius (r = 12):

Sa = P(S1 + a$) - aa = 1(1000 + 32.6] - 73.5 = 959.1

Da = q(Dl + bl) = be = 0,445(1000 - 8.8) + 19,8 = 460.8

The stresses are

Sz - Da 959.1 -.460.8,=249
o~ = — =

m.n 1- (-1)
,, ,.

T2 = D2 - noz = 460,8 - (-1) 249 = 71O

The entire step is checked by formula (46).
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- -. ...,, .,. ,. .. .Seeond Step .,.

Since there is no discontinuity in thickness between
the first and second steps, the final stresses of the
firs-t step are taken as the initial stresses of the second:

~1 = 249 T.1 = 710
and

s~ = mul + T1 5 3.19 x 249 + 710 = 1505, and so forth.

Account of the discontinuity in thickness must be
taken in the fifth step. Denoting the number of the step
by a superscript (for example’, dl(”4)) will result hy
equation (39):

whence

Turther

AT =Udo= 0.3(-194) = -58.2

#)
= T.(’) + &JT = 617 -58,2 = 558.8

Proceed next to the last radiup to complete the com-
(See table 2.)putation.

The second computation differs from the first only in
that a and b are equal to zero.

First Step

In every case CJZ = O; TX as before is arbitrary.
Assume, for example, TZ = 1000 kilograms per square cen~
t,imeter,. ,.,

s~ = mal + T1’ = “1O’OO

Dl = nol + 71 = 1000

Sa = psl = 1 x 1000 = 1000

32 = qDl = 0.445 x 1000 = 445, and so forth.

1~ -- .



-l~l””l:l ~l~l”l~lr21al blslDl”,l’,’lslDl”,,l.JqTT71
Ill I -1 I 1 1 , r

32,6– 8,81000‘“--‘ n “’”-“
1 1! H .0 1 –1 1,51 0,445 0,51–0,1375*H 73,5–.19,8959,1”

2 ;;,21:,22,633,19—0,561,62,8
144–2080– 8,2615050,48–14,43–0,0574369_5330- 2],237Z0i

3 1923240’*’10,5741,407–0,8332,081,3470,26 369“ 311 – 40,22087
0,841–0!10916001348–174,31877

40 2:113 1,995–(),fj951,51,4970,5034 60 1,24!
16002860–134,523171,79–0,08436006440–-302,01310

2,8 0 ~ _~
5 $ 2,8 1,11 0,8260,51–0,1375:- :::: ‘A- ‘“-0

I ! ““” I“-”’=1---’”1--’-l‘--1----1

lgy, —lgy*
a= Igrz-lgrl.

or.from table 1.

()
‘2n—1*,= & ‘-1

~1 ()
; 9=. —rl

a= Afr2; b“=,Nr2

S=rntr+T; D=no+~

1S2=p (SI+fq)—% Por first
D2=q (Dl+ 6,)— bz computation

1s*=p s~ j~~ Ej~co~
ii:= qDl canputation .

S2— Dz
Ug= —;

m—n ~=Dz—n%

(38)

(25)

(32)

(26)

(29)
“{19)

(31)

(40)

(33)

,.. ,.

Juw u Iw 10001000 01000 0 475
460,8249,2710 moo 445 278723132343
570,5249,2710 1610567 278723132343
291,2914 8024510272.1130904537“429
42 914 802249437 1130“~ 537429
174,8758 805,83360 9i6114901250708594
279,8758 805,84220215 1490l~w 708594
375 348 617.6310108 231017131095815

1%%1i% l:% I .%’:12%’!-!26 H’U%: %. %2 w :~ 1~

- ,
01417

3811053
3811053
14511231
14511231
14661400
14661400
14431432
639IJ89
AM 1(MI-.. .. . .-l._...=.JJ “’” 7W,.”TVI

Table II.- Col1ection of formulas.

Ay—. Is;AT=V.AG‘“=–y+Ay (39)

u,+ ~G1l= % ~1-t~~il= ~ (42)

Check
‘o a—2

()pq=a (44)
rl

1+3V
a “f+-

(
For a_ m+0,576—=

b )1-1-3v;steel ~—n + 0,576 (45)n+—
3+V

m~+~+~=p(mal+q+al) (46)

J?OPsteps of constant thickness:
a=()

m=l

n=— 1

M= C!+

IFor J?+0,65.C

N=-cl~ ‘tee~ ‘=-0’’75”’

p=l :

Check
a ‘i a
—=-2*, Fc&eq ~=-%’lb

w

,/.
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True Stresses. .... . . .,. ,.. . . ......,, .

The coefficient
J5)

k is fou~cl from the condition that
= 400 kilograms per square centimeter. The equation

~1 + @l.I = ~true in the given case will be

-96.6 + k 1045 = 400’
whence

k= 0.4’75

Multiplying all IS and ? of the second computation 3Y
this number and adding a and T of the first computa-
tion according to equation (42):

ytelds the true stresses.

For comparison there are given on figure 2 the
stresses according to Holzer and Yanovsky, the dots indi-
cating the stresses according to table 2. Notwithstanding
that there were only 3 hyperbolic steps instead of 10 .
which were chosen in computing with constant thickness
steps almost complete agreement was obtained. It WOUld
have been possible t;o decrease the number of steps still
further in the given computation without any great impair-
ment of the accuracy. The computations were all made with
a 25-centimeter slide rule.

Disks with Laterally Arranged Blades

As has been said, a lateral load on the disk is taken
into account by a nominal ,increase in the thickness of the
disk, the added centrifugal force being equivalent to the
external load. In other words, the density is increased
while maintaining the same loaded area. The inc.r~ased
density over each step is generally considered coas~ant.,.,,,.
This is ’pe’’rmissible for steps that are not very wide. In
this case the foregoing scheme requires no changes except

that in computzqg c = ~ at each step it i$ necessary

to take for Y

.--———- .
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, ‘Y,,.. ...— equiv.. “-(l+;)

In the case where the lateral load corresponds to the full
centrifugal force of the blades the added thickness of the
disk ~ is expressed through the area of the cylindrical
section of the blade f at radius r, thus

where n is the number of blades,

If, in conducting the computation by hyperbolic steps
very wide rings are used, the increase in density due to
the lateral %lades cannot always be considered ’constant
over the step. A more accurate method for computing the
load will be indicated. Tt is assumed that at each step
the added thickness depends on the radius according to the
1aw

v =Arc (49)

With two parameters in the preceding formula availa31e,
they may be chosen so that ~ very closely approaches
the added tliiekness required. The substitution of this
expression in the differential equation of the stresses
hardly affects the integration.

To determine the parameters A and c for the given
step, the values given by formula (48) for the outer and
inner radii of the step may be required to agree with the
true values:

whence

For the case under consideration this gives

(50)
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,, . The .~alue, of ~ further on is not directly used,,, ..,., ,, .,,,.,.,. ,,,
Now return to the differential equation of the

stresses. .In system (20) there are changed only the terms
free from unknowns which are increased in the same ratio

as the density - that is, by the factor
(’+;). with

the same reasoning, and setting as before

z =k~+T

it is noted that equation (23) for k not containing the
density maintains its form. In equation (21), however,

for z the factor
(1+ ;)

appears in the free term con-

taining the density. By Substituting for v its value

~ = Arc and integrating this linear equation for both
values k=m and k = n two equations again are derived
for the stresses analogous to equations (30):

S+A
= constant

m-l
r 1

D+B— = constant
rrb-l 1

(51)

where as before .S = ma + T, D = nu + 7.

!I!hevalues of A and 3 are obtained from the pre-
vious a and b:

A =a (l+M’; )

B=
( )

b 1 +N’ ~
Y 1

where

(52)

(53)
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The remainder of the computation $s not changed.
What.’hae been said.with.regard .,tot,h~.,choiceof .pro,file,
the two computations according to VOZI Mises, and the dis-
continuity in the stresses remains true.

11. CONVERSE PROBLEM . ~HOIC3 OF DISK PROFILE

I?OR GIVEN DISTRIBUTION OF STRESSES

This problem was considered by Holzer. (Holzex! con-
sidered the case where the load of the disk is applied at
the rim as corresponds to the conditions of steam turbines.)
According to him, the profile should be,chosen so that the
radial and tangential stresses almost over the entire dis’k
are near the maximum admissible for the given material. By
approximating to the condition CIfuniform strength economy
of material is obtained. The general procedure of Holzerls
solution is the following: A curve of variation of radial
stresses is chosen which satisfies the boundary conditions
and rises rapidly to a ma~imum value which is maintained
practically over the entire disk, (See, for example, fig. 5
or 6.) From equation (’i’)of the interrelated stresses:

the value of the tangential s$ress is found, the initial
value of the tangential stress (at the inner edge of the
disk) being assumed a maximum, since in practical cases
the tangential stresses usually attain a maximum at the
inner side of the hub. (See under the section on estimat-
ing the maximum tangential stresses.) The thickness of
the profile may after this be found from differential
equation (2):

d (ryp) ,-yT+, cr2(y+ll)=0
d~

where u and 7 are now known.
,,

Holzer considers disks “for which the entire load is
concentrated at the rim. In this case the equation per-
mits separation of the variables. The initial values of
the thickness of the disk are generally given by struc-
tural considerations,
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The foregoing
suita%l’~ for “disks

indicated
‘for which

outer radius does not become

32

solution of the prollem is’
the radi-al.stres.s-..a$...?ie.e.,
equal to zero. Such, for

example, are disks of steam tu~bines carrying blades on
the rim. [Zero stress at the inner edge of the disk has
no significance. Over a certain distance it is here,in
general, not neqessary to choose a profile because the
hub is assumed of “constant thickness.) Such disks were
considered by Holzer and Yanovsky.

The case, otherwise pertains to disks having zero
radial stress at the outer radius. Such, for example,
are the disks of blowers carrying blades at the sides or
disks without external load. For these the method of
Holzer is not directly applicable. (The reason for this
is the occurrence of singular points in the differential
equation of the profile. yor ~ = O the coefficients of
this equation become infinite.) Jn these cases the shape
of the radial stress curve is subject to additional re-
strictions which if not observed, lead to practically un-
suitable profiles - such as disks of infinitely increasing
thickness, disk w$th negative thickness, and so forth.
Moreover, even for finite edge thickness of the disk the
thickness cannot always be arbitrarily assumed as in the
method of Holzer. In this case it is necessary to solve
the problem of which conditions the chosen curve must
satisfy in order that the disk have the required edge
thickness.

By studying the differential equation (2) of the pro-
file, criteria which, determine the character of the pro-
file near the edge are obtained. Practically, they give
methods for the choice of profiles in the previously men-
tioned cases where the solution of Holzer is inapplicable.

As was mentioned previously, in practical cases the
center hole of the disk is taken up by a hub of conetant
thickness.: The investigation of the shape of the profile
may therefore be limited to the outer part of the disk.
Disks without holes will not be considered since for a
load concentrated at the rim Laval disks eolve the prob-
lem, of,uniform strength. In the case of loads distributed
along the radius, the” problem” is solved almostin the same
manner as for a disk with hole.

q
.:- --------- ,.,..,—,.,,-,, ,, ,,,,.. . . ,,, . . . ,,,-. ., .,, . .. .
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Case of Zero Radial Stresses at the Outer Edge of the Disk
,..

In the “absence “of le~as ‘over’ihe disk radiu’s the”dif-
ferential equation of the profile becomes homogeneous.
The more simple case will be considered first.

A. Disks without ext~r~~~ru~- Differential e.gua-
tion (2) w~~h defines the disk profile in the given case
%ecomes

(54)

wher e

At the free outer radius r = R, the radial stress a
is equal to zero; hence the coefficient p/0 before Y
here becomes infinite. If the case of finite slope of
the o curve a% the edge is considered - that is, assume

LQ+o;cn - se~ting

2

$= Po+332(R-r)+pa(R- r)+...

R-$

which means that the factor p/is has a simple pole at
r = R.

From analytical theory of linear differential ea.ua-
tions the behavior of the integral y near a singular
point is judged and thus the character of the profile is
obtained. Thus the theorem of Fuchs* applied to the si~-
ple case under consideration shows that the integral is
“proper “ and should be of the form

y= C(R-r) ‘[l+ bl(R-r)+bs(R-r)2+* “*3

where C. is an arbitrary co,nst,ant and k is a certain
exponent .

,,.... .. .,,. , ,., .

The shape of the profile depends on whether k>O,
k=O,or k<C), If k<O, then evidently Y* W$

*see, for exa?nple, Gours.at,”’Course iql~athematical
Analysis,

—— —. ..— .—.- .———.-..—.
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when r+R. The thickness of the disk increases infi-
nitely= (See fig; 4.) If--k- = 0,. .-the.disk ,rnaintains a
constant thickness. Finally, if k-> O the th~~~ri6-s”6of-
the disk approaches zero. Which of the three cases occurs
depends on the choice of the radial stress curve and on
the initial value of the tangential str,ess,

In order to obtain quantitative criteria,as well as
a general picture,the problem will be considered m.Qre in
detail. For simplification of the computation, set

The equation of the profile becomes

ay=p
;Y (56)

ax

wher e

P ?(x).=— (57)
a x

and

l?(x) = x:= po+.p1x+p2x3 +”” “ (58)

By integrating there is oltained

or

~xPo
Y= (l +h~x+h2x2+””$) (59)

an integral the form of which is that demanded by the
theorem of ?Juchs. The arbitrary constant C has only
positive values.

,, ,. ,Th.e..forq$o~ng expressions for the -profile may be
written in a foim’ suitable” for computation: ,.

(60)
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The number p. determining the character of the profile
“ is”’thus expressed=:--:- .. ......... .... .

that is, $?a-( ),R,S+CR
P()=-~r

R
(61)

by which the dependence of the type of profile on the
slope of the curve of radial stresses and on the initial
value of the tangential stress is determined.

The criteria given previously nay he expressed in
the explicit form shown in figure 4 by using the expres-
sion for po.

I?or a fuller characterization of th’e type of profile,
consider the derivative

dy dy -Cxpo-l
(po+g1x+g2x2 +”” )

G=-E=

There are three cases

1. p. >0; y+o for 5-+R (fig. 4, la, b, c)

2. p. = o; Y* c for r-+S,R (fig. 4, 2)

3. 3?0< o; y-+ -!-w for r-+-n (fig. 4, 3)

The first case contains several possibilities:

la. po’”> 1; y-o, Q+ o for r~~ (fig., 4, la)

lb. p. = 1; y+o, .!&. c for r~>ll (fig. 4, 1%)

lc. Qcpo<l; y%?+, a{ —>.D for r-+B (fig. 4, lc)~



I?ACA TM NO. 1064 36

The practically significant case is that for which
“the cu’rve of radials tresses approaches zero from the
positive side. The steeper the drop in the curve “of
radial stresses the greater the dt”sk expands tbward the
edgp foi’-otlierwise equal conditions.

Example 1. The condition that the thickness of the
disk at the edge is finite and different from zero was
obtained in the form:

It is not difficult to confirm that this condition is sat-
isfied, for example, for a soli,d disk of constant thick..
ness the $tresses of which, as is known? are expressed lJy
the formulas

1.. 3 + VYW2
(

l+3vr2—— R2.—
8 g 3+V )

Example 2. To determine within what limits the slope
of the radial stress curve must be taken in order to avoid
infinite expansion of the disk profile., The disk is of
steel - diameter 1 meter, rotations per minute 3000, initial
value of the tangential stress at the outer radius about
500 kilograms per square centimeter.

The preceding formulas show that the slope of the
radial stress curve must satisfy the condition

In this case R = 50 centimeters, c = @ = 0.785 kilogram
g

per centimeter, and t~ere is found
,,...,

II“da

~R
< 29.3 kilograms per square centimeter



NACA TM No. 1064 37

that is, the drop in the u curve at the edge should nots-.
‘“”exceed 29.3 -kilograms .p,er square _centimeter for 1 ,centi-—,-—
meter of radius. .

B. Disks with Load Distributed along the Radius.-
Taking, as Iefore:

there *S founq

Assume as before that

P(x) =x:=po+plx+p;xa +:””

and similarly

Q(x) = x CO(R-X)
o-

Consider that the ‘~added
case, is not zero: ~R >

2
= qc) + ‘llx+ q2x + “ “ “ [63)

thickness,’; as $s usually the
o. Integrating ea.uation ,(62)

p dx‘Jp~

Y=e
( ![

QC+-e dx
x )

As in the previous case

J:dx
e =xp O(l+Ppc+ “ “ “)

whence
-~ ~ dx

e =.x-po(l - plx + o ● ●)

I

J

= “~e-~”;dxd~
x

.,.
Setting’

There is obtained



—

NACA TM No.

I
f

=>-...,,4 .... . ... ...,

106?

q~ + q~x + “ - f ~-po(l
— - p$X + . . ●)dx

.— x .= . . . . ......

or

r a-po-~ “(q. + 1*X
.1=x +13%+”” ?)dx

m

-.”... .

Consider the various cases:

In this case the expression for I cannot c~n~ain
logarithms and there is obtained

I
(

=X-po -~+t; x+”.’)

By substituting in the expression for y

(l+plx +’..
Q()

Y= )( CXPO-R+L+’X +..?)

Since po<o for r+R or x-. o the thickness of the
disk y will increase infinitely if c#o. It is neces-
sary to have the arbitrary constant C>o since when
C < 0 the thickness of the disk approaches -m: that is,
no disk is obtained. IfC= O the thickness of the pro-
file approaches -qo/l?o. That this is a positive value

will be shown. Consider the case p. c O. J?urther,

according to equation (63)

Since ‘q~> “o and assume as before that the curve of
radial stresses drops to Zero from the positive s~de,

,,..,:qa >. O*,..Thi.s,means that the value of the thickness df
,. , .,

the d%sk is positive.
,..

2, Po=o
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In this case there is obtained
,..- ,.. . ., .,,., ,.L___,,. ...

I “’=’qo In ~ ~ @ +’”’.. . ----. . .

Y= (l+p>x +”* “)(C+qoln x+13x+”**)

It is noted that qo > 0. For this reason the thickness
of the disk at the edge approaches negative infinity.
This case is impossible - that is, the assumed stresses
are not realized for any actual dlslc. ‘

3. po>o

The thickness of the disk is

= Xql + pzx + ●Y ● +)(C + I)

where

I

f

-.(po+l)
= x (~o+ 13X+ ● “ “)dx
.

The first term in I is equal to

The remaining terms are of the form

where

i =1, 2, 3, . . . -

Moreover, if Po is an integer in x may enter.
The thickness of the disk will be

,, ., ..-. . . ..

Y =(l+ylx+. . .)cxpoq””~ +Ax~o’lnx’+L1x +* ..)

where certain of the coeffic~ents A and Li may vai~i~h.

%>

ii —
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Since for,.,..-,,.,, ,, po>o,.. .-....-+“.... -. ...

.~im x‘“lnx=(l
X-Q’

and the thickness of the disk at the edge

qo
yR=” —

PO

where Po and q~ are positive; therefore the thickness

of the disk is negative.

Summarizing, it is nqted OR # o:

1. The case po~o does not correspond to any real
disk.

Explicitly this condition is

2. The case po<Oor

1$“do’
>CR-+

.Z

(64)

(&5)

leads on the one hand to infinitely expanded disks and on
the other to the only possible disk of finite edge thick-
ness equal to

or

.,,. c’n~
,yR= ,,. ... ..L., . . . . . ,,

()& ~fl CR
drR -

(66)

In choosing a disk profile the slope of the radia~
stress curve at the ed~e should be “Erea~er than a“ certain
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value given by the inequality equation (65}, Moreover~
the bhickn”ess of.the disk at the edge cannot arbitrarily
be assumed if the stresses are given,; This constitutes
the essential difference as compared with the method of
Holzer .

Only the last case where the disk does not expand
infinitely is of practical interest. For this case an
expression for the thiQkness that is capable” of giving
numerical values can be readily obtained. It is found
that

6J; ax
= Xpo(l +h%x + ● ● ?)

The expression in the parenthesis whibh is denoted %y
f(x) is equal to: x

f
P-po dx

f(x) = e x

The solution for Y* previov~ly written under the
assumption that the constant of integration C becomes
zero, leads to the required expression:

Y = Xp” f(~) x

f’

{x) dx (67)
XPO+l f(x)

The integral exists, sincOe p. < 0. This expression gives
the thickness of the disk over its entire extent,

The practical computation is more conveniently based
on the fact that the thickness of the disk at radius a
not far frOm the edge may be considered egual to yR.

Taking for the new variable
/

rewrite equation (2) thus:

.,.,
~+ cr-”:z+’cr2v=’o
dr — 0’

(69)

By integrating this differential equatibn &nd eet-
ting
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,–. cr-~
P =.

a ‘“-”
. ..

(70)

ar Jmr2 ~rEl=T

there is obtained 8

z =V(za+ce) (71)

Since the value of the radius a was taken near B, set
as ~reviously

Za = rauayR

and obtain the thickness of the disk at all radii by
formtila (71).

It will be shown with the aid of an example that
these formulas are applicable for the choice of a disk
profile loaded by lateral blades %ut first, however, two
more problems are considered.

On the Limit of the Tangential Stresses

In selecting a profile both for the case considered
by Holzer and that of disks with laterally attached blades,
assu’me the distribution of the radial stresses as given
and the initial value of the tangential stress at the
inner edge of the disk equal to the maximum radial stress,
AA essential consideration in this connection is whether
the tangential stresses may exceed the radial stresses if
so and to what extent.

,,

If U. = t), To = crmax, ‘“ band is everywhere greater

than zero, then
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In selecting the profile these conditions may be const.d-
ered to be Satisfie& since .-for.steel disks .- foT eXamPls,,

...-

T < 1.3 amax

This Zimit, in the general case, cannot be lowered because,
for rapid increase in the radial stress from zero to the
maximum, T may approach this limit as nearly as is de-
sired. If, however, as o increases to the maximum the
tangential stresses do not go beyond the limit %ax then,
as will be shown, they do not excegd this limit over the
e’ntire disk. Also an interesting r?mark by Eolzer should
be mentioned that at the parts where the radial stresses
remain constant the tangential stress approaches the radial
asymptotically.

All these statements are valid for disks independent
of their profiles and of the character of the loads. They
are based on the equation giving the relation %etween the
stresses:

which itself does not depend on the shape of profile or
on the load.

Now proceed to the proof. Assuming in the above
equation cr(r) to be a known function, the tangential
stress is obtained

1
T

{

~+h+v ~+l+v dr
=—

~l+v
J

r
(v dr

—a
r )},

Integrating by parts and determining the constant of inte-
gration from the conditions, u = 0; T F To, for r = ro,
results in,

‘r .(>)’+” .0
1

2 ‘,
*lxs+---=-Y- ! cmv dr (72)

r’1+ v
.
‘o

The tangential stresses always remain positive since
all terms are poqitive.
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Set
m- .,. ... ,., .,., ... J+.u... ,,,:.

e ()r.=
T

Evidently 6 is always less than, unity.

r
1

f

l-eCYr”dr < ~max ~—!
~l+v

r.
“Since, moreover, To = ~max, it is found

and

‘r < (1 -1- v) (Tmax

Moreover, by equation (72);

If the maximum o is attained at radius
then

,,

44

from equation (72)

rl

(73)

(fig, 5),

[( )ro 1+V
T1>— + 1)7a~~~

rl
J

only slightly
will slightly

rl

TI

If the increase in a is such that
differs from r. the tangential stress
differ from (1 + V)~maX. $t is seen that the tangential
stresses, in general, may exceed the radial and the limit
set by the inequality (7?) cannot be lowered without added
restrictions, The corre~tness of the remark by Eolqer
follows from the fact that at the intervals with positive

-radial.stress..aqcord.ing ,to.the.equatign Qf thq interrelated
stressee .L,

T.~F constant
~l+v

I
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With increasing radius the difference between the two
stresses approaches zero, whil-e the,tang.en.tj.a$ qtre..s.sre-
mains at all times either greater than or less than the
radial . Passing to the latter characteristic, it will be
shown that if over the interval ro$ rl (fig. 5), where
the radial stress increases from zero to the maximum, T
does not exceed (Jmax then the tangential stresses do not.
exceed amax over the entire disk.

Xqom equatfon (72), having all of its terms positive,
it may he seen that if, without varying the initial values
TO and O.=O,’ a new curve of radial stresses is taken

which everywhere lies ,ahove or coincides with the first, the’
tangential stresses can only increase as a result of such
substitution.. The inftial curve can now be changed so’
that starting from point B (fig. 5) it ’stays at the
level of (Tmax up to the end. The corresponding tangen.

tial stresses being *t radius r% less than ~max remain

such to the end, since o = constant. According to what-
was said this should all the more be true as regards the
initial tangential stresses. Thus the tangential $tresses
over the entire disk do not exceed &max.

Simplification of Holzerls Method

for Loads Applied at the Rim

Holzer assumes a graphically giv~n o curve-or rep-
resents the parts of the curves by series:

a=ao
2

*aXr + azr + w ‘ ●

To find the profile in this case it is necessary to resort
to one of the approximate methods for computing integrals.
In view of this, ~the solution of Holzer is considered prac-
tical~y complicated.

.

Th”e solution can, however, be made very simple. It
is only necessary to seek a function to approximate the u
curtie at var”iou8 sections so that differential equations
(7) and (1) determining the tangential stress are inte- .
grated exactly and not app roximately,* .,

*This approach “repeats the idea of the application
of constant thiekpess -disks or of hype~bolic disks to
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The simplest method would “oe to represent the radial
,st,re,ssesby a broken line applying to each part the......,-. .
linear law+

u= kr+~

For the tangential stresses, from differential equation
(7), it is found in this case

(T . (J + .W. kr)*l+V
= constant

2+V

orl for practical computation:

where

(74)

(75)

Difficulties are encountered? however, in computing the
profile.

If, however, there is assumed for the radial stresses
at the various sections, instead of a linear, an exponen-
tial law likewise,with two parameters:

0= $ rk

no difficulties are met with either in computing the tan-
gential stresses or in finding the profile. Por the
tangential stresses there is obtained according to equa-
tion (7);

(T *
i +v

h~)r = constant (76)

compute the. stresses in the given disk. In both cases it
is easier to solve the’ differential equation. relying on
functions for which the integration is readily carried out
than to make use of general approximation methods. This
fact is not taken into account in the methods of Keller
and Holzer.
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where
–. ..,... ....... —, ...X..._l_+_+ ~ .+ kv

l+v+k

For the practical computation

‘2

where

+
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.(77)

of a step:

(78)

(79)

In the same manner, it is readily found from equa-

tion (1) for the profile

where A denotes the increment in passing from radius
rl to r 2: for example,

()~
T

Au =:.

Set for briefness

‘1
—9 and so forth
‘1

h= 2,3(1 + v + k) 1
“k-+(2B = ——— (

(

(80)
l+v+k

z?= 2.3(2 - k] J
where the nu?nher 2.3 its the conversion factor for passing
to common logarithms. There is obtained finally,

.,, ... . .
~gq”=l’ ()p “~ %*(C+)+BAlg(i+;

Y2 !
(81)

The above equation g%ves tbe change in.the profile thick-
ness over a se~tion ~f the disk. Togetbep with equation’

,,, . -- ----- . -.....—.-... ..—..--—.- --. -— - .. .-
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(’78) it solves the problem of the choice of”profile. Both
.form~las are exact and there is thus no need for approxi-
mate integration. The cornputa-tio’ni’s particularly simple
for sections where 0 = constant. In this case the ex-
ponent k is zero; Iience A = 1 and instead of equa-
tion (78), the result is

(82)

In the formula for the profile thickness (81) the coeffi-
cients are simplified;

Ati2.3(l+v)

D = 4;6

an,d B need not be computed, since

BAlg(s’=0

The computational procedure is as follows. The given
curve of radial stresses is replaced by a curve of the
type u = P rk, passing through the e~ds Of the section.
The exponent k is fou~d by the formula:

(83)

It is not necessary to compute 13. Further, using the
initial value To there is found by formula (78) the tan-
gential stress over the entire disk. Tinally, assuming -
the thickness given at any radius - usually at the rim .
there is found the entire profile by formula (81). In the
computation or.ly a small numbqr of steps need be used~
since the pnesence in the formula a = p rk of two arbi-
trary parameters permits close approximation’to the given
form with only four or five steps.

,:
Examples of Selection of Disk Profiles

Take two examples: one for the case of loads applied
at the rim, the second for a disk with laterally attached
blades.
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Example 1. (See table 3.) Consider the problem.. —..,
whit’h”””w~s’solve’d %y’ IIokzer, -and -in-somewhat changed form
also b,y Yanovsky. Keep the condition in the same form
as given by Holzer.

It is required to construct the profile of a disk for
the following data: outside diameter 132 centimeters,
inner diameter of hub 16 centimeters, outside diameter 24
centimeters, num%er of rotations per minute 3000, load due
to the centrifugal forces of the %lades produces on the
outer surfa,ce of the disk a radial stress of 400 kilograms
per square centimeter; at the inner side of the hu% there
5s no radial stress. The permissible stress of the mate-
rial is 1500 kilograms per square centimeter. At the rim
the thickness of the disk must be 2.8 centimeters... .

l?irst of all, assume tb.e value of the radial stress,
taking it equal to 1500 kilograms per square centimeter
over practically the entire disk. As regards the edges
starting from the side of the shaft, the initial’value of
the tangential stress is given here, assumfng for it, as
indicated, the maximum value: To = 1500 kilograms per
square centimeter.

“Now Qompute %ae s“tresses at radius r = 12 centimeters
since the nub constitutes a step of constant though as yet
unknown thickness. For computing the stresses a knowledge
of this thickness is not necessary.
(see first pt.

Thus, there is found
table 3) for the radius 12 centimeters.

o- = 388 kilograms per square centimeter; .,

T = 1070 kilograms per square centimeter

From this value of a the radial stress must be increased
to its maximum value 0 = 1500 kilograms per square
centimeter. (See fig. 6.) Let this maximum be reached at
radius r = 18 centimeters, (.Too steep a.n increase in c1
leads to the ‘same sharp drop in the thickness of the disk.)
This increase in al, as already sa$d, follows the law

,. .,
o=$’r k -. . ..

3y formula (83) for the given ~tep there is found

.



A Hub.
* ___

step “r I
I9’‘M N f2 a b.

8
1“ 12

.0,445 0,511 –0,1376
64 32,7

‘- ~~ “+ ‘.~gi’m

–&8 1500
144 73,5 –19,8

B. Variablepart of profile.

1.
3t@p: ‘r a“ I lga K k Q

.=1% ‘(~) cfl $ ‘(3 A ‘ ‘D ~gt y

~ . /

.. .

~~ := 3,33 (),493 1,694 ;g; yj –1$16
113,3 o.~ “–0,122 10,65 1,152 ;: 255,0 0,170 –3,06 0,5357 ]~

1500 3:1761 0 * q% 1267 0,844
*

3 i! Kilo 3J761 3 1453 0,969
0,1% SO !j& 1,% 2,99 — 4,6 g,4438 &

“4 62 f$ ~~; -21,2 0,254 1,085;&~ )gg ti 2,02 6~
66 I

1,7513430 –45,8 0,964 53,4 +,4691 pg
, 9 8,58 1

. m-x-’l- *.T “.11 -— LA-— -m -– —-,.-.

~=u?%-k%
Igra—lgrl (83)

(77)

A=2,3(1+v+Q ‘

k+2
‘B= ~v~

.

A* hub where u = const.
k=O ~

(80) k=l ;

/3– not computed

I

1

I
1

I
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.
-“k= J/z .1500 - lg 388 = ~ ~3_ .

lg. i8 - lg 12 -

(See table 3.)

For the following step (table 3, third step) a

51

is
kept at its maximum value, 1500 kilograms per square centi-
meter,and only in the ring.from r = 62 to r = 66 centi-
meters (fourth step) is the radial stress lowered from
150Q to 400 kilograms per square centimeter. ~his drop
is likewise made according to “the law 0 = P r , the
value, -21.2 being obtained for k.

Thus assuming this variation in 0
disk,

‘over the entire
proceed to the computation of the tangential stress

T. Por tliis purpose the auxiliary coefficients ~ and Q
are required (see table 3); and T is computed by formula
(78) for the second, third,and fourth steps. Ii’orthe
initial value of T for the second step T = 3070, pre-
viously obtained for the end of the first step, and so
forth. Thus, for example, there is obtained for the second
step

T1 -Als
+ ADZ = 1070 -

72 =
Q

‘-496 x 388 + 0.496 X 1500 = 1267
1.694

TO find the thickness of the disk formula (81) is
applied, beginning this time with the outer edge of the
disk since there &s here given the thickness y = 2.8 cen-
timeters. Having filled in the columns of the auxiliary
coefficients in the table, there is found for the last
step, by formula (81)

1= x ‘1.751 - 0.964 X 0.574 + ~ X 6.56 = -0.4691
-45.8 53.4

sin?e y2 = 2.8 centimeters, there is obtained yl = 0.95.
Using this value as the final for the third step yields
for the initial thickness of this step YJ = 2.64 centi-
meters, and so fort~. The problem of finding the profile
of the disk is thus so~ved. From the curves of figure 6

8 .—
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.it is seen that the obtained profile and the values of the
tangential ‘str”-es’sesagree in a very satisfacto ry.rnap.ne.?
with solution of Holzer. Thus, the width of the hub was
obtained by the author as 9.06 centimeters as compared
with 9.32 obtained by Holzer. The author required 5
steps. By the method of Yanovsky based on steps of” con-
stant thickness 12 steps were required for the solution
of this problem.

Example 2. (See table 4.) Take the problem of the
improvement of the disk profile of the fan (fig. 7) des-
cribed by Ostertag (reference 6). !!he disk makes 4000
rotations per minute. Starting ”from radius r = 20 centi-
meters, the effect of the blades is taken into account by
introducing an additional width of ().7 centimeter at both
sides of the disk. The outside diameter of the disk $s
86 centimeters, the inside diameter of the hub 15 centi-
meters, and the outside diameter of the hub 19 centimeters.

For the disk considered by Ostertag, the maximum
stress is the radial stress Gmax = 1128 kilograms per

square centimeter. The tangential stresses are consider-
ably less than the radial. The maximvm radial stress is,
however, reached in the form of a peak. All this shows
that the disk is far from being of uniform strength,

The disk profile will be improved, in the first
place, by making the tangential stresses approach the
radial , and in the second place by maintaining the maxi-
mum radial stress 0 = 1128 kilograms per square centimeter
over a considerable distance. At the outer edge of the
disk, in lowering the radial stress to zero, it is neces-
sary to take account of the previously derived condition
for finite thickness of the disk (65):

If it is required that the thickness of the disk at the
outer edge should, for example, be 1 centimeter - as in,...,
‘O”stertagls example - then.from,formula (66) the approxi-
mate value of the slope of the radial stress ‘curv’~can be
fOund;

11
dd =C,ij:+cRWT=l,39 X1.4 X43+L 39X43 -h

-rR
—
dr R

.
Y B z

~=143,6 .--z
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4 TABLE 4

A. Hub

r q M N 2
r a b s D

.

7*5 0.623 0*904 -* ,243 5692 50.8 -13.65 lK% ~ l12f3
9.5 90.3 $1,5 -21● 9 1097 716\ , +

0 T

“o 1128

191 .907

B. Computation of Tangential Stresses

r 0 k

9-5 191
12.75 660

144
144

1s l12g
2’

0

1./ i

l~2a
2

0
112$

2 1128
3 1005

-3:, g
-67.5

3 735
352

-95

I 4 I
-118.3

I -r

!43.8
4J.t3

o
0

-.;.35
-20.5
-2a.9
-36

1.342
1“.255
1.25
1.2
~ ,166
1.143
l,i2q
1.111
1.075

1.466
1.*343
1.337
1:267
1.221
1.19
1.165
1.147
3.10

907
874

1001
1033
1053
1067
1033

933
77a
624

C. Computation of Profile Thickness
—..

ra ‘m=l=–F
r

9.5
:;.75

C7 T

907
874

1001
1018
1033
1053
1067
1033

933
865
77g
;;:

“’rl rz e z

21aoo
426Q0
50500
53800
56400
55900
51700
44300
31400
23TO0
14950
10340

5200

Y

L2
5.05 ‘

2*79
2.67
2.58
2.06
1.63
1.38
1.19
1,11
1.05
1.034
.99

+

JL-
. ----
-----
--------
-----
0/300

410
543
723
1003
123Q
1560
1810
24T0

-0,431 -0.328 ‘0.721
--- 07?2 .-.343 1.41
-.035g .513 1.671
-,02Tg ,57&!1.j’,83
-.0212 .625 1.869
-;00;: .685 2.gg4

2 .702 2.02
.0121 .686 J..g85
.032~ .593 1.81
,0536i .505 1.657
,1017 .361 1.435
,1607 .250 1,284
.3>80 0 1

191

660
1128
l12g
l12g
LL28
l12g
1005

735
560
355
244
125

1$315
rs430
M080
20300
22400
27100
31600
32200
26500
“21300
14200
10000

5250

17g80
179/30
17ggo
17ggo
lj’g80
16550
14670
12300

8750
6550
3760
2050

0
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Assuming ?R a magnitude of the order of 500 to 700 kil-
ograrn&’’p&r”sqiiar”e’cent~meter’ ‘(for 70 = 1128 kg/cm2) ---

yields the slope at the edge:

.

‘ do
II~R

= 130 kilograms per cubic centimeter

Passing to the selection of the radial stress curve
over the entire disk, first compute the huh as a step of
constant thickness, (See table 4A. ) The initial values
are a. = CJ;* “T~ = 1128 kilograms per square centimeter.
There is found for the end of the hub: a = 191 kilograms
per square centimeter, T.= 907 kilograms per square cen-
timeter.

Then increase o linearly (see fig. 7) to the maxi-
mum 1128 kilograms per square centimeter at radius r = 16
centimeters and keep it at this level qp to radius r = 28
centimeters. !l!hen o is lowered to zero, assuming at the
edge a drop of 130 kilograms per square centimeter per
centimeter of radius.

With the curve of radial stresses given, the tangen-
tial stress is found. I?or this purpose apply formula (74),
assuming that ~ at each step follows the linear law,
l?or the steps for which o = constant, v = ~ is obtained.

All computed tangential stresses are given in table
43. Figure 7 shows the obtained curve of tangential
stress. For comparison, the curves of radial and tangen-
tial stresses obtained by Ostertag are shown ly dotted
curves. The new curves evidently much more nearly approach
{he condition of uniform strength.

There still remains to be computed the thickness of
the profile corresponding to the new stresses. The thick-
ness at the outer edge is found .by formula (66):

cVR
Y=

1.39 x 1.4 x 43
= 0.99 centl-

.,. ,, &, ,
()

bR ‘,%,,+ 130 -,1.39 x 43..:,—y
i ~r.~-

meter!,. ... .,

*Ostert”agassumes 00 = 10 kg/Cma, taking the bearing
pressure on tbe shaft as positive. This pressure should
le considered as a nqgatiiv~ strqs$, The same error is re-
peated by K@artQn,

r! ._.—— — — .
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Then bompute the thickness of the profile by (71) (see
““t”ZiliIe”4C), ‘t’he”integral for the individual step-s being
approximately computed by the Simpson formula:

The obtained profile is shown on figure 7 where, for com-
parison, the profile obtained by Ostertag is indicated by
the dotted curve. It is seen that by approaching the uni-
form strength condition a considerable saving in material
results.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.

RETU!RENCES

1. Yanovsky, M, O.: Computation of Turbine Disks. ,1926;
Computation of Steam Turbines, 1931.

2. Zhiritsky, G. S.: Course in Steam Turbines. vol. 2.

3. Cherny, V. Y,, and Baklanov, G. I.: Computation of
Turbine Disks. Sovietskoe Turbostroyenie, no. 4,
1934.

4. Rees, V.: Computation of Rotating Disks of Turbines.
Sovietskoye Kotloturbostroyenie, no. 1, 1936, p. 13.

5: Kearton, 3.: Turbo Tans and Turbo. Compressors. 1933.

6.. Ostertag, P.: Compressors and Fans. vol. 2, 1931.

7. Donath: Die Berechnung rotierender Scheiben und Ringe.
2d cd;, 1929.., ,,,, ., ,.

8. Holzer, H.: Die Berechnun~ der Scheibenr&der. Zeit. ”f.
das’gesamte Turbin~nwesen, Sept. 20, 1913;
Die berechnung tier Scheiben bei ungleichm%ssiger
Zrw%rmuqg. Zeit, f. d, gesamte Turbinenwesen, Jan,
30, 1915.



I .
—

NACA TM NO,. 1064 !56

9. Arrow smith: T“he Design of Rotating’ Discs, Engineering,
Oct. 1923, p.. d.l?,. ..: .. ........... .. ........

10. Sto601a, A.: Damp f- und Gas-Turbinem. 5th cd., 1922,
P. 326; 6th cd,, 1924,

11. Stodola, A,: Die Oampfturbinen und die Aussichten ver
W~rmekraftmaschinen. Z.V.D.I. , Bd. 47, Nr, 2,
Jan. 1903.

12. Cornok: Stresses in Rotating Discs. World Power,
Aug. 1931, p. 94.

13. Stodola, A.; Die I?ebenspannungen in rasch umlaufenden
Scheibenr3dern. Z.V.D.I. , 190?, p. 1269.

14. P6schl, T.: fiber die Berechnung der Spannungsvert eilung
in rotierenden Scheiben mit ver~nderlicher Breite.
‘Zeitschr. f. d. gesamte Turbinenwesen, Feb. 20, 1913.

15. Grtibler, M,: Der Spannungszustand. in rotierenden
Scheiben ver5nderlioher Breite.
1906, p. 535.

Z.V.D.I. , April 7,

16. Malkin, I.: Zwei neue Loesungsn des Problems der
rotierenden Scheibe. Schweizerische Bauzeitung,
Jan. 13, 1934.

16a. Malkin, I.: Design and Calculation of Steam-Turbine
Disk Wheels. A.S.M,E. Trans., vol. 56, no. 8, Aug.
1934, pP. 585-600.

1?.. Haerle: Engineering, Aug. 9, 1918, p. 131.

18, Grammel, R.: Ein neues Verfahren zur I!erechnung
rotierenden Scheiben. Dinglers ~olyt. J., Dec. 29,
1923, p. 21’7,

19. Driessen, M.G.: A Simplified Method of Determining
Stresses in Rotating Disks, A.S.M.E. Trans., vol.
50, no. 30, Sept.-Dee, 1928, pp. 1-.5.

20. Martin, H.: The Strength of,Rotati.ng Discs.
Engineering, Aug. ,30, 1912, p. 2791

21. Knight, W.; Stresses in Rotating Discs with a Hole at
the Centre.. Engineering, Aug. 3, 3917, p. 109.

~ — ..



,. ...= ., ,,. . ..... . . .. . . ..

NACA TM NO. 1064 5?

22. Hodkinson, B,: Stresses in Rotating Discs of Hyper-
bolic Profile. Engineering, Aug. 21, 1935, p. 215;
Stresses i.nP.otating Discs of Hyperbolic Profile.
Engineering, June 10, 1932, pp. 677-678;
Rotating Discs of Conical Profile. Engineering,
vol. llG, Aug. 31, 2923, pp. 274-275.

23, Fischer, A.: Beitrag zur genauen Berechnung der
Ilampfturbinenscheibenrader mit ver”~nderlicher Dicke,
Z. des Oesterr. Ingenieur- u. Architekten Vereins,
nos. 9 - 10, 15 - 16, 1922.

24. Honegger, E.: Festigkeit sberechnung von rotiere.nden
konischen Scheiben. Z,f.a.N.M. , April 1927, p. 120.

25. Martin, H, M,: Rotating Discs of Conical Profile,
Engineering, Jan. 5, 19.22Z,pp. 1-3 and Jan. 26, 1923,
pp . 115-116.



—.—
~;, ., ,. “-

=-%,*

NACA

I

Technical Memorandum

,.

—.—...-.. .. .,.->

12001 ,

No. 1064

.,, ,

L7“‘-’?
-.

1000 /-
T / ---

\ ------ ----- -’ --%.. ---

800 “.~-_ _,/ f.”-
-+ ----

--- T
/

-- -B .. .

600
/ ‘. . -.
, ..
/ \

40 /
a’

,,

200 0“,

o-, ,

41!

.
ll\

-IL%.

! /

I /’,
1 I
If’t

,
Fig. 7

1;
I

,- - -1, ..

8
I I I I

i2 ‘ 16 20 24
I

2’832’36’40’43
, ! I I

Figure 7.- Improvement of disk with lateral blades, Dot.
ted curves give initial profile and stresses?

improved profile and.stresses given by so~id c~ve~~

—. — —.



.—. ...
.,,I

NAGA TM NO. 1064 58

.,
TABLE 1

.. .-—,.—...-

a m

0.0
.1

::
.4

5
:6
.?
.8
.9

3..0
1.1
1.2

;::
1.5
1.6
1.7
1.8
1*9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

1,0
1.066
1.134
1.205

, %.277
1.351
1.427
1.504
1.583
1.663
1.745
1.828
1.912
1.996
2.082
2.X69
2.256
2.344
2.433
2.522
2.613
2.703
2.794
3.886
2.978
3.070
3.163
3.256
3.349
3.443
3.537

——

Difference

0.066
.068
.070
.072
.074
.076
.077
,079
.080
.082
.083
.084
.085
.086
.087
.087
.088
.oi39
.089
.090
.090
.091
.092
.092
.092
.093
.093
.094
.094
.094



Figure 1.- Equilibrium of
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Figure 4.-
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Yigure 3,- Approx@%tion to the profile with
with the aid Qf hyperbolic steps.
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