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TECHNICAL MEMCRANDUM NO. 1165
'COEFFICIENT OF FRICTION, OIL FLOW AND HEAT BATANCE — — —
OF A FULL-JOURNAL BEARING'

By P. I. Orloff —

1. COEFFICIENT OF FRICTION

Statement of the Problem. The friction between metal surfaces
completely separated by a lubricant layer, or fluid friction, is the
reaction of the layer to the motion of the surface. Experiment
and theory show that fluld friction does not depend, or depends only
to a slight extent, on the magnitude of the load on the surface and
is determined to a very large extent by the viscosity of the lubri-
cant and the velocity of the relative motion.

The usual method of expressing the friction force as a function
of the load through the coefficient of friction is for fluid fric-
tlon quite an artificial one and its adoption in the lubrication
theory 1s merely a concession to the concepts of friction based
on the laws of Coulomb.

The numerous experimental and theoretical investigations of
the coefficient of friction of a Journal bearing all express the
coefficient as a functlon of the parameter qw/k, where 1 18
the absolute viscosity of the oll, w +the angular velocity of
the shaft and k +the pressure. This magnitude which plays a
large part in the discussion that follows we shall denote as the
operating parameter of the bearing. For practical computations it
is more convenient to make use of the related magnitude nn/k,
where n 18 the speed of the shaft 1n revolutions per minute, k

the pressure in kg/cm? on the proJection of the bearing. For
briefness nn/k will be denoted by the symbol A. The latter is
connected with the magnitude nw/k by the following relation

A

centipoises rpm _ gaeq . 305nkE sec/m® w 1/sec
kg/cm® k kg/m2

Petroff in 1883 proposed for the coefficient of friction of
parallel surfaces separated by a lubricant layer of height h and
moving relative to each other with velocity v the following expres-
sion: .

*Aeronautical Engineering (Moscow) 9th year, Jan. 1935, pp. 25-56.



2 NACA ™ No. 1165

1.7
T8 %

which follows immediately from the expression of Newton for the
force required for the displacement of a viscous fluid between two
parallel surfaces of solid bodies. According to the law of Newton
the shear force T of a viscous fluld is proportional to the area,
the viscosity of the fluid, and the velocity gradient across the
fluid layer:

T=lbng—§ (1)

where 1 1s the length and b the width of the surface.

The shear force thus depends on the velocity profile across
the oll layer. If the oil in the clearance is carried along only
by the adhesion to the moving surface and the viscosity force the
velocity gradient is constant and equal to v/h, the velocity
profile is linear and equation (1) assumes the following form:

T=1bq L (1a)

The coefficient of friction or the ratio of the frictional
force T to the load on the bearing surfaces P = klb 1in this
case 1s equal to:

£ =1
h

w13

For a cylindrical shaft rotating concentrically with the
angular veloclty w in a bearing with diametral clearance A the
friction force by the law of Newton is equal to:

T=mn 4l Hﬁ!?
A
and the coefficient of friction
e T _ 400, no 2
T"Ri" "2k~ 7V & @)

where \y = A/d 1is the relative clearance of the bearing. This is
the formula of Petroff for a jJjournal bearing. It was derived for a
clearance of uniform width and takes into account only the friction
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of the viscous displacement of the oll and is therefore applicable
only to the determination of the frictiomn of lig,ht],y loaded and

~concentrically rotating shafts. . __

If a load 1s applied to the surfaces then, in addition to the

"reaction of the viscous displacement, the surfaces are subject to

8till another reaction of the oil flowing out under the pressure in
the direction of the motion (fig. 2). For cylindrical bearings

the zone of pressure constitutes generally 90 to 1200; in this zone
forces are developed which increase the friction of the shaft above
the value determined by the Petroff formula.

In determining the simmltaneous reaction of the viscous dis-
placement and potentlal flow of the oil in the loaded zone, assumed
as 120°, Gumbel (reference 2) expressed the coefficient of friction
as a function of the relative eccentricity of the shaft in the
following manner:

£ =17 Vix (3)

vhere X 18 the relative eccentricity equal to the ratio of the
absolute eccentricity of the shaft e to the radial clearance

A2 (fig. 3). 'The relative eccentricity, as follows from the
equation of discharge of Reynolds 1s a function of the magnitude
naw/ky2 that is

(r» = ﬁ%’g (%)

Substituting in equation (3) for 1 - X the algebraic expression,
represented in figure 5, of the relation between X and na)/k‘lfe,
obtalned by the numerical integration of a number of typical cases
Gumbel obtained for the coefficilent of friction the following expres-

slon:
= 1.Te¢ l\/_'li"_
7 k

sThe coefficient ¢ tha.t takes into account the inmaccuracy of the
algebraic expression for the relation between X and nu/WZ2 is
shown in figure 1 as a function of na/kyF.

The eccentricity of the shaft in the bearing depends not only
on the magnitude nw/kyZ but also on the length of the bearing.
The smaller the ratio 1/d the more easily does the oil flow out .
of the clearance and the deeper must the shaft be set in the bearing
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in order to sustaln the given load. To take into account the finite &f‘
length of the bearing it was necessary for Gumbel to introduce in
the above derived expression the coefficlent of length of the bear-
ing obtained from the working up of the tests of lasche (reference 3).
The final expression for the coefficient of friction according to
Gumbel has the following form:
G

£ = 1.7c'v3%’ (5)

where c! = Vh d/1 + 1 1s the correction for the finite length of
the bearing. Assuming the value of € equal on the average to 1
and choosing the ratio 1/d4 = 1 Falz (reference 4) obtained the
following widely known formula:

f = 3.8 % (6)

The above formula gives satisfactory results for partial bearings
(without upper cover) with a bearing arc of about 120° but is unsuit-
able for full Journal bearings particularly those with forced feed
since the formmla does not take into account the additional fric-
tion of the viscous displacement of the 01l over the unloaded two
thirds of the bearing. The formula may be used for the approximate
estimate of the friction in full journal bearings only for amall
values of wnw/k where the additional friction of the viscous
displacement is relatively small and the reaction of the flow from
the loaded zone is the predominant factor. Moreover the range of
values of na)/k in which formula (6) gives satisfactory results is
80 near the critical value of nw/k corresponding to the rupture
of the oil film that it 1s practically Impossible to use
formula (6) for full journal bearings.

Test Data on the Coefficient of Friction. Test on the coef-
ficlent of friction generally determine the latter as an exponential
function of 1, w, k. Illmer (referemnce 5) om carefully working up
almost the entire literature on the coefficlent of friction
represents the latter in the following form:

f =K !lrvm
kn

where the exponents r, m; n, vary within the range 0.3 to 1
and KX 1is a constant that takes into account the size of the clear-
ance and other design factors. The rather complicated method proposed
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by Illmer for determining the coefficient of friction is hardly
applicable on account of its ccmplexity and absence of any

~rational basis. We present the results of the experimental investi-

gations of the various authors considered by Illmer (table 1) in
Table 1.

Fomin (reference 6) in conducting tests with the crankshaft of
an airplane engine found that r wvaries in the mean between the
limits 0.3 to 0.4, m = 0.5 to 1, n = 0.6 %o 1.

McKee (reference 7) investigating the coefficient of friction
and its dependence on the clearance and length of bearing expressed
the results of his tests by the following equation

f = + oa

wi8

.
v

the first term of which represents the formule of Petroff, a is a
constant equal to 0.002, o 18 a correction coefficient depending
on the length of the bearing.

Coefficient of Friction of a Full Journal Bearing. The velocity
distribution in the oll layer of a bearing working in the region of
fluid lubrication with a clearance completely filled by the oil is
schematically represented in figure 2 together with the diagram of
the pressure over the circumference of the bearing. Over the entire
circumference of the bearing the oil is carried along by the moving
surface of the shaft and the velocity diagram across the oll
layer had the form of a trlangle the maximum ordinate of which is
equal to the peripheral velocity of the shaft. The resistance of the
oil, carried elong by the motion of the shaft, per unit area is

T &g (7)

In the narrow part of the clearance due to the incompressibility
of the oil a region of pressure is formed from which the oll flows
out in the direction of motion and toward the ends of the bearing.
The latter type of flow has no effect on the friction since the
frictional force is directed at right angles to the peripheral
velocity. The flow in the direction of motion however (along the
X axis) gives additional friction. To the triangular velocity
profile there 1s here added the parabolic profile of the potential
flow, the equation for which, for a system of coordinates placed
at the center of the oil layer, has the followling form:
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"1 hy 2| &
TR [vz -(3)°| & ®)
where dp/d.z is the preeéure gradient along the X axis.

The first derivative of the velocity with respect to y is
equal to
dv. y dp
Iy =nd&x
The friction force per unit area for the boundary surfaces, that is,
for y =+ h/2 1is according to the law of Newton equal to

" dv._h dp
T =ndy'2d§ (83)

The total friction of the bearing is made up of two components:
of the viscous resistance of the oil T' carried along by the motion
of the shaft over its entire periphery and of the reaction T" of
the flow of the oil from the loaded zone along the direction of
the X axis:

T=T'+T =d1 (xkT+aT1'),

where a 18 the loading angle of the: bearing. The total coef-
ficient of friction is the sum of the individual components

\l "
=X +% = £ 4 2"

D

T* and f*. We shall determine the value of the first form of
the friction according to equation (la). We transform the linear
coordinates of this equation into polar for which purpose we make
use of figure 3 showing the shaft eccentrically placed in the bearing.
We take the origin of coordinates on the line 0-O connecting the

centers of the shaft and bearing. For any angle ¢ the height
of the clearance h can then be represented by the following

expression:
h=ry(l+Xcos o), (9)
where
r is the radius of the shaft
v the relative clearance, equal to 4A/d

X the relative eccentricity, equal to 2e/A
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The total friction force over the entire periphery of the shaft is
obtained by integrating expression (10) between the limite 2x to O:

o o e 23 do _ lrw
v ({)1+Xcosq> v yi-x

The coefficient of friction f' is equal to

ft = _Tf = X nw __L__=-LM(X)* . (n)
Ka y k{1 -2 y k

Ve have thus obtained the formula of Petroff corrected by the
factor __1. o that takes account of the eccentricity of the shaft
1-X
in the bearing. For X = O, that is, for a central setting of the
ghaft, formula (11) becomes the formula of Petroff.

Figure 4 for the function (X)* shows that the correction term
differs to an appreciable degree from 1 only for values X>0.5
and that therefore the formuls of Petroff 1s sufficlently accurate
over the large range of practically occurring small eccentricities
corresponding to high values of the parameter nw/k.

For convenisnce in using formula (11) we replace the eccentri-
city X by the magnitude nw/ky° of which it is a function. The
relation between these magnitudes is given by the flow eguation of
Reynolds which in the interpretation of Gumbel (reference 9) for
the cylindrical bearing for a mean value of the loading arc of 120°
leads to the relation shown by the curves 1n figure 5. The lower
curve refers to a bearing of infinite length. For bearlings of
finite length Gumbel introduced in the expression of the relation
between X and na/kq? the correction factor ¢ =1 + d/l
obtained by working up the test data of Lasche and his own data:

=1
(T)x = c ﬂg%

The author found that the function (X) for a bearing of infinite
length, as shown in figure L4 is satisfactorily expressed in terms
of ‘WQAIW by the following empirical equation:

(x)* - 1+ Q.1 ' ' (12)

%kil_.}z_
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For a bearing of finite length it 1s necessary in equation (12) to
introduce the correction factor c.

Substituting equation (12) in expression (11) we obtain

£ = ﬂTUlllt) 1 +q19_.:.(%.)9 = \% '-‘L;:—+ 0.31ke (13)
KV2

that is, the first partial coefficient of friction ie equal to the
friction coefficlent of Petroff for the concentricaelly rotating
shaft plus a certain magnitude, constant for a given bearing, that
expresses the effect of the eccentricity of the shaft in the bearing.
It is very important to notice that the finite length of the

bearing is expressed only through the constant term of equation (13).
The smaller the value of 1/d the greater for a given value of

nw/k  the eccentricity of the shaft and the greater the coefficient
of friction.

T and 4". We found previously (8a) that the friction force
per unit area due to the flow in the loaded zone of the bearing is
equal to:

T _ h d._E
T 2dx
or In polar coordinastes
n _, (1 + X cos g)dp
" =y e a0 (14)

The equation of Reynolds, transformed for a cylindricel bearing,
gives for the pressure gradient over the circumference of the bear-
ing dp/dp the following expression:

dp . (L+ X coso) - (1+X cos gn)
dp = °My2 (1L + X cos )3

where qn 1is the angle corresponding to the point of minimum clear-

ance. It is simpler however to obtain the pressure gradient, with
an accuracy sufficlent for practical computations, if we make use

of the test data on the limits of the bearing film and the character
of the pressure change over the loading arc.

Mumerous experimental investigations all give the following
picture of the pressure distribution in the plane of symmetry of

628
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the full cylindrical bearing under constant load. The pressure,
equal to zero over the entire periphery of the bearing (if the oil
is fed without pressure), begins to increase over 90 to 1200

from the line connecting the centers of the shaft and bearing, and
increases with an almost constant gradient up to 2 maximm walue
lying near the point of narrowest clearance and constituting on
the average 2.5 to 3 k. Thereafter the pressure drops sharply to
zero or even somewhat below. A typlical pressure curve measured
by Bradford and Grunder (reference 10) is shown in figure 6.

Without great error this plcture may be replaced by the scheme
shown in figure 7. The pressure here increases linearly over an
arc of 909, attains the value 2.5 k at the point of minimum clearance,
after which it drops very steeply. The assumed scheme is suffici-
ently near the true conditions, the approximation being closer the
smaller the value of nw/k and, as we shall see below, our results
are of importance precisely for these values of nw/k. This
assumption very much simplifies the computation of the coefficient
of friction by equation (14). .The pressure gradient dp/de
becomes constant and equal to P, /a = sk/a where a 1s the

loading arc which in what follows we shall assume equal to

n/2, 8 = 2.5 - 3.« For every other equivalent section of the bear-
ing not lying in the plane of symmetry the magnitude dp/d¢ is
equal to 2pm/ﬂ where ©p, 1s the pressure at the point of

nminimum clearance in that plane.

The pressure distribution over the length of the bearing (the
Z axis) according to test data agreeing with the theoretical con-
slderations (reference 11) is represented in any meridional section by
a parabolic type curve with almost constant exponent m varying
between 2.2 to 2.7. The maximum of the curve is on the axis of
symistry of the bearing as shown in figure 8 giving the pressure meas-
urements of Nucker (reference 12) over the length of the bearing.

The pressure P, My be expressed as a parabolic type function
of the maximum pressure Puax = sk:

im
Pm = sk l-(_]_._)
2

*The computations made by the author for a = 90 to 1200 show
that the results given below are valid for the entire practically
occurring range of values of a.
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and. the pressure gradient at any point of the loaded zonse of the
bearing may be expressed as follows:

ép _ 2m 2k |, _(%
ao 14 F 14 )

The different points of the surface along the length of the
bearing thus experience a different reaction T" as a functiom of
their distance from the plane of symmetry of the bearing.

On the loaded surface of the shaft conslder an element of width
rde and length dz (figure 9). The force dT" acting on this
element 1s equal to

4T = 1" rdp dz = rap az¥ (L *+ X cos @) dp

2 ap [
- rdp azV {1+ X cos @) 2ekly _ Z 5)
2 5 2

To determine the total force T' acting on the shaft we integrate
equation (15) twice, once over the length of the bearing, that is
between the limits #1/2, and a second time over the length of the
bearing f£ilm, that is between the limits = to n/2:

1
T+ 2 z\t
T"_._.E{_SEJ (1 + X cos o) l+<%> d ¢ dz
i x Y1
2

2

~T¥sk _m 4 _ 0,64 X).
2 m+1

The friction coefficient f£" 1is equal to:

o ™ g m ye m
ey Q- osk DYy 27 (3,

Assuming e = 2.5 and m = 2.5 weo obtain

£ = 0.bY(X),

628



NS

RACA ™ Fo. 1165 11

The function (X)p expressed in terms of nw/ky® has the follow-
ing form
o 1.5
). =1 - 068 o
(X4 1+ 2.5 \ k¥
The Relative Magnitudes of f£f' and £". The weight of each of
the component parts of the total coefficlent of frictlion is shown
in tables 2 to L. Thowe tabies glve the values of f' and f" within
the range nw/k!l? = 0.0l to 100 which for the relative clearances

¥ = 0.001, 0.002 and 0.0005 corresponds to the values of the
operating parameter:

A = 10-:100 000 centipoises X rpm/kg/cm®

The double line in the tables divides off those values of nw/k\f
vwhich in all probability are outside the brakedown limits of the
oil film. ZExamination of tables 2 to 4 shows that the term f£"
affects the total value of the 5oeff:lcient of friction only in the
range of small values of nw/kYS which probably lie outside the
limits of fluid friction. For large values of nw/ky° the effect
of the factor f£" 18 not large. Computation shows that f" may
without great error be assumed constant and equal to its mean value
in the most important interval of nw/ky2:

" = 0.25¥

The error arising from this assumption in the least favorable case
does not exceed 5 percent.*

Total Coefficient of Friction. Under the above made assumption
the total coefficient of friction takes the following form:

f =P+ f"zl;—'%)- + 0.314V + 0.25¢ = ini’— + 0.55V (16)

The ratio 1/d, as follows from the previous comsiderations,
affects only the constant term of egquation (16) as is fully
confirmed by the above mentioned tests of McEee. According to

*The relative weight of f" 1in the general value of f bhas
been computed on the assumption of the same viscoeity of the oil
over the loaded and nonloaded bearing. Actually the temperature
of the o1l in the loaded zone is always somewhat higher than in the
remaining part due to the additional friction and the relative value
of f" 1is somewhat smaller than that given in tables 2 to L.
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these tests for 1/d> 1 the constant term of the expression for the
friction coefficient must be corrected by the factor ¢ which may
be expressed by the following equation:

_ g) 1.5

¢ "(1

For values of l/d>-l the correction factor o¢ 1ls approximately
equal to 1.

With the correction for the length of the bearing the friction
coefficient tekes the following form

_ X a) 1.2
£ = v E* 0.55 (1) v @mn
or in practically suitable units:

£ = 3.36 - 10'9%x + 0.55(9 1-5_2_ (18)

where A = nn/k

d the diameter of the shaft in mm

1l the length of the bearing in mm

A the dlametral clearance in mm

n the.viscosity of the lubricant In centipoises
n the rpm

k the projected unit bearing loed in kg/cm®

The correction (d/1)1-5 is introduced only for values of 1/d less
than unity.

Comparigson with Test Data. Figure 10, to logaritmic scale, shows
the curves of the coefficient of friction as systematised by A. Wewerks
(references 16) according to the test results of a mumber of authors
(references 13, 14, 15, 17) the formulas of Petroff, Gumbel and
formula (17) of the present paper. The curves are plotted in the
coordinates proposed by Howarth, f/b being laid off on the ordinate
axis against nw/kl° on the abscissa.
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The curves on figure 10 show clearly that the formula of Gumbel
satisfactorily agrees with the test results for smll values
of nw[kxl? but gives a large error for high values of thls factor.
The formla of Petroff, on the contrary, agrees very well with
test results for large values of nw/k\],é as was to be expected
from the structure of the formula, but gives too small values for
f for small values of nw/k\p2 for which the eccentricity of the
shaft and the friction in the loaded zone have a large effort.
Formule (17) satisfactorily agrees with test results over the entire
range of values of nw/k|2 practically encountered.

The dotted straight line drewn through the mean values of the
coefficient of friction may serve for an orientating estimate of the
coefficient of friction in the range nw/kVP = 0.5 to 100. The
equation for this line is the following:

= 5 nw 0.85
£ YO.7 ( k) (19)
or In practical units
£-12 .10 (%)0-7 » 0-85 (19)

where A = mn/k,

n  the viecosity in centipoises

n the rpm

k the projected unit bearing load in kg/cm®
d  the dlameter of the shaft in mm

A  the diametral clearance in mm

Gensral Character of Formula (17). We may note that formula (17),
derived on the assumption of constant load on the bearing, may be
extended with a certain degree of relisbility to other loadling cases.
Formula (17) without any reservations i1s applicable to the case of a
shaft loaded by the rotating vector of a centrifugal load. This case
represents the rotating system of a bearing under constant load with
the characteristic feature that the load k is a function of the
square of the speed and the coefficient of frictlion is a function of
the speed and viscosity:
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We may note that in this case the operating perameter drops
with increased speed, in contrast to the case of constant load, and
the coefficient of friction decreases with increased speed. For an
impact load and for a load that varies in magnitude and direction
formule (17) may serve as an approximation which is the more accurate
the larger the value of q¢/kﬂ£. The character and magnitude of the
friction in the unloaded z6ne are here the same as 1n the case of
constant load but the friction in the loaded zone has a different
character. The curve of pressure in the loaded zone in all proba -
bility approximates a parabola the axis of symmetry of which for small
speed of rotation passes through the line commecting the centers of
the shaft and bearing and at large speed 1s displaced against the
direction of motion. The oll in the loaded zone flows not only
egainst the direction of motion as in the case of the conatant load
but also along the direction as a result of which a considerable
decrease and even the total disappearance of the reaction of this
flow on the shaft may be expected. The probable diagram of the
velocitlies along the periphery of the shaft is shown in figure 11.
On the other hand the relation between the load and the eccentricity
of the bearing for an impact load and a load varying in magnitude
and direction 1s other than for the case of a constant load and is
determined not only by the parameter nayk but also by the rate of
increase of the loed and the rate of change of its direction. The
eccentricity is in this case over a large part greater than in the
case of a constant load.

Thus the variable and impact loads while leaving unchanged the
first term of equation (17) change the constant term, the effect of
the latter belng in opposlte directions. On the one hand the constant
term decreases as a result of the flow in each direction in the
loaded zone and on the other hand i1t Increases as a result of the
eccoentricity. A detailed analysis of the friction for an impact and
variable load constitutes a separate Independent problem which the
author hopes to consider another time.

Formula (17) may serve for an approximate estimate of the coeffi-
cient of friction in the case of an impact and variable load not only
because of the opposite effect noted above the friction on the con-
stant term of this equation but mainly because of the small relative
value of this term in the practical interval of wvalues of ank.

As shown by tables 2 to 4 the constant term of equation (17) even for
values of mnw/k mnear the critical does not exceed 25 percent of the
total coefficient of friction. Actually bearings always work with a
certain factor of safety and the magnitude of the constant term is
generally very small in comparison with the first term.

623



NACA ™ No. 1165 15

APPLICATION OF THE COBTAINED RESULTS

l. kv as a Measure of the Thermal Stress of the Bearing.
Formula (17) answers clearly the question often raised as to the
applicablility of the megnitude kv as a measure of the heat
generated in the bearing. This method of estimating the thermel
stress Implicitly assumes the constancy of the coefficlent of frictlon
for all operating conditions and for various structural design factors
of the bearings and at first view has no basis in fact if the friction
theory based on Coulomb is rejected. Formula (17) shows that this

is not at all the case and that under certain conditions the heat
generation 1s actually proportional to kv. Nevertheless a careful
analysis of the problem makes it necessary finally to reject the
magnitude kv as well as any other magnitude even for a rough
estimate of the thermal stress of the bearing.

The heat given out in unit time over unit surface of the
bearing is expressed ss a function of the coefficient of friction
in the followlng manner:

kcal Pyf kv [ qw
R sec . m2] = 1a ko7 ko7 <k x + 0 °“’>
- 1%7— (22 av2 + 0.55 a%kﬁ (20)

Thus the heat generated in the bearing consists of two parts: Ome
part proportional to nvZ2 and the other to kv. The relative values
of the two parts are shown in tebles 5 and 6 where the magnitudes
of the component parts of equation (20) are given as a function

of mw/ky? for 1/ = 1 apdy = 0.001 and 0.002.

Tables 5 and 6 show that the magnitude kv predominantly
determines the general value of the work of friction for small
values of nw/kV® lying probably beyond the limits of fluid fric-
tion with the exception of those cases where the bearing has a
small clearance and 1/d is considerably less than 1. In the
range of fluid friction the general value of R 1is greatly
affected by the term proportional to %ve and for large values
of nw/ky2 this term completely determines the value of R.
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Thus the applicetion of kv as a measure of the heat generation
and as a basis for a comparative estimste ¢f the thermal stress of
the bearings mey be justified for emall values of wo/k¥Z approaching
the critical value. A second condition 1s the egquality of the
relative clearance Y and the ratio 1/3 for the bearings com-
pared. For most bearings working with a sufficlent safety factor
the use of kv gives a large error. This however 1s not the main
point. The determination of the load-carrylng capacity of the bearing
from the value of the heat generated invclves a methodological
error. The load-carrylng capacity of the bearing 18 determined
for a given load, epoed and kind of oll by the temperature of
the bearlng which Inturn is determined by the mutual interaction
on the one hand of the heat generated and on the other the heat
dissipated. The latter depends on & whole series of factors, for
example, the Blze of the clearance, the feed pressure of the oil, the
cooling surface, the number and arrangement of the oil grooves and
the operating conditions characterized by the parameter m/k.

On the basis of the above consideratione the magnitude kv or
any other magnitude mmst altogether be dispensed with for even a
comparative estimate of the thermal stress of the bearing and the
only rational way is to determine by computation the heat balence of
the bearing and the effect of the heat generation and heat dessipation
on the load-carrying capacity of the bearing. This will be done below.

2. Floating Bushes. Expression (17) sufficiently explains the
advantages, often confirmed in practice under certain conditions,
of floating bushes thms throwing doubt in the validity of the theories
of the constancy of the coefficient of frictlon aes shown below.

In a stationary bearing the heat generated is R = const Pvf.
Now consider a floating bush. If the coefficient of friction is
considered constant and it 1s assumed for simplicity that the
floating bush rotates at a speed egual to half that of the shaft
then on the two sides of the bush the amount of heat generated 1is

R' = 2 const Pf v/2
that is, the floating bush gives no gain in the heat gererated. We
shall now apply equation (17) assuming that the bearing works in
the region of high values of 1w/k 8o that the constant term in

equation (17) may be neglected. The heat then gensrated in the
stationary bearing is equal to

R' = const V@

The heat generated on both sides in the floating bush (assuming the
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clearances the same) is
R! = 2 const v vo/h

that is, the floating bush lowers the heat generated by half. Two
concentric floating bushes applied in certaln especially high speed
bearings lower the heat generation to one third. The smaller the
value of nw/k and the greater the weight of the constant term of
equation (17) the less advantageous is a floating bush. If it is
also remembered that the floating bush decreases the speed of rota-
tlon and hence the load bearing capacity by two the range of favorable
application of floating bushes becomes entirely clear, namely, the
range of high values of nco/k of high speed, low load shafts working
with a high factor of safety. In this case the floating bushes
provide a technically rational means for lowering the temperature

of the bearing though it 1s true at the expense of a lowering in the
safety factor. We shall not here touch upon the other extreme of

the favorable application of floating bushes, namely, in the range

of half dry and half fluid friction.

3. Cut-away of Bearing and Shaft. A second method that hes
long been used in practice for decreasing the frictiom consists in
increasing the clearance in the nonloaded part of the bearing as
shown in figure l2a, or using a partial bearing as shown in figure 12b.
For centrifugsl load the same result is obtained by a cut-away of
the shaft as shown in figure l2c. The advantages of the methods of
figure 12a and 12c is twofold. In the first place the friction in the
nonloaded region becomes negligibly small and in the second place
the flow of oll is increased. This will be considered in detail in the
section on the oil flow.

For partial bearings and cut away shafts and bearings the friction
may be computed by the formula of Gumbel if the loading arc does
not differ too greatly from 120°., Figure 10 permits the immediate
determination of gain from the cut away of the shaft and bearing.
For this purpose it is sufficient to compare the straight line rep-
resenting the equation of Gumbel-Falz with the curve represented by
formula (17) for a definite value of T](.D/k\llz. The gain is greater
the greater the value of nw/ky©. Thus according to figure 10 for
nw/k{2 = 5 the heat generated is reduced by half in comperison with
the normal bearing and for nw/kye = 20 it 1s decreased 3.5 times.
For values nw/kye<l the cut away of the shaft and bearing has no
significance. ' . N

2. FLOW OF OIL FROM THE BEARING

The flow of oil from a .full Journb.l bearing with froced feed
consists of two parts: (1) the flow q' from.the loaded part under
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the action of the pressure developed in this zome, (2) the flow q"
under the action of the forced feed.

628

Determination of q'. For the solution of this problem we ghall
meke use of the scheme, already applied by us, of the variation in
pressure in the loaded part of the bearing, that is, we assume that
the pressure in the loaded zone varies linearly over an angle of 90°,

The velocity of the oil along the Z axis (fig. 13) in the
clearance of a bearing of height h according to equation (7) will

be
2
v [ (h) dp
The volume of oil flowing per unit time through the clearance of
width b 1is equal to

+ /2 + h/2 2] a 3
P bh- dp
q-bf vy = 2{ (?) dz & = 1oy 3z ()
/2

We shall transform equation (21) into polar coordinates. We again
turn to figure 3, taking on the surface of the shaft an element of
width rdp and height h = r (cos ¢). The flow through this element
in the direction of the Z axis is equal to

rdq>(1+Xcoqu)3 33
12n d.z

dq = (22)

As before we assume that the pressure along the axis of the bearing,
that is, along the Z axis varies parabolically with exponent m,
The pressure gradient dp/dz at the end of the bearing is equal to

= f (23)
2

where p is the pressure in the plane of symmetry of the bearing.
The variation of p over the range of the bearing angle on the basis
of our mathematical assumptions may be expressed by the following

equation:
P -x P -x
= Ppax a_+l = gk a +1

dz
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where Dpp.y = 8k 1s the pressure at the point of minimum clearance

in the plane of symmetry of the bearing, & 1is a coefficient fluc-
tuating within the limi}s 2.5 to 3 and a the loading arc. For

a = n/2 we have
29 :
p = sk = -1 (24)

Substituting equation (24) in expression (23) and the latter in equa-
tion (22) we obtain the following expression for the flow through the
element of the clearance in the loaded part of the bearing:

N .
\j)3ms 20
aq' = rT——-nl x (__;p - 1> (l + X cos q>>3 do (25)

The total flow over the entire loading arc 1s obtalned by integrating
equation (25) within the limits p - n/2:

q|=1ﬁ_\|}l‘f_k.f<2ﬁ).- >(1+xcoscp)3d<p
6nl w\ =«
2

4.3 4,3 "

_ I ¥y mek 2 _ 3\ r_ V¥ msk

= ——611]1——(2'1 - 4.35 + 3.7y l.ly ) BNl (X)o
For the two sldes of the bearing

b3
. r msk
qt = —3—5— @), (26)

The magnitude k 1is expressed as a function of the relative eccentri-
city X by equation (3):

Ll §

TR (e

where (X)s 1is the function represented in figure 1. Equation (26)
in this case takes the following form:

q! = rhymee (@) (27)

31 (X)*
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The magnitude (X),/(X)yx 1s shown plotted in figure 14 as a function
of X. As shown by figure 14 the flow from the loaded part of the
bearing decreases witk decreasing eccentricity of the shaft in the
bearing and becomes equal to zero for a central position of the shaft.
This was to be expected since Por such position the bearing can not
carry any load and there 1is no pressure in the oil film.

For X = 1 +the flow 1s infinitely great since according to the
Reynolds equation the pressure in the narrowest part of the clearance
becomes infiniltely great. Such a position mever occurs in practice
since long before thig half-dry and dry frictlon arises as a result
of the contact of the surfaces of the shaft and bearing.

The magnitude (X),/(X), may with an accuracy sufficient for
practical purposes be expressed as a function of nW/kV2 by the
following emplrical equation:

(o 0.25

(X, (E.H%%>°'5
¢k

where ¢ 1s the correction factor of Gimbel for length of bearing.
Substituting expression (28) in equation (27) we obtain

q' r"‘\vz‘2 msw(l + %)0'6

12 1(_“_‘?)“6
X

a m

r=—2—’-a)-~36', 8 =2.,5m=2.5

(28)

Substituting

and replacing (1 + ‘1/1)0'6 by an approximate formula from the binomial
expansion we obtain

ds\ba . 2nCJ !

(57

d dl OGE'
:1(4-- 'l)

q' = 0.0034 (29)

where




NACA T No. 1165 21

The flow per rotatiop is equal to

K-
qn'! = 0.2 006 (30)
() 3
)
Reducing equations (29) and (30) to practical units we obtain
0.8,2.2
A
q' cmB/sec = 0.8 & o'n (31)
0.6
A
0.8,2.2
qn' cm®/rotation = 50 L4 ¢ (32)
xo.6

where A = mn/k

d the diameter of the shaft 1n mm

A the diametral clearance in mm

n the viscosity of the oll in centipoises

n the rpm

k the projected unit bearing load in kg/cm?

1l the length of the bearing in mm

o' = %(1 + 0.6 4/1)

Equations (29) to (32) show that the flow of o0il in the bearing with-
out forced feed to a large extent depends on the clearance, on the
ratio 1/d4, 1is almost directly proportional to the diameter of the
shaft and inversely proportional to the parameter A. For a given
bearing the oil flow 1s a function of A only and follows the law

repregented in figure 14,

The Bearing as a Stable System. Figure 14 illustrates the notable
property of a slider bearing observable not only for a bearing without
oil circulation but as we shall see later also for a bearing with
forced circulation. This property is namely the fact that the bearing
working in the range of fluid lubrication constitutes a system in
equilibrium tending to maintain a definite value of the parameter nuw/k
agalnst all disturbing factors.
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let us compare figure 1l with the typical curve of the friction
coefficient plotted against A (fig. 15). We shall assume that the
bearing works under a steady condition for example at A = 1500.
Wo shall assume further that some dlisturbing factor enters in the
operation of the bearing, for example, an increase in the tempera-
ture due to local friction. In this case the viscosity of the oil
drops and A decreases. This produces on the one hand a decrease
in the friction according to figure 15 and on the other hand an
increase in the flow according to figure 14. The simultansous action
of these factors lowers the temperature and reestablishes the pre-
vious value of A. An analogous plicture 18 obtained for a decrease
in A due to and increase in k.

The reverse phenominon occurs on increasing M. Let us assume
for example that M\ increases due to an increase in the speed. In
this case the friction according to flgure 15 increeses, the flow
gimultaneously decreases and the temperature of the bearing rises
as a result of which the viscosity of the oil decreases and the A
tends to drop.

The automatic character of this process 1s due to the property a
of the oil of changing lts viscosity with the temperature and the
unique dependence of the flow on A. In this peculiarity may be
found the secret of the notable stabllity and noncapriclousness of
behavior of correctly designed and constructed bearings. The essential
condition for this automatic etability is that the bearing works with
a sufficient safety factor and the time fluctuation of A should
not carry it beyond the critical values at which a breakdown of the
0ill film occurs.

Renge of Application of Formulas (29) to (32). Equation (29)
to (32) are applicable to the majority of technical cases of the
bearings without forced feed lubrication or for a feed pressure not
greater than 0.1 to 0.5 at. The essential condition for the applica-
bility of formulas (29) to (30) is the absence of oil groves in the
loaded zone and the rigldity of the bearing and shaft. Such grooves
even though they do not extend to the ends of the bearing may increase
the flow meny times. However modern bearings only rarely have grooves
in the loaded zone.

The deformation of the bearing or shaft under the action of the
load may change the law of pressure dlstribution along the axis of
the bearing and the guantity of oil flowing out.

Notwithstanding the fact that formulas (29) to (32) were derived
on the assumption of constant load they may without reservations be
applied to the case of a rotating centrifugal load which may be trans-
formed into the scheme of constant load. It should be noted that the

628
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unit load k 1s here a function of the square of the speed and on
increasing the speed the parameter A, in contrast to the case of
constant load, decreases and therefore the flow Increases. This
has long been observed on systems in which the centrifugal load
predominated, for example, on crankshafts of intermal combustion
engines, etc.

In the case of an impact or variable load equations (29) to.(32)
may serve only as a first approximation since the law of pressure
distribution along the loading arc in this case differs from that
assumed as the basis of these egquations which as a result give de-~
creased values of q'.

01l Flow for a Bearing with Forced Feed Iubrication. The oill
flow for a bearing with forced feed depends on the mumber and arrange-

ment of the oll feed openinge and lends itself to analytical computa-~
tion only in certain special cases one of which 1s chosen below.

We assume that the bearing in the plane of symmetry 1s provided
with 8 ring groove in which oil is fed under pressure. We assume
further, as above, that the pressure along the axls of the bearing 1s
expressed approximately by a parabolic type curve the maximum ordinate
of which is equal to the feed pressure p, (fig. 16). We shall
compute the gquantity of oil flowing from the clearance in the direction
of the ends of the bearing, not considering for the present the oll
flow from the loaded zone.

According to equation (21) the volume of oil q" flowing per
second. from the two sides of the clearance is expressed as follows:

where h 1s the height of the clearance

b the width of the clearance

dp/dz the pressure gradient on the flow direction, that is along
the Z axis.

We again turn to figure 3. For the element of width rde and height
h = ry (1 +Xcoso)

the flow per second 1is equal to

dq_" = r4'\l!3 (l +X coscp)3 g’l (33)

6N dz
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By the equation of the parabolic curve

dp _ 2mp,
dz 1l

where m is the exponent of the curve, Do the feed pressure. Sub-
stituting this expression in equation (33) and integrating the latter
between the limits 2x - O, that is, over the entire periphery of the
bearing, we obtain the total oil discharge per second:

2n
-
qQ" = -&YEEEQ L/m (1 + X cos ¢)3 dop

3nl
0

k o 4
= _1'_“’3;‘20 on (1 + 1.5 x2) = _iL_r__\]_la_m_pQ (x)D

The function (X), 1s plotted against X; in figure 17. The latter
shows that for Pull eccentricity of the shaft (X = 1) the oil flow
is two and a half times as large as for central position of the shaft
(X = 0). This was to be expected since according to equation (21)
the flow very much depends on the amount of the clearance.

The oil discharge per rotation is equal to

hws
r Vmp
ag" = 126 g o

Expressing nn in terms of (X) (equation (4)) we obtain
30
n=——k\[/2
mETY (X

where

h
an"= 13.3—11-1:—1‘1’2EQ %%.“ (34)

The function (X),/(X)* 1s shown plotted against X in fig-
ure 18 and with sufficlent accuracy is expressed in terms of nw/kVe
by the following empirical equation

X _ 1.2
cky2

628
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Substituting this e
expressing (1 + d4/1)
expansion we obtain

ression in equation (34), setting m = 2.5 and
2 by an approximate formula from the binomial

3a3.4
0" =258 343 Hpoon (35)
(—“;T
where
o2 (1 + 1.2 9-)
1 1
The flow 1is
3.
q" = 0.4 _3”!____;05._ (36)
T](x)
" (1)

Reducing expressions (35) and (38) to practically suitable units
we obtain

(37)

3 6 A 3'1" P o_ll
11

= cm¥/gec = 2.5 * 10

1 / 30.5,30.2

4,

= cmd/rotation = 1.6 - (38)

where A = 1n/k

d the dlemeter of the shaft In mm

A the diametral clearance in mm

Do the feed pressure in kg/cm’

n tbe viscoelty in centlpolses

n the rmm

k the projected unit bearing load in kg/cme
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1 - the length of the bearing in pm
o =4 (1+1.28/2)

Formulas (35) to-(38) show that the oil flow from the forced
feed depends to a large degree on the clearance, the ratio 1/4,
is directly proportional to the feed pressure and inversely propor-
tional to a small power of A. Thus the flow of oil under the
effect of forced feed, like the flow of oil from the loaded zonse,
is a factor of stability assuring the maintenance of & definite
value of nw/k.

Range of Application of Formulas (35) to (38) Equations (35) to
(38) are applicable to the case of forced oil feed from the end of
the bearing except that in this case the values of q" and q,"
must be reduced to one fourth. In case the oll 1s fed through one
or several holes on the periphery of the bearing equations (35) to
(38) may be applied only as a first approximation. .The more holes
on the periphery and the closer they are arranged in the plane of
symmetry of the bearing the more accurate the results that may be
expected from formulas (35) to (38). In the case of a single hole or a
small number of holes the actual discharge will be less than that com-
puted by equations (35) to (38) by an emount which can be determined
only experimentelly.

If the holes are located in the lower loaded zone of the bear-
ing (which rarely occurs in practice) there may be expected not
only a decrease in the amount of oll flowing out but also & chenge
of the dependence of the flow on A. The shaft, as is known,
changes its position in the bearing with change in A, its center
describing a path approximating a semicircle the top poimnt of which
coincides for infinitely large value of qn/k with the center of
the bearing. This displacement changes the cross-section of the
01l holes end affects the flow of the oil.

The grooves and cut-aways in the bearing and shaft as shown in
fig. 12a and 12c¢ maey increese the flow of the oil more than ten tilmes
the value computed by equations (35) to (38)and the discharge will
not depend on A. If the bearing has structural features having
the object of increesing the oll circulation the flow of the oil
through the clearance may be neglected and the oll outflow computed
from the geometric dimensions of the grooves with the ald of the
usual formulas of the flow of a viscous fluid.

Total Flow in Bearing with Forced Feed. The total flow of oll
from a cylindrical bearing with forced feed 1s made up of the oill
flowing out of the loaded zone and the oill flowing out under the

c'
n
\C



NACA ™ No. 1165 ! 27

offect of the feed pressure. As a first approximation we may
neglect the effect of the oil feed grooves on the pressure
distribution in the loaded region and consider the total flow of
oil from the bearing as equal to the sum of Q' and q" by
equations (29) to (32) and (35) to (38). The total flow of oil in
this case 18 expressed by the equation

2.2 3.4
a0-p=-2gtn -8p2-251 + B 2.5 ¢ 106_D_P 9 (39)
20-6 206

Q cm3/sec = q' + q" = 0.8

vhere £ 1is a magnitude less than 1.

Comparison with Test Results. Formulas (29) to (32) and (35)
to (38) were compared with the test results on oil flow published by
Barnard (reference 17). The latter determined the flow of oil from a
full cylindrical bearing of diameter 25.4 mm, 50.8 mm length with
diametral clearance 0.15 to 0.28 mm. The feed pressure was varleé
between 0.7 to 4.9 kg/cm?, the load between 2.9 to 19 kg/cm?, the
speed between 200 to 2000 rpm and the viscoesity of the oll between
12.5 to 43.5 centipoises. The shaft was of hardened steel and the
bearing of bronze. In the loaded part the bearing had a narrow
oll distributing groove perallel to the axis of the bearing extend-
ing up to 5 mm from the ende. The oll flow through the bearing
was expressed by the "useful pumping coefficient" E equal to the
ratio of the actual flow of oll per rotation tc the volume of the
bearing clearance:

= 2Qn/ndAl

The results of the observations were grouped in the form of a set
of curves of "useful pumping coefficient” as a function of the
operating parameter nn/k and the feed pressure p, (fig. 19).
Figure 20 gives the values of the pumping coefficient computed by
equations (32) and (38). Unfortunately Barnard does not show
separately the values of n, 7n and k corresponding to the various
values of A whereas in the right member of our equation there
enters the value of A in addition to k. This difficulty was
circumvented by assuming k inversely proportional to A.

The "structural factor" of © uations (32) and (38), equal
respectively to qn'/A0<6 and ¢,"/A\1.2, was obtained by dividing
the values measured by Barnard by A. The agreement of figures 19
and 20 is more than satisfactory. It shows the correctness of
the fundamental assumptions underlying formulas (29) and (32) and
(35) and (38). Although our conclusions regarding the effect of A
on the oil flow through the bearing are entirely satisfied by the
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test results of Barnard the effect of the clearance on the oil flow
according to our conslderetions is considerably greater than accord-
ing to Barmard who did not at all observe the effect of the clearance
on the useful pumping coefficient whence the conclusion may be drawn
that the o0ll flow according to Barnard is directly proportiocnal to
the first power of the clearance. Formmlas (32) and (38) however
glve a much sharper dependence. This point requires special investi-
gation:

Coamparison of q' and q". We shall conasider the relative
importance of the flow through the loaded zone q' and that due
to the effect of the feed pressure q". Dividing equation (28) by
(32) and dividing out o' and ¢" which do not greatly differ from

each other we obtain
"
qn 1.2 p
. 0o 1
— =31+100V X ;0.6

qn'

Substituting the most frequently occurring value of the clearance
V = 0,001 we obtain

(]
= k ,0.6

an’

We assume k = 50 kg/cm® and shall vary the feed pressure Yo
between 1 to 6 at., The results of the computations for the various X\
are given in table 7. Table 7 shows that for a smooth bearing and
usual relative clearanceV = 0,001 the flow under the effect of the
forced feed considerable exceeds the "natural” flow of the bearing
especially for emall values of A and large feed pressures. An
increase in the clearance still further increases the part played by
the forced flow.

Grooves, cut-aways, etc, in the unloaded zone may still more
sharply change the relation between the "natural™ and "forced" flows
of the o0il in favor of the latter and entirely mask the "natural"
flow.

Range of Application of Obtained Results, We again mention the

fact that formulas (29) to (32) and (35) to (38) are applicable only
to the case of smooth shafts and bearings which do not deform under
load for clearances of the order of ¥V = 0.002-0,0005 for congtant
or centrifugal load. In the case of variable or impact

623
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load these formulas may be used only as a first approximation which
is the more accurate the greater the part played by the "forced"
flow in comparison with the "natural" flow. An analysis of the
natural flow of oil for impact and variable loads requires the
establishment of relations between the eccentricitlies of the ahaft
and the rate of change of the load, that is extemsion of the lubri-
cation theory and 1ts verification by experiment which, incidentally,
is technically considerably more complicated than in the case of a
constant load.

5. HEAT BALANCE OF THE BEARING

For a steady thermal state the amount of heat generated in
the bearing is equal to that dissipated. The heat transfer is in
the following three main parts: (1) in the o0il flowing out of the
bearing, (2) in the bush and body of the bearing,(3)in the shaft and
parts connected with it. From the body and shaft the heat 1is removed
to the surrounding atmosphere by convection and contact.

The two latter forms of heat transfer lend themselves with
difficulty to mathematical computation. To a very large extent
they depend on the speclal features of the bearing, the surfaces
of the bearing and shaft, the number and shape of the structural
details, atc. The heat transfer from the shaft, for example, Iincrea-
ses sharply 1i' there are rotating masses on the shaft, such as
pulleys, couplings, propellers, etc. The heat transfer is greatly
increased on the connecting rod Journals of crankshafts in an air
atream.

As far as is known to us the only attempt to compute this heat
transfer (together with the heat given off by the oil) was made by
Falz (reference 4), The computation is based on the tests of Lasche
and is of a very primitive form. ILasche found that the heat transter
from the shaft of a bearing is proportional to the 1.3 power of
the temperature difference between the bearing and cooling medium.
The heat transfer equation according to Falz-Iasche has the follow-

ing form:

R k cal/hr = adl (tp - t5)13

where
d is the diameter of the shaft
1 the length of the bearing

tn, the temperature of the bearing
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the temperature of the surrounding medium

p a coefficlent varying with the kind of bearing in the range
50 to 2000

For bearings of internal combustion engines Falz recommends choos-
ing the values a = 50 to 2000 depending on the speed of the engine.

The exponent of (tn - ta) which is somewhat greater than 1 show:
that the most important part in the heat transfer of the bearing is
played by convection and contact and not by radiation which is pro-
portional to the difference between the fourth powers of the tem-
peratures.

In practice & number of cases are known where the heat generated
in the bearing is given off to the oll and the heat dissipation to
the surrounding medium may be neglected. To such a case belong for
oxample the bearings of an Iinternal combustion engine of the air-
plane or automobile type enclosed in the crankcase and having a
high temperature due to the contact with the heated working parts
of the engine. The heat tranefer from the bush of the bearing to
the crankcase 1s in this case Insignificant due to the small d4if-
ference in temperature and the heat transfer from the shaft in the
hollow of the crankcase is likewise small. An exception 1s pos-
8ibtly the case where the crankshaft is directly connected with a
metal alr propeller.

If we limit ourselves only to the heat dissipation in the oll
then for a heat balance of the bearing under consideratlon the
following equations hold.

The equation of the heat generated in the bearing:

1 Pv /nt no
R k cal/sec =— Byf =— [ — @, O.55.oﬂ) (40)
427 27\¢ k

The heat carried off by the oil in unit time:

7
R' k ca.l/sec =c Q iac—)a(tf - 'to) (41)

where

¢  is the specific heat of the oil in k cal/kg® C

Q  the flow of oil though the bearing in cm/sec
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t

£ and g the final and initial temperature of the oil.

c and 7 vary insignificantly with the temperature. The temperature
of the bearing t, may to a first approximation be considered

equal to the mean temperature of the oil:

b+ % Ab

tn——-——i——=to+ —é_,

where At 1s the increment of the temperature in the bearing. In
this case equation (41) takes the following form:

- 8 -
R' =2 ¢ Qymrs(ta - t,)

The relation between the viscosity of the 01l and the tempera-
ture is given by the curve of viscosity against t or by one of
the many characteristic equatlons proposed by a number of authors.
Thus according to Poiseuille (reference 9):

1
A + Bt + Ct2

where A, B, C, are constants, characteristic for a given oil. Accord-
ing to Kiesskalt (reference 18):

n = ngb - Ve
where b is a constant. According to Falz (reference L4):
ne
(0.1t)

where 1 wvaries from 1.06 for heavy oils to 0.07 for light olls.
The author found that the viscosity of aviation oils (fig. 21) is
well expressed by the following relation

1
(0.1t)3

(42)

where 1 = 2.0+t02.8 for heavy oils of the type of "brightstock"
and 1.4 tol.8 for castor oil and "kastrol".

For a steady thermal state the heat given out in the bearing
is equal to the heat given to the oil:
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= N = -
" 427 (:U + 0. 550%> 2c Q 7900 (t to) (43)

The simultaneous solution of equation (43) and the characteristic
equation of the viscosity permits finding the temperature of the
bearing for given speed, load and geometric dimensions.

We shall solve for example the following problem: It is
required to find the temperature and safety factor of a bearing
carrying 5000 kg at n = 2000 rpm. The dimensions of the bearing

are d = 100 mm 1/d4 = 0.8, A = 0.1 mm, feed pressure of oil 3 at,
temperature of oil 65°, the oil is "kastrol" with i1 = 1.8.

The unit load on the bearing is equal to:

5000
k=—— =63 kg/cm
80

Assume that the temperature of the bearing is 90°. The viscosity
of the oll is equal to 25 centipoises and A 1s

252000
AN=——— =800

60
The friction coefficient by equation (18) is equal to

£ =336 - 10— 800 + 0.55 V20O . 0.1 = 0.0034
1000 8ol.5

The heat given off is

R = Pvf 5000 + 10.4 . 0.0034
CoweT 427

= 0.43 cal/sec

The oil flow by equation (39) (for B = 1) is equal to

0.8,2.2 _1 ' 3.4png!
Q=083 "4 9B_ La25.108 5————9515-
20.6 10-4,,0-

= 19.7 cmd/sec

Taking ¢ = 0.5 and 7 = 0.85 we obtain from equation (43):
85

100000 (tn "
= 91°

0.43 = 19.7 65)

623
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Thus no recomputation 1is required. The temperature of the oil

passing out of the bearing is egual to

65 + 2 (9L - 65) = 117° C.

We shall find the factor of safety of the bearing for which
the author (reference 19) proposes the ratio of the actual operating
parameter A to the critical parameter A corresponding to the
start of breakdown of the oil film. The critical value of the
parameter 1s found from the limiting thicknees of the o1l film for
which there 1s as yet no contact of the proJjecting roughnesses of the
shaft and bearing. This magnitude depends mainly on the accuracy
of the evaluation and the character of the surfaces of the shaft and
bearing. We assume that the critical thickness of the oil film
is 0.01 mm which corresponds to the eccentricity:

0.05 - 0.01
= — 8 ——= 0.8

C.05

From figure 5 for )A/d = 0.8 the corresponding value of the magnitude
nw/ky2 = 0.36 whence the critical )\ 1is

0.36
AN = 9368 . 105 2~ = 335

10°

The safety factor of the bearing is equal to

The safety factor can be Increased In two ways: by an increase
in the flow of oil through the bearing and by a decrease in the
tempereture of the oil feed. We shall first consider the first
method. We shall raise the feed pressure to 6 at. The exact com-
putation gives in this case t_ = 87°. The viscosity of the oil is
then equal to 27 centipoises, gk increases to 870 and the safety
factor to

I=-—8£= 2.6

335
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We shall now attempt to lower the temperature of the oil
feed to 50° at py = 6 at. In this case the temperature of the
bearing drops to 8h° which corresponds to a viscosity of the oil
of 31 centipoises, A drops to 1140 and the safety factor to

1140
355

X =

There 18 noted the Ilnsignificant change in the temperature of
the bearing for relatively large changes in the pressure and the
temperature of the feed oll. This can be readily explained. By
feeding e cooler oil we at the same time Iincrease the friction as
a result of which the heat generated in the beading increases. On
the other hand *the flow of the oil decreases and the heat dissipa-
tion drops. A decrease In the Inlet oll temperature even to as
low a value as 20° gives a lowering in the temperature of the bear-
ing only to 780°.

A much greater improvement 1s obtained by increasing the oil
flow through an increase in the flow cross-sections in the unlosded
zone, a method which at the same time reduces the friction. We
agsume that a cut-away 1s made in the bearing of height 0.5 mm on
the unloaded bearing arc extending over 180°. The friction in this
reglon may be approximately computed by the law of Newton:

2
T"=T]_v_£d_l=ﬂdlﬂw, M =

h 2 2h kld 2h k

T _ ad qw

The friction in the loaded zone of the bearing may be approxi-
mately computed by the formule of Gimbel (reference 5):

£' = 1.7*\/E+ 1 \/3—“-’
1 K

The total coefficlent of friction is equal to

fef' 4+ "= 1.7 ’\/4d+ 1;\/__+EI‘3
2n k

The flow through the hollow (neglecting the effect of tiie eccentri-
city of the shaft) is found by formula (21):

xdhSp

Q= 6nl

628
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The flow through the loaded zone may be neglected. The temperature
of the oil is determined from the equation of heat balance (43).
Several successlve approximations give:

th = 65 + 4 = 69°

The viascosity is then equal to 60 centipoises, A 1is egqual to
1900 and the safety factor is
1900
X == — =
335

5.7

We shall lower the temperature of the inlet oil to S0°,  The tem-
perature of the bearing by the equation of heat balance 1s then
obtained equal to 58.2°. To this corresponds & viscosity of 97
centipoises, A 1is equal to 3100 and the safety factor is

0]
x=zi9= Q.2
335

This example shows that by a decrease in the temperature of
the Inlet 01l a sharp increase in the safety factor and load bear-
ing capacity of the bearing may be attained for a single constant
condition namely an increased oll circulation obtained by structural
means. If this condition is not satisfied the decrease in the tem-
perature (and increase in the pressure) of the inlet oil does not
give any essential result.

Load Bearing Capacilty and Structural Factors. We shall consider
the effect of structural factors on the temperature and load bear-
ing capiclity of the bearing with forced feed. For simplicity we
shall assume -that the bearing works at a high feed pressure so that
the "natural" flow of the oil through the bearing may be neglected.'
We shall assume that the coefficilent of friction varies according
to equation (19). In this case the heat generated is equal to

R - B¥F .ﬁ_tﬂ_.s_.@e) 0.85
427 2°427y0.T\ k

The oill flow is equal to

q" = 0.4 QEYE:EEKEf
0202

The heat transfer 1s

R'=Q"]3-(7)-O(tn-to)
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The increment in the temperature of the bearing 1s determined from

the equation _
(n_ﬁ(ﬂ
At = const 32 N d (44)

v Po
The above equatlon shows that the temperature ilncrement in the bear-
ing is proportional to the square of the viscosity, the speed and
the ratio 1/d sy 1inversely proportional to the fourth power of the
relative clearance and ivnersely proportional to the feed pressure.

We shall now analyze the effect of the heat condlition of the
bearing on its JI.Ioa.d bearing capacity. We shall meke use of the
expression of Gumbel - Falz (reference 4, 19) based on the Reynolds
equation for the load bearing capacity:

ae
k = const - a_n_i'o_____...__

h

(45)

where hy .~ 1s the limiting allowable thickness of the oil film,

¢ =1+ d/1 the correction for the finite length of the bearing.
Substituting the viscosity formula (40) in equation (45) we obtain:

k = const wa (46)

tq + At)2
S

Substituting in place of At its expression from (44) we obtain

K = const wd (47)

t At >
t. + c
o)

The above equation shows that the predominating effect on the load
bearing capacity 1is that of the bsaring temperature. If no speclal
means are provided for increasing the circulation of the o1l the
load bearing capacity is determined principally by the increase 1n
the bearing temperature, the analysls of which was given above
(formula (44)).

If forced circulation is used the temperature of the bearing
is not large and the load bearing capacity 1s determined meinly by
the temperature of the inlet oill so that all efforts of the designer
gshould be aimed at a reduction of to. If the temperature of the

bearing is given by the individual features of the bearing the load

bearing capacity can only be affected by a change in the structural
perameters and a cholce of the kind of oil used.

628
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COMPUTATION OF BEARING

The computation below refers to the special case where the heat
given off to the surrounding atmosphere may be neglected and the main
heat dissipation occurs in the oil.

The computation reduces to the determination of the tempera-
ture of the bearing with the aid of the equation of heat balance
and the characteristic equation of the viscosity. From the tem-
perature of the bearing is determined the mean viscosity of the oil
after which by the known equations of the hydrodynamic theory it 1s
determined whether the bearing cen sustaln the given load and with
vhat safety factor. If too small values are obtained for the latter
an increese in the load bearing capacity 1s obtained by one of the
methods indicated above.

The clearance 1is rarely glven as a definite figure but usually
with a tolerance determined by the manufacturing possibilities.
This circumstance and also the possible wear of the bearing and
shaft must be taken into account in the camputation in view of the
considerable effect of the clearance on the friction and oil flow.

To increase the reliability of the computation the oil flow
and coefficient of friction must be computed for the minimum
tolerance and no wear. The oll feed, however, the cross-sections
of the oll feed plipes and the output of the oil pump mmst be
computed for the maximum tolerance and with wear taken into account.
If the shaft and bearing are of different materials the amount of
the cleerance must be considered in the warm state taking account
of the difference in the linear expansion coefficients of the
materials.

Reference Data. In conclusion we present some data on the

 heat capacities and densities of oils at various temperatures.

Figure 22 shows the change of the densities of various aviation
oiles with temperature. The density may be determined by the formula

7-70(1-!.t)

where 7, 1s the density at the initial temperature, a a constant
lying 'be%voen 0.0006x to 0.00070 and on the average equal to 0.00068.

The heat capacity of the 611 ie expressed by oner of the follow-
ing formmlas:

cEcl_ 1 (0.43+ 0.0008 t), ¢c =2 = —A_+3B (¢t -15)

kgo ¢ ” ., /715
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where
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B
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is the density of the oil for 15° C

a constant equal for neutral mineral oils to 0.405 to 0.425

= 0.0009

£28
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TABLE I
Time of publication Friction formula Type of |d MM % ¥ Materiel Speed Pressure | Tempera- |Viscosity
lubri- range range ture range
cation n/sec °¢ centipoises
1885, B. Tover £=0.0055 21 0il bath | 101 1.5 |[1/1120 | Stesl on bronze | 0.5-2.4 7-43 32 22-100
12/3 1/3
1902, Stribeck 0.0016 (k) v 7 | Ring 70 1.95 |1/950 | Steel on babbitt |1.35-4 2-22 20-47 56-250
1902, 0. Lesche 0.0052 _'l_/ Ring 260 0.42 [ 1/950 | Steel on babbitt 1-15 1-15 28-100 7-40
1913, C. Thomas, E. Maurer, L. Kelso 0.002 A/2% Ring 62 3.95 [ -neem- Steel on babbitt | 0.5-1.4 27 27-43 40-100
1889, A. Mertens 0.00265 —-}—Vlz,)’ -------- 99 0.71 | =mmmmn Steel on bronze | 0.5-2 1-40 21-41 30-200
K
3/t
1903, A.Kingsbury 0.00275 (%;) -------- 35 1.45 § ------ Steel on bronze 0.2-0.5 |2.8-2.4 32-77 15-46
w173
1904, D. Woods and D. Carter 0.003 (ﬂk—) -------- 230 0.78 | =m=mm- Steel on bronze | 2.3-11 |3.5-10.5 | 22-60 28-120
0.4¢ f7 -
1922, D. Stoney, R. Boswall, D. Massey | 0.002 IL.W Bath 63.5 | 1.6 | =----- Steel on babbitt | 8.5-19 |2.8-8.4 38-60 16-42
0
vt/3
1922, G. Howarth and Nelson 0.00096 .?le73__ -------- 50.8 | 0.23 | ===e-- Stesl on bronze 3.4 28-56 40-90 10-30
3/4 :
1922, M. Hersey 0.00115 (1}(—) -------- 25.4 |3 | emmme- Steel on bronze | 0.7-3 2.8-17.5 | =-ema- 38-420
3
1923, G. Stanton 0.0042 __'L/L -------- 25.4 | 2.5 | =-=--- Steel on bronze 1.3 19 32-50 25-209
xl/4
0.37,0.63
1928, D. Goodmen 0.0023 1= V'°" | Bath 152 0.5 { ==---- Steel on bronze |0.75-3.5 2-15.4 18-72 40-54
~k
ivi/3
1930, L. Tllmer 0.0033 __‘17_3 I e P - B el LT 0.2-7.5 20-150 10-400
K

"ON WL VOVN
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TABLE II
¥ =0.001
nk?‘“ 0.01 0.05 0.1 0.5 1 5 10 50 100
A 10 50 100 500 1000 5000 10,000 50,000 100,000
% . %59 0.00003 | 0.000157 | 0.000314 | 0.00157 | 0.00314¢ | 0.0157 0.0314 0.157 0.314
In ofo of T | 6.3 25 39.3 73.4 83 95.7 97.8 99.5 99.8
0.314 V 0.000314 | 0.000314 | 0.000314 | 0.000314 | 0.000314 | 0.000314 | 0.000314 | 0.000314 | 0.000314
In ofo of f | 63.2 50 39.3 14.8 8.3 9.1 1 0.2 0.1
£ 0.00015 | 0.00016 | 0.00017 | 0.00026 | 0.00034 | 0.00039 | 0.00039 | 0.00041 | 0.0004
In ofo of £ | 30.5 25 21.3 12 8.7 2.4 1.2 0.3 0.1
0.00048 | 0.00063 | 0.0008 0.0021 0.0038 0.0164 0.032 0.1577 0.3147
TABLE III
¥ = 0.002
ﬂi% 0.01 0.05 0.1 0.5 1 5 10 50 100
ky
p 40 200 400 2000 4000 20,000 40,000 200,000 | 400,000
% . %? 0.0000628( 0.000314 | 0.000628 | 0.00314 1| 0.00628 | 0.0314 0.0628 0.314 0.628
In ofo of T | 6.3 25 39.3 73.4 83 95.7 97.8 99.5 99.8
0.314 ¥ 0.000628 | 0.000628 | 0.000628 | 0.000628 | 0.000628 | 0.000628 | 0.000628 | 0.000628 | 0.000628
In ofo of £ | 63.2 50 39.3 14.6 8.3 1.9 1 0.2 0.1
£ 0.0003 0.00032 | 0.00034 | 0.00052 | 0.00068 |{ 0.00078 | 0.00078 | 0.0008 0.0008
In ofo of £ | 30.2 25 21.3 12 87 2.4 1.2 0.3 0.1
f 0.00099 | 0.00126 | 0.00150 | 0.00429 | 0.00759 | 0.0328 0.0642 0.315 0.629

(44

"ON WL VOVN

S9TT



TABLE IV

¥ = 0.0005
o 0.01 0.05 0.1 0.5 1 5 10 50 100
K
2 ———- ——-- 25 125 250 1250 2500 12,500 25,000
% . %? ———- ——— 0.000157 | 0.000785 | 0.00157 | 0.00785 | 0.0157 0.0785 0.157
In ofo of £ — ——-- 39.3 73.4 83 95.7 97.8 99.5 99.8
0.314 V' S - 0.000157 | 0.000157 | 0.000157 | 0.000157 { 0.000L57 | 0.000157 | 0.000157
In ofo of T ———- —— 39.3 14.6 8.3 1.9 1 0.2 0.1
" ———- ——-- 0.000085 | 0,00013 | 0.00017 | 0.00019 | 0.0002 0.0002 0.0002
In ofo of f — —- 21.4 12 8.7 2.4 1.2 0.3 0.1
£ S ——-- 0.0004 0.00107 | 0.0019 0.0082 0.016 0.788 0.1573
TABLE V
V¥ = 0,001

] 0.01 0.1 1 10 1000

ck v

Const nve 0.0000314 | 0.000314 | 0.00314 | 0.0314 | 0.314

ofo of R 5.4 36 85 98.39 99.83

Const kv 0.00055 0.00055 | 0.00055 | 0.00055 | 0.00055

In ofo of R | 94.6 64 15 1.7 0.17

R 0.0005814 | 0.00086 | 0.00369 | 0.03195 | 0.3145

‘ON WL VOVN

S9TT

154




44 NACA TM No. 1165
TABLE VI
¥ = 0.002
Hi% 0.01 0.1 1 10 100
ky
Const nve 0.0000157 0.000157 0.00157 0.0157 0.157
In o/o of R 1.14 12.5 52 93.5 99.3
Const kv 0.0011 0.0011 0.0011 0.0011 0.0011
In o/o of R ©8.6 87.5 41 6.8 0.7
R 0.001115 0.001257 0.00267 0.0168 0.1581
TABLE VII
py 250 500 1000 5000 10,000
b, = 1 at. 5.5 3.8 2.55 0.95 0.6
391 3 at. 17 11.5 7.7 2.9 1.8
a,"
5 at, 27.5 19 12.4 4.8 3
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