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1. COEFFICIENT OF FRICTION

Statement of the Problem. The friction between metal surfaces
ccunpletelyseparated by a lubricant layer, or fluid friction, is the
reaction of the layer to the motion of the surface. Experiment
and theory show that fluid friction does not depend, or depends only
to a slight extent, on the mgnitude of the load on the surface and
Is determined to a very large extent by the viscosity of the lubri-
cant and the velocity of the relative motion.

The usual method of expressing the friction force as a function
of the load through the coefficient of friction is for fluid fric-
tion quite an artificial one and its adoption In the lubrication
theory is merely a concession to the concepts of friction based
on the laws of Coulomb.

The numerous experimental and theoretical investigationsof
the coefficient of friction of a #ournal bearing all erprese the
coefficient as a function of the parameter qm/k, where v is
the absolute viscosity of the oil, o the angular velocity of
the shaft and k the pressure. This magnitude which plays a
large part in the discussion that follows we shall denote as the
operating parameter of the bearing. For practical computations it
is more convenient to make use of the relatad nagnitude rp/k,
where q is the speed of the shaft in revolutions per minute, k

the pressure in kg/cm2 on the projection of the bearing. For
briefness qn/k will be denoted by the symbol h. The latter is
connected with the magnitude

~ centipoises rpm .

kg/cm2

Petioff in 1883 proposed

qm/k by the followlng relation

9368 “ 103@ sec/m2 al/aec

k kg/m2

for the coefficient of friction of
P=’$Qlel s-=- se~a-~ W a lubricant layer of height h and
moving relative to each other with velocity v the followlng expres-
sion:

*Aeromutical Engineering (Moscow)9th year, Jan. 1935$ pp. 25-%.
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which follows immediately from the expression of Newton for ‘the
force required for the displacement of a viscous fluid between two
parallel surfaces of solid bodies. Accordi~ to the law of Newton
the shear force T of a viscous fluid is proportio~l to the area,
the viscosity of the fluid, end the velocity gradient across the
fluid layer:

(1)

where 1 is the length and b the width of the surface.

The shear force thus depends on the velocity profile across
the oil layer. H the oil In the clearance is carried along only
by the adhesion to the moving surface and the viscosity force the
velocity gradient is constant and equal to v/h, the velocity
profile is linear and equation (1) assumes the following form:

The coefficient of friction or the ratio of the frictional
face T to the load on the bearing surfaces P = klb in this
case is equal to:

f =lqv
hk

For a cylindrical shalt rotating concentrically with the
~ velocity m ina bearing with dismetral clearance A the
friction force by the law of Newton is equal to:

T= m dl ~!!2
A

and the coefficient of friction

where $ = A/d is the relative clearance of the
the farmula of Petroff for a Jourml bearing. It
clearance of uniform width and takes into account

(2)

bearing. This is
was derived for a
only the friction

..— .—,
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of the viscous displacement of the oil and Is therefore applicable
only to the determination of the friction of lightly loaded and
..concentricallyrotiting shafts.. .

Xf a l-d is applied to the surfaces then, in addition to the
reaction of the viscous displacmmmt, the surfaces are sub~ect to
still another reaction of the oil floylng out under the pressure In
the direction of the motion (fig. 2). For cylindrical beerings
the zone of pressure constitutes generally %) to 1200; in this zone
forces are developed which increase the friction of the shaft above
the value determined by the Petroff formula.

In determining the simultaneousreaction of the viscous dls-
rd.acementand ~otenthl. flow of the oil in the loaded zone. assumed
& 120°, CMbei (reference2)
as a function of the relative
following manner:

f=

expressed the coefficient of-friction
eccentricity of the shaft in the

1.7 m (3)

where X is the relative eccentricity equal to the ratio of the
absolute eccentricity of the shaft e to the radial clearance
8 =A/2 (fig. 3). The relative eccentmfcity,as follows from the
equation of discharge of Reynolds is a function of the =guitude
qU@@ that is

(4)

Substitatlng in equation (3) for 1 - X the algebraic expression,
represented in figure 5, of the relation between X and ~u#k’@,
obtained by the numerical inte~ticn of a number of typical cases
G&mbel obtained for the coefficient of friction the following e~es-
elon:

f = 1.76
e

.The coefficient c that takes into account the inaccuracy of the
algebraic erpressionfor the relation between x and qLD/1#2is
shown in figure 1 as a function of qu$k@.

The eccentricity of the shaft in the bearing depends not only
on the =@tude qu#k$2 but also on the length of the bearing.
The mmller the ratio l/d the more easily does the oil flow out.
of the clearance and the deeper must the shaft be set in the bearing

I
—mmnmmalmm, m.,,nn mm,,, M m , ,,,, ,,, , .,,.,,,,,,,,,,, ,,, ,, ,, ,,,, , , ,,, , , , , ,,, ,. ,, ,,,,. ,. ,,,., . , , ,,, ..,.,. . ..-—
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in order to sustain the given load. To take Into account the finite
length of the bearing it was necessary for &mibel to introduce in
the above derived expression the c~fficient of length of the bear-
ing obtained frcm the working up of the tests of Iasche (reference3).
The final expression for the coefficient of friction according to
Gumbel has the fol.lowingform:

(5)

where C* =v4 d/1+1
the bearing. Assuming
and choosing the ratio
following widely known

is the correction for the finite length of
the value of c equal on the average to 1
l/d = 1 Falz (reference4) obtained the
fOrmula:

The above formula

vf.3.8~ (6)

gives satisfactoryresults for partial bearings
(withoutupper cover) ~th a bearing arc of about 1200-but is unsuit~
able for full Journal bearings particularly those with forced feed
since the formula does not take into account the additio=l fric-
tion of the viscoue displacement of the oil over the umloaded two
thirds of the bearing. The fozmmla may be used for the approxizmte
estinmte of the friction in full jourml bearings only for small
values of qco/k where the additional friction of the viscous
displacement is relatively snmll and the reaction of the flow from
the loaded zone is the predominant factor. Mweover the range of
values of ~/k In which formula (6) gives satisfactoryresults is
so near the critical value of qm/k corresponding to the rupture
of the oil film that it is practically @ossible to use
formula (6) for full jOUl?Ild b-ings.

Test Data on the Coefficient of Friction. Test on the coef-
ficient of friction generally determine the latter as an e~onential.
function of q, m, k. 111.mer(reference5) on carefuUy working up
almost the entire literature on the coefficient of friction
represents the latter in the following form:

where the e~onents r, m, n, vary within the range 0.3 to 1
end K is a constant that lakes into account the size of the clear-
ance and other design factors. The rather complicated method proposed
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by Illmer for detetining the coefficient of friction is hardly
applicable on account of ite complexity and absence of any
ratioud basis. We present the results of the experimental investl-.
@“tions of the various authors considered by Illmer (table 1) in
!&Me 1.

Fcmrln(reference6) in conducting tests with the crankshaft of
an airplane engine found that r varies in the mean between the
Umits 0.3 to 0.4, m= 0.5 tol, n= 0.6 to 1.

the

the

McKee (reference7) investigating the coefficient of friction
its dependence on the clearance and length of bearing expressed “
results of his tests by the following equation

~+cra
‘=;” k

first term of which represents the formula of Petroff, a is a
constant equal to 0.002, u is a correction coefficient depending
on the length of the bearing.

Coefficient of Friction of a Full Journal BearinR. The velocity
distribution in the oil layer of a bearing working in the region of’
fluid lubrication with a clearance completely filled by the oil is
schematicallyrepresented in figure 2 together with the diagram of
the pressure over the circumference of the beering. Over the entire
c5.rcumferenceof the bearing the oil is carried along by the moving
surface of the shaft and the velocity diagrem across the oil
layer had the form of a triangle the maximum ordinate of which is
equal to the peripheral velocity of the shaft. The resistance of the
oil”,carried along by the motion of the shaft, per unit area is

~l=dv=p
q Fy h (7)

In the narrow pert of the clearance due to the incompressibility
of the oil a region of pressure is formed from which the oil flows
out in the direction of motion and toward the ends of the bearing.
The latter type of fluw has no effect on the friction since the
frictional force is directed at right angles to tie peripheral
velocity. The flow in the d~rection of motion however (along the
X exis) gives additional friction. To the biangular velocity
profile there is here added the parabolic profile of the potential
flow, the equation for which, for a system of coordi=tes placed
at tie center of the oil layer, has the followlng form:
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[ ()]v“”iT’9-$*g (8)

where dp/dx is the ~essure gradient along the X axis.

The first derivative of the velocity with respect to y is
equal to

The friction force
for y= ~h/2 is

per unit area for the boundary
according to the law of Newton

T“ –=;*.q;

The total friction of the bearing is nwadeup
of the viscous resistance of the oil T’ carried
of the slu&t over its entire periphery and of the

surfaces, that is,
equal to

(843)

of two components:
along by the motion
reaction T“ of

the flow of the oil from
the Xaxis:

T=T$

where a is the loading

the ~oad~d zone along

+ T“ =dl (YtT+t31”),

angle of Iihe.beaxing.

the direction of

The total coef-
ficient of friction is me &m of the individual components

f
.y+y=f, +ftt

PP

Tc and ft. We shall determine the value of the first form of
the friction according to equation (la). We tiansform the linear
coordinates of this equation into polar for which purpose we tie
use of figure 3 showing the shaft eccentrically placed in the bearing.
We take the origin of coordinates on the line O-O connecting the
centers of the shaft and bearing. For any angle Q the height
of the clearance h can then be represented by the following
expression:

h= r$(l+Xcos q),

where

r is the radius of the shaft

* the relative clearance, equal to A/d

x the relative eccentricity, equal to 2e/A

(9)
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The total friction force over ..theentire periphery of the shaft is
obtained by integrating expression (10) between the limlte 2YCto O:

,- 2X~11=,lrlw
J

dq “’ ~ lrrp

$0 +l+xcosq * 1-ss

The coefficient of friction f~ is equal to

V?ehave thus obtained the formula of Petroff carected by the
factor –=l=.

U1 - X2
that takes account of the eccentricity of the shaft

in the bearing. For X = O, that is, for a central setting of the
shaft, formula (11) becomes the formula of Petroff.

Figure k for the function (X)* shows that the correction Im=
differs to en appreciable degree frmn 1 only for values X>O.5
and that therefore the formula of Petroff is sufficientlyaccurate
over the large range of practically occurring small eccentricities
corresponding to high values of the-parameter qm/k.

For convenience in using formula (n) we replace the eccentri-

city X by the magnitude qO/~2 of which It is a function. ‘the
relation between these ma@tudes is given by the flo~ equation of
Reynolds which in the interpretationof G&bel (reference9) for
the cylindrical bearing for a mean value of the l-ding arc of 120°
leads to the relation shown by the curves in figure 5. The lower
curve refers to a bearing of infinite length. For beari~s of
finite le~th G&nbel introduced in the expression of the relation
between X“”and ~m/k@ the correction
obtained by working up the test data of

The author found that the function (x)

f;ctor c = 1 + d~l
Lasche and his own data:

for a bearing of infinite
length, ae shoyn In figure h is satisfactorily eqressed in terms
of qm/k~2 by the following empirical equation:

(12)
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For a bearing of finite length it is necessary in equation (12) to
introduce the correction factor c.

Substituting equation (12) in expression (11) we obtain

(13)

that is, the first partial coefficient of friction is equal to the
friction coefficient of Petroff for the concentrically rotating
shaft plus a certain magnitude, constant for a given bearing, that
expresses the effect of the eccentricity of the shaft in the bearing.
It is very Important to notice that the finite length of the
bearing is expressed only through the constant termof equation (13).
The smaller the value of l/d the greater for a given value of
~/k the eccentricity of the shaft and the greater the coefficient
of friction.

T“ and d“. We found previously (&) that the friction force
per unit area due to the flow in the laded zone of the bearing is
equal to:

h d~T“ =—
2dx

or in polar coordinates

The equation of Reynolds, transformedfor a cylindrical bearing,
gives for the pressure gradient over the circumference of the besr-
ing dp/dq the following expression:

dp
— = 6qfi2 *1

+ x Cos 0) -(l+XCOS m)
dq (1 + x Cos Cp)3

where % is the angle corresponding to the point of &nimum clear-
ance. It is simpler however to obtain the pressure gradient, with
an accuracy sufficient for practical computations, if we mdce use
of the ~st ~~ on the litits of the bearing film and the~character
of the pressure change over the lcadlng arc.

Numerous e~erimental investigationsall give the following
picture of the pressure distribution in the plane of symmetry of
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the full cylindrical bearing under constant load. The pressure,
equal to zero over the entire periphery of the bearing (if the oil
is fed without pressure), begins to increase over go to 1200
from the llne connecting the centers of the shaft and bearing, and
increases with an almost cons~t gradient up to a m?ulmum value
I.yingnear theyoint of nammwest clearance d constituting on
the average 2.5 to 3 k. Thereafter the pressure drops sharply to
zero or even somewhat below. A typical pressure curve measured
by Bradford and Grunder (reference10) is shown in figure 6.

Without great enor this picture my be replaced by the scheme
shown in figure 7. The pressure here Increases linearly over an
arc of xo, attains the value 2.5 k at the point of minimum clearance,
after which it drops very steeply. The assumed scheme Is suffici-
ently near the true conditions, the approximationbeing closer the
smaller the value of ~m/k and, as we shall see below, our results
are of importance precisely for these values of ~m/k. Thls
assumption very much simplifies the ccanputationof the coefficient
of friction by equation (14). ,Thepressure gradient dp/dq
beccmes constant and equal to P-/a = sk/a where a is the

loading arc which in what follows we shall assume equal to
R/2, s = 2.5 - 3.* For every other equivalent section of the bear-
ing not lying in the plane of symmetry the nmgnltude dp/dq iS
equal to 2~/s where & is the pressure at the point of

minimum clearance In that plane.

The pressure distribution over the length of the bearing (the
Z axis) according to test dab agreeing with the theoretical con-
siderations (reference11) is represented in any meridional section by
a parabolic type curve with almost constant exponent m varying
between 2.2 to 2.7. The maximum of the curve is on the axis of
symmetry of the bearing as shown in figure 8 giving the pressure meas-
urements of l’?ucker(reference12) over the length of the bearing.

The pressure pm my be erpressed as a parabolic t~ function

of the mimum pressure Pmx = sk:

[0]zmRn= sk 1 i
E

me computationswule by the author for a = 9 to 1200 show
that the results given below are valid for the entire practically
occurring range of values of a.

... . . . . . ——.
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pressure gradient at any point of the loaded zone of the
my be e~ressed as follows:

[ (.7]~=2Fg=28kl.f
(@ s Y1 2

The different points of the surface alonR the length of the
bearing thus e~rience a different reaction z” as a functicm of
their distence from the plane of symmetry of the bearing.

On the loaded surface of the shaft consider an element of width
rdg and length dz (figure 9). The force U“ aeti~ on thfs

element is equal to

d~’ = T“ rdq dz = rdq dz~ ‘1 + x Cos @ ‘~
2 dq) -

=

I (7]

fiqdzv(l+xcos~)gl- f (15)
2 m 2

To determine the total force T“ acting on the shaft we integrate
equation (15) twice, once over the length of the bearing, tlmt is
between the limits Q/2. and a second time over the length of the
bearing fikn, that is between the limlts m to 7c/2:

1.

p=njek “+2 (~+xco~q) [Q]zm

LI’J 1+1 dcpdz
s

-a 1-—
2 2

. r$’skA (1 -0.64 X).
2

The friction coefficient f“ is equal to:

f“ = & = {~ (1 -0.64 x)yfm~ (x)A

Assuming S = 2.5 ti m s 2.5 _ 0bt9i.u

f“ = 0.4~(x)A
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The
Izlg

the

function (X)A erpressed in terms of qfn/k@ has the foUow-
fcn?m

(x)A ()=1 “-y.$$5‘“.#-&1“5.
—

The Relative Magnitudes of f‘ and fn. The weight of each of
component parts of the total coefficient of friction is shown

in tables 2 to-&. TIwHe imles give the values of ft and f” wllMn
the range qu/k@ = 0.01 to 100 which for the relative clearances
* = 0.001, 0.002 ad 0.0005 corresponds to the values of the
operating parameter:

2.= 10-:100 000 centipoises xrpm/kg/cm2

The double line in the tibles divides off those values of qm/k@
which in all probability are outside the brakedown 11.mitsof the
011 film. Eraminatfon of tables 2 to 4 shows that the term f“
affects the total value of the coefficientof friction only in the
range of small values of ~/kV B which probably lie outside the
limits of fluid friction. For large values of qu/ln& the effect
of the factor f“ is not large. Computation shows that f“ my
without great error be assumed constant and equal to its mean value
in the most important interval of qu@J2:

The errcm arising
does not exceed 5

f“ = 0.25$

from this assumption in the least favorable case
percent.*

Total Coefficient of IWiction. Under the above made assumption
the total coefficient of friction takes the fo~owing foma:

The ratio l/d, as follows frcm the ~evlous considerations,
affects only the cons-t termof equation (16) es is fully
conflmed by the above msntloned tests of McXbe. Accca’dix to

(16)

●The relative weight of f“ in the gee value of f has
been computed on the assumpticm cd?the same viscosity of the oil
over the leaded and nanlcaded bearing. Actually the temperature
of the oil in the loaded zone is alwaym a~ht higher tlmn in the
remaining part due to the additioml. friction ard the relative value
of f“ is smwhat smiler than that given in tables 2 to 4.
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these tests for l/@ 1 the constant term of the e~ression for the
friction coefficient must be corrected by the factor u which may
be expressed by the following equation:

u
()

Q 1.5

‘1

For values of l/d> 1 the correcticm factor u Is approximately
equal to 1.

With the correction for the length of the bearing the friction
coefficient takes the following form

or in practically euitable units:

f=
0

3.36 ● lo-9 &+o.55~ 1*5:

where X = qn/k

(17)

(18)

d

1

A

~

n

k

the diameter of the shaft in nm

the length of the bearing inmm

the diametral clearance in mm

the.viscosity of the lubricant in centipoises

the rpm

the projected unit bearing load in kg/cm2

The correction (d/1)1-5 is introduced only for values of l/d less
than unity.

Comparisonwlth Test Data. Figure 10, to logarithmic scale, shows
the curves of the coefficient of friction as systematised by A. ~ewerka
(references16) according to the test results of a number of authors
(references13, 14, 15, 17) the formulas of Petroff, &mbel and
fmnula (17) of the present paper. The curves are plotted in the
coordinates proposed by Howarth, ffi being laid off on the ordinate
axis against ?I@O.j2 on the abscissa.
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The curves on figure 10 show clearly that the formula of (%ibel
satisfactorilyagrees with the test results for emll values
of ~/rk@ but gives a large error for high values of thfs factor.
The fornxulaof Petroff, on the contrary agrees very well with
test results for large values of qc#k$ as was to be eqected
from the sizructureof the famula, but gives too emil.1values for
f for endl values of qm/k@ for which the eccentricity of the
sk?t and the friction in the loaded zone have a large effort.
F~ (17) satisfactorilyagrees with test results over the entire
_ of values of qu@@’ practically encountered.

The dotted straight line drawn through the mean values of the
coefficient of friction msg serve for an aientating estlmte of the
coefficient of friction in the range qm/k@ = 0.5 to 100. The
equation for this line is the folloulng:

~ 0.85
‘= $:.7

()

or in practical units

where X = qn/k,

~ the

n the

k the

d the

A the

viscosity

rpm

projected

-8 : 0.7 ~ 0.85f =12*1O
()

in centipoises

unit bearing load in kg/cm2

diameter of the shaft h mm

diametral clearance in m

(19)

(19)

General Character of Formula (17). We may note that fo=ul.a (17),
derived on the assumption of constant load on the bearing, may be
extended with a certain degree of reliability to other loading cases.
Formula (17) without any reservations is applicable to the case of a
shaft loaded by the rotati~ vector of a centrifugal load. This case
represents the rotating system of a besrlng under constant l-d with
the characteristicfeature that the laad k is a function of the
square of the speed and the coefficient of friction is a function of
the speed and viscosity:
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We may note that in this case the operating parameter drops
with increased speed, in contrast to the case of constant load, and
the coefficient of friction decreases with increased speed. For an
impact load and for a load that varies in magnitude and direction
formula (17) may serve as an a proximation which Is the more accurate

k?the larger the value of @ The character and mgnltude of the
friction in the unloaded i<onetie here the same as in the case of
constant load but the friction in the loaded zone has a different
character. The curve of pressure in the lwded zone In all proba-
bility approximates a parabola the axis of symmetry of which for emll
speed of rotition passes through the line connecting the centers of
the shaft and bearing and at large speed is displaced against the
direction of motion. The oil in the loaded zone fluws not only
against the direction of motion as in the case of the constant load
but also along the direction as a result of which a considerable
decrease and even the total disappearance of the reaction of this
flow on the shaft may be expected. The probable diagram of the
velocities along the periphery of the shaft is shown in figure 11.
On the other hand the relation between the load and the eccentricity
of the beering for an impact load and a laid varying in magnitude
and direction is other than for the case of a constant load and is
detemined not only by the parameter ~m/k but also by the rate of
Increase of the lmd and the rate of change of its direction. The
eccentricity is in this case over a large part greater than in the
case of a constant load.

Thus the variable and impact loads while leaving unchanged the
first term of equation (17) change the constant term, the effect of
the latter being in opposite directions. On the one hand the constant
term decreases as a result of the flow in each direction in the
loaded zone and on the other hand it increases as a result of the
eccentricity. A detailed analysis of the friction for an impact and
variable load constitutes a separate independent problem which the
author hopes to consider another time.

Formula (17) may serve for anapproxiumte estimate of the coeffi-
cient of friction in the case of an impact and variable lad not only
because of the opposite effect noted above the friction on the con-
stant term of this equation but mainly because of the endl relative
value of this term in the practical Interval of values of qu/k.
As shown by tables 2 to 4 the constant term of equation (17) even for
values of qu/k near the critical does not exceed 25 percent of the
total coefficient of friction. Actually bearings always work with a
certain factor of safety and the mgnitude of the constant term is
generally very small in comparison with the first term.
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APPIZCA!I!ICWc%’mEaBTAmED REsuLTs

., —

1. kv as a Measure of the Therml Stress of the Bearing.
Fanmla (17) answers clearly the question often raised as to the
applicability of the magnitude kv as a measure of the heat
generated in the bearing. ~is method of estinmting the thezzml
stress implicitly assumes the constancy of the coefficient of friction
fcm all operating conditions and for various stawctural design factors
of the bearings and at first view has no basis in fact if the friction
theory based on Coulomb is re~ected. Formula (17) shows that this
is not at all the case and that under certain conditions the heat
generation is actua12y probational to kv. Neverthelessa careful
~sis of the problem mskes it necessary finally to reject tie
ma@tude kv as we13.as any other magnitude even for a rough
estimate of the thermQ stress of the bearing.

The heat given out in unit time over @t surface of the
bearing is expressed as a function of the coefficient of friction
in the following manner:

(20)

Thus the heat generated in the bearing consists of two parts: tie
part ~oportional. to T@ and the other to kv. The relative values
of the two perts are shown in tables 5 and 6 where the magnitudes
of the cmqmnent parts of equation (20) are given as a function
of qm/k@ fa l/d = 1 and~ = 0.001 and 0.002.

!Dables5 and 6 show that the m~tude kv predominantly
determines the general value of the work of friction for snull
values of q@& lying probably beyond the llmlts of fluid fric-
tionwlth the exception of those cases where the bearing has a
small c1earance d l/d is considerably less than 1. In the
range of fluid friction the general value of R is greatly
affected by the tam proportional to qv2 and for large values
of qt@@’ this term ccuupletelydetermines the value of R.
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II, lm

Thus the application of h as a measure of the heat generation
and as a basis for a co~tlve esblmate cf the themal stress of
the bearings ~ be justified for small values of P/&#2 approaching
the critical value. A second comlition Is the equality of the
relative cleazzuice$ and the ratio l/d for the bearings com-
pared. For most bearings working with a sufficient safety factor
the use of kv gives a large error. This however is not the =In
point. The detezmd.nationof the load-camylng capacity of the bearing
from the value of the heat generated involves a methodological.
error. The losd-carr@ng capacity of the bearing is determined
for a given load, speed and kind of oil by tk temperature of
the bearing which inturn is determined by the mutual intention
on the one had of ths heat generated and on the other the heat
dissl~ted. The latter depends on a whole series of factors, for
example, the size of the clearance, the feed pressure of the oil, the
cooling surface, the number and amangement of the oil grooves and
the operating conditions chamcterized by the pazwneter ~/k.

On the basis of the above considerationsthe magnitude kv or
any other magdtude must altogether be dispensed with for even a
comparative estimate of the thermal stress of the bearing and the
only rational ~ is to detemine by computation the heat balance of
the bearing ad the effect of the heat generation and heat desslpation
on the load-carry- capacity of the bearing. This will be done below.

2. Float~ Bushes. Expression (17) sufficiently ez@.ahs the
advantages, often confirmed in practice under certain conditions,
of floatlng bushes thus throwing doubt in the validity of the theories
of the constancy of the coefficient of friction as shown below.

In a statflo~ bearing the heat generated is R = const Pvf.
Now consider a floatfng bush. ~ the coefficient of friction Is
considered constant and it is assumed for simplicity that the
floating bush rotates at a speed equal to half that of the shaft
then on the two sides of the bush the amount of heat generated is

R’ = 2 Const Pf v/2

that is, the float$ng bush gives no gain in the heat genemated. We
shall now apply equation (17) assuming that the bearing works in
the region of high values of ~/k so t~t the constant term In
equation (17) msy be neglected. The heat then generated in the
statloxwry bearing is equal to

Rt
= Const q?

The heat generated on both sides tithe floatlng bush (assumingthe
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clearances the same) is

R~ = 2 const q #/4

that is, the floating bush lowers the heat generated by half. Two
concentric floating bushes applied in certain especially high speed
bearings lower the heat generation to one third. The smaller the
value of rp/k and the greater the weight of the constant term of
equation (17) the less advantageous is a fbating bush. IX it is
also remcmiberedthat the floating bush decreases the speed of rota-
tflonand hence the load bearing ca~city by two the rqe of favorable
application of fleeting bushes becomes entirely clear, namely, the
range of high values of qm/k of high speed, low lad shafts working
with a high factor of safety. In this case the floating bushes
provide a technicdd.y ratioti means for lowering the tempemture
of the bearing though it is true at the expense of a lowering in the
safety factor. We shall not here touch upon the other extmeme of
the favorable application of flcating bushes, namely, in the range
of half dry and half fluid friction.

3. Cut-away of Bearing and Shaft. A second method that has
long been used in practice for decreasing the friction consists in
increasing the clearance in the nonloaded pert of the bearing as
shown in figure 12a, or using a partial bearing as shown in figure 12b.
For centrifugal lead the same result is obtained by a cut-away of
the shaft as shown in figure 12c. The advantages of the methods of
figure 12a and 12c is twofold. In the first pkce the friction in the
nonloaded region becomes negligibly small and in the second place
the flow of oil is increased. This wi12 be considered in detail in the
section on the oil flow.

For partial bearings and cut away shafts and bearings the friction
may be cmnputed by the formula of &mbel if the load~ arc does
not differ too greatly from 120°. Figure 10 permits the imuedlate
determination of ~in from the cut away of the shaft and bearing.
For this purpose it is stif~cient to compare the straight line rep-
resenting the equation of Gunibel-Falzwith the curve represented by
formula (17) for a definite value of qm/@2. The sin is greater

Thus according to figure 10 for
5 the heat generated is”reduced by half In comparison with

:i~~~lrb~~,ivdue ‘f ~@/k&
k?

and for qm/k@ = 20 it is decreased 3.5 times.
For values p/ <1 the cut away of the shaft and bearing has no
significance.

2. ~w Cm’OIL~(li T13EBEARIIVG

me flow of oil fran a full journal bearing with froced feed
consists of two parts: (1) the flow qc from the loaded -t uder
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the action of the pressure developed
under the action of the forced feed.
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in this zone, (2) the flow q“
z
u)

Determination of qt. For the solutionof this problemwe s~~
tie use of the scheme, already applied by us, of the variation in
pressure in the loaded pert of the bearing, that is, we assume that
the pressure in the loaded zone varies linearly over an angle of $Xlo.

The velocity of the oil along the Z axis (fig. 13) in the
clearance of a beering of height h according to equation (7) will
be

1

‘“z-q [ ()]72- + 2 ~
The volume of oil flowing per unit time though the clearance of
width b is equal to

q=b
f:: V*=*J; [+-(+)’]**=&:* (21)

We shall transform equation (21) into polar coordinates. We again
turn to figure 3, taking on the surface of the shaft an element of
width rd(pand height h = r (COS q). The flow through this element
In the direction of the Z exis is equal to

dq =
rdq (l+Xcosq)3r3$3 dp

l’q d;
(22)

As before we assume that the pressure along the axis of the bearing,
tht is, almg the Z axis varies parabolically with exponent m.
The pressure gradient dp/dz at the end of the bearing is equal to

!Q=?!Q
dz 1

2

where p is the pressure in the plane
The variation of p over the range of
of our umthematicel assumptions =y be
equaticm:

( P -x \
P = p=(++ 1.

(23)

of symmetry of the bearing.
the bearing angle on the basis
expressed by the following

=Sk(’:+1)
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where ~ = sk is the pressure at the point of miniIUUMclearance

in the plans of symmetry of the bearlng$ s Is a coeffloiemt flae-
tuating within the limits 2.5
a= X12 we have

p.

Substltutlng equation (24) in

to 3 and a the loading arc. For

()

29
skT. l (24)

expression (23) andthe latter In equa-
tion (22) we o~tain the followl~ expression for the fluw through-the
element of the clearance In the loaded part of the bearing:

(25)

The total flow over the entire loading arc is obtained by integrating
equation (25) within the limfts I.L- fi/2:

2

(*- 2.1 - 4.3X + 3.7X2
)

- 101X3 = * (X).=
6?1

For the two sides of the bearing

r 4&wk
q’ =

3ql
(X). (26)

The magnitude k is e~reesed ae a function of the relative eccentrl-
city X by equation (3):

where (X)* is the function represented In figure 1. l!ky.mtlon(26)
in this case takes the following form:

qt .Z!!l!2w@o
(x) * (27)

31

I
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magnitude (X)o/(X)* is shown plottcidin figure lhas a function
x. As shown by figure 14 the flow from the loaded part of the

bearing decreases with-decreaalng eccentricity of the shaft in the
bearing ad becomes equal.to zezw for a central pmitlonof the shaft.
This was to be expected since Por such position the bearing can not
carry any load and there is no pmssum in the oil film.

~r X = 1 the flow is Inftiitely great since acconiing to the
Reynolds equation the pressure In the narrowest ~ of the clearance
becomes infinitely great. Such a position rover occurs in practice
since long before this half-dry and dry friction =ises as a result
of the contact of the surfaces of the shaft and bearing.

The -ittde (x)o/ (x)* may with an accuracy sufficient for
practical purposes be expressed aa a functionof @/k$2 by the
following empirical equation:

(go= 0“25

(+(X)* +7@ O*6
ck

(28)

where c is the ccmrectionfactor of G%mbel for length of be=ing.
Substituting expression (28) inequatlon (27) we obtain

Substituting
d m

r=~m=—,
2

s=2.5m=2.5
30

anareplaclng (1+ a/l)””6 by an approximate fonuula fmm the binomial
expansion we obtain

= 0.0034
d3@.2~ul

~’

H
q(u 0.6
k

(29)

when

(cf=$l+O.6,;
)
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The flow per rotatio~ is equal to

qn’ ~ o.2d%2=2 at
~~10.6

Reducing equations (29) and (30) to practical

21

(30)

units we obtain

*().8A2.2

q’ cm=~aec = 0.8
ah

f.6

do.8A2.20
qn’ cm=~mtat ion = 50

~o.6
(32)

where A = qn/k

d

A

T

n

k

1

08

the diameter of the shaft in m

the diametral clearance in m

the viscosity of the oil in centipoises

the rpm

the projected unit bearing load in kg/en?

the length of the be~ing in m

= :(1 + 0.6 d/1)

Equations (29) to (32)show that the flow of oil ~ t~ beari~ with-
out forced feed to a large extent depends on the clearance, on the
ratio l/d, is almost directly proportional to the dimeter of the
shaft and inversely pzmportional to the parameter A. Ibr a given
bearing the oil flow is a function of A only and follows the law

represented in figure 14.

The Bearing as a Stable System. Figure 14 illustrates the notable
pIwperty of a slider bearing observable not only for a bearing without
oil circulation but as we shall see later also for a bearing with
forced circulation. This pnperty is namely the fact that the bearing
working in the range of fluid lubrication constitutes a system in
equilibrium tending to maintain a definite value of the ~tir qu/k
~inst all disturbing factors.

.—



22 NACA w No. 1165

Let us compare figure 14 with the typical curve of the friction
coefficient plotted against X (fig. 15). We shall assume that the
bearing works under a steady condition for example at k = 1500.
We sha~ assume further that some disturbing factor enters in the
operation of the bem~} for emnple, an increase in the tempera-
ture due to local friction. h this case the viscosity of the oil
drops and A decreases. This produces on the one hand a decrease
In the friction according to figure 15 and on the other hand an
increase in the flow according to figure 14. The simultaneous action
of these factors lowers the temperature and reestablishes the pre-
vious value of h. An analogous picture is obtained for a decrease
in X due to and increase in k.

The reverse phenomenon occurs on increasing k. Let us assume
for example that L increases due to an increase in the speed. lh
this case the friction according to figure 15 increases, the flow
simultaneouslydecreases and the temperature of the bearing rises
as a result of which the viscosity o? the oil decreases and the A
tends to drop.

The automatic character of this process is due to the property a
of the oil of changing its viscosity with the temperature and the
unique dependence of the flow on X. In this peculiarity may be
found the secret of the notable stability and noncapriciousness of
behavior of correctly desi~ed and constructed bearings. The essential
condition for this automatic stability Is that the bearing works with
a sufficient safety factor and the time fluctuation of h should
not terry it beyond the critical values at which a brealdown of the
oil film occurs.

Range of Application of Formulas (29) to (32). Eqmtion (29)
to (32) are applicable to the majority of technical cases of the
bearings without forced feed lubrication or for a feed pressure not
greater than 0.1 to 0.5 at. The essential condition for the applica-
bility of formulas (29) to (30) is the absence of oil groves in the
loaded zone and the rigidity of the bearing and shaft. Such grooves
even though they do not extend to the ends of the bearing may increase
the flow many times. However mcdern bearings only rarely have grooves
in the loaded zone.

The deforamtion of the bearing or shaft under the action of the
load may change the law of pressure distribution along the axis of
the bearing and the quantity of oil flowing out.

NotwithstandlW the fact that formuks (29)to(32) were derived
on the assumption of constant load they may without reservations be
applied to the case of a zmtatlng centrifugal load which maybe trans-
formed into the scheme of constant load. It should be noted that the
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unit load k Is here a function of ths square of the speed and on
lncreael~ the speed the pammeter A, In contrast to the case of

— constant load, decreaeea and therefozw the flow lncreat3e0.This
has long been observed on systmns In which the centrlfhgal load
predominated, for example, on crankshafts of internal combustion
englnea, etc.

IIIthe case of an impact or variable load equations (29) to (32)
mayserve only as a first approxlmatIon since the law of pressure
distrlbution along the loading arc in this case differs from that
assumed as the basis of these equations which as a result give de-
creased values of q‘.

011 Flow for a Eeariw with Fbrced Feed Lubrication. The oil
flow for a bearing with forced feed depends on the number and arrange-
ment of the oil feed openings and lends itself to analytical c“omput&
tIon only in certain special cases one of which is chosen below.

We assuum that the bearing in the plane of symet~ 1s pnvlded
with e ring groove in which oil is fed under pressure. We assume
further, as above, that the pressure along the axis of the bemlng is
exp?xmsed approximatelyby a parabolic typ curve the maximum o?dlnate
of which Is equal to the feed prsssure P. (fig. 16). We shall
compute the quantity of oil flowing from the clearance in the direction
of the ends of the bearing, not considering for the present the 011
flow from the loaded zone.

According to equatIon (21) the volume of oil q“ flowing per
second from the two sides of the clearance is expressed as follows:

bh3 dpq“=——.
6q dz

when h 1s the height of the clearance

b the width of the cle~e

dp/dz the pressure gradient on the flow direction, that is along
the Z axis.

We again turn to figure 3. For the element of width rdq) and height

h = @ (1 +x’COST)

the flow per second is equal to

tit’ = rW (1 +X C4XP)3 ~

6q dz
(33)

,,, ,,, ,,, ,,, , ,, ,.,,,,,,, , ,,,. m -,, ,,,, ,,,.,,.,,-.,,,,-.. .,,,,, ., .,,..,,,... I



24

By the equation of the parabolic curve

~=~o
dz 1

NAcAm rvo.IL65

where m is the exponent of the curve, po the feed pressure. Sub-
stituting this expression in equation (33) and integrating the latter
between the limits 2YK
bearing, we obtain the

- 0, that is, over the entire periphery of the
total oil discharge per second:

# =

The function (X)* is plotted against X~ in f@ure 17. The latter
shows that for full eccentricity of the shaft (X = 1) the oil flow
is two and a half times as large as for central position of the shaft
(X= O). This was to be expected since according to equation (21)
the flow very much depends on the amount of the clearance.

The oil discharge per rotation is equal to

Expressing nq in terms of (X) (equation (4)) we obtain

where

r4&o (&
% “= 13.3 ~1 (34)

●

The function (X)a/(X)* is shown plotted against X in fig-
ure 18 and with sufficient accuracy Is expressed in terms of qo/lr$2
by the following empirical equation

(X). 1.2

0

iii lJm2 1“2
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Substituting this e reaslon In equation (34), setting m = 2.5 and
?expressing (1 + d/1) “2 by an approximate formula from the binomial

e~ion we obtain

where

The flow iS

Reducing expressions
we obtain

%“ =

where ~ = qn/k

d the

A the

PO the

n the

n the

k the

(35)

(36)

(35) and (36) to practically suitable units

(37)
* 3.4 p ~,,

cm3/Oec = 2.5 “ 106 ‘+”
do. @o.2

*3. 4 PO g!,

cm3/rotation= 1.6 . 108 (38)
~~o.4 A1.2

diamter of the shaft In m

diametral clesxance In m

feed pressure in @/cm2

viscosity in centipoises

pzmJected unit beul.ng load In kg/cm2

mmm-—mn mm mmmm ■ ma .IImmmIIIm ,,, . ,,,..- ..,,,,,,,- ,,,,.,,. .,,,, ,...,.-. -,...——
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1- the length of the bearing inmm

d’ =+ (1+ 1.2 a/1)

Fomulas (35) to”(3G) show that the oil flow from the forced
feed depends to a large degree on the clearance, the ratio I/d,
is directly proportional to the feed pressure and inversely propor-
tional to a small power of A. Thus the flow of oil under the
effect of forced feed, like the flow of oil from the loaded zone,
is a factor of stability assuring the maintenance of a definite
value of rp)/k.

-e of Application of FoITuulas(35) to (38) Equation= (35) to
(38) are applicable to the case of forced oil feed from the end of
the bearing except that in this case the values of q“ and qn”
must be reduced to one fourth. In case the oil is fed through one
or several holes on the periphery of the besring equations (35) to
(38)maY be applied only as a first appzmxlmation. iThemore holes
on the periphery and the closer they are arrsmged in the plane of
symmetry of the bearing the more accurate the results that may be
expected from formulas (35) to (38). h the CaseOf a s@le hole or a
smallnumber of holes the actual discharge will be less than that com-
puted by equations (35) to (38)by an ~o~t which C= be dete~fned
only experimentally.

If the holes are located In the lower loaded zone of the bear-
ing (which rarely occurs in practice) there may be expected not
only a decrease tn the amount of oil flowing out but also a change
of the dependence of the flow on A. The shaft, as is known,
changes its position in the bearing with change in A} its center
describing a path approximating a semicircle the top point of which
coincides,for infinitely large value of W/k with the center of
the besring. This displacement changes the czmss-section of the
oil holes and affects the flow of the oil.

The grooves and cut-sways in the bearing and shaft as shown in
fig. 12a and 12c may incnase the flow of the oil nmre than ten times
the value computed by equatiom (35) to (38)~ the disc~~e will
not depend on ~. If the bearing has structural features having
the obJect of Increasing the oil circulation the flow of the oil
through the clearance may be neglected and the oil outflow computed
from the geometric dimensions of the grooves with the aid of the
usual formulas of the flow of a viscous fluid.

~tal Flow in Beariw with Forced Feed. The total flow of oil
from a cylindrical bearing with forced feed is made up of the oil
flowing out of the loaded zone and the oil flowing out under the
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effect of the feed
neglect the effect
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pressure. As a first approximtlon we nmy
of the oil feed grooves on the pressure

dletributlon in the loaded region d consider the to- flow of
oil fran the bearing as equal “t-o”the S“U of Q’ and q“ by
equations (29) to (32) and (35) to (38). The total flow of oil in
this case is expressed by the equation

0.8A2.2 , 6~3°4p0 d’ (39)
Qcm3/sec = q~ + q“ = 0.8 d un+p2.5~10

~o.6 ~o.6

where P is a magnitude less than 1.

Comparison with Test Results. FOrmUhS (29) to (32) - (35)
to (38) were compared with the test results on oil flow published by
Barnard (reference17). The latter determined the flow of oil from a
full cylindrical bearing of diemeter 25.4 mm, 50.8 nunlength with
diametrsl clearance 0.15 to 0.28 =. The feed pressure was vexied
between 0.7 to 4.9 kg/cm2, the load between 2.9 to 19 kg/cm2, the
speed between 200 to 2000 rpm and the viscosity of the oil between
12.5 to 43.5 centipoises. The shaft was of hardened steel and the
bearing of bronze. In the loaded part the bearing had a narrow
oil distributing groove ~allel to the axis of the bearing extend-
ing up to 5 nnnfrom the ends. The oil flow through the bearing
was expressed by the “useful pumping coefficient” E equal to the
ratio of the actual flow of oil per rotation to the volume of the
bearing clearance:

E= 2Qn/lnMl

The restits of the observationswere grouped in the form of a set
of curves of “useful pumping coefficient’ras a function of the
operating parameter qn/k and the feed pressure PO (fig. 19).
Figure 20 gives the values of the pumping coefficient computed by
equations (32) ~d (38). Unfortunately Barnard does not show
separately the values of n, q and k corresponding to the various
values of X whereas in the right member of our equation there
enters the value of X in addition to k. This difficulty was
circumvented by assuming k inversely proportiord. to h.

The “structural fac or”
t

of e uations -(32)and (38), equal
)respectively to qnt/XoO and qn” ~=2, was obtained by dividl~

the values measured by Barnardby k. The agreement of figures 19
- 20 Is more than eatlsfactory. It shows the correctmss of
the fundamental assumptions underlying formulas (29) - (32) m
(35) d (38). Although our conclusions regarding the effect of A
on the oil flow through the bearing are entirely satisfied by the

-. .. .. ,...



test results of Barnard the effect of the clearance on the oil flow
according to our considerations is considerably @?eater than accord-
Ixlgto Barnard who did not at all observe the effect of the clearance
on the useful p~ing coefficient whence the cmlusion - be drawn
tkt the oil flow according to Bamxrd is directly ~oportiuml to
the first power of the Cl~Ce. Formulas (32) and (38) however
give a much shaxper dependence. This point requires special investi-
~tion:

q We shall consider the relative
:mti:ff 1 the lcdled zone qt * that due

to the effect of the feed pressure q“. Dividing equation (28) by
(32) and dividing out at and u“ which do not ~eatly differ from
each other we obtain

“
%“” 1.2 PO 1

=31* lo5vc1 ~\O.6
‘n* A

Substituting the most
~ = 0.001 we obtain

frequently occurring vzihze of the clearance

2 and shall vary the feed pressure pOWe assunw k = 50 kg/cm
between 1 to 6 at. The results of the computations for the various A
are given in table 7. Thble 7 shows that for a smooth bearing and
usual relative clearance$ = 0.001 the flow under the effect of the
faced feed considerable exceeds the “natural” flow of the bearing
especially for small values of X and large feed pressures. An
increase In the c1eerance still further Increases the part played by
the forceilflow.

Gmcrves, cut-sways, etc. in the unloaded zone may still.more
shaqly change the relation between the “utural” cdl ‘forced” flows
of the oil In favor of the Latter and entirely wmk the “mtural”
flow.

-e of Application of Obtained Results. We again mention the

fact that fomnulas (29) to (32) @ (35) to (38) me appli~ble oti
to the case of smooth slx@?tsand bearings which &o not deform under
load for cleazances of the order c&v = 0.002-0.0005for constant
or centrifu@ load. In the case of variable or impact



load these fomulas may be used only as a first approx=tlonwhlch
is the more accurate the greater the part played by the “forced”
flow in comparison with the “natural” flow. An analysis of the
natural flow of oil for impact and variable loads requires the
establislmmnt of relations between the eccentricitiesof the shaft
and the rate of change of the load, that is extension of the lubri-
cation theory and Its verification by experiment which, Incidentally,
is technically considerablymore complicated than In the case of a
constant load.

3. HEATBAIANCEOFTHE~

For a steady thermal state the amount of heat genezzitedin
the bearing is equal to that dissipated. The heat transfer Is in
the following three main parts: (l]in the oil flowing out of the
bearing,[2)in the bush and body of the beerin&(3)in the shaft end
psxte connected with It. Ikom the body and shaft the heat Is removed
to the surrounding atmosphere by convection and contact.

The two latter forms of heat transfer lend themselves with
difficulty to mathematical computation. W a very large extent
they depend on the special features of the bearing, the surfaces
of the bearing and shaft, the number and shape of the structural
details, etc. The heat transfer from the shaft, for example, increa-
ses sharply if there are rotating masses on the shaft, such as
pulleys, couplings, propellers, etc. The heat transfer Is greatly
increased on the connecting rod flournalsof crankshafts In an air
stream.

As far as is lmown to us the only attempt to compute this heat
tmnsfer (togeetherwith the heat given off by the oil) was nmde by
Falz (reference 4). The computation is based on the tests of Iasche
and is of a very prlmltlve form. Lasche found that the heat bmnefer
from the shaft of a besring is proportional to the 1.3 power of
the temperature difference between the bearing and cooling medium.
The heat transfer equation according to Falz-Iasche has the follow-
ing fcaml:

Rkcal./&= adl (tn - ta)103

where

d is the diameter of the shaft

1 the length of the bearing

tn the tempemture of the bearing
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ta the temperature of the surroundingmedium

Pa a coefficient varying with the kind of bearing in the range
50 to 2GOC

For bearings of internal combustion engines Falz recommends choos-
ing the values a = ~ to 2000 depending on the speed of the engine.

The exponent of (tn - ta) which is somewhat greater than 1 showt
that the most @xn?tant part in the heat transfer of the bearing is
played by convection and contact end not by radiation which is pro-
portional to the difference between the fwrth powers of the tem-
peratures.

In practice a number of cases are known where the heat generated
in the besring is given off to the oil and the heat dissipation to
the surroundingmedium may be neglected. To such a case belong for
example the bearings of an internal combustion engine of the air-
phne or automobile type enclosed in the crankcase and having a
high temperature due to the contact with the heated working parts
of the engine. The heat transfer from the bush of the bearing to
the crankcase is in this case insignificantdue to the ti dif-
ference in temperature and the heat transfer from the shaft in the
hollow of the crankcase is likewise small. An exception is pos-
sibly the case where the crankshaft is
metal air propeller.

If we limit ourselves only to the
then for a heat balance of the bearing

directly connected with a

heat dissipation in the oil
under consideration the

following equations hold.

The equation of the heat generated in the bearing:

1
R k cal/sec =—

l?vl’c~m
Rf =—

( )
— —+ o.55.cnlJ

427 427 $ k

The heat carriedoff by the oil

R’ k cal/sec =

in unit time:

CQ ~(tf - to)
1000

(40)

(41)

where

c is the specific heat of the oil in k Cal/kg” C

Q the flow of oil though t~e bearing in cm3/sec
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tf - to the final and initial temperature of the

C and 7 V- insi~ificantly with the temperature.
of the bearing tn ~ to a first appmximat ion be

equal to the mean temperature of the oil:

t* + to
tn. ~=

Atto + ~?

where At
this case

Is the increment of the temperature in
equation (41) takes the foliowing form:

31

oil.

The temperature
considered

the bearing. In

R’ = 2 C Q~o(tn -to)

The relation between the viscosity of the oil and the tempera-
ture is given by the curve of viscosity against t or by one of
the many characteristicequations proposed by a number of authors.
Thus according to Poiseuille (reference 9):

1
7=

A+Bt+Ct2

where A, B, C, are constants, characteristicfor a given oil. Accord-
ing tO Kiesskalt (referencela):

where b is a constant. According to Falz (ref@ence 4):

i

“= (o.lt)2”6

where i varies from 1.06 for heavy oils to 0.07 for light oils.
The author found that the viscosity of aviation oils (fig. 21) is
well expressed by the following relation

~= i
(0.lt)s

(42)

where i = 2.0t02.8 for heavy oils of the type of “brightstock”
and 1.4tol.8 for castor oil and “kastrol”.

For a steady thezmal state the heat given out in the bearing
is equal to the heat given to the oil:
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R.R’,=- ( )~ ?h+ 0055L71j = 2c Q A(tn - to)
427 ~ ~

(43)
1000

The simultaneous solution of equation (43) and the characteristic
equation of the viscosity pezmits finding the temperature of the
bearing for given speed, load and geonmtric dimensions.

We shall solve for example the following problem: It Is
required to find the temperature and safety factor of a bearing
carrying 5000 & at n = 2000 rpm. The dimensions of the bearing
ared=100mm l/d=0.8$A= 0.1 mm, feed pressure of oil 3 at,
temperature of oil 65°, the oil is “kastrol”with i . 1.8.

The unit load on the bearing is equal to:

5000
k =— = 63 kg/cm2

80

Assume that the temperature of the bearing is 900. The viscosity
of the oil is equal to 25 centipoises and A is

A. 2592000
= 800

60

The friction coefficient by equation (18) Is equal to

f = 3.36 “ 10-9 1 800 + 0.55V= “ 0.1 = 0.0034
1000 Bol.5

The heat given off is

5000 “ 10.4 ● 0.0034
R=w ~= = 0.43 cal/sec

‘+= f 427

The oil flowby equation (39) (for ~ = 1) is equal

Q= o.8d0”8A2”2a1n _ “+205 . ~oGA3”4p00’ =

~0.6 ~o.4qAo.2

to

19.7 cm3/sec

Taklngc=O.5andy= 0.85 we obtain from equation (43):

0.43 = 19.7 85 (tn -65)
100000

tn = 91”
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out of bhe bearing Is equal
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The temperatureof the oil
to

65 + 2 (91 - 65) = 117° C.

shall.ffnd the factor of safety of the bearing for which
the author (refeqence19) proposes the-rat~ of the a~tual operating
parameter ~ to the critical parameter correspondingto the
start of brea~own of the oil film. The critical value of the
paremeter Is found from the limiting thickness of the oil fllinfor
which there is as yet no contact of the projecting roughnesses of the
shaft and bearing. This magpltude depends mainly on the accuracy
of the evaluation and the character of the surfaces of the shaft and
bearing. We assume that the critical thickness of the oil film
is 0.01 mmwhich correspondsto the eccentricity:

From figure 5
qu)/k@= 0.36

0.05 - 0.01
x= = 0.8

C.05

for X/d = 0.8 the corresponding value of the magnitude
whence the critical L is

A 0.36
= 9368 . 105 = 335

1(-)5

The safety factor of the beari~ is equal to

A 800 z *
x= .— = —= .

Akp 335

The safety factor can be increased in twc ways: by an increase
in the flow of oil through the beari~ and by a decrease in the
temperature of the oil feed. We shall first consider the first
method. We shall raise the feed pressure to 6 at. The exact com-
mutation gives in this case t =-87°. The
then equal to 27 centipoises, \ increases
factor to

viecosity of the oil is
to 870 and the safety

870 z 6
x =—= .

335
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We shall now attempt to lower the

NACA

temperature of

!lMNo. 1165

the oil
feed to vo at pn = 6 at. h this case the temperature of the
bearing drops to”840 which corresponds to a viscosity of the oil
of 31 centipoises, A drops to Ilk and the safety factor to

1140
x=— = 3.4

335

There is noted the Insignificantchange in the temperature of
the bearing for relatively large changes in the pressure and the
temperat~ of the feed oil. This canbe readily explained. By
feeding a cooler oil we at
a result of which the heat
the other hand the flow of
tion drops. A decrease in
low a value as 20° gives a
Ing Od.y to 780.

the same time increase the friction as
generated in the be~ing increases. On
the oil decreases and the heat dlssipa-
Lhe inlet oil temperature even to as

lowering in the temperature of the bear:

Amuch greater improvement is obtained by increasing the oil
flow through an increase in the flow cross-sections in the unloaded
zone, a method which at the S= time reduces the friction. We
assume that a cut-away is made in the bearing of height 0.5 IMUon
the unloaded bearing arc etiending over 180°. The friction in this
region may be approxhately computed by the law of Netion:

The friction in
mate3y computed

h2 2h kla 2h. k

the loaded zone of the bearing may be approxi-
by the formula of G&nbel,(reference5):

“= 1*7*-E

The total coefficient of friction 5s equal to

f= f’+f ’’=l.7
Wg+$:

The flow through the holluw (neglectingthe effect of the eccentri-
city of the shaft) is found by formula (21):

Xdhsp
Q=—

6q1
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The flow through the loaded zone may be neglected. The temperature
of the oil is determined from the equation of heat balance (43).
Several successive approximations give:

~=65+4=69°

The viscosity is then equal to 60 centimises, A is equal to
1900 and

We shall
perature
obtained

the-safety fac~or is
.

~ = 1900
—= 5.7
335

lower the temperature of the inlet oil to S@.’ The tem-

of the bearing by the equation of heat balance is then
equal to 58.2°. -

centipoif3e8, A is equal
To this corrwponde a viscosity of 97
to 3100 and the safety factor is

3100
x=—= 9.2

335

This example shows that by a decrease in the temperature of
the inlet oil a sharp increase in the safety factor and load bear-
ing capacity of the bearing may be attained for a eingle constant
condition nemely an increased oil circulation obtained by structural
means. If this condition is not satisfied the decrease in the tem-
perature (and increase in the pressure) of the inlet oil does not
give any essential result.

Imid Bearing Capacity and Structural Factor@. We shall consider
the effect of structural factors on the temperature and load bear-
ing capicity of the be=ing with forced feed. Ibr stiplicity w
shall assune that the be=ing works at a high feed preesure EIOthat
the “natuml” flow of the oil through the bearing may be neglected.’
We 8ha11 assure that the coefficient of frictiOn varies according
to equation (19). In this case the heat generated is equal to

The oil flow is equal to

q“= oo4d3@*4p #
~7p.2

The heat transfer is
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The incnment in the temperature of the bearing is determined fzmm
the equation

(44)

The above equation shows that the t&pe&dnme increment in the besr-
ing i6 proportional to the squazw of the viscosity, the Bpeed and
the ratio l/d, Inversely proportional to the fourth power of the
relative clesrance and ivnersely pro~rtional to the feed pressure.

We shall now analyze the effect of the heat condition of the
bearing on its ~~ad bearing capacity. We shall make use of the
expression of Gumbel - Falz (referenceh, 19) based ~ the Reynolds
equation for the load

where ~ tin is m

bearing capacity:

q(l) d2
k=coMtO- (45)

‘o min ‘c

limlting allowable thiclmess of the oil’film,

c = 1 + d/1 the correction for the finite length of
Substituting the viscosity formula (b) In equation

k = Const

the bearing.
(45) weobtain:

(46)

()to +AtJ 3*C

2

Substituting in place of At its expression from (44) we obtain

K= const @d

(Y

‘t.+ * +C
2

(47)

The above equation shows that the predominating effect on the load
bearing capacIty Is that of the bearing temperature. If no spcial
means are provided for increasing the circul.ation of the 011 the
load bearing capacity is determined prlncipally by the increase in
the bearing temperature, the analysis of which was given above
(fonmlla (44)).

E faced circulation is used the temperature of the bearing
is not large and the load bearing capacity is determined =inly by
the temperature of the inlet oil so that all efforts of the designer
should be aimed at a r~ucti~ M to ● E the temperature of the

bearing is gi~en by the Itilvidual features of the bearing the load
bearing capaci~ can only be tifec= by a cknge In the structural
parameters and a choice of the kind of oil used.
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cc ccMKITATIa (n!’ EEmlm

The caputation below refers to the special case where the heat
given off to the surrotiing atmosphere may be neglected and the main
heat dissipation occurs in the oil.

The computation reduces to the determlntion of the teiupera-
ture of the bearing with the aid of the equation of heat balance
and the clnracteristic equation of the viscosity. Fran the lxm-
perature of the bearing is determined the mean viscosity of the oil
after which by the known equations of the hydrodynamic theory it Is
detemined whether the bearing can sustain the given load and with
what safety factor. IF too small values are obtained fcm the latter
an increase in the load bearing capacity is obtained by one of the
methods indicated above.

The clearance 18 rarely given as a defInite flgure but usually
with a tolerance determined by the nmmfacturing possibilities.
This circumstance and also the possible wear of the bearing and
shaft must be taken into account in the ccnnputationin view of the
considerable effect of the clearance on the friction and oil flow.

!lbincrease the reliability of the cauputation the oil flow
d coefficient of friction must be computed for the minimum
tolerance and no wear. The oil feed, however, the cross-sections
of the oil feed pipes and the output of the oil pump must be
canputed for the maximum tolerance and with wear taken into account.
If the shaft end bearing ore of different nmterials the amount of
the clearance must be considered In the warm state taking account
of the difference in the linear expansion coefficients of the
materials.

Reference Ikta. ~ conclusion we present sane data an the
heat capacities and densities of oils at various temperatures.

Figure 22 shows the change of the densities M various avlatiam
oils with temperature. -The~enel~ ~ be detemined by the fomula

y=yo (l-at)

where ?’. is the density at the initial t.ammezature.a a constit
WIW be%wen 0.00061r to-0.00070 d

The heat capacity of the 011 1s
Ing formulas:

Ckcal
_=*(oe43+ o.00081 t), c

on the ivera~ ;qual to 0.00068.

expressed by OIM of the follow-

k~ .
&

+B (t-15)
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where

’15 is the density of the oil for 15° C

A a constant equal for neutral m.lneraloils to 0.405 to 0.425

B = 0.0009
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TABIJiI

Time of publication Frictionfmmula Type of dMM 1
a * Material Speed Fresstu-e Tempema- Vimoaity

Lubri- rwe rinse ture rawe
cation m/B.9c ‘c centipoises

18S5,B. Tower f.0.0055q Oil bath 101 1.5 1/1120 Steel on bro~ze 0.5-2.4 7-43 32 22-100

2/3 I/3
1902,Strlbeck 0.0016(}) V Rin’ 70 1.95 1/950 Steel on babbitt 1.35-4 2-22 20-47 56-250

l/3
1902,0. Imche 0.0052+ Ring 260 0.42 1/950 Steel on babbitt 1-15 1-15 28-1OQ 7-40

1913,C. Thcmm, E. Meurer,L. Ke180 0.002Jy Ring 62 3.95 ------ Steel on babbitt 0.5-1.4 2-7 27-43 40-100

1889,A. Mertens
0“002’5$

-------- 99 0.71 ------ Steel on bronze 0.5-2 1-40 21-41 30-200

1903,A,Kingsbury
00027’ (FY’4

-------- 35 1.45 ------ Steel m bronze 0.2-0.5 2.S-2.4 32-77 15-46

1/3
1904,D. Woods and D. Carter 0.003(y) -------- 230 0.7.9 ------ Steel on bronze 2.3-11 3.5-10.5 22-60 28-120

0002 o.44fi
1922,D. Stoney,R. Tjoswall,D. Masaey . Bath 63.5 1.6 ---.--

kO.63
Steel on babbitt S.5-19 2.6-8.4 38-60 16-42

1922,G. Homrth and Nelson 0.00096*. -------- 50.8 0.23 ------ Steel cm bronze 3.4 28-56 40-90 10-30

1922,M. Heraey
‘“00115(F?4

-------- 25.4 3 ------ Steel on bronze 0.7-3 2.8-17.5 ------ 38-420

1923,G. Stanton
lJ3

0.0042& -------- 25.4 2.5 ------ Steelcm bronze 1.3 19 32-50 25-2os
k~/4

1928,D. Goo’me.n
0.37V0.63

0.0023~ Bath 152 0.5 ------ Steel m bronze 0.75-3.5 2-15.4

&
16-72 40-54

1930,L. Illmer
-#

0.0033 <v -------- ----- ---- -----. --------------- -------- 0.2-7.5 20-150 10400



TABLE 11

v= 0.001

u!?
$
A

~.~u
‘#
In o/o of f

0.314 *

In o/o of f

f,,

In o/o of f

!w
k+
k

~.+u
‘4

h 0/0of f

0.314$’

In o/o of f

f“

In o/o of f

f

0.01

10

0.00003

6.3

0.000314

63.2

0.00015

30.5

0.00049

0.05

50

0.000157

25

0.000314

50

0.00016

25

0.00063

0.01 0.05

40 200

0.0000628 0.000314

6.3 25

0.000628 0.000628

63.2 50

0.0003 0.00032

30.2 25

0.00099 0.00126

0.1

100

0.000314

39.3

0.000314

39.3

0.00017

21.3

0.0008

0.1

400

0.000628

39.3

0.000628

39.3

0.00034

21.3

0.00150

0.5

500

0.00157

73.4

0.000314

14.6

0.00026

12

0.0021

1

1000

0.00314

83

0.000314

8.3

0.00034

8.7

0.0038

TABLE III

‘#= 0.002

0.5

2000

0.00314

73.4

0.000628

14.6

0.00052

12

0.00429

1

4000

0.00628

83

0.000628

8.3

0.00068

87

0.00759

5

5000

0.0157

95.7

0.000314

9.1

0.00039

2.4

0.0164

5

20,000

0.0314

95.7

0.000628

1.9

0.00078

2.4

0.0328

10

10,000

0.0314

97.8

0.000314

1

0.00039

1.2

0.032

10

40,000

0.0628

97.8

0.000628

1

0.00078

1.2

0.0642

50

50,000

0.157

99.5

0.000314

0.2

0.00041

0.3

0.1577

50

200,000

0.314

99.5

0.000628

0.2

0.0008

0.3

0.315

100

100,000

0.314

99.8

0.000314

0.1

0.0004

0.1

0.3147

100

400,000

0.628

99.8

0.000628

0,1

0.0008

0.1

0.629



I&
k$

a

n..?&
*

In O1O of f

0.314 y’

In 010 of f

~!l

In 0/0 of f

r

0.01

----

----

----

----

----

----

----

----

0.05

----

----

----

----

----

----

----

----

0.1

25

0.009157

39.5

0.000157

39.3

0.000095

21.4

0.0004

TABLE IT

~= 0.0’305

— —

0.5

125

0.000785

73.4

0.000157

14.6

0.00013

12

0.00107

+
ck v

Const ~v2

o/o of R

Conat kv

In 010 of R

R

0.01

0.0000314

5.4

0.00055

94.6

0.0005814

1

250

0.00157

83

0.030157

8.3

0.00017

8.7

0.0319

TABLEV

* = 0.001

0.1

0.000314

36

0.00055

64

0.00036

1

0.00314

85

0.00055

15

0.00369

5

1250

0.00785

95.7

0.002157

1.9

0.00019

2.4

0.0082

10

0.0314

98.39

0.00055

1.7

0.03195

10

2500

0.0157

97.8

0.000157

1

0.0002

1.2

0.016

1000

0.314

99.83

0.00055

0.17

0.3145

50

12,~oo

0.0785

99.5

0.000157

0.2

0.0002

0.3

0.788

100

25,000

0.157

99.8

0.000157

0.1

0.0002

0.1

0.1573

I



TAUJI VI

v= 0.002
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II&
I-w2

Const ~vz

In o,J~ of R

Const h

In o/o of R

R

0.01

0.0030157

1o11

0.0011

29.6

0.001115

0.1

0.000157

12.5

0.0011

:?7. 5

0.001257

TABLE VII

1

0.00157

5CJ

0.0011

41

0.00267

10

0.0157

93.5

0.0011

6.8

0.0168

100

0.157

99.3

0.0011

0.7

0.1581

A 25’3 500 1000 5000 10,000

{

p. = 1 at. 5.5 5.,8 2.55 0.95 0.6

~n”
3 at.. 1? 11,5 7.7 2.9 1.8

m
w

5 at. 27.5 19 1~.4 4.8 3
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Figure 21.
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Figure 22. - Notation: l-castor oil, 2-aviation 19, 3-’’Embinsky

Brightstock”, 4-’’Cast m i”.
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