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THE MINIMUM ENERGY LOSS PROPELLER?

By N. Poliakhov
SUMMARY

Various cases are presented of the solution of the
problem of the most efficient propeller, more general
cases beilng considered than the one by Betz in 1919:
namely, that of a propeller under a limiting light load.
The problem is solved directly and also with the aid of
the Ritz method which became readily applicable after
the author proposed a method for the solution of the
propeller problem, in general, with the aid of trigono—
metric series. The design of a propeller with the aid
of this method is given and an analysis is made of the
effect of the fuselage and of the viscosity coefficient
i on the character of the solution of the variational
problen.

SYMBOLS

|

total power of propeller (nondimensional) z *«C

p useful power of propeller (npondimensional)

“Jl_

nondimensional circulation (kT/éana),
k number of blades
w angular'velocity of propeller
R radius of propeller
Vi1 o Va1> nondimensional tangential and axial veloci-—

. ties induced in-the plane of the pro—
peller disk by the free helical vortices
on the line of the bound vortex

1Report No. 455, of the Central Aero~Hydrodynamlcal
Institute, Moscow, 1939
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T nondimensional radius of propeller; symbol is also
used for wr¥ the nondimensional rotational
velocity - V

v axial velocity (nondimensional) & 1;’

- J:?—*T—g = -

W VR+(wr ) , resultant of V and w¥F.

Wnl_ resultant induced (nondimensional) velocity

. J=TETTS: ‘ |
= '\/th ~+ Va;'_g
p , W pressure and resultant velocity at infinity

‘ahead of the propeller

Py W, = A/(wrz - vta)2 + (v + vaa)z , pressure and

velocity at infinity behind the propeller
Ap = p — p,

v v axial and tangential iaduced velocities at

a2 te
infinity behind propeller

Viar = Vaa/2, Vi, = vig/2

iy nropeller thrust
Ene induced velocity at infinity behind propeller
¢ : blade‘séttingb

h 1ro@eller—fuselagé interference coefficient
;‘i interference velocity of propeller—fuselage systeﬁ

0 THE BETZ SOLUTION COF THE VARIATIONAL PROBLEM OF

THE AIRPLANE PROPELLER

As is known, the credit belonsgs to A, Betz for giviang
an approximate solution of the problem of the propeller
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of minimum energy loss for the case of a finite number

"of blades. (See reference 1.) In general, the problenm

of the variable propeller in an ideal fluld may be stated
thus: It is requlred to find the condition under which
the integral expressing the total power of the propeller
(in nondimensional units):

1
i;ff(v*';a;);d; = minimum (1)
4

while the integral

T 1

Fp =¥ ®=7[T(F-¥,)aF = constant (2)
_ ¢
where PP is the useful nondimensional power of the
propeller. In the integrals (1) and (2) T is the .

nondimensional circulation equal to kl"/émee
where

k number of propeller blades

w angular velocity of the propeller

R propeller radius

The magnitudes V¢; and Va3 are the nondimen—

sional tangential and axial velocities induced in the
plane of the propeller disk by the free helical vortices
on the line of the bound vortex. These velocities are
unknown functions of I' the character the change of
which with the nondimensional radius T is likewise un—
known. 4An added condition imposed on the function

I'(r) for a finite number of blades with free tips is:

T(o) =T (1) =

It follows immediately from what was said in the

foregoing, that the losses of the screw propeller are

etpressea as follows:

1
ﬁ:}s_‘fp:Jff(?;alJ,v;h)a‘; (5) ~

o]
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fIywis qqtqdifficult to see that the expression in paren—
‘thesis is no other than the modulus of the vector product:

- -2 -3
']"c 80 -7 0
['~_>~—> ] _
W, Wn ={wT, v, o]
-
~Vg1, Va1, O

— —_— —_
in which 7T°, a® and r© are unit vectors in the

tangential, axial, and radial directions, respectively,
and therefore ‘

/\\
WT Ty + Vg, =W Wnq s1n(W Wnl)
where
| T =/TE+F2

— =2 =2
A/V‘G;J."'Va.a.

=
B
)
i

. — P>
If it is assumed that wy, _L.W, then

Wr ve, + Vvg, = W wy,
and '
1

E = f’f W, ,aT

o)

o To compute the true angle between the velocities
o —_—
W and wp, use is made of the Bernoulll equation

which is written down for a streamline through the pro—
peller blade. If the pressure and velocity at infinity
ahead of the propeller aré p and W while at 1nf1n1ty

. behind the propeller they are p_,2 and W,

v/Onrg-— Vta)z + (V + vu50° the Bernoulli equation

gives immediately:

7 N
Vaz Ve A
kv + ) Vap — <wr _— __2___> v\t(z;z-ﬁg
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where Ap = p — p,. Denoting for briefness vag/z and

" v4./2, respectively, by v'p, and v'y, thus

‘ A
(V o+ v1g,) vigy — (or — vig;) vlg, = %’T? Ga)

The magnitude Ap/p at infinity behind the pro—
peller is constant along the same sireamline but changes
in passing from one streamline to another and is a
periodic function of the polar angle ¢ on which the
fluid particles of the streamline considered are dis—
placed relative to a certain initial helical surface
which may be taken as one of the vortex surfaces origi-—
nating at the propeller blades. The same can be said
with regard to the induced velocities vy, and vgs:

The period of all these magnitudes is equal to 2r/k
where k 1is the number of blades. For heavily loeaded
propellers the magnitude Ap/p may reach large values
For lightly loaded propellers this magnitude is small
in comparison with the values Vv,p and wr vgy. For

s propeller with an infinite number of blades Ap/p is
given by R

o =
v
4 r
1'2

In most of the present day theories of the lightly

=

loaded propeller it is assumed that w‘nll,w (Betaz,

Prandtl, Kawada, etc.) to which the relations as follows
correspond;

vlay = w'y, cosB, vl = w'y, sinp

hence (fig, 1) it follows that

tap 1 — 1 =
Vvlg, - wr vy, 0

. It is not difficult to see that _the assumption of the

perpendicularity of wﬁ'nl to W is equivalent to
neglecting in formule (a) the magnitudes v'2,, and
vi®;y, — Ap/2p, that is, to the linearization of the

problem. Such linearization is possible only for the
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case of lightly loaded propellers when the magnitude

a1 1s actually small by comparison with V and

’v'ztl - Ap/2p is small by comparison with wr. More—

over, the foregoing theories assume also that:

1 = l2
Viga 2 Via

) 2 e
Va1 T T3 Vaz

i

where vy, and vy, are the induced velocities in the

plane of the propeller. This second assumption is equiva—
lent to the assumption that the helical vortices lie on
the surfaces_of circular c¢ylinders and have a constant
axial piteh.?* In what follows it is assumed in corre—
spondence with what has been said that

Va1 = Wp; cos B

gy = Wpy sin B

Vvgy = wrvyg, =0

The agsumption of the foregoing relations involves
certaln errors in the determination of the velocities
Vay and vy,. The effect of these errors on the
values of the velocities wr — vy, and 7V + vg; in the
expressions for the thrust and power is very small, how—
ever, because the velocities vy, and wvg; for light

and moderate loads are small by comparison w1th wr and
V but nevertheless not so small that they can be neg—
lected. Thus rejection of the component (W'znl 5 >:

by comparison with Vv'al—awrvtl in formula (a) does
not at all mean that vy, should be neglected by com—

parison with wr and vgy by comparison with V in
the expressions for the thrust and power. Thus, for

~gxample, -an error even of 10 percent in the determina—

tion of +v,; when takenm equal to 0.1V gives in the

*In the linearized theory this assumption is a
simple consequence of neglecting v, anrnd v¢ Dby com—
parison with V and wr in the formulas of Biot—Savar?d
for determining vy, and vg,.

ras
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expression for V + v,; an error of less than 1 percent

as can easily be verified by computation. Check compu—~

tations of propellers show that the foregoing assumptions
with regard to Vi and v,; permit the obtaining of

values for P and T in very good agreement with the
results of experiment,

THE PROBLEM OF BETZ AND ITS SOLUT ION

It is quite evident that the problem of the pro—
peller of maximum efficiency is equivalent to the prob—
lem of the propeller with minimum energy loss since
finding the minimum P for given Py is equivalent to

finding the minimum of E = P — Pp. An exact solution
of this problem presents very great difficulties and
for this reason it 1s necessary to solve it by making

some simplifying assumptions. Depending on the charac—
ter of these assumptions various solutions are obtained.

The preliminary problem solved by Betz 1s the fol-
lowing: To find the conditlons for which

h

E =/ TWWp, dr = mininum (4)
if ° 1
Pp =f T v dr = constant (8)
0

Thus, in his initial solution Betz neglects the velocity
. ) N _ . = —
V4, Dby comparison with w¥ and assumes that Wn;—L Ww.
The debtailed solution of the problem for the case assumed
by Prandtl that ﬁ;l_i_ﬁi was presented in CAHI Report
No, 2%324. In view of the importance of the Betz problem
for further discussion, the method of its solution will
be briefly presented, particularly since the method pro—
posed by Betz himself is not very clear and at times

. raises. some doudbt. as..to its rigor.

The vortex sheet formed by the helical vortices at
infinity may be considered as 2 surface of discontinuity
of the potential @ of the flow which takes place out—
side this surface. The circulation corresponding to a
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propeller elemént at any radius T will be equal to the

‘potential difference between the points on the radius at

each side of the surface of discontinuity; that is, will
be equal to

where the subscripts +t and b denote that the poten—
tial @ is taken, respectively, at the "top" and "bottom"
sides of the helical surface, where by the "top" side is
meant that side which is in the direction of motion of the
propeller. Assume therefore that the helical vortices
have a constant axial pitch over their entire extent in
which case 1t may be verified that the induced velocity

in the plane of the propeller Wn1 is equal %o half the

velocity wp, at a great distance behind the propeller.

It is assumed,moreover, that ';ZE_L;W> and may then be written
- a2
Wnea ¥ 3n

that is, the derivative along the normal to the surface
of the potential ¢ +the normal being in the direction
from top to bottom side of the surface. On the basis of
what has been said the expression for the losses may be
written as follows:

R
f(@t—-@b_)%% War = %Bff@ dq)df -—Eff o
G ft

where k 1is the number of blades and 4&f = W dr. 4t is
the element of surface swept out in time ~dt by the

NL?

bound vortex of the blade so that Wdr =]F Wdrdt. This

G
surface is two—sided and therefore the difference between
the integrals in the formula for the losses may be written

in the .form
JC[ ®~—-df (6)

From the second formula of Green there is obtained
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g f[ o8 ;{fﬁf@% o ff oz0a)

where v is the Hamiltonian operator. Since the fluid
in the case congidered 1is incompre331ble g20 = 0 and
therefore

2 I (6 (e @ere o

where dT 1is the element ¢f volume of the fluid dis—
rlaced in time dt Dby a surface element in the direction
of the normal. The magnitude pd7T = dm is the.mass of
fluid included within this volume and therefore the loss
E represonts the kinetic energy of the fluid at infinity
displaced in unit time by the propeller blades. To solve
the problem of the mogt efficient propeller, again pass
to nondimensional notation and then cbtain

*
/’i O * E?— af*; P =</Lf d* cos B 4f*

f*

Let two flows be given with corresponding potentials D*1
and O&*'!, Now consider a third flow with potential '
p*'! — d*t  and shall then have

P

Frilo= l./ﬁF(Q*I!__Q*!)f ag* dé*’> af*
/ \_ dn dn -

= Et! 4 ff(@*til_q?___,_ + D*11 é.?j.'.) af*\
’ dn

ﬁ]J[iV(@*ll_ @m)]d aT>0, (8)

J
=

= L
2
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The condition of equality of thrust is writtén in the form
: J_f d* cos ﬁdf*==ff ®*” cos Bdf* (9)
1 ' I

—_— MWOn’theﬂdther hand for an incompressible fluild,; on-the basis
of the third formula of Green there is obtained

d*” o~
* Y VLl sl *
£j<¢ " )dj 0

T = = ’ do*”
E=E"+F — [ [ovTp—ar>o0. (10)
1%

‘and therefore

‘Agsuming that the flow with potenfial ®*1't possesses the
property that

d¢A* 14

an =W, Ccosf,

where W, 1is a certain constant, and remenbering the con—

stancy of FP there is obtained immediately

E"=F —E">0
and therefore _ _
: E" <El . (ll)

It follows that the flow corresponding to the propeller with
the minimum loss of energy can be pictured as a s0lild vortex
sheet at infinity moving in the axial direction with velocity

'3'

The induced velocities in the plane of the propeller
disks are obtained by the formulas:

a— —_—.'—- . w
Uy =W, smﬁ=—2— =

(12)
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. From.the .proof given in the feregoing it is evident that
the theorem holds for a propeller with any number of
blades and in particular for a propeller with an infinitely
large number of blades., In order to show that the fore—
going limiting transition does not affect the character
of the solution the expression is written for the losses
in the case of the propeller with infinite number of blades.
Therefore ‘ ' '

: 1 1 —
—_— — — —. WE —
E:fl-‘wnl Wclr—-fI’ §-—.§.dr
0. 0
. . .
since for wpy 1 W
= Val - th fw
17 cos B sin P TV

N Setting up the equation of Buler for the function
F* B T — Alfp (where A, is a donstant), write,

according to the rules of the calculus of variation,

BF* —_ e -
——= 2?:—.3_—:"./\. Vr=20
or rV .
hence
2 2 - = -
Fol a2V wp VTE (13)
T2 > 7 e
w2 2 I‘2+ V
where
A1V~= W
and therefore
3 e, oL _¥ VT
2T F T 2 Feave
F _.i.— :E _~;§?
al ¥ 2 r2 4+ V*
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which accurately agrees with formulas (12).

The circulation distribution giving the required
velocity distribution changes of course with the number
of blades since the form of the functions V (P) and

Var (T) wvaries with this number,

If the useful power of the blade is expressed in
the form?

1
'fp='w7f"f?a$ (14)
4
as is done by Betz and the total power in the form
1
f=ff('v’+¥al)”fd"f (15)
4
the cxpression for the losses must then be written as
1
E =] Trv,,ar (16)

To obtain the minimum of the integral (16) under the con—
dition that the integral (14) remain constant is equiva—
lent to the problem of finding the minimum of the integral
(15) under the conditions:

1
§p = V‘/pf‘(r—v‘tl)dr = VJFI"' r—vt "yar {
and 1 ﬁ 1 E
JF Tt v ar =L[\f 'y, ttaT (17)
4

that is, under the conditions of equal thrusts and equal
rotational losses for the propellers compared.

The foregoing problem is thus a variational probdlem

Cwith stronger conditions imposed than the problem of Betsz

and refers to the propeller with maximum axial efficiency
leading to the answer vgy = cmmtmm .as was shown in CAHI
Report No. 324, Unfortunately in the latter report the

! ‘That is, assuming the flow is irrotational.
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restrictions imposed on the problem weéere not brought out
with sufficient c¢learness and therefore on reading the
second section of the third part the impression may be
gathered that the solution ¥V, , = constant was con—

trasted with the solution W, = constant (Betz solution);

that is, a distinction was made between a propeller with
minimum loss of energy and a propeller with maximum ef—
ficiency. Actually, it is not a question of such a con—
trast but simply of two different problems: namely, the
propeller with minimum loss of energy and the propeller
with maximum axial efficienecy. The solution of Betz ap—
proaches more nearly the true solution of the problem of
the propeller with maximum efficiency since there is
approximately taken into account the change in the rota-—
tional losses in passing from one propeller to another
with the same useful power, It must be said, however,
that for propellers with the same diameters, angular
speeds, and useful power, the rotational losses consti~
tute almost a constant percent of the power F.

CASE OF THE MODERATELY LOADED PROPELLER

The problem of Beti was solved actually for the case
of a limiting light load on the propeller in which case
only may be written

1

[
d

In the present section consider the case of a lightly
and moderately loaded propeller for which is written

1 .
§P=VfF(F~Gn1 sin B)dT
o §
1 ' (18)
f=/‘f‘(§r‘+§r;l cos B) rd¥ -
[o]

A

1Thus, in accordance with what was said in the fore—
going, the equation is not linearized for the total and
useful powers but use is made of the linearized theory only
in determining the velocities vg,;. and vVga.
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The foregoing expressions are satisfied, as check computa—
tions show, with sufficient accuracy for the previously
mentioned clase of propellers. The expressions (18) on the
basis of the considerations of the previous section may be
written in the form

. 1

where
df,* = V sin Bdrdt* ,

df,* =7 cospdr dt*
Now obtain the variations 6&Pp and 8F. For the first of
these there is obtained

= Vf&l‘rdr———ff s O gp %Jf *I’*df,i* df,*,
fi*

But from the third formula of Green
(361)* AL Qo deo* df * = (BD*7? o* . O*\7 1 5*) d*
\ dn dn 1 ’
,l‘ . 5

\ o
which for an incompressible fluid gives

[ o o= [
and therefore

=Vf8rrdr— ff B(D‘

In the same way there is obtained
1
= -/  do* —_—
6P=f SI‘(V-{—W- cosB)rdr
(1]

Phe condition of the minimum P for given fp is expressed
as :

dﬁ—Vwa#—VfW—:mer

(rcosB—i—AVsinﬁ)]. -=0.

3P— ASP, —-far [Vr(l—A)—{—

Since the foregoing equation 1is true for any 8T the condi—
tion must be satisflied that
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— aepF — 7
Vr(l — A)4-—— (rcos B+ A Vsin ) =0,
hence, noting that
'cOS"P — , sin ﬁ ==

b

gl <l

r
now obtain
Ldbr (A—DTV.7
W dn AU
hence v - —_ =

7o 1 dbE w, Vr
U= 2 d SmB—-—23r2+T/,2,
—_ 1 do* w 72 v’
vhere Y =T P

— (A—DV AV = - -
Wy = = M = =
2 ~ o went V=VVA=VVA+T.

From the foregoing two formulas there is obtained

-

7”:72(1\,-]-1)

and therefore

_pr_p
A] = 7 ,
— (V-’z_—z
hence W= = "
‘//2_,;“,}_2 VI__T/QZ 0
and

V@ o/ (0 h_w 2,
Y il/<T>+W——5“iVV +(53) -

15

where the positive sign corresponds to the physical meaning

of the problem, For small values of the ratio w./2v
equation may be written approximately

V@:leuh
2
and therefore
— — r(V 4w,
’ (9
_— J— ?2
Ival::wl

RN

the
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‘where ﬁi denotes wy/2. These formulas were proposed
by Prandtl in 1919 without "ahy proof for-the case of mod-—

erately loaded propellers. In 1927, in volume VII of the
Handbuch der Physik and also in 1932 in Ingenieur—Archiv,
Heft 1, A. Betz gave a proof that formulas (19) are a
solution of the variational problem of the screw propeller.
His proof, however, was based on the so—called method of
displacements and cannot be called entirely convincing.?

In concluding this section the eguation is derived
which must be satisfied by the potential & of the flow
outside the vortex sheet, For this purpose now write

the equation of continuity of the flow v2® = 0 in

cylindrical coordinates. Therefore

10 (L22), 1 3%, 3%
r Or .(r or / T d8® i dz = ° . (20)

In order to reduce this equation to a simpler form
in the case of flow about a helical surface the new
variables are introduced

b= 0~F 24 FF=p
then
...é._—_-._..._u-)—-._é_. ..-a——:-@...'..—a_.z_y____a__
dz v ot ’ o8 d¢ ' dr w dp

and the equation of continuity assumes the form

12 2P\, 3B L ey o
- (pap/+a§2(l+p ) =0 (21)

. This is the required equation fer the potential &
in terms of the independent variables § and p.

T 'TMhe 'sdditional conditions which must be satisfied
by the function are the following: for p = p,, where

At present a rigorbus sbiution has been obtained of

the variational problem for the case of the nonlinearized
theory. .



NACA TM No. 1067 17

p, -is the value of p at the tip of the Dblade ® nmust

be & single value and continuous function of p and (3
moreover, ® must be an odd periodic function of § and
become zero for p = ®, For p< p,® must undergo a

discontinuity equal to I' on the vortex surfaces,

‘ On the surface ‘of the vortex sheet for which t=o0
the condition holds: : '

ad Folo war2+V=2 3
o == — Al = —— = = f
dn Vaz cos B Vie sin B 3t Jwep2t+ve Vr (r)

where f(r) is a given continuous function of r. For
the case o6f a rigid helical surface this function is of
the form

T

Pt o v e e T

T2 + V=2

f(r) = w, cos B = w,

2

where w;, is a constant magnitude.

Equation (21) was first obtained by Goldstein in
1929 in investigating the flow of a solidified vortex
sheet of constant axial pitch.
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SOLUTION OF THE PROBLEM OF THE MOST EFFICIENT PROPELLER

WITH THE AID OF THE RITZ MEITHOD

As was shown earlier the problems of the propeller
with finite number of blades are well solved with the aid
of trigonometric series. Then assume that the circulation

T, is such that it can be eiproased by the series
co
f1=2Ansinn0, 1y
n=1 .

the total induced velocity ;nx is expressed by the
formula (see referenco 2)

W, = L sme S 4, [n-sinn04-C,(9)), ©

where Cpn are known values depending on 6 and on v

and k as parameters, and L and 6 arr connected with
the radli of the elements of the propelle by the equations

r=%t-1-L —Lcos®; dr=1Lsinbdb,

where L is half the effective part.of the blade and §
corresponds to its noneffective part. Since it is assumed

-> ->
that wp, | W it is clear that

o

;‘—’m:_’“—’m cos B = 5,,1 VTF———*T—— > )
r:| v
- = — P
V=W, sin f =w,, =t . “4)
Vr

Bearing in mind formulas (1), (2), (3), and (4) then
write equations (18), section 3, in the form

P, = jZA sin nf (V—{——‘R—gﬁE EA,,a,,)FZ sin 86, 5)

L sin®

;_a

VfEA smne(r—LSiHQZAa )Zsinedﬁ,‘ (6)

sin 6

vhere
r=t4L—Lcosb, a,—n sinnb4C,. ™
Removing the parentheses formula (5) is readily reduced

1_’1==172Anfsinn9(5—}—f—2cosG)ZsinOdﬁ—{—
]

+fEA,,sinn6 ® cosp(E+L—ZLcosb) X A,a,db (8)
D))
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Then denote the first integral of this formula dy 1I',
and moreover, set ‘

ncosPsinnb(E+L—Lcosb)=4, )
Formula (8) may then be written as
Po= DA, +f2A b, DA, a,db, o 00
where
DAL =V DA, sinnd -+ L — L cos )L sin 6d6 =
0
v A,
=Vl [(H—L)A —I 2]
The expressions under the integral signs may be written

in the form

EA”b,, 2A,,a,,= ‘
=Ab (A4 A+ . .. FAa)+
+Azbz(A1al+A2aa+ coe . +Anan)+

‘ +

R
+Ap,(Aa+Aat .. . H-Aa)=
—ZEAA b,a ~22A A, G an
Substituting this result in formula (10) there is obtained
Po=2A + 2 ZAAL, (12)
where
nox,v=1,23...n
.= {aG,ds. (13)
O
Passing to the expression for the useful power then
find
P,=V{[ X A,sinnb (4 L[ —I cos8) L sin 88 —
0
— V[ X A,rsinndsinBNA,a,db. (14)
0
The first integral is computed and gives
F— — A T _
Setting B T : o
n VsinnbsinB=17, (16)

there is obtained

ﬁ1p=2Anlnl— EZA\'A::]::’ (17)
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where ‘
I, = fatgs. (18)
0 .
Thus there is finally obtained

F‘ =;A"1"I+ 22'4'*4:1::» | (19)
P,= ,.ZA“"" —33aar. (20)

Now proceed to the solution of the variational prodlem

-o0f interest: namely, to find the circulation distridu-—

tion which renders the power P, a minimum while main—
taining the useful power of the propeller consthnt. It

-4s assumed that the propellers having their circulation

about the blades expressed by the trigonometric poly-
nomial are being dealt with,

~m
T, = DA, sin 6.

fa]

Thus the problem reduces to finding the coefficients Ap.
The LaGrange function will be of the form

- _ » mm
F*=P, —-AP,,=§A,(1.'—Al;)+22AVA,( LA =

=(1—A4) g‘.A.l + I DAA, (I AL
oF*

Ay

Now obtain the derivative

and equate it to zero;

oF* r L NA (g
_‘.)_A~=(1__A)1'l + 2:A1[1v1+l:v AL, +1)]=0
v o] '

L n=y=l, 2, 3...m.

There should be such derivatives which will give m
equations with m + 1 unknowns where the - (m + 1 the
unknown will be A. Adding to these m equations the
expression for the thrust there is obtailned m + 1 equa~—
tiongs. The solution of this system of equations for a
practical computation of the propeller is very laborious
and for this reason before practically applying the ob-
tained results it is first necessary to do some prelimi-
nary work: namely, with given ¥ and A to find A and
P,. Taking a series of values of A tkhere is obtained

a series of values for each A and for P,. Plotting

the graphs of Aj; and P, against A for the parameter

¥V the propellers may then be readily designed with the
aid of interpolation. Now note that the above integrals
are readily computed graphically once and for all for
&iven n.
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As computations have shown, a restriction to three
coefficients Ay is sometimes sufflclent. The velocity
distridbution correspondlng to the problem just solved
will be the same as that given dy the formulas (19), sec—
tion 3., The circulation distribution corresponding to
the feregoing formulas can more conveniently be obtained
by the method proposed by the author in CAHI Report No.
324, This method requires fewer computations than are re—
guired by the Ritz method, whlch 13 more of purely theoreti—
cal interest.

EFFECT OF. THE FUSELAGE AND OF THE COEFFICIENT

Let Vg, and ¥!'t, represent the axial and tan—

gential (roetational) velocity components at a certain
point of the propeller rotating in front of the fuse-—
lage. If the airplane moves with velocity V relative
to the ground then the relative axial velocity of ap—
proach of the flow at the points of the propeller blade
will be

V - ?i!‘i‘;al'

where vy is the velocity arising from the effect of the

fuselage (retardation of the flow). This velocity for

a fuselage of arbitrary shape is a function of the rela—
tive radius T of the elements of the propeller and
also of the polar angle o referred to a certain fixed
direction in the plane of the propeller disk. In the
case where the fuselage is a body of revolution the
velocity v,;' is a function only of Tr. :

Now assume that the propeller blades are replaced
by rectilinear lifting vortices on the basis of the
theorem of Joukowgki; then for @ = 0 the following ex—
pression for the elementary power of the propeller:

aF = T1F (V- %3' + ¥,,') a&F Z (1 — u') T'F (T+v,,04T

where '
Vi

nt = oo

Vv + Vai

Py
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and the primes denote that all magnitudes are referred -
to the system propeller—fuselage.

The-total. power absorbed by the propeller w111 be
equal to

1
=ffr (1 ~1n') (T + ¥,,) TdF

o]

The propeller does not impart the entire power P
to the airplane but only a part since losses occur at
the propeller. The magnitude of these losses will be

given. The induced velocity vy, according to the

theorem of Joukowski gives rise to a force I ¥,,4F di-

rected at right angles to the propeller radius opposite
to the direction of rotation of the propeller. Since

an element of the propeller rotates with velocity _wr

the elementary losses corresponding to thée-foreec I''¥,,d4T
will cqual

dE, = T137,,'Fa T
In the same way the induced velocity 7;1 gives fise to

the elementary force vatl‘ d¥ parallel to the propeller

axis opposite to the direction of forward motion of the
propeller, The losses corresponding to this force will be

dE, = VI'¥y,'4F

Thus the induced losses of the propeller will be equal to

It follows that the useful power which may be taken from
the propeller blade is equal to

Py = JFP‘ (r — vg,')aT Jf T1%917aF

The magnitude F@ is the power which is disposable by the

propeller—~fuselage system since at the propeller blades only
the losses E are developed for pu = 0, At light loads when
the values of %!y, are not large and for not very thick
fuselages when E'i ls small by comparison with V the
expression for PP' may be approximately written as:
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1
P27 [ THL - ni)(F - T, 06F
P T 1
[
where vyt
~h!! = =
. v
The magnitudes h' _and h'' taken in the system propeller—

fuselage depend on I', a condition which renders difficult
the solution of the varistional oroblem, especially since
the finding of h' and h'' is very complicated. If,
however, in remaining within the limits of the 11near1zed
theory and assuming that

h'=h!'= h = = f(r,o)

vi
v
where ¥3 is the velocity produced in the fluid by the

igsolated fuselage the fundamental equation of the vari—
ational problem (the Euler equation) will be

(-n) & {FTF -0+ T (2R, FFE ) =0

1"‘!

4

hence it follows that the solution of this probdlem will
be the same as for the case of the isolated propeller
since, as before,

od*
an.

R

It is noted also that within the limits of the
linearized theory the effect of | is likewise excluded
since the effect of pu on the total and useful powers
of the propeller is expressed through the terms: ’

1
?é“)z’v‘E/\u‘fd-—f={r—2
' o
1 ) 1

Py z[uf?z d‘f:[ Cp Wb F?4F

o] o]

o'l

Cp W ar

0(:\‘”-‘

The magnitude Op at the below critical angles of attack
“*¥s” almost constant with respect to _Cp (or what amounts
to the same thing with respect to I'). This magnitude

may be expressed, for example, by the empirical formula
of Toussaint:

GD 0.00612 (We )™ ‘15(1+l 118)<l+01 L\+OO766 +0.018f  {a)
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where

L numerical value of the velocity in m/sec;

c numerical value of the chord

'8  relative fﬁiékﬁess of the profile )
£ relative maximum camber

From the foregoing formula it may be seen that the ef-—
fect of C; on OCp is very small and for this reason the

value of p! cannot change the character of the solution
of the variational probdlem. In making use of formula (a)
this effect may, moreover, eacily be taken into account, the
functions &§(T) and f(F) being given:

DESIGN OF PROPELLER FOR THE CASE v,, = const

In the general case the expression for the power may bde
written in the form:

7°=Ef1"‘i<17+ Vo) + 1 (r — ) ) 7dr

O
or assuming that the induced velocity ¥n3 | W and replace—

ing u by p, there is obtained for V + Yay = constant®:
1 1

P—k(V-+5,) |1\ 7art o |1, (F — 2o )7ar.
r
3 [

Assuming that the circulation T& is expressed in the
form of a trigonometric series:

T, = VA, sinnb,
with 2

7=t1LL—Tcosh,

1If the effect of C; and Cp is neglected.

2It is noted that the design of the propeller for the
case Vg, = const mnecessarily requires £ § O. Otherwise

for r —» 0 it should be vy, —>® which does not corre—
spond to reality.
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fhero is obtained

fI"rdr-——EfA sin n8 (E—{—L—LcosO)Lsm 9d6= [ 1G4 L0)—L _21]

1
[T rdr=73a, fsmnO(E+L—Lcosﬁ)’smede_
3
=EA,,Z{(E—|—Z)’ fsinnﬂsin Ode—{—Z’fsin nb cos? 6 sin 648 —
0 0 '
~—2(E+Z)Zfsin nb.cos 8.sin 6d0}=
0

‘—‘Z{ G-+ 1) A —;-— t+1)LA, —;—} —f—PEA,,J.sin'necos” 6 sin 6d9.
But .
Z'ZAJ. in 79 cos®0 sin Odﬂ——-—zA [slnnﬂ(l ~+ cos 28) sin 640 —

Z. n . T3
_2_,41_;'_4— -Q-EA,,!slnnﬂcos 20 sin 040 =£8""~'(A1 +4).

1
VJMJF ar=LV .12fA sin nOsandO=ZV5.,A,°;--
The expression for -1-51 assumes the form
% P, = V+v,,,)-—— AG+IL)-L ]+
[ LE+Ly A, ——($+Z)L’A ——|—

n —— .
+I 5 A+ ALV, 4 F]— L. V54,5
Since 'a1 = constant it may be written

Pi=@+%0) Sy L[4 c+D - 1% |+
+ 5 V| L6+ TP A — G+ DT A+ A AD| — 1,500 VA,

or-
P,=6;1{ L|ar@+D—T4 |~ VIar Z)+
5|5 I0 4 6+ D~ T4 | 40, ST [+ Dra, —
—¢+DLay+ (L) +A.')] |= 8.1+ 8,5..,
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where

Al=

o>

For the thrust T, there is obtained
_ l._ _ - _ _ l_ _ - _
Tx=!l‘1 [("—‘Un)-—lt(V-I-v,,)]drzfl‘( '-v-‘zrl—’ﬂ->4r-_
3
1
— P+ Gae,f Tai= SE[A 0+ D-T%] -

1 —
~(V+T L5 4= Vi, [T, 5

But by the mean value theorem

dr d = 1 = 1
I‘ '—_—21‘}‘ —-_-—2[‘* — —
where 'fﬁ is a certain intermediate value of T,. Thus

T,:%Z[Al €1 I) I 1

A, — = = T e =
5 | =y (V+v,)L A - V'valI‘*lnE—.

Now redesign the propeller 3CMB~1 with ¢ = 34°, _leaving
the shape of the blades and camber the same, For V then
take the value V = 0.4, for the mean value of the inter—
ference coefficient hp = 0.04' 8o that V; = 0.384. For

' By now take 0.025. The power of this propeller from a
preliminary computation was equal to P = 0.,00129 and there—

fore P, = 0.,00043. Now find A,', A_,', and Az'. For

this purpose now make use of the formula (CAHI Report No.
324).

~  __ Um
ni

cos B ~ Lsin0

K3

[4, (sin 8 4- C;) 4 A, (2 sin 26 4 C;) --A, (3'sin 30 4 C,)],

1The propeiler 3CMB~1 was located ahead of a body of
revolution the ratio of which midsection to the aresa swept
out by the effective part of the blade was equal to 0,18,
LPhe coefficient h, was taken for the half body characterised

by the same ratio, It may be noted that the problem was solved
also with variable h 'and it was found from the.mean value
theorem that h(¢) = 0,045 and therefore 1l — h = 0,955,
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writing it for three gsections r = 0.4, 0.6, 0.8 1in the
form: '

w3

a +Az"<1f§ -+ c,,> + A,/ Cy

=)y Y0406 L , ,
<63 ) ) _'__""7,':‘=A1 (A4+Cy)+ A, Cos - Ay (—-3+Cyy)

2
(e, _ %ﬂ>; 0,47 10,8 L V3 Ay <v'3 )+

0,8 = o = 5 1+ Cu
"I" Az' (‘—‘ ]/—3—+ Cu) + Asl C:u,
where
Ai’ =——AI .
T

al

The values of Ci) are taken from the curves (fig. 2),

no account being taken of the effect of the so~called loga—
rithmic term (see reference 3), because in obtaining Oix

the charts of T. Moriya were used in which this tern was
likewise not taken into account near the singular point
(F = 7).

After substituting Cj) now the following system of
equations is obtained:

1,0554," 4-1,764," 40,014, = 0,156
1,214, 40,14, — 3,044, = 0,153
1,0254, —1,7A,” — 0,16A,;" = 0,123
Solving this system there is obtained:
Ax' = 0.1346, Ay' = 0.,0087, A ' = 0,00367.

We further find B, and B,. Setting ¢ = 0.2, then I = 0.4,
¢ +%T = 0.6 and A

A, (E+ T) = 0.1346 0.6 = .0,08076
—_ | ]
T ig— = 0.2 0.0087 = 0.00174

" 1The computations are approximate.

4
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Subtracting the lower from the upper equation there is
-0obtained 0.07902., ZFurther

By ¥ &2% = 0.025 X0.4 X0.1346 = 0.001346

Subtracting the latter figure from 0,07902 there is ob—
tained ©.,07777. Multiplying the latter by L 0.4 = 0.628
there is obtained B; = 0.0489. Wow procced “to the cone—

putation of 3,

(¢ + T) Vi = 0.6 X0.384 = 0.2304

1

il

0.025 (0.36 + 0.04)

i}

0.025 X 0,4 = 0,01
The coefficient before A,' 1s equal to 0.2404.

A,' X 0,2404 = 0,0825

1/27; = 0.192

by (£ + IT) = 0.025X 0.6 = 0,015
-~ ii :g + g (£ + ) J A" = — 0,207 X0.4X0,0087=—0.00072
" ‘
'/ -I: \8
T ??/; Ax! = 0,025%X 0,04 X0.00357 = 0,00000857
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hence
B, =0,0201.
There 1is obtained:
0,0489v%, ; + 0,0201v, , — 0,00043 — 0
or
v*,, -+ 0,412, , — 0,0088 = 0.
hence, the positive root will be

v, ,=0,0204
and therefore A, ==0,00275
A,=0,0001775

A, =0,00007275.

Now proceed to the determination of the thrust. Ac—
cording to the general formula then find

14

T, = 5 L (0,00275.0,6 — 0,2 -0,0001775) — 0,025 - 0,4204 - 0,6 28 - 0,00275 —

—-0,4-0,0204T,* In 5
or

7, = 0,628 (0,00165 — 0,0000355) — 0,00001815 — 0,0131T*,
hence .
7,=0,000997 — 0,0131T,*.
The value of [ ,* 1s evidently less than (Fy)pax which
on account of the smallness of A; and A; may be assumed
equal to A, = 0.,00275 and this gives
T, = 0,000997 — 0,000036 == 0,000961
and theretore

__0,384-0,000961 —
Y)ef — 0,00043 —~ 0,86.

Now compute the values of the circulation at the dif-—
ferent radii making use of the formula

ﬁ==:SAnﬁnn&

There is obtained
TABLE I

7 | 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

T; |0.00156 000207 | 000253 | 000269 | 000267 | 0.00252 | 0.00222 | 0.00171 | 0.00126.

In a check computation of the propeller 3CMB-1 for
?1 = 0,284 there is obtained a propeller efficiency equal
to 0.818 wnich result agreed with the experiment. It may
be expected that the foregoing propeller computation should
give good agreement with the experiment.
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TABLE II
r 0.3 0.4 0.5 0.6 0.7 0.8 09
T, . | 000207 | 000253 [ 000269 | 0.00267.|.0.00252 | 0.00222 | 0.00171
p(V+va9) 0.01055
- —_-V
U=V = 0.0272 | 00204 | 00163 | 00136 | 0.01165 [ 0.0104 | 0.00906
r—uy 0.2728 | 0,3796 | 0.4737 | 0.5864 | 0.6884 | 07896 | 0.89
r—va)—p(V+va) | 02622 | 0369 04631 | 05758 | 06778 | 0.779 0.8894
1—1n 0.818 09036 | 0,443 | 09656 | 09774 | 0.9843 | 09887
Ti'ef 1 0000445 0,000844] 000118 | 0,001485 0,00167 | 0.0017 | 0.00148
Ti.¢ = 0.000922
__ 0.000925-0,4 _
Nef = go00sa 006

It ie noted that it is possidble to replace K Dy K,

under the integral signs of the power and thrust since, as
computations have shown, the values of K, are very near

the values which are obtained for XK* 1in applying the mean-—
value theorem., In determining the true angles of attack of
the blade elements it is necessary to make use of the true
values ef %, In table I1 there is given the computation

of the value of the effective propeller thrust for a given
circulation with variadle K. As may be seen from this com—
putation the value of the effective efficiency of the pro—
peller rotating in front of the fuselage was the same as in
the case, 0of the computation with K replaced by K, . Pig—

ure 3 shows the curves of the distribution of *'2,',r along
the propeller radius for the case V4, = constant and for

the preliminary computation of the propeller 3CMB-1 ( curves

¥ow there will be shown in what sense the term "dis—
tribution® of the effective thrust over the propeller radius
must be understood. The elementary propeller thrust, as is
known, is expressed by the formula

dT =T (r—wv,)dr.
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The elementary useful power imparted by the propeller to
- the airplane is equal to (see sec, 4):

aF, ®(V = 73" )T(F = y4,) aF

where ¥3' is the change in velocity of the flow due to

the fuselage at radius ¥F. The useful power of the en—
tire propeller will be equal to

D L/1(1 - h')f (F — vtl)dr
-

In correspondence with the foregoing formula it is con—
venient to speak of an effective thrust determined by
the formula

1
Tor [ t(F) T (F = ¥y,) 4T

< H‘”

and nlsc of an elexn entnry effective thrust, The magni-
tude k! = 1—h' should be thought of as taken in the
propelier—fuselage system., Since the effect of g 1is
not large then take for k! its value for the disolated
fuselage. In the process of computing the propeller by
the element method .it 1s necessary to determine the dis—
tribution of the effective thrust over the blades so that
by planimetering the magnitude of Tgr may then be found.

DESIGN OF PROPELLER FOR THE CASE W, = const

It has been shown that the veloeify induced by the
helical vortices at the propeller blades is expressed by

: —
R LT e d

w e " {Ap msdin n 8 + An On (9)> (a)

ni L sin 8 > & "

-
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where Cn(®) are the coefficients expressing the effect
of the helical-vortices., For the case w,; = constant
the foregoing formula may be written as

L S Sﬁ (An' n sin n® + Ap'! Cp) = cos B (p)
n
where

. . An

Ap! = =

w,
For the sections r_, = 0.4, ¥, = 0.6, ¥, = 0.8 to which
correspond the values 0, = w/3, 0x= w/2, 0= %-n the

following gsystem of equations is obtained.(the_values of
Cix are taken from the curves of fig. 2 for ¥V = 0.4):

1,055 A', + 1.76 A', + 0.01 A'; = 0.078

- 0.106

LY

0.098%

The solution of this system gives approximately
A, = 0.08495
A'_ =-0,006568

Aly =—0,00125

. . — l"
The values of I',* = =Y are found by the formula
: W,

Tl* = 37 A'n sin n 8

Momanat
n

" and are given in table III.

L - o et e e e
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‘TABLE IIT
T 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
¥ 0 0.04867 | 0.0678]0,08{0.08625| 0.0864 | 0,0792 | 0.06167

- on the number of blades,

There is no need to set up and solve the system of
equations each time for various values of V since such
systems may be set up and solved once for all and tables
and charts set up for T, * (fig. 4). The latter figure

gives the curves drawn from the values of Cjix taken for
two—blade propellers. Since the effect of OCjx

large (especially at large values of V) and the chief
component in formula (b) is the first term, not depending
these curves may be used, as con—
putations have shown, also for three-blade propellers.

The foregoing substitution may lead only tq an insignifi-
cant change in the tip losses. TFor the case W, = constant
the expression for the power may be written as

is not

-—2 —
5 f - - v
V—vsi+w + T—W, - >}rdr
J \\ 1 V‘? ;2 “’( 1 v2+-f2
¢
or
. 1 1
— =, F2 _ - —_— —
Py = WleijH*(?—ﬂxV) _gi;a+ ‘/5P1*r(vi+pr)drEAw12-+BW1A
4 3
where Vi = V — ¥i, Replacing under the integral signs
vp for p  then compute the coefficients A and B.
The computations of these coefficients are given in table
and B

After planimetering there are obtained for A
values ' . .
A =70.02307; "B = 0.01289- .

therefore
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 W,2 + 0.559 W, = 0.01865

(for Fi then take the same value as in the preceding

example). Solving the obtained gquadratic equation a posi—
tive root equal to w, = 0.0316 1is obtained

FOR k =

TABLE IV.,— VALUES OF T,* 2 AND E= 0.2

T=
v 0.3 0.4 0.5 0.6 0.7 0.8 0.9
W -

0.1 |0.08985 |0,0447 | 0.04539 | 0.04546 |0.04539 | 0.0447 | 0,03935
.2 | .05401 | .0676 | .,07337 | .07525 | .07357 | .068 . 05445
.3 | .05835 | .0726 | .082 .08562 | .08396 | .0762 | .05932
.4 | .04867 | ,0678 | .08 .08625 | .0864 L0792 | 06167
.5 | .044823| .0636 | .0761 .0831 .08389 | .0775 | .06062
.6 | .0425 .0606 | .0732 . 079 . 078 .07068 | .055

The value of this root permits finding the value of T,
by the formula:

1 1
S = e . o=y FAF —ne -
T, = Wy ff‘l*('f—uV)-—wlz fI‘l* (Vi+pT) i =B W,—A,w,°

putation gives

4

The computation of A,
V in whieh are also computed the values T

Mef =

tion for the case

4

0.88,
constant

and B,

is clear from table

1
1ef,

The

com—

It is seen that the computa—

is sufficiently simple.

It may still further be simplified by computing in advance
phguvg;ugswugtqg, Al? gnd.Bl' &s may be done by replacing
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X by %, under the integral signs, This substitution

practically has no effect on th% fipal results. It may bde
noted also that the magnitude 1* may also be computed
_in advance and for it curves and tables may be set up. In

determiniﬁé‘4ni‘;wﬁhoirbtart from the Betz formula .

= »* vV
N = — ——, c) -

1 E PV (©)
where ¥X* 43 the Prandtl correction or the Goldstein cor—
rection. In employing this formula it 1is necessary to as—
sume that § = 0. If a second approximation is desired, it
is necessary throughout to replace V by ¥V + w,' and write

the expression for §1° in the form V, =V (1-=-1h)

TABLE V
T 0,3 0,4 05 06 0,7 0,8 09
r, 0,04867 | 0,0678 | 0,08 0,08625 {0,0864 |0,0792 |0,06167
7 0,09 0,16 0,25 0.36 0,49 0,64 0,81
iz 0,16 0,16 0,16 - 0,16 0,16 0,16 0,16
rLie 0,25 0,32 0,41 0,52 0,65 0,80 0,97
(7 + V) 12 1,25 1,22 1,154 1,078 1,00 0,928
b V 0,01 0,01 0,01 0,01 0,01 0,01 0,01
F—pV 0,29 0,39 0,49 0,59 0,69 0,79 0,89
1—h 0,818 0,9036 | 09443 | 0,9656 (0,9774 0,9843 {0,9887
Va—n 0,327 03602 | 0,377 0,386 {0,391 0,393 0,395.
BT 0,0075 0,01 00125 | 0,015 0,0175 10,02 0,0225
T~y ?) ﬁ%ﬁ 0,00507 |0,01323 | 0,0239 | 0,0351 |0,045 0,05 0,0458
V,tur 03345 | 0,37 0,3895 | 0,401 04085 [0,413 0,4175

r(Vi4emn 0,00488 {0,01005 | 0,01558 | 0,0207 |0,0247 [0.0262 [0,0232
w, T (r—pn V) | 0,000447 |0,000836 | 0,001239 | 0,00161 |0,00188 |0,001975 |0,001735

— (V4 pr
wel”, - -(ﬁf%:_) 0,0000196| 0,0000314| 0,000038| 0,00004 |0,0000376| 0,0000328| 0,0000239
ad 0,0004274{0,0008046{ 0,001201 | 0,00157 | 0,0018424] 0,0019422{0,0017111

L Tu—mt 0,00035 |0,000726 | 0,00113 | 0,001516|0,0018 |{0,00191 |0,001695

*Gurve III on fig. 3.
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T oa L kY _F (V + %'y) | (a)
z E T2+ (V + wty)"

where w,' is taken from the first approximation,

In conclusion it is pointed out that the advantage
of the method of trigonometric series as compared with
the methcd using formula (c¢) lies in the fact that with
the aid of the former before designing the propeller it
igs possible to carry out a preliminary computation of
one of the series production propellers available corre—
sponding to the given conditions and estimate to what
extent the theory deviates from experiment. After a pre—
liminary computation it is then possible to proceed with
the design of the propeller with the aid of the method
presented in the foregoing, Present day series propellers
deviate from the optimum apparently to such a small ex=
tent that the preliminary computation and the design prop~
or will refer to almost the identical conditions and thoere
is little probability that the theory should in the final
design give a different degree of accuracy than in the
preliminary computation.

CONCILUS IONS

On the basis of the method of trigonometric series
a rational design of propellers was found possible making
use of the variation conditions the correctness of which
was shown in the paper. An illustrative computation showed
that (1) Propellers with w, = constant are suitable for

design and have high efficiency, as corresponds with the
theoretical assumptions. (2) Propellers with Va1 = con—

stant are also suitable for design and give good effi—
ciency which is, however, less than those under (1), (3)
The method of trigonometric series permits carrying out
a preliminary check computation of existing propellers
aftor which the design is improved. (4) The method of

- Ritz may be used in solving the variational prodblem dut
it is not a rational method.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.,
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