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THE BENDING OF BEAMS WITH THIN TENSION FLANGES*

By Placido Cicala
SUMMARY

The writer analyzes the action of a cantilever T beanm
with a tension flange so thin that it can carry only ten-
sile stresses.

In airplane design we frequently find beams with thin-
walled cover plates consisting of the same elements which
serve as covering. To illustrate: The wing structure,
consisting of spars and ribs, is very often covered with a
thin sheet of wood or metal, which contributes materially
to the stiffness of the wholes Ag far asg torsion is con-
cerned, the usual theory pernits a safe enough analysis of
the stresses and deformations. But for bending, the asg-
sumptions of the comservation of plane sections are no
longer admigsible; the calculations usually neglect the
effect of the covering or we retain only a very small
strip of it which, attached to the spar, bends solidly
with it

Metzer, referring the case to a T-section beam with
infinite supports, resolved the problem for a strip of the
cover plate, which may be assumed as contributing %o the
bending of the beams.** The resolution may equally be ex~
tended to include the case of cantilever beams, provided
one of the conditions on the contour, il.e., maltiplication
of the shear along the outside edge, is disregarded. How-
ever, this theory proceeds from the assumption that the
cover plate is suitable for transmitting even compressive
stresscs, something which leaves some uncertainty when we

*"TLa flessione delle travi con piastra sottile." (Labora-
torio di Aeronautica della R. Scuola di Ingegneria.)
Reprint from Atti della Reale Accademia delle Sci-
enze di Torino, vol. 69, 1933-1934, ppe 171-187.

¥*Die Mittragende Breite. Iuftfahrtforschung, vol. IV,
nos 1, June 5, 1929,
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congider that the sheets of the covering, not strong be~
cause of the curvature, already wrinkle under comparative-
ly low loads. A ‘

In this study it is attempted to analyze the case in
which the sheet, while wrinkling, 1s able to take up ten-
sion stresses. From the introduced hypothesis, discussed
elsewhere in the report, that the wrinkles are parallel,
we deduce the behavior of the stresses in the beams and
from this the effective width of the sheet which, bending
s0lidly with the beam, contributes to the bending of the
whole in proportion to the amount supported by the sheet,
Then we deduce the term for the work of deformation and
find the slope of the wrinkling with respect to the bean
axis, for which this is minimum.

Lastly, we deduce the simple formulas with which we
can determine the effective sheet width acecurately enough
to apply to cases generally encountered in practice.

FUNDAMENTAL EQUATION

Consider (fig. 1) a beam of constant section, re-
strained at one end and free at the other, subjected to
normal loads at its axis located in a plane containing a
principal axis of the generic section. The resulting
bending moment carries always the same sign over the whole
length of the beam, At the stressed edge, symmetrically
to the two parts, we attach two strips of sheet of con-
stant width,. :

If we assume the sheet to be able alone to resist
tension stresses, it follows that the path of the tension
is straight. In fact, let x and z represent two perpen—
dicular axes lying in the median plane of the plate of
minimum thickness, so that only one of the principal ten-
sions is other than zero, according to Mohr and, following
the usual notations, the tensions in the sheet comply with
the relations:

Ox = 0 cos?® a Txz = O sin O cos Q Oz = O stn® o
where O is the maximum tension in a generic point, and

the angle formed with axis =x.
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Substltutlng these terms in the two equilibrlum equa~-

- tdongse

a0 aT oT ao
X Xz _ Xz =
o5x t T3z ~ 0, ‘. . ox "+_az, =0

Subtractlng the flrst of these multlplled by sin a, thén
the second, multiplied by cos O, . glves:

ég'co’s.on + Q@ sih a:=‘b“

ox ... . dz. b

snd denoting with d¢ an element of the line parallel
with the direction of o0, defined, that is, from. -

at = 4x o = dz_
: cos sin
we obtain the equation %% = 0, which proves our state-

ment. Now assumé edge AB of the sheet to be rigidly
fixed., If 4& and f are free edges parallel to axes =z
and x, we have at d.:

Og = Txg = 0 G cos® o= O sin & cos @ = 0
and at f:
T2z =% =0 0 sin & cos @ = ¢ sin a =0

If we ghould exclude the possibility of cos a =0
along 4, and of sina=0 at £, the result is 0 =0
over the contour. Seeing that the path of the tensions
must be straight, it follows that the field outside of AD
and 3BC musU be unstressed. This condition exists even
if £, stead of being the free contour line, delimits
the symmetrlcal field.

With the proviso that the field ABCD may enter in
tension, we introduce the assumption that the formation of
the stress trajectories inside this field is so constitute
ed by the tension lines which emanate from the beam as to
form with it an angle which is constant over its whole
length. This inclination will be discussed by means of
the equation of least work.

The introduced hypothesis is equivalent to assuming
a series of infinite parallel cuts in the sheet which re-
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duee it to & contianuwous system of elastic temnsion members;
it is falrly obvious that this system is not as stiff as
the actual one.

Direct research to determine the law of variation of
the slope of the tension lines in a manner satisfactory
to the conditions of least. work is too complicated to per-
mit application to: the multiplicity of cases encountered
in actual practice. In fact, it would preclude making al-
lowance for the variability of the beam sectiomn, the ef-
fect produced by the elements which usually are employed
to stlffen the sheet etc.

Now,leti ¥/ be the angle Iormed by the tension llnes
with the axis of the beam, =x the distance of the gener-
ic section from the point of fixity and 1 the length of
the beam. The sheet is assumed to be so thin as to allow
its section to be identified with the straight line tan-
gent over the section of the beam, and to let. X repre--
sent the antipole of this straight line with respect to
the elllps01d of inert1a of the section. Further, let M,

be the moment with respect to this point, of the external
load and of the tension applied by the sheet between the
section considered and the tip of the beam.

The unit elongation of the fiber of the beam in con~
tact with the sheet is

Mooy

EJ

where ¥y is-the distance of fiber from c. ges G, of the
I sectlon. I e

J, moment of inertia W1th respect to the horlzon—
- %4l ce.ge axis.

E, modulus of elast1c1tJ of the material.
The point X -(fig. 1) will now be displaced through

‘the effect of the deformation of the frustum which pre- -
cedes 1t ‘to the amount

8§ =/ 2L ax - - (0)
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The elongation of the fiber HX is given from A
-~ & eos ;- and -since .its length is x/cos a, the tension
for the beamr and sheet of the same material -is:

2 X
_ cos® « My ¥
N -0 = p S T Adx o

o}

From either side, dlong a path dx, to which corre-
sponds a section of the sheet normal to the tensions
s dx sin a (s = sheet thickness), we apply two loads
dF . symmetrical. with respect to the axls.of the beam, .
which ‘give: ’ : :

2s sin o cos® « dx ~ My ¥
S a
x 0" J

The moment M, then is:

l 2s yn siz a_éosB a'ax f{ EEEZ ix

Mp = Mg = /
b o
with 1l the moment of the .external load applied between

C and X; ¥n, the distance of point N with respect to
which the morients of the plane of the plate are measured.

Assuming the section to be ponstqnt, we put
_ . o
k=2s 1l v Tn s;p.a cos’SWJ

so that

1 X Lo a
J 2] Mpoax | (1)

Mn = Me -
x £ 0

|y

Quantity k introduced here is a numerical constant which
completely defines the'characteristics of the whole inso-~
far as concerns the processes under congideration.

SOLUTION OF FUNDAMENTAL EQUATION

Equation (1) is readily reduced to a Fredholm equation
"of the szecond order with symmetrical nucleus. - Its resolu-
tion is effected with Bessel's function J of degree O
with imaginary arguments, which may be expressed with the
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development

I(x) = 1 + L_ L_ L. L_ cesas

Innfaét,'aguation (1) may, when _E = £, be written

as

- 1 ¢
¥p = Mg - kéf 22 [ M, at

Subtracting once, then multiplying both terms by ¢ and
deducting a second time, we obtain the unhomogeneous dif-
ferential linear equation:

a® Mn L & My

-k My = dE<g E_ME " (2)

The homogeneous equation is integrated w1th the Bes~
sel function I(k{). If the external moment M, is rep-

resented by means of a polyuosmial in £:
' n
I&'Ie:: % (xr gr

A particular integral of the homogeneous equation is given
by the polynomlal

ag *t a &+ cuv. +oan, gn-t

whose constants ag, a; s eeea .y, substituting in (2) and

equating the coefficients of cach power of £ in the two
terms give:

k
ap — Op = __éazt (dar=>ar=mn, with a, = 0) (3)

The general integral of (2) follows from

My = CI(kE) + ag + eeee + ap., £&7°
" in which' C is a constant defined by means of limiting
condition (Mn = Me)g__r

Now 1ét us apply the above equation to the case of
uniform load. The moment of the external load may be cx-
presscd with

Mg = My (1 = £)°
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wherc M, 1is a counstant.
" Dhen we have: n=2 o =Mo = - 2o as = Yo
Equation (4) may be written as

¥n = C I (k&) + a5 + a, ¢ : (5)

The recurrent formula (3) gives the equations in a
and aj: '

)
a; + 2By = k ag “Mg = —5—=
which yields a by insertion in (5).

Putting § = 1, Mp = Mg = O, we have:

2 I‘ﬂo 4:1‘/.[0
0 = Z) - =2 - & 51
¢ 1(x) k Iz ( )

Lastly, we substitute the value of ¢ given from the
above formula in (5!') and obtain:

. o (k) &

4
Mp = Hg -= ({1 4+ =) 22720 e 1 4+ = = kﬁ] (6)
IER N 2/ 1(x) 2

By the same argument we find for the case of the beam un-
der constant moment lig:

Up = Mg ==t (7)

With a load applied at its free end, that is, an ex—
ternal moment Mg = Mg (1 - £), we have

¥Yp = Y, I(k; ;(i§kg) (8)

In any case whatever, the course of M is readily
computed when the values of the funecition I(x) are known.
Such functions are to be found in tables and diagrams.*

We reproduce some figures which should be sufficient for
sucih application in the majority of cases.

*Jahnke, Eugen, and Emde, Fritz: Funktionentafeln mit for-
meln und kurven, 1933.
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1 (0 ) = 1.0000 1 (0.1) = 1.10285° "1 (0.2) = 1.2162
19(0.3) = LiB233 -1 (0.4) = 1.4418 ¢ 1 (045)" = 1.5661
1 (0.6) = 1.6964 1 (0.7) = 1.8328°" 1 (0.8) = 1.9750 °
1(0.9) = 2.1289 - 1 (1 ") = 2.2796 "

:The;éxﬁréé§idh'(6)ﬁdf“the;mbﬁeﬁt“’Mn” in the uniform

load case, may also Dbe written: ' o

M, [4 ., 02 S & 2 4ty

= Q| - — - [ - = 2 .

M, = : [ka IU:Qf+Ak IU§Q“‘ gh?__k'f kq/xfkﬂ{_

giving the approximation with which the usual .tables give
the values of I, for the small values of Xk, does not

permit an exact calculation.

The development of I in parentheses in (18) and or-

dination according to the power of k, give

Mo

anf(ET 1l - E) (l-ﬁ+cl 1’1’+ Co k2+-o--o) (6’)

The ¢ values, functions of £  only, are given in terms
of such variables in figure 2.

NUMERICAL EXAMPLE

The developed equations are now applied to a system
hav1ng the following characterlst1c3'

sl = F (section of beam) Py yg=2.561J

assuming tan o = 0.l. The result is Ik = 0.5,

This value, in the case of a load applied at the tip

-of the beam, gives for moment M, the diagram a of fig-

ure -3, The curve b of the graph itself gives the course
of the moment M, for the same value of k when the beanm
is subjected to a uniform load. - In‘'the remaining ‘space’’
of this diagram the moments change signs: In fact, in

- this space the stresses in the sheet are severe: because it

feels the effects of the expansion of the fibers of ‘the
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beam over the entire length of the beam and their ‘moment

"exceeds, as a result, that 'of the external loads, :

. Another result of the. calculatlon is ‘that the. azd
given by the ‘sheét depsnds upon the type of external.
stresses. In the case in point, under a-constant moment,
the moment at the point of fixity has dropped 36 percent;
for a load applied at the. tlp,,the reduction amounted to
27 percent; for uniform load, it decreased 23 percent.

DETERMINATION OF THE EQUIVALENT WIDTH

The equivalent width of the sheet is the dimension of
the ideal strip which, conforming to the law of congserva-
tion of flat sectlons, beands solidly: with the beam and
gives the same stresses 'in it as the .actual system. This
quantity generally varies for each--section and giwves a di-
rect idea of the stresses between - sheet and beam.

In the foregoing analysis we deduced the term My
which gave the stress & in the stretched edge:
My v
0 = ==
: J
If a strip of the sheet of width 2b; bends together

with the beam, the baricenter of the T-section beam result-
ing from it, will be, besides that of the origimnal.sec-
tion: ’

and the moment of inertia of the c.é.vof the section is
complete. with : -

2
J, = J 4+ 2by sy -~ (F+ 2by s)A

which, substituting

c = Mg Jl
allowing for $.,= y - A, :gives
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with' yn already &efined llnked to other quantitles of
the relatioén Py Vo =T+ FoyR. :

' If 1t 1s desired to obtaln ok under these conditlons,
the ssme as is verif;ed in the effectlve system as defined
by (9), we must put

and, making AN-= 7}w with b =1 tan o the apparent width,

= ~Z—= cos? o (10)

Ulth thls equaulon for the same value of Xk, re-

“ferred to in the diagram of figure 3, we computed the

equivalent width for the case of a load applied at the
free end and for the case of uniform load. The following
values were obtained: .

For £ =1 0.8 0.6 0.4 0.2 O

A

0«46 e52 0,58 0464 0,70 0,75(0.87) end load.

A= - 2e61 1404 04687 0«62 0,60 (O.80)distrib—
uted load. : :

The flgures in parentheses are tnose obtained w1th |
Metzerts theory.

EQUATIONS OF THE WORK OF DEFORMATION

Let W(x) ©be the end load produced in the beam by
the stress applied at the sheet in the space between the
tip of the beam and the generic section X (fig. 1).
This gives:

The work of deformation offthe beam is:

1
L, = L f M dx + ¥y yu /S Ne'dx>
o]
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: Con51der further the porulon of the sheet constituted
~+by-the-two strips wiich have a beam component along dx;
‘the sudden elongation of the two fibers is cos a § (for-
mla (0)) and with 2 dx s sin 0 as the section and

x/cos o as the length of this fiber, the relative work is:

2s sin o cos3® a 62 d

oyt

X

For the whole field of the sheet the work of deformation

“then 1is: .
‘ , 1 I = 2
k dx’ |
Ly = '“.:—'X'—""““ A }E[f Mn dx]

(&)

Summerizing the terms for L, and Lz, we obtain

the total work of deformation. It 1is readily proved that
the expression is identical with that obtained for the
system, subjected to pure bending, consisting of beam and
strip of sheet of width b3 = Ab, which bends with it, ac-
cording to the law of conservation of plane sections.

What is of greater interest, however, is that the
term expressing the work of deformation does not directly
contain o3 this resultg as function of o ‘through k.,
Therefore, we may write:

oL . dL gk

o ok oa

I is a decreasing function of XkX; 0O may be inferred
from the fact that Xk is proportional to the sheet thick-
ness and that an increase in it must in any case carry a
decrease in the total deformations and consequently, in
the work of deformation. Its minimum value, then, corre-—
sponds to that value of @ for which k Tbecomes max1mum.
.In that case, we have, in fact,

AL _ azL_a_Ii_ails
do ~ 9 %62 = o 2a2

It is readlly ascertalned what happens when «a = 30°.
Hence, we may state that, provided the wrimnkles start at
a constant angle at every point of the sheet, it tends to
assume the maximum 1nc11nat10n.perm1tted by the length of
the sheet, not exceeding, however, the value of 30°
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For ‘thé’ oalculatlon ‘o f k and of ‘the ' contributory ef-
Mfect of the sheet, we must therefore assume a = arc tan %

if the results are less than 30 ; in-the conﬁrary case,
‘we assume o = 30°

ANALYSIS OF THE RESULTS

. . The. developed theory allows . us to compute the effect
of collaboration of the sheet with the beam on the. prem-
ise that the wrinkling sheet can resist the tensile stress—
es alone and that the waves run parallel. The obtained re-
sults are qualitatively in'accord with Metzer's data, stip-
ulating that the plate be resistant to compression also,
The ideal widths in -our. hypoth931s are, however, markedly
inferior. :

‘We shall give some approximate terms which should
make the application of the developed theory quite easy.

‘For thé case of ‘a single load applied at the tip of
the beam, we have, according to (8), the moment M, in
the restrained sectionuuﬁ_ﬁ 0. .

Mp = M e,
n 0 TxI(k)
Substituting in (10) and reflecting that in our case
Mg = Mgy, we have:

SR D {¢') k'
~cos* a - - kI(k)

(11)

... The fraction in the last term tends toward O when
k¥ increases, . I(k) -being an increasing function of k;
it is therefore convenient to expand in series k as de~
nominator. This expaansion, followed by division of numer-
ator and denominator by I(k) - 1 - k, ¢gives the fraction
itself:
-1
L (1 4 0,14 k + 0.005 % + vuuua)

Equation'(llj 1g closély approxlmated at'
L ouas

cost o T T I¥ 014 E
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For the load cases in question the effective width
—~decreases from. the -restrained.section to the tip of the
beam., The curve a in figure 4, illustrates the course
of A over the beam for Xk = 0.5, Curve Db represents
Metzer'!s figurese.

In the extreme section, N decreases as k increases
and approaches O as k—»w. For simplicity we may, in
the case of a load applied at the beam end, have a linear
course for A, which from the value in (12) for the re-
strained section, approaches O in the extreme section
(line a, in fig. 4).

In the case of uniform load,. we have for the re-~
strained section, the approximation:

A

5 {1 2 )
cogéc(,—o. +9+3/

Here the value of AN = 0.61 cos* a for k =0 de=
creases as Xk increases and approaches the asymptotic
value 0.5 cos* . Metzer's theory arrives at the same
conclusion. In the case in question, the effective width
decreases as the sheet thickness increases.

In our case there is always an increase of A along
the beam, so that the value for the whole length of the
beam may be taken from (13) for the restrained section,

being

If the load instead of/uniform decreases toward the
beam tip, the theory stipulates lower A values. But the
minimum value in the case of linear load reduction approach-
ing O at the tip, is 0433 cos o* for the restrained
section.

This theory lends itself to practical application in
simple fashion, but the assumed parallelism of the tension
curves remains to be proved experimentally; that is, to
say, it remains to be proved that the interruption of the
continuity of the sheet by means of a system of infinite
parallel cuts puts it in worse conditions than those ac-
tually encountered.

Translation by J. Vanier,
Wational Advisory Committee
for Aeronautics.
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