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NATTONAL. ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM 1280

GRAPHICAL, DETERMINATION OF WALL TEMPERATURES
FOR HEAT TRANSFERS THROUGH WALIS
OF ARBITRARY SHAPE*

By Otto Lutz

A graphical method is glven which permits determining of the
temperature distribution durling heat transfer in arbitrarily shaped
walls. Three examples show the application of the method.

The further development of heat engines depends to a great extent
on the control of the thermal stresses. In the walls. The thermal
stresses stem from the nonuniform temperature distribution in heat
trensfer through walls which are, for structural reasons, of various
thicknesses and sometimes complicated shape. Thus, it is important
to know the temperature distribution in these structural parts. Follow-—
ing, a method is glven which permlts solution of thls problem.

STATEMENT OF THE PROBLEM

According to figure 1, a two—dimensional heat flow through the wall
is assumed; thus, the wall should extend in the dlrectlon normal to the
flow sufficlently uniformly so that no components of the flow occur in
this direction. Furthermore, we conslder the steady state process only.
It should be added that an approximately steady state flow is present
even in reciprocating engines since the temperature oscillations at the
wall surface are only small and are rapidly damped in the wall.tl

*n7eichnerische Ermittlung der Wandtemperaturen beim Wé.rmedurchgang
durch Wénde von beliebiger Form." Zeitschrift des Vereines deutscher
Ingenieure, Band 79, Nr. 34, August 1935, pp. 1041-104kL. '

lCompare G. Eichelberg: Temperaturverlauf und Wérmespannungen in
Verbrennungsmotoren. VDI-Forschungsheft 263, Berlin 1923.
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The problem 1s characterized by the fact that in the region limited -
by the two boundaries o amnd oy (wall surfaces) and the two heat - .
streemlines sy - and sp  (the course of which 1s assumed to be known) v
(fig. 2), Laplaces's equation for the potential distribution )

is valid, with 9 denoting the temperatures The heat flow enters - o
through the boundary o7, and leaves through op. However, these two .
boundaries are not isotherms, but on the contrary, the boundary condi-— L
tlon of the thlrd kind

L
Ay =) = =gt -
' (1)
aﬁa
- & = Ye——= 1 4
ap (S — 6p) =

applles tp them, wherein o denotes the heat—transfer coefficients, 6,
the outslde temperatures, 9, the wall temperatures, and A, the con—

ductivity of the wall; 83 is the temperature. gradient normal to the _ "

surface (directed inward).

80 far, no method giving a general solution of this problem is :
known to me. For the present case of heat transfer, Geigere, Eichelberg, -
(footnote 1) and Lachmann3 have striven for the solution by assuming the
flow pattern (potential Fflow) and varying it until it corresponded to the
boundary conditions, equation.(l). This method is possihle for simple
forms only, and, if carried out correctly it is rather slow.

We take the inverse procedure: Assuming the flow direction through
the boundaries, we first satisfy the boundary conditlons (1), and check
whether the flow pattern corresponds to a potential flow. The advantage
of this method 1s that 1t leads to the solutlon comparatively quickly
and directly shows the surface temperatures, which are of greatest
Interest.

il
A
Ak

) ) —.. . T L .

J. Geiger, Z. VDI Bd. 67, 1923, p., 905. o P

3K. Lachmann, Z. VDI Bd. 72, 1928, p. 1127.
L
W
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_DEVELOPMENT OF THE METHOD

If we assume the flow dlrectlion through the surfaces and require
that the sams heat quantity flow between any two flow lines thus started,
we shall, in general, obtain the flow pattern shown in figure 3a if the
flow dj_rection was not, by chance, assumed correct Initlally. The flow
direction 1is to be varied so that corresponding flow llines run into one
another. Since, In most technlcally important cases, the thickmess of
the wall through vwhich heat transfer takes place 1s small as compared
to the dimensions along the surface, one will almost always get by with—
out a determinatlion of the potential fleld in the wall. It is sufficlent
if the condition shown 1n figure 3b is reached wherewith the problem is
solved.

Assume that the flow entering q(kca.l/mah) forms the angle @
((measured positive in clockwilse direction) with the perpendicular
fig. L4). For the flow components in the direction of the surface O,
dgs 8nd " q, In the direction n normal %o the surface the equations

oL
= = A=—
R
5 (2)
2
= = f—
%o 0o
are generally valid. They are comnected wlth each other by
-— q-O = q'Il tan (o) (3)

If we derive from the boundary condition (1) the temperature gra—
dient along the surface, to which corresponds the flow q,, the latter
becomes

Q|

do =

o9,
S

or with equation (3)

-
]
S
|
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For the performance of the graphical solution, we turn from the
differential form to the difference form and obtain finally, at the
surface through which the flow enters (subscript 1)

Ag, = —(ﬁ>qn tan @ (5)
1 Aay/ T -

at the surface through which the flow leaves (subscript 2), according

to figure &
Aoé
Agp, = (gg) Uy, ten o (5a)

Therewith, a step~by—step determination of the flow distribution along
the surface is possible. It will be useful to select the steps Ao as

integral parts of the "flctitious transfer wall thicknesses" A/, thus .

for instance, as 1/5, 1/10, or 1/20. (According to equation (5), the
fractions mist be chosen smaller, the larger tan @, thus, the more
obllique the angle of incidence between surface and permeating flow. )

We now develop the two surfaces (fig. 5), assume the flows q;

and do &t the beginning of the developed reglons at arbitrary linear
lengths, and divide the developed surface into equal parts Ao. Start—.

ing from the center A of these parts, we draw the lines ABC gilven
L - . . - - T Loy
by the assumed flow angle @ (at A) and the slope tan #l = X7EI

(at B). BD 1s a parallel to the base line at the distance a -

The slope tan wi 1s constant for the remainder of the procedure, since

equal parts Ao, are chosen. According to equation (5)3 CE then rep—
resents the increase (here the decrease) Aqn which, in addition, 1s

to be shifted to the end of the increment Ao, considered (FG) The
line IF ... describes the course of the flow permeating “the surface.

As is well known, for flow fields free from sources, the same
partial flow must be transported in each “stream tube" or "flow tube."
Accordingly, we divide the area DFHIK, representing the total. flow,
Into t equal area parts (Q;/t) and thus obtain the points of pene—
tration of the (t—1) flow lines at the surface o0.,. The direction of
the flow lines at these polnts is given by the assumed orientatlion of

the fleld.
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Repeating the constructlion at the exlt surface "t op (1ines A' B'C',
etc. ), weo obtain a diagrem similar to figure 3a. The field orientation
at the surface is to be changed so that corresponding flow lines meet.

We shall later on find a few criteria according to which the corrections
may be sultably performed. :

Once the flow pattern is plotted in this manner, there remalns to
be determined what actual flow passes through for a glven difference of
the outside temperatures. So far, we know only the flow distribution

dn,
along the surfaces and the ratio EL of the entering and leaving f£lows
np
of a flow tube resulting from the requiremert that the total entering
flow (area DHIK) must equal the leaving one (area D'H'I'K!). The ordi~
nates q_.a2 would have to be chenged in the ratlo of these areas 1f they

are to be comparable to the corresponding ordinates q_nl.

The wall 1s cut open along the center flow line sy of an arbi-
trary flow tube (fig. 6). Since, in genera.l the flow 9, according to

-
q = A-as _ (2&)

corresponds to the temperature gradient and, according to filgure 4,
q = an /ﬁos P, we plot a gradient corresponding to this flow qn/cos P

at the two surfaces. The appropriate procedure, according to figure 6,
will be to represent the gradient as ratio of the flow qp l/cos Py

found, according to figure 5, to the total flow Q1 ©represented by DHIK.
Therewith, the above-mentioned transformation of the flows . Gny

and qn2 in the ratio of the areas Qi and Q2 becomes necessary.

The scale is t0 be selected 50 thaet one obtains slopes ysable in the
disgram (30° to 45°). Agsin both gradients are joined corresponding
to the flow pattern, wherein intermediate slopes must be chosen
Inversely proportional to the flow widths in the flow pattern.

Now, one has at the surface o4

oy (el - 131) = qp, = q oS Py (6)
or
B e S (i) (68)
A cos cp os 1

a1
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Accordingly, the lines 1ndicating the gradlent are extended outside of
the wall up to the dlstances “il cos ¢ and o%é' cos Qo3 then the differ-—
ence in height h corresponds to the presi:ribed temperature dlfference
61 — Op. 4s a proof, this construction will.be carried out on two
different flow tubes,

JI"I‘ I‘

L)

i

e

Therewith, the temperature 131* &t the point 01 is known. —

Since, according to the boundary comdltion, equation (1) or equation (6),
a linear relationship exlsts between the flow qnl through the surface

IIh

s

and the surface temperature, the flow distribution found in figure 5 - .
also reproduces the temperature distribution at the surface. The = et
temperature scale follows from the two known points X for qn a2 0;

b Bl

thus 9 1 = 61_, and Y for the surface temperature ,just d.etermined. _
9;% at 0. The correspond_ing method is to be applied_ at the o
surface op, : ST

It

EXAMPLES

Well with Protuberant and Indented Corner (Fig. 7)

We presuppose that the flows develop in the two corners, indepen— ] -
dent of each other, so that the flow lines thers may be assumed as lines - T
of symmetry at the cormers. Only the region between these two flow '
lines will be considered. :

Assumptions.— Wall thickness, 25 mm; investigated le:agth 125 mm;
heat conductivity, A = 50 koal/wh®C; heat—transfer coefi‘iaients =
a; = 500, op = 1000 kcal/xPhOC.

Solution.— Surface 0;: assumed flov gy =50 mn : e

Aoy _1lox 1073 1

Aoy = 10 mm, thus X/d‘a_(=:tan*4rl) “‘5675'66_='1—0

Surface og: assumed flow qa z 25 mm; in order to .
obtaln approximately the same values- Ag as for _surface ,ol, a value " ' —
of q, smaller than gy is chosen in inverse ratlo of the heat— e L
transfer coefficients.
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. Aoy —3
= 10 X 10 l
A02 10 mm, +thus / ( ten 1lr1> ?m———

The two flow areas are divided into + = 10 parts. -Then the
surface temperatures 93% and Jd%, which establish the temperature

scale, are determined: Since the surfaces are parallel, the construc—
tion glven in figure 6 is simplified by determining those two points
01 and O 5 located oppqsite each other where the perpendicular flow
4y, entering and leaving 1s the same. According to the flow pattern
plotted in figure 7, the temperatures at these points are 9 l* = 42.8°,

% = 28.6°, if the entire tempersture difference is assumed to be
8, — 6o = 100°.

Besldes, these two temperatures would occur alsc in case of heat
transmission through e plane wall of the thickness b = 25 mm.

Result.— Thus, one obtains for the surface oy the excess temper—
ature at the protuberant corner as 63° — 42.8° = 20.2°, or '

150%)——:12;28 = 35.3 percent of the temperature Jump, from the outside 'bo
the two—dimensional wall, and the Insufficient temperature at the :Ln—
dented corner is 42.8° — 30.1° = 12.7° or 22.2 percent.

At the surface o0y, the excess temperature at the indented corner
amounts to 41.2° ~ 28.60 = 12.69 or 2%2‘ = 4} percent of the tempera-—

ture Jump, from the two-dimenslonal wall to the outside, and the Ilnsuf-— .
ficient temperature at the protuberant cormer 28.6° — 14.30 = 14.3°
or 50 percent. The differences are relatively larger on the side with
the larger heat—transfer coefficient. Moreover, 1t can be inferred
that the flow lines turn thelr concave slde more strongly toward thls
surface.

Protuberant Corner Rounded Insilde (Fig. 8)

The same dimensions and materlsl constants are chosen as 1n the
first example. At a suffilclent distance from the cormer, the heat flow
will pass through the wall at a right angle; there the entering flow
q; then egquals the leaving flow qp. If the grephical determination
is started at this point with a; = dp, “the two flow areas Q eand Q

resulting, according to flgure 5, must be equal.



Surface 01: assumed flow 2; = 50 mm —

— ran 1 10 x 1073

Aoy = 10 mm, thus 7— (_ tan ¥y) = e
Surface o0p: assumed flow dp =50 mm . -
_ Do 10 X 1073

Aoy = 10 m, thus T (- ta.n\lfe) = 575

Temperature scales:

NACA TM 1280
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1

5

ﬁl* and 62* are determined _at the starting

prolnt of the investigation.

Result.— Surface

66.9° — 142,89 = 24,1°
outside to the two—d

01+ Excess temperature at the salient corner
or k2,1 percent of the temperature jump from

imensional wall,

Surface 02.

Excess
or 28.6 percent. .

Due to the rounding off, the +
outslde, and smaller inside.

Wavy Wall

The waviness 1s assumed as sinusoldal; k

ap = 1250 kcal/rehoC.

Surface 0y

Aoy = & mm, thus k- (=
oy = e m, tams oL (-

Surface og:

Ao2
A02=1|-mm, thusk—/g(=

assumed flow q =

assumed flow do =

temperetu{e 36.8° — 28.6° = 8,2°

emperature differences becoms larger -

(Fig. 9)
= 50 kca.l/mho(}, a = 375,

20 mm =
tan ¥ _kx1073 7_0 03
l) 50/375 "
20 mm
b x 1073 1
tan ‘lfg) 50 50 lO B
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Temperature scales: The f;ow pattern for determination of él*

and 9,* according to figure 6 1s plotted for the boundary stream
lines . s; and sp.

Result.— The temperature differences are only minor at the surface
with the smaller heat—transfer coefficlent, but considerable at the wavy
surface where, moreover, the larger heat—transfer coefficient prevalls.

From the grephical construction and the examples, the following
criteria for correction of the assumed flow 'di;'ection may be derived:

1. The concave side of the flow lines 1s turned more strongly
toward the surface with the larger heat—transfer coefficlent, or
the surface withr the larger heat—transfer. coefficlient 1s crossed
by the flow lines at a stesper slope providing other caonditions are
equal. )

2. The width of the flow tubes along the entrance surface de—
crease in the direction toward which the flow lines slope. (Compare
figs. 7 and 8.) '

3. The width of the flow tubes at the exit surface increases
towerd the side in which the flow direction is sloping.

4. The differences in the widths along a surface are greater,
the more oblique the angle at which the flow lines cross the surface.

5. Other conditions being equal, the differemnces in the wildths
along fhe surface are greater, the larger the heat transfer
coefficient.

Translated by Mary L. Mahler
Natlonal Advisory Commlttee
for Aeronautics

Yporschg. Ing.-Wes. Bd. 6, Nr. 5, 1935, p. 240, reports on an extension
of the method to Include axlally symmetrical forms, locally different heat—
transfer coefficients, and locally different outslde temperatures.
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Figure 2.~ Section limited by the wall boundaries o 1 and oy “and the heat
streamlines Sy and sg.. The heat flow Q enters through the

boundary oj; and leaves through the boundary og.
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Figure 3.- Heat-flow patterns in case of incorrect (a) and correct (b)
assumption of the flow direction through the surfaces o7 and og.

Entrance

Exit

Figure 4.- Decomposition of the entering and leaving flow into its
components in the direction of the surface and normal to it.

11
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Entrance
surfoce

Figure 5.- Graphical determination of the course of the entering and
leaving heat flow over the developed surfaces.

v
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N
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cos @, \ o
} hs ! N @
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N

Figure 6.~ Determination of the surface temperatures 4,* and 9 o*.
For that purpose the wall has been cut open along the center flow line sp,
of an arbitrary flow tube. : )



1k NACA TM 1280

Y /
T
S
-3
|~
N
N
;
ﬁ:’/
B
N
<
e //g
/

&=25mm ja——o A =50mm ——
%p

Lt286° .

//
L L L L L L LLY

HO
[/ /7

6=100°

-

\
N
>
\ R
— 4]
N
KS)

) Y™
o _
=

J}IT 8]
= <
nx

[/}
40 428°
30
l - Wo
) Y N
7 125mm
/i
_5'2507#! ',
] .

1‘% 22486° :-!0

% [20 é77
/0 %=(:—;Z‘l/ // g
%-0’_0 . ./4 7r [

Qe

Figure 7.- Heat transmission through a wall with protuberant and indented
corners. Temperature difference between the two sides 81 - 89 = 100°;

41 surface temperature on the entrance side, 95 on the exit side;
heat conductivity A = 50 kcal/mhOC; heat-transfer coefficients «q = 500,
ag = 1000 keal/m2hOC. : ' '
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Figure 8.- Heat transmission through a protuberant corner with rounding on
the inside. Outer temperatures and material constants as in figure 7.
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Figure 9.- Heat transmission through a wavy Wa].l.l' Differénce of the outside
temperatures 6y - 65 = 100°; heat conductivity A = 50 kcal/mhOC; heat-

transfer coefficlents « = 375, ag = 1250 keal/m2hOC.,
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