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By E. A. I&asilshchikova

This work is devoted to the study of the perturbations of an airstream
by the motion of a slender wing at supersonic speeds.

A survey of the work related to the theory of the compressible flow
around slender bodies was given in reference 14 by F. I. I%ankl and
E. A. Karpovich.

The first works intbis direction were those of L. Prandtl (ref. 4)
and J. Ackeret (ref. 23) in which the simple problem of the steady motion
of an infinite span wing was studied. Borbely (ref. 25) considered the
two-dimensional problem of the harmonically-oscillatingnondeformable
wing in supersonic flow by using integrals of special types for solutions.

.-

Schlichting (ref. 24) considered the particular problem of the flow
over two-dimensional rectangular and trapezoidal wings. To solve this
problem, he applied Prandtl’s method of the acceleration potential which
he looked for in the form of a potential of a double-layer. However, as
shown later, Schlichting made an error and arrived at an incorrect result.

In 1943, Busemann (ref. 26) proposed the method of solving the prob-
lem of the conical flow over a body by starting from the homogeneous
solution of the wave equation. This method was modifiedby M. I. Gurevich
who, in references 11 and U, solved a series of problems for arrow-shaped
and triangukr wings when the flow, perturbed by the wing motion, is
conical. The work of E. A. Karpovich andF. 1. Frankl (ref. 13) was
devoted entirely to the problem of the suction forces of arrow-shaped
wings.

~ 1942, at a hydrodynamics seminar in Moscow University, Prof. L. I.
Sedov proposed the problem of the supersonic flow over slender wings of
ftiite span of arbitrary plan form.

In response to this proposal of L. 1. Sedov, there appeared in
1946-47 a series of works by Soviet authors on the question of the super-
sonic flow over wings of finite span.

The ftist work in this direction was our candidate’s dissertation
(ref. 5), in whichwe found the effective solution for a limited class

%cientific Records of the Moscow State University, Vol. lx,
Mechsnics No. 4, 1951, PP. ~8&239.

The appendix represents a condensation made by the translator from a
docwnent “Modern Problems of Mechanics, Govt. Pub. House of Tech. Theor.
Literature, (Moscow, Leningrad) 1952, pp. 94-11.2.
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of harmonically-osc,illatingwings. In reference 6 we solved the problem
for wing influences by “tip effect.” Later works (refs. 15, 16, and 17)
were devoted to the same problem.

In reference 6, using an idea of L. I. Sedov as a basis, we reduced
the problem of the influence of the tip effect on harmonically-oscillating
wings to an integral equation.

The question of the flow over wings of finite span re-ined open for
sane time.

—

At the start of 1947, there appeared works in which different methods
were proposed for solving the tip effect problem which would be applicable
to any particular wing plan forms. In reference 18, M. D. Khaskind and
S. V. Falkovich solved the problem, In the form of a series of special
functions, for a harmonically oscillating triangular wing. Later,
M. I. Gurevich generalized this method (ref. 19). In reference 20,
L. A. Galin reduced the problem of determining the velocity potential of
an oscillating wing to the problem of finding the steady-motion velocity
potential and gave a solution, in series, for the velocity potential of
a rectangular, oscillating wing cauiberedin the direction of the onccming
stream.

The methods, proposed by different authors, for solving the problem
of the flow over wings of finite span do not permit the solution of the
problem for any finite-span wing and may only be applied to a limited
class of wings.

Parallel developments in this direction were made ;Y the foreign
authors Puckett (ref. 21) and Von K&&n (ref. 22) who solved the problem
of the steady flow over finite-span, syrmnetrica~wings at zero angle of
attack. As is known, such wings produce no “tip effect’!and the study
oflthe perturbation of the airstream by their motion presents no math-
ematicaldifficulties.

In references 6, 7, and 8 we proposed a m%thod of solving the finite-
span wing problem by constructing and solvingan integral equation which
considered the wing plan form in both steady motion and oscillating
harmonically. In reference 9 we generalized the problem to more general
forms of unsteady wing motion by the method of retarded source potentials.

4

Introducing characteristic coordinates we solved the integral equa-
tion for wings of arbitrary plan form and represented the solution for
steady wing-motion in quadrature and for the harmonically-oscillating
wing in a power series of the parsmeter defining the oscillation frequency.

%
The present work is a detailed explanation and further development

of our papers (refs. 6 to 9) which were published inthe Doklady, Akad. *
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Nauk, USSR. ~ this work we propose an effective method of solving

.. aerodynamic problems of slender wings in supersonic flow.
‘t .

All the results and problems explained in this paper were reported
by the author in 1947-48 to the USSR Mechanics Institutej V. A. Steklov
Matheutics Institute, Moscow Universityj etc.

In the first part of the work we find a class of solutions of the
wave equation, starting from which we obtain the solution to the problem
of determining the ve+ocity potential of some wing plan form in unsteady
deforming motion. The obtained solution contains the solution of the
two-dimensional problem as a special case. In the same part of the work,
we solve in quadrature the problem of steady supersonic flow over a
wing of arbitrary surface and plan form. The effective solution for
wings of small span is simd.larlygiven. We obtain formulas determining
the pressure on the wing surface in the form of contour integrals and

b

.-
-

integrals over the wing surface.

The author thanks L. 1. Sedov for reading the manuscript.

1.
a small

We

PART 11

1. SETTING UP THE PROFLEM

Let us consider the motion of a thin slightly
singleof attack.

will consider the basic motion of the wing to

csniberedwing

consist of an

at

Letadvancing, rectilinear motion at the constant supersonic speed u.
be superposed on the basic motion, a small additional unsteady motion in
which the wing surface may be deformed.

Let us take the system of rectangular rectilinear coordinates OXjZ--
moving forward with the fundamental ting velocity u. The Ox-axis is
directed opposite to the wing motion and we take the Xjy- lane such that

?the z coordinate~ of points on the wing shallbe small figs. 1 and 2).

We will consider the normal velocity component on both sides of the
wing surface to be given by

Vn = AO+A1f&+a] (1.1)

lResults of Part 1, sections 6 and 7 were foundby the author in
May, 1947 at the Mathematics Institute, Akad. Nauk, USSR.
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The first coqponent defines the

AO =

where PO is the angle of attack of
nent defines the addtthnal unstea&v
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wing surface

-Upo (1.2)

!J!hesecond compo-a wing element. “-”
motion of the winR. The functions

Ao and AI and cc are considered-givenat each poin~ of the wing

surface.

We will assume that the fluid motion is irrotational and that there
are no external forces.

The velocity potential of
represented in the form

dx,y,z,t) =

the perturbed stream cp(x,y,z,t) is

9&Y)z) + w(%Y,z,t) (1.3)

where the potential qo corresponds to the basic steady motion of the

wing and the potential ~ corresponds to the additional unsteady motion.

Thus the projections of the velocity v of the fluid particles on
the moving Oxyz coordinates are determined by

The functions q. and ~ and their derivatives will be considered

first-order quantities and second-order quantities will b: neglected.
With these assumptions it is known that the potential ~ satisfies the
wave equation which in the moving axes is

and the potential Cpo

(a2 -

satisfies

(1.5)

where a is the speed

A vortex surface,
the wing surface opposite to its motion. Just as on the ying surface
the velocity potential undergoes a @Q discontinuity on this sheet.

of sound in the undisturbed stream.

called the vortex sheet, trails from the side of

.

---
.#

.

*
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“%
We represent the projection of the vortex sheet on the x,y-plane as the
semi-infinite strip xl (fig. 1) efiendtig slow the X-SXiS to ~~~ty

-i from the

Let

-Q1

Let

trailing edge-of the wing.

us establish the boundary Conditiom which the f~ctions Q.
satisfy.

us transfer the boundary conditions on the wing surface psrallel -
to the z-sxis onto the projection X of the wing on the x,y-plane,
which is equivalent to neglecting second-order quantities in comparison
with first-order ones. Therefore on the basis of equation (1.1) we obtain
the streamline condition

am A1(x,Y)f tam
— = A&Y), ~ =
az

[ + U(X,Y] (1.6)

which must be fulfilled on both the upper and lower sides of Z.

The kfiem.tic condition, which expresses the continuity of the normal
velocity components of the fluid particles, must be fulfilled on the dis-
continuous surface of the velocity potential and on the vortex sheet.

We transfer the condition on the vortex sheet parallel to the z-axis -
onto its projection Xl on the x,y-plane which is again neglecting second-

order quantities. Therefore we have the conditions

b:

. [il=+d??lz=-’plzdiilz=-o(,=,; -
to be fulfilled on Xl.

Furthermore, the dynamic condition which the potentials q. and

~ satisfy must be fulfilled on the vortex sheet.

Since the pressure r-ins continuous on crossing from one side of
the vortex sheet to the other, then from the Lagramge integral

.
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Keeping equation “(1.3)in mind and neglecting second-order quantities,

are cdd functions in

f!o(x,y,”z)=

z

.

(1.8)
,2=-o

we obtain-

ELo’[$!z=-o, [$?+. qz+o=pi+.g
——

which must also be fulfilled on Xl. —

After boundary conditions (1.6) and (1.7) are established, we
correctly consider that, to the same degree of approximation, the surface
of discontinuity of the velocity potential - the vortex surface - Ues
entirely within the x,y-plane. Therefore, the functions (pO and ~

Conibiningequations (1.8) and (1.9) we conclude that the fictions
cpo and ~ satisfy the respective conditions

% o ~~1 M-J.
Z=’5F —=OonZ1

‘Uax
(1.10)

Since the motion of the wing is supersonic, the medium is disturbed
only in the region bounded by the respective disturbance waves represent-
able by a surface enveloping the characteristic cones with vertices at
points of the wing contour. Ahead of this surface - in front of the wing
the medium is at rest, therefore, the velocity potential is a constant
which we assure to be zero. Hence we have the condition on the disturb-
ance wave

P(-J%YA = 02 cpJx,y,z,t) = o (1.11)

The potentials PO and ~ are continuous functions everywhere

outside the two dimensional region Z + Z1 and, as was established, are

odd in z, therefore, in the whole x,y-plane outside of the region z.+%

where the medium is perturbed, the following conditions are satisfied:

P&%Y,o) = 0, Tl(%Y,o,t) = o (1.12) ●
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The region where eqpation (1.12) is satisfied is denoted in figure 1
by @ and ~2t.

Thus the considered hydrodynamic problem is reduced to the following
two boundary problems:

I. TO find the function ql(x,y,z,t) which satisfies eq~tion (1.4)

and boundary conditions (1.6), (1.10), (1.11.),and (1.12).

II. To find the function %(x,y,z) which satisfies equation (1.5)

and boundary conditions (1.6), (1.10).,(1.11), a (1.@.

Since the functions q. and q)l are antisymmetric functions relat-

ive to the z = O p@ne, it is sufficient to solve the problem for the
upper half plane. From the solution of boundary problem I it is possible
to obtain the solution of 11 if the function f in the first be considered
a constant equal to unity, and A. replaces Al. ..__

2. VELOCITY POTENTIAL OF A NKIVIC7GSOURCE WITH VARIKBLE INTENSITY

1. Let us construct a solution of equation (1.4) as the retarded
potential of a source moving in a straight line with the constant velocity
u and hRving an intensity which varies with time according to fl(t).
Let us consider the infinite line along which, at each point from left

s to right, sources with velocity u start to function one after the other
with the variable intensity q = fo(t - tl)fl(t). The law of variat;on

of the function f. is the same for all the sources if the initial
.

I moment of each source is considered to be the moment when it came into
being.z

instant.
at the

point M

.
.U

function fl has the same value for all the sources at each

Let a source at an arbitrary point of the O’x’-axis be acting
tl (fig. 3). The retarded yotential of the velocity at the

as a result of such a system of sources is represented in the
fixed coordinates by

f~if ‘OF -‘1 - :If$ -4 dt,
@l*(x’,y’,z’,t) =A

t~‘ r
-.

. r x’ + Ut)a + y’p + 2’2 (2.1) -

* %andtl (ref. 3) considered an analogous problem with q = fo(t - t~).

—.___
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where A is a constant with the dimensions of a velocity. The limits i

of integration t~’ and tl” take into account those sources which
affect M at time t. The origin of the fixed coordinates O’ is

m.

placed at the point at which the source started at t = O.

Introducing the new miable of integration T = a(t-tl)-rand

transforming to the coordinate system x = x’ + ut, ~ = y’, z = z’
which is moving forward in a straight line with the velocity u, we
transform equation (2.1) into

If it is assumed that u > a then the velocity potential at M(x,y,z)
is the sum of the expressions (2.2), with the minus sign in front of the
radical taking into account the effect of the sources in the strip AC
on M and with the plus sign taking into account the sources on CB. The
smaller root of the radicand is taken as the upper limit of integration

. It is easy to see that in this case both roots are real, positive
~hntities (fig. 3).

On the basis of expression (2.2) we now construct a velocity potential
at M from the sources movi

?
with speed u > a which have an intensity

which varies with time as fl t). The derivation remains valid if the 4
additive constant al is added to the argument t of the function fl.

Putting the sources at the origin, we find the velocity potential from
.
.

equation (2.2) by considering the interval of integration from O to ?L

to be vanishingly small. Then, neglecting the term
()
~ ~ and putting

$JL’ fo(.$d. = C where C is a constant,

tion for equation (1.4) in the general form

. .

we obtain the desired solu-

{ Uffia2~x2 ‘[f- j(Y2+ 22)}
flt+al-#?Z—— ——

@(% Y,z,t) = c

[

j’- . ‘

flt+al-u2~ +U2
a

c
~, - a2 {X2 -($- 1)(Y2+ 22)}

p -($- I)(Y,+ 22)
(2.3)
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Let us note that

well as the constant
each component
C and al in

?
a solution of equation (1.4).

In equation (2.3) putting al =

9

of the arbitrary function fl as
equation (2.3) is separately also

.-

0 and the velocity of mction of the
source u = 0, we arrive at the well-known solution for a spherical wave.

If the velocity of motion of the source is u< a then to obtafi
the retarded potential of a moving source the right side of equation (2.3)
must be limited to the first component.

Considering the function fl in equation (2.3) to be constant, we
arrive at the Prandtl (ref. 3) solution for the retarded potential of a
moving source of constant intensity

“={+ ‘-
2. It is possible to obtain, by the ssme method, the velocity

potential of a source with the variable intensity fl(t) moving
arbitrsxily.

For example, in the case of rectilinear motion of the source when

the motion is givenby X = al(t) > a,Fl(t), Y =0, Z = O and when —d dt
that is, the motion of the source is supersonic, the velocity potential

. of the source at the origin of a coordinate system moving with the source
is

@-%,Y,z,t)=
Cfl(tl) .

@+,, (,) - ,1(,=12+ y’+ 22- ~, Fl,t)- ,l(t~w +
atl

cfl(tl*)
(2.4)

~[ 1 [ .1
aFl(tl*)x+FI(t)- Fl(tl*)2 + Y2 + Z2 - X+ Fl(t)- Fl(tl*)
~

where the parameters tl = tl(x,y,z,t) and tl* = tl*[x,y,z,t) are
. real roots of

k a(t - tl) -
f

X+ F~(t) - Fl(t1~2+y2+z2=0 (2.5)

-—
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I

[
If dFl(t)/dt] <a, i.e., the source velocity is subsonic, then to obtain *

the velocity potential one must be limited to the one.component in equa-
tion (2.4) which corresponds to the sma~er of the values of the parameters -
tl and tl*.

The function expressed by equation [2.4) satisfies the
tion with variable coefficients

linear eqw-

d%l(t)
.—

dt2
=0

(2.6}

If the source moves with constant accelerations Fl(t) = -ut -~
~~2

(where b is a cohstant) then equation (2.~) is an algebraic equation
of the fourth degree in tl with two real roots.

Formula
special case

3*

(2.4) contains the Lienard-Weigert (ref. 27) formula as a
when the source intensity is constant.

DERIVATION OF THE BASIC VELOCITY POTENTIAL FORbKJLA

.

1. We apply a solution of the form (2.3) of the wave equation (1.4)
to the above-mentionedboundary problem I.

At each point of the x,y-plane let us place sources with the poten-
tial q*. Hence, we will consider C and al in equation (2.3) functions

of points of the x,y-plane and we will replace al by ~ and fl by f.

As a consequence of the linearity of equation (1.4), its solution
is a function q)l expressed by

[J
{

Uf t + a(g,q) - # ~2 - & (X - ~)2 - k2(y - I& - k2z2
?j.(x,Y)z,t) - C(t, q) x ru-flk +

S(x,y, z)
{X - t)2 - k2(y - V)2 ‘-k2z2

6

.

{
4X - t)~

N

f t+a.(wl).-= — (X - ~)2-k2(y - 11)2- k2Z2
~2 t?~a2 }

C(E, TJ x Ilqilk (3.1) .
S(X,Y, Z)

(X - !)2 - k2(y - “q)2 - k%2 “--

r

4

where k =
*2 —

2-1”
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.5

The region of integration S(x,y,z) is that part of the x y-plane
. which lies within the characteristic fore-cone of equation “(1.h~from

the point with coordinates x,y,z (fig. 4).

l?hesolution of equation (3.1) will give the velocity potential
arising from the additional motion of the wing if C(X,Y) is determined
from the boundary conditions of the problem on the x,y-plame.

Let us introduce the new variable of integration
tion (3.1) in place of q

v i
=Y-~ (X-E)

2 - ~2z2cos

Then equation (3.1) becomes

e

6 into equa-

@x,y,z,t) = ,(/J,c~”-k$~’o’ q.

q E,Y -
S(x,y,z)

{[

f t+a!,y-+

& -,)2 - &z2

i
(x - ~)2- k2z2

}

sin e ded~ -I-

}

cos e x

F==

7
cos e -

-!

1

sin e ded~

(3.3)

(3.4)
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Let us note that for any point M(x,y,z) of space it is possible
to isolate from the region S(x,y,z) a region S’ in which the vari-
able of integration has the limits

.

or

where C’ is a

11===~
constant satisfying

I-===Ql
q~y+~ (x

the inequality C’ < x - kz. In the
remaining region S - S’ the limits of integration either do not deuend
on z or depend on z only in the combination kz2.

Differentiating equation (3.4) with respect to z we find the rela-
tion between C(x,y) and a(x,y) and the normal derivative of the
velocity potential a

ti
~z at any point of the x,y-plane

C(x,y) = - i%+[t+~xd}-’[:]z=,(3.5)

Comparing equation (3.5) with equation (1.6) we conclude that on
the wing

c(x,y) = - &Al(x,Y) (3.6)

i.e., the function C(x,y) is given.

Therefore, the velocity potential T1 may be computed from equa-

tion (3.1) by taking equation (3.6) into account for those points M(xjy,z)
of space for which the region of integration S(x,y,z) does not extend
beyond the lhits of the wing.

If the leading and trailing edges of the wing are given by x = ~(y)
and x . xl(y)> respectively, and if,therefore, $ smd Xl satisfy



NACA TM 1383 13

(3.7)

(3.8)

(where a* is the semi-vertex angle of the characteristic cae) on the
leading and trailing edges of the wing, respectively, then in particular,
equation (3.1) yields the effective solution of the problem of ftiding
the velocity potential ~ everywhere on the wing surface because in

this case the re ion of integration S does not exbend beyond the wing
?for any point Mx,y,O) onit (fig. 5).

Also, in particular, eqyation (3.1) gives a solution of the plane
problem if c and a me considered as functions of one variable -
c C(x) and a = u(x) - and the variables of
S ‘are considered to vary between

where VI and 72 are as defined previously.

integration in the region

Considering f in equation (3.1) a constant
equation (3.5), we obtain the fundamental formula
tial qO specified by the basic steady motion of

v(X - ~)2 - k2z2 = q,

and
for
the

-L

(3.9)

taking into account
the velocity poten-
Wing

(x - E)2- k2(y - ~)2 - k2z2

(3.10)

Formula (3.10) contains, as special cases, the re’suitsof Prandtl
(ref. 3), Ackeret (ref. 23), Schlichting (ref. 4) when the wing surface
is a plane and when the leading edge is a straight line perpendicular to
the free stream.
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4. IUR143NICOSCILLATIONS OF A WING
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1. Let us turn to the case when the additional motions of the wing
are harmonic oscillations, i.e., on the wing equation (1.6) is given as

a%
[ 1i at + a(x,y) = tit—= R.P. A1(x,y)e R.P. ~(x,y)e (4.1)

az

where A.2(x,y) defines the amplitude and initial phase of the oscillations.

Using the obvious relation eie + e-ie = 2 cos G and equation (3.5), the
basic formula for the velocity potential (3.1) is represented as

JJ~]
$!L =-U

~(x,y,z,t) =-ie~x
k)2 - k2(y - TI)2 - k2~2

Lw/ilg (4.2)
S(x,y,z) Z=o (X - ~)2 - k2(y- q)2- k%2

where

and

Keeping the second inequality of equation (3.9) inmlnd, let us
.

compute the inner integral after which we obtain a solution of the prob-
lem for a wing of infinite span

(4.3)
where 10 is the Bessel function of zero order.

By means of equation (4.3) the velocity potential maybe computed at
those points of the x,z-pl.anefor which the interval of integration on
the Ox-axis does not extend beyond the wing, i.e., at those points of the .

.
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x,z-plane not

the function

affected by the vortices trailing from the wing because

A is given only on the wing.. In order to compute the
dz

velocity potential at any point of the x,z-plane by equation (4.3) it iS

aq
—, US- equation (1.8)~ ever~here on the

‘Cessaw’0 ‘ete-e az
Ox-axis outside the wing.

Let us e~ress, by equation (4.3), the velocity potential @l for

any points lying on the Ox-axis outside the wing, which, according to
equation (1.8), equals on the Ox-axis everywhere outside the wing,.

?Jx,t) = R.P. ~(2)e
V(X-2)

(4.4)

where .

v h=-—
u

and t is the abscissa of the trailing edge. Then we obtain the integral ‘-
equation

(4.5)

bl
— satisfies on the ox-axis outside the wing.

‘hich az

we solved such an integral equation. The inversion of

In reference 5,

equation (4.5) is

where F* denotes the right side of eqyzation(4.5), the known function,
and where 11 is the Bessel function of first order.

!lherefore,keeping eqution (4.6) in mind, we can calculate the
velocity potential at any point of the x,z-plane by equation (4.3).

.—_
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The problem considered
in reference ~ from another

in this section
point of view.
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was solved and explained

5. =UENCE OF THE TIP EFFECT

1. To calculate the velocity potential according to equation (3.1)
and also through equation (3.10) or (4.2) for those points M(x)y,z) of
space for which the region of integration S extends outside the limits
of the wing surface, it is necessary to determine the normal velocity

~~1

component x
everywhere in the region of integration S from the

boundary conditions of the problem on the z = O plane.

Let us consider the case when the region of integration S inter-
sects the wing surface and the region X3 lying outside the wing and
outside the region of the vortex system from the wing. Region ‘3
(fig. 6) is part of the region Z2 defined above. That iS, let us con-

sider the case when the wing tips - the arcs ED and E’D’ of the wing
contour - act on the point M(x)y,z) or so to speak, the influence of
the “tip effect” and not the influence of the vortex sheet trailing from
the wing surface.

The point E on the leading edge is defined so that-condition (3.7)
is fulfilled to its left and violated to its right. The point E’ is
similarly defined. The points D and D’ are, respectively, the right-

&

most and leftmost points on the wing contour as shown in figure 6.
a? .

Let us construct the integral equation for C(x,y), connected to ~

by relation (3.5), in 23* *

Let us select the velocity potential ~ at any point N(x,Y,O)

lying in ‘3
by means of equation (3.1), equal to zero everywhere in ~

according to equation (1.12). The region of integration S(x,y,O) i-s
divided into two parts, as shown in figure 7; the region s(x,y) is
that part of the wing falling in the lkch fore-cone from N(x,Y,O), and
the region d(x,y) is that part of Z3 lying in the ssme fore-cone.

According to equation (3.6) C(x,y) is given in S. In a, C X,Y) iS
unknown. [We therefore arrive at the integral equation ~ich C X,Y)
satisfies in X3.

.

.
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where the kernel is

{
U(X- ~) aft+a(g, n)-—-— !(X- E)2- k% - 11)2
u2-a2u2 -*2 }

K= (~>W,Y>t) = +

~(X - ~)2-k2(y - ~)2

{
f t + a(g,q)- ~+ *1(X - E)’- @(Y - d2 }

(X - 3)2- k2(y- q)2

and the known function

F(x,y;t) =+ J Al(~j?)K(&q;x,y;t)d~dE
S(x,y)

If the characteristic coordinates are introduced

xl =x- %- k(y - Ye), Y1 =x- X. + k(y - ye),

17

(5.1)

(5.2)
.._

(5*3)

Z1 = kz

(5.4)
(where ~ and yo may be any numbers) then integral equation (5.1) is
simplified and in some cases this integral equation is easily inverted
as wi13.be shown below.

6. SOLUTION OF THE INTEGRAL EQUATION FOR A H&RM3NICA12LYOSCILLATING WING

1. If the additional motions of the wing are harmonic oscillations,
i.e., the condition on the wing is given in the form of (4.1) , then
equation (5.1) becomes

J e(g,TJ [Cos ~ !/(x- E)2 - k2(y - n) dqdg = ~(x,y) (6 ~)

dx)Y)
.

x - E)2 - k2(y - 11)2
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/ }-

av
where the function e(x,y) = & ~ae ‘~x in u and where the known

flmction is

.-

J [i 2
F(x,y) = - A(~,q) Cosh (X-5) -

i(x - ~)2 - k2(y - q)2
s(x/Y)

[}

aql
where A(x,y) = — e-px

az Z4 ‘
insorn

eqmtion we introduce the characteristic

origin at “O” by means of the formula

Xl=x-ky, yl=x+

order to solve this integrsl

coordinates ;, Y~, z~ ~~h

In the new
between the limits

coordinates the v=iables of titegration in a ~D w

where yl= *(x1) is the equationof the wing tip

the wing contour - in the transformed coordinates,

abscissa of E defined in section 5 in these ssme
Equation (6.1) is transformed to

(6.4)

- the arc ED of

and “xm is the

coordinates (fig. 8).

. I.—

.
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where the function

{1

p(x~+y~)

*1 - ~
%1(’l,Yl) = ~ e

Zl=o

and where the known function is

Let us

is related

19

dmlU1

(6.6)

a~l
note that the normal velocity of the perturbed flow —

azl

to a~/azl hY

?s=)%
az az=

For brevity, the index “1” will be left off the independent vsriable
everywhere from now on.

2. Let us look for a solution of eqyation (6.5) in the form of the
power series

e(%Y;N =~ e2”(x,Y) Xa

hto both sides of equation

4W==I .

n.=.=

(6.7)-

(6.5) let us introduce

“ &(x- E)”(y. l#h~
E

(6”.8)

~+ (~):



I

Keeping the absolute convergence of equations (6.7) and (6.8) in
mind, we multiply them term by term with the result

Substituting equations (6.7), (6.8) and (6.9) into e~tion (6.5)
the latter becomes

1n--

Taking into account
sides of equatioh (6.I.0)
integate termby term

the uniform convergence of the series in both
with respect to the variables ~ and q we

xx n-k-~

(6.u)

t.

I
-.

m

.

S(x, y)

.



.
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k eqmtion (6.11)equattig coefficimts in identical powers of x
we obtati the integrti equation which the functions e~(x,y) satis~

where

n-~ k
Fn(X,Y) =fn(x,y) +~fn(x,y)

La

(6.12)

(6.13)

%(w) = (-l)n+l J
1

ME,7)[(x - g)(y - ?J-~
(2?2) ! ‘v ‘k (6.14)

and s(%Y)

(6.15)
from w~ch the functions 25 sre deftied for k<O and n> O

=
● Letus note that the right side Fn(x,y) of equation (6.u) depends, for

e~, on the coefficients Ela but o- for k = O 1 2

1.fore, if we find eO) e2J ~ ~ ~o..,n- There-
04,..., %(n-1)> then Fn(xjY) iS a knOWfunction in the equation which the coefficient e~ in the g~er~ Wrm

of series eqaation (6.7) satisfies.
For M the right side in equa,-tion (6.12)

F.(X,Y) = ~(x,y) = - J A(~,q) dq d~

i(x - g)(y - q)
(6.16)

S(%Y)is a known function of x and y.

Letm solve eqpation (6.12)for ~a(x,y).
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P
integral equation (6.12) is equivalent to the
equations .

(6.17)

and

J’
Y

epJ&T)
*(E) ~= dT=%n(hY)

(6.18)

each of which reduces to em Abel equation.

Using the inversion formula of the Abel integreil.equation and
observing-that for any n functions Fn(XE,Y)

equation (6.I.7)for the function s&(x,y) is

= O hence the solution of

d~ (6,3.9)

Letus turn to,eqyation (6.18).We denote thepararaeter ~ by x, “
and again using the inversion formula for the Abel eqpation
in mind that according to equation (6.19) the right side e~t;:ji%f

eqyation 6.18) for y =
[

v(x) is different fmmzero, the solution of -
equation 6.18)for e~ is

(6.20)

substituting in equation (6.20)inpkce of e~(x,y) itsvalue from

eqmtion (6.19) we obtain the solution of eqution (6.I.2)in the following

(6.21)
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TINJS,accortig to eqya.tion(6.~), we can ev~uate
the coefficients Elo, (32, ~, ●.s, 0=, etc.

23

successively,

Formula (6.=) shows that all the coefficients (n=0,1,2,...) fbr

Y= !(x), i.e., on the wing tip ED, become infinite as R‘~~2 where R
is the distance of the point (xjy) from ED. Therefore, the velocity
of the perturbed stream becomes infinite as the specified order on the
wing tips, approaching from outside the wing.

It is possible to represent the inversion (6.zL)of (6.12)as

which can be confirmed without difficul~ by direct Ufferentistion with
respect to the psrameter.

Therefore, the solutions of titegral equation ~6.5) are constructed
in the form of the absolutely convergent series (6.7) for my value of
the parameter 1.

The coefficients O&(x,y) are expanded in the series

e’(X,y;x) = f& e;n(x,y) P (6.23)

. . -—

.

{}

*1 (X+y)

We find the function e~(x,y) = —
-B7

az za e
in. x;

3

(fig. 6) lyingoff the wing to the left, from eqmtions (6.zIL)or (6.22)
byre@acing tithe latter the function y(x) by *2(x) (where

Y= ~2(x) is t~ eqUtiOU of the src EtD’ of the wing contow -

the left wing tip) and interchange the role of the coordinates.
.
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●

3. Let us consider a wing of small span. Let the characteristic
cones from El and El’ intersect the wing as shown in figure 9. The .
points El and El’ are defined just as are E

Let us divide”the x,y-plane where the medium
regions SO, S1, S22 . . ., Sn) ● . . .

The region ~ is the M-shaped region lying

and El in section 5.

is ~erturbed into the

within the character-

istic aft-cones from & and ~’ (or within one of them) and outside

the characteristic aft-cones from Enj.1 and %+l’. In its turn, we

divide the part of the x,y-plane lying to the right and left of the wing
into the strips al, da, . . ., an, . ● . and C1l, U21) . . .,

an’, . . ., respectively. The strip an lies within &e characteristic

aft-cone from ~. Therefore) an and ant are tbe ~~ts of Sn ~i~

respectively to the right and to the left of the wing.

Let us return to the fundamental formula for the velocity potential,
equation (4.2), which is in the characteristic coordinates

~(x,Y, %t) =

In order to compute the velocity potential by means of this formula
in those parts of the space (or, in particular, on the wing surface) for
which the region of integration S(X)YYZ) intersects the region Sn of

the x,y-planej we must first

wing in the strips al, 02)

respectively.

a~l a+&l

determine —e outside the
&z

● * ●) an> and al’, 62’, . ● ., an’,. . .j

.

.
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Let us construct the integral.equation for
~(2).

Let us ~ress the velocity potential at the point N(x,Y,O) in d2
by formula (6.24)which is equal to zexo everywhere in the strips al,
C2, . . . an (correspondinglyin crlt, u2~, . . . ‘n’)”

Let us divide the region of integration into the three parts
s =S.+U+U1’* as shown in figure lo.

al +M
The fl.lllCt’.i OP — 2 A(x,Y) is gi~ ~ s(x,y) on the

aze= (X+y)
‘1 e-sr .0’ (xjy) iswing. In UI’*(X,Y) of ~1’, the f~ction ~

determined by the solution of equation (6.23).

In

the

a(x,y) we denote

integral ecpxation

az

satisfied by

by e(2)(x,y). Then we srrive at

e(2)

r e(2)(E,@
U(x,y) W“’E=F(2)(X’Y)““2’)

.
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.

where the limits of integration are bounded by xE ~~~xand

~(~) ~v~ Y a~ the ~0~ function F(2) iS defined as .

F(2) (X,y)= - 1’ JL(3,11)
C06[~((x - WY-TO] d~dg -

& E.)(Y - n)
s(% Y)

Jre4(~,v)
COS[j& - E)(Y - ~)] d~ d~

(6.26)
& - E.)(Y- v)

C%**

We look for the s&ution of integral equation (6.25) in the form of
the power series

fj(a) (X,y)s S 0(2)(x,Y) A-
Iko 2“

Moreover, by reasoning similarly to the preceding section we arrive

(2)
at an integral equation for the coefficient 02n in the general term

of series (6.27)

where

bn (dk (Xy)Fn(x,y) -t~ fn ) (6.29)

where, in its turn,

(-1)
n-k+l

f(2)k(x,y) = z n
r

1

[( -
e2~ (~,q)[(x - g)(y - ?)]n- k-~ d~ d&

n k)]: ~
U1l* (6.30)

Equation (6.28) differs from eqpation (6.E) only in the form of the

.

.

F\2) function on the right side. Taking into account the condition on

the boundary F~2)(XE,Y) = O for amy n==, 1, 2, . . . the solution of .

(6.28) for e~~ is obtained by using the solution (6.21) or (6.22) of

(6.12) as a final formula if Fn(2) replaces Fn in the latter. The “
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function Fn(2)(x,Y) depends on the coefficient *(2) where k==,
1, 2, . . ., n-1. Therefore, just as in the previous section, if the

e=(2) for k= 0,1,2, . . ., n-1 are already found, then Fn(2) in the

right side of (6.28) is a known qvarrtity. Therefore, the functions

90(2), e~(2), . . ., e~(2), . . . may be found successively.

Let us note that Fn
(2)

, and therefore the coefficient Ela(2)

deyends only on the first n + 1 coefficients co’, ezt, , . ., &
of the series expansion of

a9~
-p(X+y)

e’(x,y) =Te 2

in q.

Reasoning in the same manner, we may find the values of e(3),

e(4), . . ., *(N). . . in ~5, ~, , . ,, ~N, . . . (correspondingly

e*(3), e~(4),, . ., e*(N)
>“”* in qt, CQj . . . Lq/).

Therefore, the velocity potential -be computed~ eq,,tion (6.24)
at every petit M(x,y,z) of the s~ace for which the region S(xjy,z)
intersects any nuniberof strips aN or aNt.

AU the results hold for the case when the wing tips are not given
by one eqya.tion y . ‘#(x) but consist of curves givenby the equations
Y = ‘#k(x) k =1,2, . . ..m. The same observation app~es to the

leading edges E’E (or EIEl’) of the wing. Therefore, in our problem

the wing contour may be piecewise smooth.

If the frequency of oscillation u of the wing be put equal to zero

then the coefficients O., 00(2), . . ., co(N). . . coincide with the

values of the
respectively,
tion (~.6) on

derivatives &@z h the strips cfl, @ . . ., ON, .
for the steady motion of a wing when the streamline condi-
the wing is given in the form

. % = Al(x,y)
az
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.

7. INFLUENCE OF THE VORTEX SYSTEM lZROMTHE WING “FORA HARMONICALLY

OSCILLATING WING
.

—

1. Let us consider the case when the region of integration S(x,y,z)
in formula (4.2) for the velocity potential intersects the vortex sheet
Xl as shown in figure 26(a) (see also fig. l.1). That is, let us consider

the case when the trailing edge of the wing - the src lYT of the wing
contour - or, so to speak, the vortex sheet, acts on the point M(x,yjz)
of space. —

using condition (1.10) we determine @l/az in the region Q of

the x,y-plsne snd shown in figure 11.

The region 0 is off the wing within the characteristic aft-cone
from D and outside the characteristic cones from T. Therefore, $2
is affected by the vortices trailing from the edge M! of the wing but
not from D’T”. The region 0 partially intersects the vortex sheet
z~.

Let us return to the characteristic coordinates xl, yl, Z1 which

we introduced earlier by formula (6.3).

As before, for brevity we omit the
variables.

Condition (1.10) fulfilled on Z,

subscript 1 frm the independent

*

in the characteristic coordinates
is

-1.
.

(7.1)

From equation (7.1)it follows that the function

remains constant
the direction of
wing ●

~u X+y.—
9u=91(xjY,0,t)e u 2

everywhere on the vortex sheet along lines parallel to
the incoming stream, i.e., along vortex lines from the

.

.
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.

Since the velocity potential. ~ = O everywhere in the x,y-plane

off the wing surface and the vortex sheet, then it may be vertfied that
q~ possesses the specified property everywhere in S1.

Let us construct the equation for the function .

PI

.pxq
a(x,y) =

azl ~+e

t

in Q.

Let us express qu at the srbitrary point N(x,y,O) lying in Q

by using the basic formula for the velocity potential (6.24). We divide
the region of integration S into three psrts, as shown in figure 12,
into S(x,y), ~l*(x)Y) and d(x,y). The regions s and crl* sre

parts of the wing surface and X3, defined above, respectively, which

fall within the characteristic fore-cone from N(x,y,O). The region a is
the pa% of Q in the ssm.econe. The variables of integration in a
wbet~en KO~ ~~ x a X(E) S q= y where XD is the abscissa

of D and y= X(x) is the eqwtion of the uc IXC of the wing Contour.
The expression obtained for cp~ is differentiat~d in a direction psrallel

to the velocity vector of the Wpbging stream

Therefore tiearrive at the integro-differentialequation which $
satisfies in Q

.
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where K = -i
U2 - /32

snd the known function is
LW

q(x, y)

@2 J
S(X?Y)

).L?FJ (7.3)

ha + L The function 6 is determined from eqpation (6.7) of the
%=Z *

preceding section.
.

2. We till look for a solution of equation (7.2) in the form of the .
power series

0(X,Y;7J =2 o~(x,Y)

n==
Keeping in tind the absolute convergence

the expansion (6.8) for the cosine we obtati

WI;NCOS[?J(X - 5)(Y -?)] =

@ (7.4)

of egpation (7.4)and using

?

I
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SubstititiM eqpation (7.5), (6.8), and (6.9) into ewtion (7.2),
the latter becomes

. m (-l)n+l
v n

s
-o (al):

(7.6)

Taking into account the uniform convergence of the series with
respect to ~ and ~ in both sides of eqzation (7.6), we integrate it
termby te~. Then, keeping in mind, the uniform convergence of the
obtained series with respect to x and y which is also maintained after
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-.

differentiation, we differentiate the specified series term by term with
respect to x and y. A$ter these operations on both sides of the
obtained equation we equate coefficients in identical powers of A. There- -
fore we arrive at the integro-differentialequation which the coefficients
of eqution (7.4)satisfi

where

- 7)

-i-

r- (.-l) n-k+l-
~+ [2(n - k)]:

(7.8)

.

.

.

.



A

*

.

.

.

.

NACATM 1383 33

in which the last sum and also the terms in v are defined for 00.

Let us note that the right side, an, of egpation (7.7) for il~

contains terms with coefficients O= but orilyfor k = O, 1, 2, . . .,

n-1.

Let us transform equation (7.7). We inte~ate by parts with respect
to & the first integral on the left side of equation (7.7), the second
by psrts with respect to q, afterward we differentiate with respect to
the parameters x and y, respectively. Equation (’7.7)beCO?31eS

where

(7.9)

Let us note that the first term in equation (7.10)of the right side
of equation (7.9)becomes infinite for x = XD.

Let us return to expression (7.8)for an and

the terms corresponding to the value k = n in the
nent

separate out of it

first sum - the compo-

We integrate this integral by parts with respect to ~ keeping in
mind that the limlts of integration in al* ere XE~E~XD and

~(~) ~ 7 ~ Y ad t~t e~(xE,y) = o- Then we differentiate with respect

to x
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r

Let us subject
plementsry condition.

(7.XL)

the destred function %’ in equation (7.2) to a sup.

Let us assume that at the trailing edges - the arc DT (or D’T’,
respectively) of the wing contour - and on the straight line D@
(figs. hand 12) - the intersection of the characteristic aft-cone from D
with the z=O plane (correspondinglythe line DtDl*) - the VelOCitY of
the perturbed flow, and therefore the function 0, is a continuous func-
tion, then the conditions are fulfi12ed

#[x,x(x)] = A[x,X(X)]

‘[xd = ‘[XD,Y]

(7=)

(7.13)

These conditions are analogous to the Joukowslw condition for flow around
a wing by an incompressible fluid. (7.13) followsFrom equation

‘~(xD,d

IF=

dq (7.14)

since X(W) = J(m).

Substituting eqyations (7.EL)and (7.14)in ecjpati.on(7.10), the
latter becomes

.

(7.15)

.
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*

where

. Qnt=~-R (7.16)

For n = 0~ the right side in equation (7.9)is a -own function of
Xand. y

f

%11, xm@o* =

‘D b - d[Y - x(E)]
1 [--l} .,+

(7.17)

Let us solve equation (7.9)for ~~ + 8*.
.

The two-dimensional integal eqya.tion(7.9) is equivalent to two
homogeneous eqyations.

(7.18)

and

each of which reduces to an Abel equation. Using the Abel inversion
formula we find the solutions of equations (7.18) ad (7.19) as
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(7.20)

Substd..tutlngequation
in the latter by x, we

(7.=)

(7.20)into equation (7021), first replacing
obtain the solution of equation

.

.

.

(7.22)
I

straight line parallel to the .Integrating eqyation (7.22) al~ng the
free-stream between the limits of N(x,~,O) and- N(x,y,O) we find the
formula determining da in the general form of equatim (7.4)

.

I
:
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.

%*[’DA@]
~~(%Y) = 19a(x,y+) +-L

~ ~xi=k‘ ‘ - x-x“J&’+

If in eqpation’ (7.23) the coordinates 2 and ~ are taken as solu-
. tiOnSOf ~- X+x-y=O @ ~-X(~)=O ~the~l~eof ~~(~,~

is determined flromcondition (7.l$?)on the trailing edge, then we find
tim on the vortex sheet..

If in the same formula, the coordinates F and ~ s.reset eqyal to
= . ~ ad ~ . y - x + XD and the value of $2n(~,~) is dete~ed

from equation (7.13) on the line x . XD, then we find dm outside the

vortex sheet in the region it affects.

Thus, through equation (7.23), we cm cqpute successively the coef- -.
ficients d~, d2, . . ., f12n,. . . .

Therefore, the solution of eqpation (7.2) is Constructed as the
absolutely convergent series (7.4) for any value of A.

The coefficients a2n* sre expsmded in the series

a’(x,y;x) = f- $2”r (’,Y)xa (7.24)
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s

ale+’+ in Q!
The function 3’ = — (fig. IL) may be computed through

3Z .

equation (7.23) if the function X2(X) replaces X(x) in it (where

Y = X2(X) is the equation of D’T’ of the wing contour) and we inter-

change the role of the coordinates.
—

3. Letus consider the general case of the flow over an oscillating
wing by a supersonic stream. Let the characteristic aft-cones from El

and El’ and D1 and D1’ intersect the wing as-shown in figure 13.
Then El (correspondingly El’), as shown above, aredefinedso that to

the left on the leading edge equation (3.7) is satisfied and to the right
it is not. The points ~ and D1’ are, respectively, the most right—
and left points on the wing plan form. -...

The space of the considered wing plan form as transformed by equa- ,
tion (5.4) is illustrated in figure 14.

Let us ditide the x,y-plane where the medium is perturbed into a
series of regions: the regions considered in the preceding section,
So, S1, . . ., %, . . .; ~ and the regions” Al, @ . . .,

& . . . . The region ~ is the I&shaped region bounded downstream

by the intersection.ofthe characteristic cones from Dl” and D1’ with

the z = O plane: In the z = O plane, these M.nes are the upper
.

bounds of the region of influence of the trailing vortex sheet.

The region

from ~, ~’,

x,y-plane lying
the strips IJl,

52, . . ., a~,

& is M-shaped lying between the characteristic cones
#

Dn+l, Dn+l’. We ditide, in its turn, the part of the

to the right and left of the wing, respectively, into
!32,. . . ‘n9 “ “ “~ UN defined above and into 51,

. . . and into al’, da’, . . ., un’, . . ., dN1

defined above and til~, 52’, . . ., 8n’, . . . correspondingly. The

strip ~’ is that part of & to the right and bnr is the correspondhg

part of & to the left of the wing. It is easy to see that the region Q

defined at the beginning of this section is in 51.
---.— —

In order to solve completely the problem of the flow aver the wing
shown in figures 13 and14,the derivative &pl@z must be determined

I..

-.
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*1 ,.p*
Let us denote the function —

az
by $, 19(2), $(3),

O(n). . . and fl’, a’(2), . . ., ~f(n), . . . in the ~~, 52, .

39

. .

,. ●3

. “9
tin, . . ti 81’, 52’, . . ., ~n’, . . . strips, respectively,

Applying equation (6.24) for the velocity potential we construct qu

for any point N(x,y,O) in 82.

We divide the region of integration S which

*1 e-p’+
the function — into the following: S =

az
as shown in figure 15. This function is given in

depends on the form of

H-c#+al*h.s*+cr,

s. It was determined
in d$ and 5r* in the preceding section by the solutions of equa-
tions (6.7),(6.23),(6.27),etc. In S* it is determined by the solu-

% e-~x%~ ~~ &2)* “-tion of equation (7.24). We denote —
hz

Using the boundary conditions (1.10) and (1.12) we srrive at the integro-

differential equation tiich d(2) satisfies and which differs Q?om equa-
tion (7.2) only in the form of the right side. On the one hand the right

.
side depends on the solutions 0,

$2)
7“””9

Q(N), ~t, @), , . .,

e:(N) and on the other ~ on the solutions fjto we Comtruct 3(2) ~
the form of a power series in the parsmeter A.

Requiring the fulfillment of eqmtions (7.12)and (7.13)for $(2)

~o(2)
we obtain for the coefficients 02(2), . . ., $a(z~, . . .

m expansion in series of $(2) of e~uatiom of the form (7.9) which
differ from each other in the form of the right side.

The right side in the equation for the coefficient 0~ (2) h the

general term of the series for fl(2) depends on the first &!-l coef-

ficients of the expsnsion of e(i) ~d et(i) where i t&&eS all Vdh.les

less than or equal to N, @ on the first n coefficients do(2),

$2(2), . . ., &-&) (1s0, 1, 2, . . ., n-1) of the series expansion of
.-.

____
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the desired function $(2). Therefore, it impossible to find succes. .

sively the coefficients ~o[z)J $2(2), . . ., 02n@) using the solu- 1
tion (7.22) of (7.9) as a final.formula if there
instead of On*, right sides in the eqyations of

the respective coefficients of the e~ansion of

is jmt in the latter,
the form of (7.9)for

#).

By the same reasoning, values -be found of J3), $(4), . . .,

~(k), . . . in 83, 54, . . ., ~k, . . . .

Therefore the velocity potential msybe computedby equation (6.24)
at any point of the space perturbed by the motion of the wing shown tn
figures 13 and 14. ti particular, the velocity potential msybe evalu-
ated at any point of the wing surface.

All the results are valid when the contour of the wing is piecewise
smooth.

If the frequency of the oscillations of the wing, u, be put equal.

to zero, then the coefficients do, ~o{2) ., $*(k), . . coin-
cide, respectively, with the values of &f&iz” in 51, 52, ● . .,

bk, . . . for steady motton when the streamline condition (1.6)is given

on the wing as &@z =Al(x,y). @

We apply the proposed method of determining a~~z for the oscil-

lating motion of a wing by constructing an integral eqpation, to wings
.

of completely arbitrary plan form. For example, the wing contour may not
be csmiberedbut w have the shape shown in figures 18, 24, etc.

In all.cases, the pert of the x,y-plane where a~/az mustbe deter-

mined should be divided into the corresponding characteristicregions.
Then successivelypassing downstream from one region to another, construct
the integral and integrg-differential eqvations using the boundary condi-
tions on the x,y-plane. The solution of these equations for &p@z or

for functiOns related tO a~az is obtained as a series in even powers

of the p=ameter A, which defines the frequency of oscillation. The
whole problem of determining the coefficients of the expansion reduces to
a double integral equation in each characteristicregion. Each of the
equations after transformation appears to be an equation of the sane type .

which is solved by means of a double application of the inversion formula
for the Abel integral eqpation. The form of the wing contoux ts the limits
of integration. The influence on the considered region, of determining

.



.

.

NACA TM 1383 41

the desired function in the preceding upstream characteristic regton, is
reflected in the form of the ftmction in the right side of the integral
eqyatias.

8. FLOWAROUIIDAN OSCIIIA!TINGWll?GOFNON-ZERO THICKNESS

1. Let us consider the motion of a thin wing at a small angle of
attack (fig. l~a).

Let the wing be moving forward in a straight line with the constant
supersonic velocity u. Let an additional small oscillating motion be
superposed on the basic motion of the wing so that the wing surface may
be deformed. ..-

The normal velocity component on the upper surface of the wing will
be considered -givenby

and on the lower

where %U ati

Q~ = AOU(X,Y) + R. E’.A~(x,y)ei& (8.1)

surface by

I&
Qn~ = AOZ(XYY) + ROpO ~u(x~y)e (8.2)

~z deftie the wing surfaces and

~ = Alu(x,y)ei~(x~y) sad ~1 = Alz(x,y)eial(x,Y) define the smpli-

tude and tnitial phases of the additional osci33.sting motion of the wing.
We consider the functions ~u, Alu snd ~ given at each point of the

UPPer swface ad AoZ, A12, and a~ given on the lower surface. The

x,y,z coordinates were defined in section 1.

The velocity potential. ~ is

~p(x,Y@) = 9(x,Y,z,t) + @)Y,z,t) (8.3)
.
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The potential q is specified by the motion of sq oscillating wing
of zero thickness, which creates at each moment an antisymmetric flow with
respect to the x,y-plane (fig. 15b). The potential TS is specified by

the motion of a thin osciI1.stingwing with a profile symmetric relative
to the x,y-plane. Therefore the motion proceeds in such a manner that at
each moment the wing surface will.be symetric relative to a desi@ated
plane (fig. 15c). Such a wing creates a symmetric fluw and qs satisfies

%(%YPZM =!P&%Y,%t) (8.4)

Each of the potentials cp ~d qs is represented, in its turn, by

q.~+~ (8.5)

(8.6) -

.-

where ~ and ~~ correspond to the steady motion of the wing end ~

and ~s correspond to the additional motion of the wing.

Letus set up the streamline condition using the representation (8.3)
for the velocity potential.

We transfer the boundary conditions on the wing surface parallel to
the Oz axis onto--thepro~ection z of the wimg on the x,y-plane
(fig. 1).

Therefore, we obtain the streamline conditions based on eq~-
tions (8.1) and (8.2)

.
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.
{}

bp

z- =Aoll(%Y)

Z=i-o

[}

aqp

z =+)~(X,Y)

z-o

which must he satisfied on
tively.

using equations (8.5)
for the desired potentials

the upper

and (8.6)
~o> ’91s

+ R.P. A~(x,y)eti (8.7)

+ R.P. A2Z(x,y)eiti (8:8)

and lower sides of z, respec-

we establish boundary conditions
p@IY ~d P1.s.

Keeping in mind that on the z.O plane the normal derivatives of
the potentials ~~ and ~~ sre specified by the symmetry of the flow

over the wing satisfying the condition

We find

fied on

the bowdsry conditions for ~~ and C& which must be satis-

the upper surface x to be

{1mo6

{}

a~ls
.-

5YA=
ro(x,Y))~ = R.P. ~2(x,y)eM (8.1o)

zA

where the functions r. and r2 axe related to quantities given on the

wingsurface through

~u(x,Y) -AOZ(X,Y) A~(x,Y) - A2$X,Y)
ro(x,y) = “ r2(x,y) s

2 .2

(8.u)

The conditions to be satisfied by qo~ and ~s on the lower surface of

z me

p 0s

} {}

*10

1
ro(x,y),— R.P. r2(x,y)e‘&(8.12)

x ‘-
Z=-o az ‘-Z=-o
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Since the normal

by the antisynmetric

derivative of

flow over the
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.

the potentials ~ and ~ specified

wing, on the z=. plane, satisfy ●

,WZ=+O={= L-O’ {~}z+o=p}z=-o

(8.13)

the boundary conditions which
upper and lower surfaces of

acp
& = A.(%Y)

where ~ and ~ are related to

A&l + A.Z
%= ~

must be satisfied simultaneously on the
z sxe

%.

x = R.P. A2(x,y)ei~ (8.14)

quantities given on the wing through

(8.15)

The bou.ndaryproblems for ~(x,y,z,t) and QO(X,Y,Z) Wre set UP

in section 1 where in the case of a hsrmonjcally oscillating wing, equa-
tion (8.14) rather than eqy.ation(1.6) should be taken on the wing. The
solution of these hundary problems is contained in the present work.

Let us formulate the boundsry problem for ~~ ~d qo~:

1. Find ~s(x,y,z,t) satis~ing eqqation (1.4), condition (1.1.1)on .

the disturbance wave, condition (8.1o) on the plane region z and

%6 o—=

az
(8.16)

everywhere in the xjy-plane off X where the medium is perturbed.

II. Find the function ~s(x,y,z) satisfying equation (1.5), condi.

tion (1.11) on the disturbance wave, condition (8.1o) in the plane
region 2, and

(8.17)
.

everywhere off Z in the x,y-pl.anewhere the medium is perturbed.
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Since the potentials ~= and ~~ ~e ~tio~ w~ch me smtric
. relative to the x,y-plue, it is sufficient to solve the problem for the

upper half-space.

The solution of boundary problem I is givenm eqqation (4.2). BY
means of this formula it is possible to compute the veloci~ poten-
tial ~s everywhere since in the case of symmetric flow over a wing the

derivative a~#az is a given qpn.tiw for aay point M(x,y,z) of the

space in the region of integration S(X,YJZ)= TO compute us at M

according to equation (4.2) the function

H%.s R.p. r2(x,y)eiust

T ~ti=

{1
a%

must be substituted for - and inte~ation is over that part of

the wing within the characteristic cone

The solution of boundary problem II

givenby formula.(3.10) if the function

r,

from M.

as is known (refs. 21 and 22), is ‘“–

{}

2!32 is replacedby
az 24

{}

@os

x ~+o

= r&Y) and integration is also over the

diately above.

region defined imme-

If the wi-n.gis vibratingas a rigid bcdy then the functions A~ and

%Z coincide and therefore, to solve the flow problem in this case, it is

sufficient in antisymetric streams excited by the motion of an oscillating
wing with profile of zero thickness to superpose steady symmetric streams.
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PART 113

To apply the integral equations method explained in Part I of the
present work, let us consider the problem of the fluw over thin wings of
finite span in steady supersonic flow.

The velocity potential ~ specified by the steady motion of the

wing may be computed through equation (3.10) at those points M(xl,y~,zl)

of the space for which the region of integration S(X1}Y1}ZI)J a~eady

.

.

known from Part

%()
— is given.
azl

If @O@Zl

I, does not extend outside the limits

appears to be u@cnown at any part of

of the wing where

S, then, to use

equation (3.10) in these cases, where it has in the characteristic
coordinates (6.3) the form

(21.1)

and to obtain the effective solution
of all, to find &po/bzl everywhere

of the problem,.”it is necessary, first .
in S by constructing and solving

an integral equation.

1. INFLUENCE OF THE T~ EFFECT FOR STEADY WING MOTION

1. The integral equation (7.1) in the coordinates (6.3) is, for the
steady wing motion

~e results of Part II, sections 1, 2, and 3 were completed in
April, 1948 at the Math. Inst. of the A@. of Science, us=.

.

.
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where ~ is the value of &p@z~ on x ~ (fig. 6) and where the

The function A given on the wing is

a%

[ }

@o(%Y) =-u ‘1 + Y1* Y1 - xl (21.4)A(%PY1) =~’ - k. k 2 ‘ 2k

It is

normal to

easy to see that

the x,y-pl.aneis

a%
the velocity of the perturbed flow —

az
related to a@zl through

The regions of integration in

~(~1) ~TLl~Yl where, as before, Y1 = W(X1) iS the eq@ion Of the

wing tip fi in the trsmsformed coor~tes and x~ iS the abscissa

of E in the same coordinates. The regions of integration” for 51 in

Let us note that eqution (21.2) may also be obtained from equa-
tion (6.5) if the frequency u of the wing oscillation is set equal to
zero in it.

Let us delete the index “l” from the independent variables.

We solve the double inte~al equation (21.2) with respect to 8, by

means of a repeated application of the inversion fornnik for Abelts tite-
gral eqyation. —
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We write eqution (21.2) as
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.

(21.5)

This is an Abel equation with right side identica~. zero, therefore,
the brace eqpals zero for 6 = x. Hence, eqy.ation(21.5) is equivalent

which is also an Abel eqy.tion. Noting that the right-side of equa-
tion ‘(21.6)is, genera~ speaking, different fmm zero for y = v(x)
we find the solution using the well-known inversion formula for the
Abel eq~tion

to

Let us note that the solution 21.7) for the steady motion of a wing may
[be obtained from the solution 6.22) of equation (6.I.2)for the vibrating

wing if the index n and the frequency of oscillation u are both set
equal to zero.

Carrying out the operations specified on the right side of equa-
tion (21.7) we find the solution of equation (21.2) to be

.

.
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aq)~=
In a simil.sxmanner, we find the value — elt(x)y) in Z3I

(fig.6)
az

The functions x = VI(Y) @ x =~2(Y) are, respectively, the eqaa.

tions of the arcs ED and E~Dt of the wing contour solved for x. The
solutions (21.8) sad (21.9) show that the velocity of the perturbed stream,
when the arcs ~ and EID! are approached from off the wing~”goes to

1
infinityas R-z where R is the distmce of N(x,y,O) from the points
ED or E’D~ (see fig. 7).

2. Let us ftid the velocity potential according to eqpation (~.1) at
the point M(x,y,z) of space for which the region of integration S
intersects the wing surface z and the region X3 or z3t.

The region of integration S in equation (21.1) isdivided into thee
parts: S= Sl+ S2+ so, as shown in figure 16

@%Y,z) =- &
[

A(3,TA)

SO+S2

.—

j(x - E)(y - q) -

-& J’qwi) dq d~

a
sl i(x - E)(Y - V)

(2L1O)

~elimitsofre@on ~1 me xE~~~xA - ~(~)~q~y.— 22

x- E
#here XA is the coordinate of the point A which is the intersection
of the characteristic forecone from M with the side edge ED of the

. Tfng. The eqpation q . y - z2/x - k is the equation of the ~erbola
in which the aforementioned cone intersects the z~ plane. The limits

‘~~xA ~ ~1(~) ‘~s~(~).. of region 62 me xE .
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Using equation (21.8), let us evaluate the integral over S1 in

eqmtion (21.10)

we interchange

(all)

the order of integration of qt,q

The result of the inner integration is

‘F(V-‘i
= m-m% (21.13)

x-

Putting the value of equation (21.13) into equation (21.12) we obtain

.

(21.14)
.

.



NACATM 1383

Equating (21.14) and (21.11) we obtain

/(=- E)(y- q) - Z2

(21.15)

Therefore, to find the velocity potential, on the basis of equa-
tion (21.1), at a yoint M(x,y,z) projected onto M’(x,y)O) in the
x,y-p~e as sham in figure 16, it is sufficient to integrate over so

—..—

D’~o(x)Y>z) =-& ‘ A(5,n) dq d~ (21.16)

so &x- E)(Y. q) - Z2

The limits of region so are ~1(~) ~ V ~ Y - Z2/2+3 @

xA =6XB where XB is the abscissa of the point of intersection of

the Mach forecone from M with the leading edge ErE.

The velocit-ypotegtial on the *g surface can be calculated from
equation (~.16) by setiin

2
z=O in it end considering the region of

integrationto be xA~ ~ - x and ~l(g) ~ 7 S y because the lines of
intersection of the characteristic forecone from M with the x,y.pwe,
intbis case, exe the lines ~ =x ~d q .y.

b order to compute the veloci~ potential at points of space, or in
particular, on the surface of the wing for which the region of inte-
gration S intersects simultaneously 23 ~ X3;; thd is, at points
of space where there is felt the effect of both side edges ED and E~D1,
it is sufficient to integrate eq,,tion (21.1) over the region
s =

‘@+se’ the cross-hatched region in fi~e 17. Hence tie integr~

ovea S * in eqmtion (23..1)must be taken with the opposite sign, i.e.,

the plus sign.
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.

3. Let us consider the wing of more genersl form shown in figure 18.
Let the forward part of the wing have the break, the arc WGIEII, in the -

wing contour which affects the flow just as do the side edges.

Let us show how to ca?nputethe velocity potential at ti yoints
M(x,y,Z) of the space disturbed by the motion of the ting, which is not
affected by the trailing vortex sheet, in particular, on sll points of the
wing surface.

We divide the wing surface into the characteristic regions shown in
figure 18.

If the region of integration S in eqpation (31.1) intersects
regions 2, 2’, 3 end does not intersect 4 then the velocity potential
maybe evaluated by using equation (21.16~ (see figs. 16 and 17).

hold

then

The simple result which is expressible by equation (21.16) does not
in the genersl case.

..

If S intersects 4 on the wing, in the curvilinear triangle K:OLK,

according to equation (21.1) ~q@z must first of all be found in

the triangle. —

Let us express, by eqyation (21.1), the velocity potential at any
point of K*OIK as eqyal to zero everywhere outside the wing and the

vortex sheet from the wing, hence in Kr~K. Theref6re, we arrive at an .

integral equti,on.of the form of (21.2) for the function
~*(x,y) = ~~/~z in K’OIK but with a more complicated kncwn function. -

Applying the Abel inversion formula twice, we arrive at the solution
in the following final form:

where y = 4(x) is the equation of EG, y-=
*

VI(X) is the equation of E’Ej

x= ~2(Y) of El’G’ ~d. x= 712(Y) _of El’E. -
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Substituting equations (21.17), (21.8), and (.21.9)into equa-
tion (21.1) we obtain the formula for the velocity potential at M which
has the projection M’ shown on figure 18, smd for which the region S
intersects 4 on the wing and, ,therefore,the region K~OIK outside the

wing, as

~ J A(~,q)

1?S2* ix- E)(Y- II)-22 “-1miZn3E”

(=.18)

where y = ~(x) snd x = @(y) are the equations of GG’ of the wing
contour in terms of x and y, respectively.

The region S* is the part of the wing shown cross-hatched in fig-
ure 18. The regions S1* and S2* are psrt of S* end sre marked in

the ssme figure by horizontal stripes. The regions S1* and S2* are

bounded downstream by lines parallel to the coordinate axes passing
through G and G!. The points G and G’ sre respectively the points
with the largest x and y coordinate on the arc EGG’El*.

BY ccmibiningthe results of eqyations (21.1) and (21.18) there is
found in the form of integrals taken over the wing surface, an effective
e~ression for the velocity potential at points of space for which S in
equation (21.1) intersects 5 or 6 on the wing and therefore A K!O=K

and
23 a ‘3‘ ‘ff ‘he *g”

—
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2.

1. Let us assume

intersect the ting as
for small span whgs.

FLOW Ov-mwmfcs OF SMALL SPAN

.

that the characteristic cones from El end El’
.

shownin figure 19.

Let us divide the x,y-plane where the
regions SO, S1, . . ., Sn, . . . .

The region Sn is an M-shaped

istic cones from En end ~’ (or

~d En+l’. In its turn, we divide

right and left of the wing into the

and al’, a2’, . . ., Cn*f . . .,

region

in one

This occurs, for example,

medium is disturbed into the

W@3 between the cheracter-

of thern~W En+l

thepart of the x,y-plane to the

strips ~1> C2> . . ., an, . . .

respectively.“’Thestrip an M.es

between the after cones from En and ~+l. Therefore, an is that

pert of Sn lying to the right of the wing. The coordinates of E

and E’ with their indices sre shown in figure 1$). The

similarly defined.

Let the leading edge El’El be given as in pert I,

the equation y = ~l(x) end the side edges EIEn~l and

Y= ~(x) and y=42(x), respectively; or as x= ~(y)

correspondingly.

To compute the velocity potential at
in that part of space (or, in psrticul=,
of which intersects Sn of the x,y-pltie

of all determine ~C@z off the wing_in

strip %1 is

section 6, by

E1’~+l’ W
.

- X= T2(Y) -

.

M accorti,ng to eqtiation (22..1) ‘“
on the wing surface) the region
but not Sn+l} we must first

~1> ~~9 U3J ● . -J fln

and also in al’, a2’, d5’, . . ., an’, . . , .

We construct the integral equation for &pO/bz in the arbitrary
.

strip ak.

Let us express a velocity potential which is equal to zero every-
where off the wing and outside the region of influence of the vortex
system from the wing, at N of the qk strip (fig. ~) according to

the fundamental formula (21.1)

—

‘1
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The limits

For convenience
sible since the

a%1{}x- z~

S(X,Y,O)

of integration in

(22.1)

in later writing, we make S a rectsagle, which is–pos-
medium ahead of the wing i$ not disturbed and aq@z

is zero. The region S is shown in figure 20 bounded by the line~ LJi,

~1~ %01 and OIL.

Let US denote &@z by el, e2, . . ., ~, . . . and cl:,

e2’, . . ., gk’, . . .

. . . and all, C21, .

In conformance wtth

in the respective regions al, U2, . . ., al&
. .> a& . . ..

this new notationwe write equation (22.1) as

)
(22.2)
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.

Applying the Abel inversion formuh twi’ceto eqpation (22.2) we find
~ for k~2 .- .

(22.3)

Correspondj.~, for WI
we obtain

(22.4)

.

.



.
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where the terms in equations (22.3) and (22.4) containing the summations
axe

sre

%

defined only for k ~ 3.

m %$ 02, . . ., ~-1 and therefczre, el’, f32’,. . ., ek-l’

already defined in al’, rY2’,. . ., ~k-1’ then we ca compute

in q for any k by means of eqwtion (22.3).

The value Of a~pz b q and al’

eqm.tions (21_.8)md (zQ..9).

The value of ?W@z in a2 is found

putting k = 2:

is determinedly solving

from equation (22.3) by

(22.5)

We find &@z in cr2’ in the s- way

?& (Y)
e23(x,y) s - ~

f

i~i d, ,

xf& ~(y) ‘(g’y) X-E

Thus, step by step we

(22.6)

compute alq@z in c~.
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Using the solution of eqpation (22.3),we now prove the relation .

/

.
2

X2* y.z
f-l

ff
H

x-e ago
= dn d~

oX1* yl

az ‘- ~(x - g)(y - q) - # =

(22.7)
where %* and X2* are w nunibers satismi~ ~ < X2* S XA

(x* iSthe coortite of the petit A show in fig. ~), Xl< X1* <xA.

=

For the proof, we write $2 in the eqtiv~ent form

I
—

—

.

.

.—
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where ek in the first of the

according to eqmtio~ (22.3).

Then, we obtain

integals is replaced by its value

A A

+

(22.9)

where I* denotes the integral (21.13) evaluated before. It is easy to
see that all the terms in the right side of equation (22.9) cancel in
pairs. Hence, eqyation (22.7) is proved.

It is also clesx that the following holds
-—
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,

<
satisfying Y~ = Y1*< YB d

of B shcmn in fig. 21). .

Using equations (22.3)and (22.4)it is possible to prove equa-
tions (22.1.l.)and (22.12) corresponti@.Y

JX2*L P}za (x. ,;”,, -2? - ‘“ ‘“ ‘- “-X1*

(22.11)

=2

where @ may depend on ~ and satisfies t(xl*) < @ $ Y-=:

.-
— —. ...—

T2(d
JaR

2
Y2*

H
} +=m=!’g” :

[x .AJ
---

al
Y~* ~

/(= E)(Y - l-l)-22

(22.3.2)

where * may depend on q < ~2
and satisfies ~2(y1*) <.x* =x -—0

Y-7

The relations (22.10) and (22.12) may be obtained, respectively,
from equations (22.7) and (22.11) if the role of the coordinates is titer-
chsnged in the latter.
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Let us note that the
inversion formla to

yields

bterchanging

result of a single
eqyation (22.2) or

r“kd A

the role of the coordinates in

61 ._

application of the
directly to eqpation (22.1)

= o (22.12

equation (22.13) we obtain

(22.14)

It is possible to consider equations (22.13) and (22.14) as reh-
tions fulf~ed along the chmact&istic I&es ‘~ and LrNi in the
x,y-plane where y and” x are, respectively, the coordinates of N or
Nt lying off the wing and off the region of influence of the trailing
vortex system (fig. 20). The points N and N! lie to the right and
left of the wing, respectively. These relations can be useful for compu-
tations.

2. Let us turnto the fundamental formula (21.1). Using equations
(22.10), (22.11), and (22.12) we obtain, by calculation, the fo~~a
for the velocity potential ~ at M(x,y,z] for which S intersects

Sn for any n>O

(22.7),

-.

(au)
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where the functions ~ and Q2 are deffied as

~ .’EUI-l

and where the regions se and se are regions of the wing wrked on

figure 21. The region S1* is the vertically-striped region on the wing

surface. The region S2* is the horizontaUy-striped region of the wing

surface. It iS clesr that S1* and S2* intersect each other ad Se

on the wing.

The region S1 lies off the wing and is vertically-striped in

figure 21. This region is the sum of the regions o&r which are taken the
integrd.s con~ining ekf for kd) 2) . . ., n-2 ‘k e~tion (22.15).

The region S2 lies off the wing and is horizontally-striped in
the figure. A1l.the integrals are evaluated over it which together con-

.

tain ek for k=l, 2, . . ., n-2.
—

If M is such that S in the basic formula intersects Sn falling
.

in the characteristic cone from & md lying outside the cone from ~’,
then n must be replaced by n-1 in the second sum and in the last term
Of eqmtion (22.15). If S falls inside~he cone from ~’ and lies

outside the cone from ~ then n-1 must be substituted for n in the

first sum and the penultimate term of eqmtion (22.15).

Let us note that the sums in eqpation (22.15) are defined for n> 3
and the last two terms in equation (22.15) for n> 3.

.

.
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.
If n=l, then the formul.a

tion (22.17) is limited to the
. obtained before.

for the velocity
first two terms.

63

potential in eqpa-
This result was already

If rP2, the formula in equation (22.15) is limited to the first
four terms, the region of inte~ation is shown in figure 22.

Thus, to evaluate the velocity potential, by equation (22.15), at
a point M(x,y,z) which has the projection M1(X,Y,O) shown in fig-
ure ~} it is necess~, first of ~> to co~ute ek for kl, 2, 3,

. . “7 n-2 by equation (22.3) for &2 and by eqmtion (23..8)for

k=l (ek’ correspondingly).
...-

As an exsmple we
in the expanded form

present the expression for the potential for IB3

(22.16)
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.

The region of integration in the last two integ&ls over E and ~
are, respectively, the regions S1 and S2 lying off the wing and shown

striped in figure 23.
.

Formula (22.15) for the velocity potential contains an n-iterated
integral with the integrand an srbitrsry given function on the wing:
tio/bz= A(x,y).

In the general case, it Is not possible to reduce the number of
iterations in the computation of equation (22.15)for arbitrazy wing-
tip shapes since the srbitrary functions ~, ‘la>and A all contain

the variables of integration. If the functions $ and *2 are fixed

then the wing to be considered has completely determined tips and it
is easy to see that ald the integrals in equation (22.15) are reduced
to double integrals taken over the w@j surface with i.ntegrandscontaining”
the srbitrary given function A(x,y) which_defines the form of the wing
surface.

Let us turn to the wing of small span which has a bresk in its
lesding edge as shown, for example, in figure 24.

The derivative @O/~z may be evaluated in al and u2 by equa-

tions (21.8) snd (22.3). It is impossible to evaluate ~o/az in U3

using eqyzation(22.3)and, therefore, a surface-integralequation must
again be constructed which will also reduce to two Abel equations but b
with more complex right sides than occurred for 03 in figure 19.

Hence, we note that it is impossible tmconstruct one formula which
.

would determine do/az for all cases, but a single m~thod of solution.

may be shown to depend on the wing plan form.

The formation of the surface-integralequation fo~ &po/az is

explained above, for each characteristicregion. Each of these equa-
tions is of the same type, reducing to two Abel equatio~ with different
right sides in different cases. In particular, the right side of one
of the Abel equations, in some cases, may be identically zero.

.

.
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3. IKFLUENCE OF THE VORTEX SYSTEM FROMTHEWING FOR STEADY WING M2TION

1. TO study the influence on the air flow of the trailing vortex
system in steady motion, it is convenient to uperate with the acceleration
potential ~o which, b linearized theory, is related to the velocity

potential derivatives in the characteristic coordinates through

Let us turn to the wing shown in figure 25. Let
M(x,Y,O) on the wing surface, which lies betweerithe
cones from D W Df. Therefore the trailing edge

Using equation (21.15) the velocity potential at
eqpation (21.1) is

@%Y,@ = - & f

S=”sl+so

(23.1)

us take a point
chexacteristic
Ill affects M.

M according to

(23.2)

where the regions s = S1 + so and S2 we shown in figure 25. The

region 62 belongs to 0, considered in section 7 of psrt I and shown

in figure 11. We denoted the derivative ~@z in Q by $ where

this derivative is an unknown.

We subject &pO/~z to en additional condition, analogous to the

Kutta-Joukowsky incompressible-flow condition. We assume that the
perturbation velocity potentisl at the trailing edge - the srcs Ill
and DIT’ of the wing contour (figs. 11 or 25) - and therefore, the
specif~ed derivative, is a continuous function. Then the respective
conditions sre fulfilled:
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—

ti~,~x)] =A[x, ~x)]- (23.3) “
1

~ p, X2(x)] = +++)] (23.4) -1
..

where, as above, the function y = x(x) is the eqyati.onof Ill?and
y= ~(x) is the equtionof D’T’ of the wing contour.

In order to obtain the acceleration potential QO at M on the

wing surface, we must take the derivatim of eqy.ati.on(23.2) in a direc-
tion parallel to the oncoming stream. @fore differentiating the double
integral with respect to x and y we integrate by psrts - in the first
case with respect to ~, in the second with respect to v.

During these operations, we
(22.13)which is fulfilled along
line DD* (fig. 25) is

use equation (23.3) and the relation
characteristic lines, snd which on the

J
Y %(v-q ~7 J’

X(XD) A(XDJTI)dv
=-

X(xD) /’ ~~(xD) f=

We keep in mind, moreover, that the limits of integration

XA(Y) is the abscissa of A, the limits of

*L(E) ~TI~Y ~fxthe~ts of S2
~~~y.

After the specified operations,

(23.5)

of sl are .
the abscissa of D and

the results of differentiation sre

J At(E,TI) ++&?)
‘?l)x(x,Y) + P(@%Y) = - &- d~ d~ -

Sl+so

(23.6)
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where the arc 2 = RP is shown in figure 25. 13 order to evaluate the

acceleration potential 00 at M accordimg to eqyation (23.6) it is

first of aU necessvto deteme ~+ ~ in s2s

2. Let us construct the integral eqpation for fix+ $Y. Let us

express the accleratim potentiti through e~tion (21.1) at an arbiti~
point N(x,Y,O) outside the wing in Q affected ~ the vortex sheet

trailing from the wing

(23.7)

for which the limits of integration in a are xD~g SX and

x(E)sq5y andin s, ~ varies between the ssme Mmitsbut q

Let us differentiate this expression in the free-stresm direction.
Since, according to the condition((l.10) of part I) the velocity poten-
tial qo off the wing in the x,y-plane remains constant along lines in
the spectiied direction, then the left side of equation (23.7) goes to
zero as a result of differentiation and therefore we obtain

(23.8)
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we integrate the first two integra~ in equtio~( 23.8) by psrts
with respect to ~, after whichwe differentiate tith respect to x. The—
result is

(23.9)

and

(23.10)

Keeping eq,,tion (Z?3.~)in mind, which is fulfilled on the characteristic
DD* we sub~ti~te eqmtions (23.1o) and (23.9) into equation (23.8)

obtaining

.

—.
.

,

.

.
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This equatipn is equivalent to

69

according to the inversion of the Abel integral equation.

We integrate the last two integrals in equation (23.12) by parts
with respect to ~ after which, as above, we differentiate with respect
to the parsmeter. Using eqpation (23.3) we srrive at

that

from

.
J*+4

{

d~l(x)
1 -—

dx
L

dq -

(23.13)

Let us apply once again Abel;s inversion formula, keeping in mind
the right side of equation (23.13)j generally SpealdIIg,iS different
zero for y = X(x) we obtain the solution for 19x+ Oy as
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Using equation (23.14) we prove

NACA TM 1383

where 21 = RQ. The regions

Substituting eqyation
formula for the acceleration

f 11

S2

(23.15) into equation (23.6)we obtain the
potential

where L = w,
figure 25.

& J
L

the direction of

(23.16)

the integration is shown by the mows in
—

evaluate the acceleration potential at M on a wing sur-Thus to
face two integrals, the surface integral over so and the contour inte-

gral over L of the leading edge sre to be computed.

Let us turn to equation (23.12) and izriteit in the form

.

.

(23.17)
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Mxrchsnging the role of the coordinates in eqpation (23.17) we
obtain

.

(23.18)

where x = *1(Y) is the W-tion of EtE of the wing leading edge solved

for x in terms of y.

It is possible to consider equations (23.17) and (23.18) as rela-
tions which hold along characteristic Unes in the x,y-plane where the vor-
tex sheet has effect.

Relation (23.17) is fulfilled along characteristic ties psmll.el
to the Oy-axis (the line NQ on figure 26);the y=psrsmeter is the
ordinate of a patit lYing off the wing to the right,,ti the effective
i%mge of the vortex sheet (point N in fig. 26). Relation (23.18) is
fulfilled along lines parallel to the ox-sxis; the x parsmeter is the
abscissa of a point lying off the wing to the left.

If the point N is thus located to the right of the vortex line DH
or to the left of D?H~, then slong characteristic lines the respective
relations (22.13) ad (22.14) also hold.

If N is located to the left of DH or to the right of D*H!,
respectively, then relations (23.17) and (23.18) hold along characteristic
lines. h this case, equations (22.13) and (22.14) are not fulfilled.

In this section, we wrote down the transformation and obtained
the formula for the accelerationpotential h the simplest case of the vor-
tex sheet affecting the flow. -

For any other case, the potential a“ is

h each case an integral equation is constructed

integkal equations are of the same type but with

found in an szlalogallsway.

for 3X+ dy. All the

different right sides in
the different cases, and they me inverted by means of a daihle application
of the Abel integral equation inversion formula.

b the following psragraph we present results defiting the accelera-
tion potential 00 at any point of a wtig surface.
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3. Let us find the velocity potential qQ(x,Y,z) at a Point M

lying within the characteristic aft-cone from D and outside the cherac- .
teristic aft-cone from D!. The region of integration S in the funda-
mental formula (21.1) intersects the plane region Q (fig. U) in this
case.

The projection M’ of M on the x,y-plane is shown in figure 26a.

Starting from condition (1.2.2)(of part 1) we express the derivatfw
~opz for Sny point where the velocity potential equals zero and where,

simultaneously, the effect of the vortex sheet is felt through the same
derivative at points located upstream on the ssme characteristic line
with the point studied. To do this we reason just as we did to obtain
formtia (21.8). We then obtain the desired representation for’the
derivative

(23.19)

Using eqwtion (23.19) it is easy to pruve

/(- E.)(Y -v) - Z2

- Q’ J:-x’{%?}z=o
(23.=)

1

i

I

—
.

by the same methods used in proving eqution (21.15).
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The limits of integration in eqpati.on(23.2Q), X1*
*~xF ~d XD~any nuniberssatisfying xD s Xl *SX

~F
the coordinate of the moint F shown in fimre 26a. The

73

smd %*, are

where xF is

point F is the
intersection of the vo~tex line DH, which ~as the eqyation
Y =X-I-YD-XD) with the characteristic cone from the point with the

coordinates (X,y,z).

33 particular, there holds

where the regions S1 and S2 are shown in figure

is marked with horizontal and the region S2 with

Keeping in mind equation (23.21) we obtain an
velocity potential at the point M defined above

k- ~)b- v) -22

‘(ZJ.a) “’

26a. The region S1

vertical cro9slines.

expression for the

J A(E,n)d?U 1
@%Y,a = - & J ti(E,n)dnM

so k - E)(Y -“7) -22- =~, IL- E)(y - q) -22

where So smd St me shown on figure 26a.

Therefore, the region of inte~ation S
sects the wing surface only in that part of
the vortex line DH.

(23.22)

in equation (23.22)inter.
Q which lies to the left of

Before evaluating the velocity potential by equation (23.22) it is
necessary to determine am~z = il in the region S: of Q.

We find $ from the solution (23.14) if the latter is integrated
in a free stream direction between N(x,Y) and ~(=,~). Hence in order
that the obtained expression correspond to the value of the deriva-
tive &po/bz . ~ in Q to the left of DH, the coordinates X and ~
on the vortex sheet should be taken as the solution of the equa-
tions ~ - ? ‘yD+xD =0 snd~= X(X) and the value of d(%,~) is

determined from equation (23.3) at the trailing edge.
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<
If the ~ and ~ coordinates are set eq,l to X = xD and

Y = y-x+xD and the value of 4(X,~) is determined on DH from the .
solution of eq~tion (21.8) then the obtained expression will correspond
to the value of &$@z in Q to the right of DH off the vortex sheet

but in its sphere

4.

of influence.

-SURE DISTRIBUTION ON AWING SURFACE

1. Let us consider a wing of’arbitrary plan form. Let the wing
contour in the characteristic coordinates be given by the following equa-
tions: The leading edge E~E by y= $(x) or x = $1(Y), t~e side

edges ED and EtDt by y = ~(x) w Y = *2(x) or x = ~(y) and

$2(y], the trailing edges IY17’and D’T’ by y = X(x) and

~(x) or x = ~(y) sad x = ~(y).

Let us find the p“ressureof the flow

According to the 3ernoulli integral,

..

on the wing surface.

the pressure difference of the
flow above and below the wing is related-to

by

P(X,Y) = P&Y) - l?&Y)

where p is the densi~ of the

We ditide the wing surface
in figures g and 28.

undisturbed

the acceleration potential 00

.—-

= 2POO(X,Y) (24.1)

.
flow.

into the ten characteristicregions shown -

Let us express the stresm pressure on the wing surface in each
characteristic region by the tiction A(xjY) ~ch is @ven on tie -y
defining the shape of the surface.

We denote by M and M tith ezsubscript the end6 of line segments
parallel to the coordinate axes and lying in the x,y-plsne. It is clear
that these segments are psrts of the lines of intersection of the charac-
teristic cones, tith vetiices in the x~Y-Pl~e~ ~d tie x~y-@ane itself”

Region I is the region where the tip effect is not felt. This part
of the wing lies shead of the characteristic aft-cones with vertices at
Et and E. .
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Region 11 is where the tip effect is felt but not the influence of

the trailing vortex sheet. This region lies between the characteristic

aft-cones from E’ and Eti Dti Df. At M of region II, for

which the lines ~~ ~ w ~tersect on the wing as show on

fi~e 27, the pressme difference is

(24.2)

where S1 is the region of the wing bmdedby the Ues mlj ~j

M&3 and %, S2 is the region botiedby M1M3J ~ ~ ‘he

arc L . ~M3 and where .-
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.

If the lines ~~ and ~~ do not intersect—on the wing, as shown —

in figure 28,then the pressure difference is
.

where s~ is bounded by the lines ~~, M1M3, %, w d

L = IYI-y$.

Arrows in the figures show
tour integral and the integrals

L2 = %.%”

the direction of integration in the con-
taken over

In region III, w~ch lies between the
and the characteristic cones from E’, D
ence is

the lines “~ = M3M1 and
—

characteristic cones from E
~d Dt, the Press~e ~ffer-

.—

{

Eel-
at

.

—

(24.4)

The pressure difference in region III’ is expressed in the same way.
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.

(24.5)

Region IV lies in the chuacteristic cones from E and Et and D
and outside the characteristic cone from D’. Region IV’ is defined cor.
despondingly. At M(x,y) of region IV, when M1M3 and w intersect

on the wing, the pressure difference is

.

(24.6)

For the M, for which Ml% and w do not intersect on the wing,

the pressure difference is expressed by equation (24.5). Similsrly, the
pressure difference for region IVf is

(24.7)
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if ~~ and w intersect on the wing. If

sect on the wing the pressure difference can be
tion (24.4).

NACA TM

these lines do not

expressed by eClUa-

In region V. which lies within the characteristic cones from

1383

.
in-ter-

.

E, Et,
D and Dt” wher~ the influence of the trailing vortex sheet is felt, the
pressure difference is

p(x,y) = - :
J

D(5,7;x,y)d? d~ +:
J

D(~>7;x)y)dV d~ +

s~ S2

if M&j and w intersect on the wing, and

(24.8)

p(x,y) = - :
J

D(~,?;x,y)d?”dE - ~ fl
[ --}”

B ~,~@);x,Y] 1

sl L
(24.9)

if they do not intersect.

cones from E and D
and D’ (also in

In region VI, lying in the characteristic
and outside the characteristic cones from E*
region VIt) the pressure difference is emressedby equation (24.9). The
pressure difference for re~ion I has the same form.

Thus, if M, at which the pressure is desired? is in one of the
regions II, IV (IVf correspondingly), or V, as shown in the figures, then
to set up the regions and contours of inte&’ation in the pressure formulas
it is necessary to proceed as follows:. Draw two lines ~ and ~

upstresm from M to intersect with the side (or trailing) edges of the
wing. From these points of intersection Ml and M2 again draw lines

M1M3 and M#& upstream to intersect the leading edge EIE at ~ snd

%“

If M is in region III or VI (111’ or VI’
M draw the lines MM4 and MMl upstream; the

intersects the leading edge E’E at M4; ~

.

correspondingly)then from ●

line % immediately

intersects the side edge -
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.

ED in the case of region 111
region VI. Rcomthe point of-
to intersect the leading edge

79

or the tra~ng edge DTt in the case of
intersection ML again &aw the line Ml+
zl~.

Let us consider particular cases.

(I) Let the side edges of the wing ED and E’D’
lines parallel to the free stream. In this case

a~ EhJq ~
—=— =
by ax

and, therefore, formulas (24.2) and (2\.3) are simplified
because the last two terms in them become zero.

be straight

substantially,

ATarticular wing of this class is the rectangular wing.

(II) Let tbe wing surface be such that

D(E,TI;x,Y)=0

This holds, firstly, when the wing surface is a plane, i.e., the

function A = ‘@O\k is given on the wing, fi~e PO- is the angle of
attack, as a constant.

Secondly, ttis holds when the wing surface is linesr, generaldy
speaking, uncambered, with generators lying in planes parallel to the

Y= x-plane (X,z-p=e in the original coordinates), then the derivative
of the function A(x,y) given on the wing satisfies the rela-
tion & = - ~. b particular this is a wing with a cylindrical.surface

formed h the msmner described.

Ih these cases, only the oontour integrsls and the inte~als over the
line se~nts LI. and L2 remain in the formulas for the pressure.

(III) The pressure formulas take an especisXy simple form when
the wing surface is such that the ~ction D(E,q;x,y),=6 on the wing,
at the ssme time as the side edges ED and EtDt sre straight lines
paallel to the stream (combination of cases

. pressure difference above and below the wing
sented by

I and II). In ;his case, the
in any region can be repre- .
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where the plus sign is taken if the lines M1M3 and w intersect on

the wing and the minus sign if these lines do not intersect on the wing. .

Hence, the pressure on the wing surfa~e is expressed by the cuvi-
linear integral taken over the arc L of the wbg leading edge.

(IV) Let the wing plan form be such that the mints D and E
and E‘ and Dt coincide. b this case, calculation of the pressure
on the wing surface is also simplified because there we no regions II,
III and 1111 on the wing. b particular the trapezoidal wing belongs
to this case.

2. The pressure formulas show that there can exist a geometrical
locus W(x,y) . 0 where the pressure on the wing p(x,y) = O. Down.
stream of this geometrical.locus, the pressure difference p = p~ . ~

is negative.

For example, if D(~,~;x,Y) s O on the wing then the geometrical
locus @ = O is found in the region of the wing lying inside the char-
acteristic cones with vertices E and E’ and passing through either
regions II and IV or through IV sad V o= or lying entirely in V.
The first case occurs only when K, the intersection of the lines OIK

and 02K parallel to the coordinate axes, appesm to .beoutside the

region of influence of the vortex sheet, as shown in figure ~, for
exs.mplep In all.these cases, the points T and Tt are on the gee.
metrical locus of F* = O. The curve F* = O may also be shaped convex
downstream and not as shown on the figures. -

Let us write the equation for the geometrical locus F* = O.

In region II:
—

MY)

f{

W1(E)
F*(x,y) =

‘#2(x)] 1 d~ },

d~-—

(x - E)[Y - v~(~)] -

2

.

—-.

=0

(24.11) .

.
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b region IV:

.

In region V:

F*(x,Y) = TJX’(X)] - Z(Y) = “

(24.u)

(24.13)

If the side edges of the wing are lines psmlilel to the free stresm
direction or the wing is such that E and D (Et and Dt correspond- -
ingly) coincide, then F* = O takes a stmple form. b region V it is
not changed, but in regions II and IV, we have, respectively, in place
of equations (24.ll) and (24.12)

(’4.14)

F* = ~1 [V2(X)] - I(Y) = O (24.15)

In all cases when the pressure difference on the wing, according to
eqmtions (24.2) to (24.9), is expressed only by means of curvilineu
integrals taken over II of the wing contour, it is easy to construct the
zero-pressure curve graphicaU.y, keeping in mind that the zero-~resmre
curve in these cases is the geometrical locus ‘ofsuch points M on the
wing surface for which the points ~ and M4 on the wing contour coin- ‘

tide. That is, the arc on the leading edge over which the curvilinear
integral is taken shrinks to a petit.

No

the

We construct the zero-pressure curve as follows: From each point
on the leading edge we draw the lines NoN1 and N0N2 parallel to
coordinate axes intersecting the side edges ED and E’Dr as shown

_—
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— .

in figures 29 and 30, or the trailing edge~.as shown in figures 31 and32.
l?romthe points of intersection N1 and N2 within the wing again we

&raw lines IilN* and N2N* parallel to the coordinate axes. The geo- -!
metrical locus of N*, where these Hnes intersect, is the
pressure line.

For example, for a symmetric wing, if the side edges
are parallel to the stresm, the zero-pressure curve passes
and Gt and is the line equidistant from the leading edge
The points G and G1 sre shown on figures 29 to 32. If

desired zero-

.-

~ end EfDr
through G
(fig. 30).
E and D,

E’ and D’, correspondingly, coincide snd the trailing edges are straight
lines then H = O passes through G &d Gt and is the curve obtained
by inverting the leading edge E’E relative to the center of inver.
Sion o*. The center O* is the point of intersection of the traiMng
edges (fig. 31).

If the ~ is asymmmetiic ~d if the side edges .~ ~d EtD~ ~e
parallel to the free streem then the zero-pressure cur@ is the reflection
of the curve equidistant to the leading edge.and passing through G and
G’, relative to the line equidistant flromthe side edges (fig. 29). If
the points E and D, and also Et and D!, coincide “andthe trailing
edges are straight lines msking identical emgles with the stream then the
geometrical locus F* = O is the,reflection of the curve obtainedby an
inversion, with center O*, of the leading edge and pas~ing through the
points G and Gt relative to the line equidistant from the side edges
(fig. 32).

3. All the obtained results are generalized to the case when the
.

lesding edge E’E is given not by one equation y = VI(X) but consists of

segments of smooth curves given by y . ~lk(x), Were k=l, 2, . . ., n -

with n any integer. In such cases the surface and contour integrsll-sin
the formulas for the pressure should be di~ded into co@onent parts for
the actual evaluations.

The side, ~ tid E’D’, and trailing, ~’ ad D’T~ e~es W
also be piecewise smooth.

The same generalization holds for the previous three sections.

4. All the results sre generalized ih the_case of the asymmetric
flow over a wing which OCCWSJ for ~~e~ in the motion of a yawed wing.

—

Let us consider a wing of srbitrary plan form with an angle of
yaw y as shown in figure 33.
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The pressure on the wingcan be computed by the same formulas if
the eq@.tion of the arc ~’Eo, in the coordinates transformed to the

origin O, is taken as the function y = *l(x).

The equation of E& (correspondingly ~’Do’) is y= ~(x). In

this case EoDO acts as the wing tip.

Finally, for the trai13ng edge, DOTO, we have the equation y = X(X)

(correspondinglyfor Do’TO’).

5. As is known, knowtng the acceleration potential or the velocity
potential on the ting surface, we can easily compute the aerodynamic
forces on the wing.

b order, we represent the aerodynamic-force formulas using the ori-
ginalcoordinate

The lift P

where the region

sys~em shown in fi&es 1

on the wing is

P = 2p
J

40(x,Y)

z

of integration in z is

and 2.

dxdy (24.16)

deftiedby *O(Y) SX~~(Y)

and yD ‘~y~yD where x =VO(Y) IS tie eq..tion of DtE’ED and

x= xl(y) is the equation of the trailing edge D’lTCD (figs. 27 and 28).

The limits yD1 and YD are respectively the coordinates of Dt and D

of the wing.

Since according to U.nesrized theory /f4&Y) = u ~~ ax then

integrating (24.16) over x and keeping in mind that the velocity poten-
tial is zero on DtE’ED from conditions (1.1.1)and (1.12) ofpti I,
the lift is

..

If the trailing edge is Piecetise s~oth> ‘hen ‘n ac- c_ta-
tions the contour integral must be divided imto its component parts.
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The expression for the moment ~ due to lift relative to the

Oy-axis is
.

I

J
%y ‘ %(’JY)’ ‘dy= 2p (24.17)

.Z

The moments relative to the other axes have the same form.

6. The explained theory can be generalized to the case of the flow
over a tail or over a biplane in tandem. .

We proceed as follows to obtain formulas to compute the pressure on
the tail taking into account the influence of the wing:

Express WX+ my at M(x,Y) on the tail usi~”the basic formula

(21.1). In the expression for %x + WY under the ~te-gral sign insert

19x-1-a’ on the vortex sheet. The function $x + Oy is found from the

Abel i~tegral eqmtion which is constructed hy the method of section 3.

In the case of flow over the tail the different characteristic
regions on the tail must be seperated Just as was done in figures 27 and
28 for the uniform motion over a wing. ..

Only in this case, to divide the tail surface into..regions,there “

must be taken into”account, on the one hand, the ting e2fect and on the
other hand, the tip effect and also the effect of the vortex sheet of
the tail itself.

—
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APPENDIX

The following examples, solved by N. S. Burrow and
will serve to illustrate the methods ~kined before.

A. Arrow-Shaped (or Swallowtail) Wing

M. M. Priluk,

Let us consider the arrow-shaped (or swallowtail) wing plan form
where the leading edges are formed by the se~ents AD and AD’ and
the trailing edges by the segments DB and D’B as shown in figure 34.
Let the following geometric parameters be given: 51 the amgle between
the leading edge and the free-stresrndirection; 52 the angle between
the traildng edge and the free-stream direction and z the wing semispan.

---—
The eq,uatio~ of the wimg leading edges in the x,y characteristic

coordinates with origin at O axe

AD

1=

{ }
(1 - cot a* tan a~)x~ + 2Z cut CL*

l+cota*tan51

AD’

1=

{ }

(l+cota* tan5~)x~.2z cots*
1 -cot a*tan~

and the trailing edge equations sre

line

Yl

line

Y1

where the

DB

1

{

(1 - cot a* tan 82)x~ + 2Z cot a*\=
l+cota*tanb2

J

D’B

1=

{
( )

}

1 + cot a* tan 82 xl - 2Z cot U*
1 - cot a* tan 82

angle a* is the semiapex angle of the characteristic cone.

Let us consider the wing for which 51 > a* and 52 >a*; that is,

a wing surface not affected by the trailing vortex sheet.

.
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We will assume that the wing surface

single PO to the free-stream directim.

NACA TM 1383

.
is a phne inclined by sn

@
Therefore, the derivative ~

till be a constant everywhere on both sides of
be given in the form

39

*
=- Upo tan a*

z

dz
the ~ surface and will

(Al)

.

ln conformance with the methcd we divide the wing surface into the
three characteristic regions Ia, Ib, and Ic, with each region having its
own amaljtic characteristic solution and taking into account the angular
point A of the leading edge (fig. 34). Let ,yscompute the stream
pressure on the wing surface in each region.

.-

Using the formula (5.9),we
WW outside the characteristic

P

~S formuh shows that

find the pressure in-the regions Ia and Ib,
cone from A, to be

‘e= 2U2PP()tan a#* (A2)

(
—- -L —

—a2
—

the pressure in regions Ia and Ib is a constant.

In region Ic, lying inside the characteristic cons from A, we find, -
by using the same formula, the pressure to be

2u2ppo tan51

{

-cota*tan612cot51 -xl -
P(X)Y) =

7“- =1 ‘ “ : ‘i-’~ ~’cots**’lyl-’’ot’l’

—
n2

1 + cot--cL* tan 51 2 cot 51 - xl

}

(A3)
.cota*tar15~ yl-2 cot 81

.

.
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~ the original
becomes

87

coordinatesystem shown in figures 34 and 35, (A3)

2U2PP0 -51 x
p(x,y) =

Cots lx*tsz-#51 - 1

[

.2 t~-1la
cotct*@n51Zcot 51-x +y cot a*+

l+cota* tan81ycot u.*+X-zcotq

2 ~-l

}

l+cota* tan512cot 51- x+y cota*
z cota*tm51ycotc@ +x-2 cot51

(A4)

These formulas show that the pressure is constant along each ray from A
in region Ic.

Shown in figures 36 and37,respectively, axe the pressures along a
section Al% parallel to the y-axis - sJ-ongthe section A@2 P~-

allel to the x-axis.

The lift P of the considered wing is

2tant51- t= 52 ta-l dcot a.*tan 51 + 1
+

=taI151+tan52 cotcL*tanr)l-1

~ tad 62

fitsa 5@Ln2 61 - td 52)‘“-1E==5
The lift coefficient Cz is

(A5)

1690tan282

TC(tam51 + tan62) Ota U* tana 62 - 1 “-’m

(A6)
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As is well.known, the wave bag

coefficient through C!x= POCZ.

Let us consider particular

NACA TM 1383 !

.

coefficient Cx is related to the lift

. .

cases of (A6). In ;he limit as 81+*,

we obtain for the triangular wing

Cz = 4~0 tana* (A7)

the well known resultk for the lift coefficient of a triangle.

Comparing (A6) and (A7) we conclude that for identical wing speeds
and identical angles of attack the lift--coefficientof the arrow-shsmed
wing exceeds the-lift coefficient of the trianguhx wing.

In the particular
arrow-shaped wing. In

This result shows that
shaped wing ewals the

case when 62 = 51, we
the limit as 52+51

obtain the infinite
(A6) yields

4$*tan51
c= =

cot2 a* tan2 51 - 1

span

the lift coefficient of an infinite span arrow-
lift coefficient of an infinite span slipping—

wing with slip angle 61.
*

Formula (A6) ‘showsthat with increasing 51 ant. 52, the angles

between the leading and trailing edges and ihe free stream, respectively, .
the wing lift coefficient decreases. The dependence of Cz for an—
arrow-shaped wing on 51

Let us consider the

and 52 is shown in figures 38 and 39.

B. Semielliptic Wing

ting plan form which is half an ellipse as shown
in figure 40. Let the semiaxi.s al and bl of the ellipse be given.
Let us assume that the wing moves, as shown in the figure, in the direc-
tion of the axis of symmetry.

4See the work of M. I. Gurevich: On the Lift M en Arrow-Shaped
Wing in Supersonic I?low. Prik. Mate. Nekh., Vol. X, No. 4, 1946. .
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The equation of the leading edge, the line D ‘D, in characteristic
coordinates wtth origin at O is

Yl=-~

md the trai~ng edge equation in these same coordinates is

Y1 =

In the

q2 . b12 cot2 a*)xl k 2a1b1 cot a* + b12 cot2 a* - X12

a12 + b12 cot2 G*

original x,y coordinates the trailing edge equation is

The plus sign relates to the arc CD of the ellipse and the minus sign
to the arc CDt.

Let us assume that the wing surface is a plane inclhed at an amgle

Wo
PO to the free-stream direction, therefore the normal derivative —

az.

as givenby (Al).
A

Let us consider the flow around the semiellipse when the character-
istic cones from D. snd D’ intersect on the wing surface. h con-
formance with the method we divide the wing surface into the four
regions 1, VI, VI’, and V. Region I is outside the characteristic cones
from .D and D’, hence the vortex sheet traillng frm the wing exerts
no effect here. Region VI is within the characteristic cone from D
but outside the cone frcm D1. Conversely, VI’ is within the cone
from D1 and outside the cone from D. Region V, however, falls witkdn
both the characteristic cones frcxn D and D1.

Using the formulas, we compute the pressure in each region on the
wing surface. The pressure in I is constant everywhere and expressed
by (A2). InVI the pressure distribution in the x,y coordinates is ‘
given by

P = u2’ppotan a*x

(B2)
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where

B2 2=al - lllaCots a*

Similarly for region VI’.

2u%po tan a.*
P(x,x) =

at

-1-sin-~

NACA’IM 1383

.

f~ =X+y cota+

The pressure distribution in V is

ml
+

/
cot U* Bly + B2f2 - 2albl cot a* B1 - f22

sin-l

%
(B3)

y cot cL* and ~, ~, and fl are as defined in (B2).

pressure distributions along the respecti~e sections AIB1

where fa =x

Graphs of the

and ~ parallel to the y-axis are given in figures 41 and 42 and

along the corresponding segments A3~ and A.4B4 parallel to the

X-sxiS are shown in figures 43 and 44. Spanwise section lines AIB1

and ‘2B2
are shown in figure 45; whereas chordwise section lines B

%3
and A4B4 are shown in figure 40.

If the semiaxis of the ellipse are given-in a special way; namely,
if there exists between the seruisxesthe relation al = bl cot a*, then

formula (B2) for the pressure distribution in region VI simplifies,
becoming

u?ppotana

{
2a12 - (x +.cot a~)2

P(X,Y) = 1 .: Sfi-1
x

}
(B4)

This corresponds to the case where the characteristic cones with apexes
at D and Dt intersect the wing trailing edge on the axis of symetry
of the wing at the point C; consequently the regidn V on the wing now
vanishes.

.

.

.

.
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In the general case for the flow around
may be shown that on the surface of the wing

91

a semielliptical wing, it
in region V, there exists

a certain curve slong which the pressure clifference between the upper
and lower surfaces of the wing reduces to zero. Downstream from this
curve on the surface of the wing the pressure difference becomes nega.
tive. We find the equation for this line of zero pressure by eq,,ting
the right side of (B3) to zero.

( )(4a12 -i-b12 cot2 a* + .a12- b12 eot2a*)24a~%3~ cot2 a* X2 +
, 1

[(
al2

) 1
- b12 cot2 a* 2 4a12b12 cot4 a*.+ 16alb12 cot6 a* @

= ( )( )4al%12 cot2 u..*a12 - b12 cot2 a* 2 a12 + b12 cot2m*

After obvious transformations,we represent the desired geometric locus
in the following finsl form

X2+Y2=1
T—aa b22

(B5)

where

2a1bl cot a* b12 cot2 ~*
a2 = b2 =

a12 + b12 cotz a*
‘0::+’

(B6)
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These results show that the zero-pressure line is the uc of an eld.ipse
with semisxes a2 and b2 related through (B6) to the semisxes al

and bl of the src of the ellipse which is the wing trailing edge. The

.

directions of the semiues ~ d b2 coincide ~th those of the ee~-

axes al and bl. In order that the zero-pressure line should not pass

through the wing surface, the elliptical arc forming the trailing edge
of the wing should not have a real point of intersection with (B5), which
determines the zero-pressure line. Compsring (Bl) and (B5) we obtain the
following result. lh order that the zero-pressure me) of a pme Wng
of semiel.lipticplan form moving at the supersonic speed u, should not
pass through the wing surface, it is necess- ~ sufficient ‘kt ‘he
geometric parameters of the wing satisfy the condition

(B7)

Constructed in figure 46 is an isometric tiew of the pressure on a
semiellipticwimg in the general case when (~) is not fulfilled and
there exist the regions 1, VI, VI’, V on the wing.

c!.Hexagonal.wing

Let us consider the wing of hexagonal plan form shown in figure 47.
Let the leading edges be the lines OE1, and OE1’, the side edges EID

and EltD’ parallel to the free stres,mjand the trailing edges DB and
D:B. In chara~teristic-coordinatespace, the wing has plan form as shown
in figure 48.

Let us assign the following geometric parameters: u - the angle
the leading edge makes with the free stream; y - the angle the trailing
edge makes with the tiee stresm; z - semispan and

h chord.

Let us consider tkt wing for which a> ~*, y> a*.
The firstinequality means that the wing surface extends outside of the character-

istic cone from O. we second inequality means that the wing surface
is outside the sphere of influence of the trailing vortex sheet.

.

.
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The equations of the lines forming the wing contours are: the
line O%

Y =X tana

or in characteristic coordinates

Yl=$xl

where

m= 1- Cot a* tan a

l+ctga*tgu

here m< 0, since b >a*; the line OElt

Y=- xtanci and yl=~l

the line EID

Y= 1 SJlayl= xl + 2 cot a*t

the line ~tDt

Y=” Z =dyl=X~-2cota*Z

the line IX3

Y= -xtany+htany and yl = ~xl+nl
ml
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.

and finally D*B

,

y=xtany -htsny and y1=mlxl~n2

where “
““l

ml = l+cotcl.*t~7 nl . 2h cOt a* tan 7

1- Cot a* tan 7 l+cota*tany

2h cot a* tan 7
n2=l - Cot U* tan 7

In conformance with the method we divide the wing surface into the
13 characteristicregions shown in figure 48.

Assuning that the surface of the wing is a plane, we give the stream-
line condition in the form (Al) and we compute the pressure in each
characteristicregion. We produce below the results of computing the
pressure on the wing surface as formulas already transformed back to the
original coordinate system. -.

The pressure in Ia and Ib is constant and exyressedby (A2).
In Ic the pressure is

.

Hence it
from O

p(x,y) =

follows that the pressue is constant
in Ic. Jm IIIa

(cl)

along each ray starting

2U2PPO(1 - m)
*=-1 2 CO*G* (2 -y) (C2)

g -cot a* (m - 1)(x + cot a* y) + 22 cot a*
.
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In IIIb

.

.

.

.Gic.t.*{’=+*E=z-2u2p~O(m - 1)
P(X,Y) =

tin-l r 2 cota*(2 - y)

(1- m)(x+ cota*y) +22 cOt u*-

75.-1 /+’] (C3)

In IIIc

2u2pBO(l - m)
taxi-l

2m cot a*(y - z)
p(x,y) =

‘3r-cot a* (1 - m)(x + cot U* y) + 2mZ cot a*

(d-)

In IIa

P(X,Y) =

tan-l
1. 1

i

(l-m)(x - cota,*y) -27, ccJtcL*

2 cotu*(z +y)
}
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In IIb
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In IIc

P(X,Y) =

., Gcota*{+%-Ezn-2u2p~~(l - m)
P(X,Y) =

t..-l

t--l

,m-l

/

,2 cot a*(z - y)

(l-m) (x+ cota*y) -2z cOt a*+

{

(1-m) (x+cota*y) -22 cOt a*

2 cot a*(z + y)

(c6)

.

.

–Y‘=-1 // x + cot a* y ‘t”-’~m-

tm-l F
2 cot a*(z - y)

(1 - m)(x + cot G* y) + 2mZ cot a* }

(C7)

Formulas for the pressure distribution on the wing surface in
regions IIIa’, IIIb’, IIIc’, and II~~may be obtained from (C2), (C3),
and (C5), respectively, if’coordinates appropriate to the specific
regions are chosen.

—

The formulas for the pressure show that there is a &ero-pressure
line on the wing surface, downstream of which the pressure difference
below and above the wing becomes negative. This line is formed of the
two segments KN and KNf the eqpations of which are

(C4),

.

.

,
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.

Y= xtanb- 22 tsllcf.*tan a Y=- xtan~+2z tana*tsna(c8)

and which sxe parallel to the leadll.ngedges ~0 and ~: O.

The zero-pressure line IUSYeasily be constructed graphically.

Graphical representations of the respective pressure distributions
in the sections AIB1, ~~, A3B3j A4.B4~~ A5B5 parallel to the
y-axis are given in figures 49, ~, 51, 52, S@ 53.

An isometric pressure s~face is shown in figure ~ for the
hexagonal plane wing.

Trsxwlated by Morris D. Friedman

.
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