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By H. Ludwieg
SUMMARY

It is shown that at a smooth wall in a turbulent boundary layer
the velocity profile next to the wall is dependent, aside from the
material constants of the flowing medium, only on the shearing stress
transmitted to the wall, even with pressure rise or with pressure drop,
Consequently, the heat transfer of a small element that is built into the
wall and has & higher temperature than that of the flowing medium is a
measure of the wall shearing stress. Theoretical considerations indi-
cate that the wall shearing stress of the boundary lsyer can be defined
by means of a heat-transfer measurement with an instrument mounted in
the wall. Such an instrument is described. The calibration curve and
its directional sensitivity curve are indicated. It permits the determi~
nation of the wall shearing stress in magnitude and direction,

I. INTRODUCTION

The technique in aserodynamic measurements frequently involves the
problem of defining the wall shearing stress of a turbulent boundary
layer, since it is of decisive importance for the entire flow process.
But its measurement presents great difficulties. Direct measurement by
means of a balance, as carried out by Schultz-Grunow (reference 1), is
feasible only in specisl cases, because of the large amount of instru-
mental equipment required. In general, it is restricted to flows with
approximately constant pressure in the zone of the experimental plate,
since, otherwise, uncontrollable slot flows occur, which introduce
considerable measuring errors. Another method, employed up to now,
consists in exploring the entire boundary layer with a fine pitot tube,
and then computing the wall shearing stress by the momentum method., But
"this method calls for considerable expenditure of lebor, since the flow
velocity must be determined in magnitude and direction over a wide range,

*WEin Gerdt zur Messung der Wandschubspannung turbulenter
Reibungsschichten."
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Moreover, the boundary layers are so thin in many cases that the
experimental determination of the velocity distribution in the boundary
layer cannot be effected at 8ll., The accuracy of measurement of this
method is very poor for complicated flow processes, since the test

value (the wall shearing stress) must be determined by differentiation
of slightly variable quantities (loss of momentum of boundary layer),
which, as is known, leads to inaccurate results, even when the quantities
to be differentiated are themselves measured comparatively correct.

Another method has been cited by Fage and Falkner (reference 2),
The special feature of this method 1is the pressure orifice at the point
of the wall where the shearing stress is to be measured.: Approximastely
1/20 millimeter above this orifice is a sharp knife edge. The portion
of the velocity near the wall (the laminar sublayer) is then demmed up
between knife edge and wall. The pressure rise below the knife edge
with respect to the undisturbed static pressure gives then a measure for
the wall shearing stress, since the velocity distribution in wall proximity
is definitely correlated to the shearing stress. However, in view of the
difficulty in handling and due to the extremely sensitive test probe, this
method has not made much headwsy.

According to the method described in the present report the shearing-
stress measurement is reduced toc a heat-transfer measurement.

II. PHYSICAL PRINCIPLES OF THE SHEARING-STRESS MEASUREMENT

The part of the velocity profile adjacent to the wall, whether for
the turbulent boundary layers on a smooth, flat plate without pressure
gradients in flow direction, or for turbulent boundary layers in smopoth
ripes or channels with constant section, can be represented in the
following form (reference 3).

2 - f(.Y;‘_) = £(y¥) (1)

f Dbeing the same function in all cases; u, the flow velocity; y, the
wall distance; v, the kinematic viscosity; u*, the so-called shearing-

stress velocity defined by the equation wu* =‘/Tw/p; Ty, the shearing

* .
stress transferred to the wall; and p, the density; ‘sz- is abbreviated

to y*., This relation, derived on the basis of a dimensional analysis, 1s
very satisfactorily confirmed by measurements (reference 3). For y*

values exceeding 50, the shearing stress is practically completely trans-
ferred by the turbulent exchange, while the contribution of the internal
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friction to the shesring-stress transfer is no longer worth mentioning.
Equation (1) assumes here the form

¥ =8logy*+b (2)

known as the logarithmic velocity law, with & and b as universal
constants,

In direct proximity of the wall, that is, for very small y* values,
the turbulent exchange is voided by the presence of the wall, and the
shearing stress 1s then transmitted solely by the intermal friction of

1

the flowing medium. From the equation T = ug% defining the internsl

friction and the boundary condition u =0 for y = 0, it then follows,
that for these small y* values, equation (1) assumes the following form

u* v

This purely laminar layer next to the wall is called the laminar
sublayer of the turbulent boundary layer.

Between these two parts of the boundary layer, there is also a
corresponding transition zone, where the shearing stress is transferred
in part by turbulent exchange, and in part by internal friction.

With a view to ascertaining the thickness of this laminar sublayer
and the variation of the function in equation (1), in the tramsition
zone, Reichardt (reference 4) has made a number of velocity-profile
measurements extending into the laminar sublayer. However, since this
sublayer is, as a rule, very thin, he was forced to maske the measure-
ments at very small u¥* <values, which means at small flow velocities
where the sublayer was thick enough for exploration with fine hot wires
and pitot tubes. The measurements indicated that the laminar law,
equation (3), is rigorously valid only up to y* values of from about
1.5 to 2. At y* = 5 the velocity differs by about 10 percent and
at y*¥ = 10 by about 25 percent from the law given by equation (3).

lT = shearing stress, up = viscosity.
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A1l the existing measurements and theoretical investigatioms, which
show that the velocity distribution in wall proximity can be represented
in the form of equation (3), refer to the two specific cases: developed
turbulent flow in a pipe or channel, and flow past a wall at constant
speed outside of the boundary 1ayer,(constant pressure in direction of
flow). But, for the shearing-stress measurements under consideration,
the velocity distribution close to the wall in general cases, that is,
in flows with considersble pressure rise or drop in flow direction, is
exactly the point of greastest interest. Still, it can be assumed that
equation (1) is approximately valid here also for points nearest to the
wall., This i1s readily proved for the laminar sublayer. It is true that
the shearing stress T at a short distance from the wall differs a little
from the wall.shearing stress T, since for points near the wall Prandtl's

dx.
appearing pressure increases and decreases and the very small thickness

of this sublayer, this increase and decrease of the shearing stress within
the laminar sublayer is so small that T =T, = constant still is closely

aprroximete and equations (1) and (3) remain appliceble, But it is also
anticipated that the transition zone from the purely laminar to the
turbulent part 1s closely approximated by equation (1) bvecause this layer,
too, is still so thin that the variation in shearing stress due to the
pressure gradient is trifling. Even the state of flow departing substan-
tially from.the law, equation (1), at greater wall distances, is not
indicative of an effect in wall proximity; for the velocity profile in
plate flow without pressure rise and that for flow in pipes or channels
are markedly different at great wall distances and still are reproduced
very satisfactorily in wall proximity by equation (1). The same holds
true in rough approximation for the adjoining purely turbulent zone in
wall proximity. :

general boundary-layer equations give %1 = 4p But, for the normally
¥

So these considerations show that the same general speed law as for
constant pressure (equation (1)) is applicable also to boundary layers
with pressure gradients in flow direction in wall proximity, &although 1t
is to be expected that the departures from this law start at so much
smaller wall distance as the pressure gradient is greater,

A certain experimental proof of the validity of equation (1) cen
be found in Wieghardt's measurements on boundary layers with different
pressure gradients (reference 5)., For it is shown that the velocity u

neer the wall is approximately proportiomal to yl/7'7 for all velocity
profiles. Now the general law, equation (1), which applies at constant
pressure, can be approximated, as is known by & power formula

u . c(m>l/ . | (1)

u* v
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(reference 3), wvhere n and C are constants still somewhat dependent

on the y* range, in which this general law, equation (1), is to be
approximated as closely as possible. In the range involved in Wieghardt's
measurements, n is a number of around 7 to 8; hence it may be assumed
that the law, equation (1), in this smell adjacent zone is applicable also
with pressure rise or pressure drop. But this finding is not conclusive,
since in Wieghardt's measurement the factor wu* is not known, so that in
equation (4) the power of y can be proved but not the numerical factor C.
At this point reference is made to a report by H. Ludwleg and W, Tillmann,
shortly to be published,* in which it will be shown that, for the pressure
gredients involved in practice, the general speed law, equation (L4) and
equation (1), respectively, reproduces the velocity distribution rather
closely and up to comparatively great wall distances.

With validity of the general velocity law, a shearing-stress measure-
ment will be a simple matter, in theory. It simply calls for a measurement
of velocity u at any distence y followed by insertion of the two values
in the equation (1) resolved with respect to wu*. The result is u* and
with it the wall shearing stress T, . The only drawback is that the

velocity must be measured at very short wall distance (at best, within the
laminar sublayer) because it is the only place where the general velocity
law is still applicable with the necessary exactness. Considering the

fact that the thickness of the laminar sublayer in asir currents with the
usual velocities is, as a rule, only a few hundredths to tenths of a
millimeter, it is readily apparent that the customery mechanical aids
(pitot tube, hot wire) are useless for such measurements. An attempt was
therefore made to assess the velocity distribution in direct wall proximity
by means of a heat—transfer measurement. The method 1s explained by way of
the diagrammatic drawing, figure 1. A fluid or a gas with turbulent boundary
layer flows past a solid wall C; its velocity profile is shown at the left-
hand side. The sublayer (straight streamlines in fig. 1) is laminar in wall
proximity, the outer part of the flow is turbulent (wavy stream lines). A
small, heat conducting metal block A is inserted in the solid wall C
(considered heat resistant, for the present). * A small electric heater
raises the temperature of the block A ebove that of the fluid which is to
have the same temperature as the wall C. Starting from the forward edge

of block A, a warm boundary layer (layer with higher temperature) is built
up within the boundary-layer flow, indicated by crosshatching in figure 1.
By meking the length of block A short enmough, the thickness of, the warm
boundary layer can be kept small, The amount of heat transferred to the
fluid is then defined, by the temperature of the block A, by the known
material constants of the flowing medium, and by the velocity distributlion
in the immediste proximity of the wall. But, by equation (1), this

velocity distribution is, aside from the material constants, only affected
by the shearing stress velocity u*, that is by the wall shearing stress Tus

so that, with given material constants and temperature of block A, a unique
correlation of shearing stress and heat transfer of the block is obtained.

"This paper is available as NACA TM 1285,
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This relationshlp can then be determined by a calibration measurement with
known shearing stresses. In the following, this relationship is investigated
in the light of the differential equation of the heat transfer.

III. THEORETICAL CONSIDERATIONS ON THE RELATIONSHIP BETWEEN

SHEARING STRESS AND HEAT TRANSFER

The first problem is to establish, in the light of the differential
equation and the boundary conditions, how the relationship between shearing
stress and heat transfer can be expressed nondimensionslly with the most
generel validity.

The solid wall in figure 1, regarded as absolutely heat resistant,
is to coinclde with the x axis, The heated block A of constant temper-
ature Ty 1is to reach from x =0 to x =1, The fluid, so far as it
is unaffected by the heating element, has a temperature T, The coor-
dinate at right angle to the wall is denoted with y.

To simplify matters, it is assumed that the flow field is not affected
at 811 by the temperature field, Theoretically, this can always be obtained
with any degree of accuracy by choosing (T —-Tug small enough.

The differential equation for the heat transfer reads then

pep (¥ grad T) — div (xeff grad T) =0 (5)

vhere w 1s the vector of the flow velocity with the components u and
v, end cp the specific heat at constaht pressure. The thermsl conduc-
tivity 1s expressed here by an effective value Aers 1n view of the

apparent increase in thermal conductivity as 'a result of the turbulent
exchange outside of the laminar sublayer. In consequence, Xeff is

affected by y. In the immediate vicinity of the wall, where the
entire heat-transfer problem tekes place, the general law (equation (1))
can be applied to w. Thus

u*f (y*)

[
]

v=20
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The velocity compoment v at right angle to the wall 1s equated
to zero in the immediate vicinity of the wall, because Ty and u¥,
and therewith the velocity profile itself, vary very slowly. From
dimensional considerations, it follows that the effective coefficient
of heat conduction A pp must be representaeble in the following form

rerr = Ag(y*,Pr) (7)

c
where A 1is the normal hest conductivity factor, Pr = EXE ) the

Prandtl number, and g, an unknown function. Introducing equation (6)
and equation (7) in equation (5) and replacing x and y by the
variables

M= Re = v T (8)

f(_VT%ZT_&—g(\/g‘?” 2E2 (82T> —\Flaa?\—o )

with the boundary conditions

gives

T =T, 0Se< for n =0

T _ o _

0 —wle o 1%t for § = O (10)
T = Te forn =™

with, for abbreviation, 4% =7,
Ve

va

From the homogeneity of this differential equation in T, the form of
the coefficients, and the form of the boundary conditions, it follows
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that the temperature field can be represented in the following form: s
T=T°°+(TW—T°‘) h(§: n, Pr, 7) (11)
Since directly at the wall the heat transfer is solely by conduction,
the heat volume Q transferred in unit time is
1 7 -
- oT T
Q= br (_ ax=bvr [ (&£ d=bx(T —T)k'iP
b is the width of the element, k, a function not further identified.
Now, when the mean transfer factor a ;
a = Q ) (13)
ZbZTw - 1w5
and the corresponding dimensionless heat-transfer factor, the so-called
Nusselt number KNu = %}, are introduced T
Nu = x(7,Pr) (1) .

Thus it 1s seen that, on the assumption of a constant Prandtl

| ; 2, 1/2
number, a unique relationship exists between quantity 7=24 l = aw
= N V') |
and the Nusselt number Nu = %l. The Nusselt number Nu 1is defined by

a measurement of Q and (Tw - T,), and then 1, u¥ and T, can be
computed, when the function k is known. Theoretically, this function Kk,
that 1s, the relationship between Nu, 1, and Pr, could be determined

by integration of equation (9); it would merely involve some assumptions
identifying the variation of the function g(y*,Pr). In view of the
uncertainty of this assumption and the fact that in the construction of -
a measuring element the ldesl forms serving as a basis of the calcula— ’
tions cannot be mainteined, this complicated calculation process is N
not worth while, The connection between Nu and 7 1s much better -
obtained by the calibration measurement, which does not have to be made
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with the same flowing medium for which the measuring element is to be
used later, although both mediums must have the same Prandtl number.

If the lengths 1 and Z are chosen small enough so that the
warm boundary layer remains completely within the laminsr sublasyer, the
theoretical connections are simplified substantially. According to

equation (3), the expression f( L ) = J_ can be then put in equa—

VPr VPr
tion (9) which gives, since the turbulent exchange is also ebsent,

)
S\Wee ) (15)
o
Hence by equation (9)
o (Fr, Fr)_
3 .<a§2+5n2 i o
with the corresponding boundary conditions
T =T, 05¢ST for 7 =0
%:o —eSES0 1<E<, for =0 (17)
T="T for n=o

Thus ¢ (dimensionless depth of elemenE) remains the sole parameter
of the solution in the &, 7 system. At 1 +values not too small, the
thickness of the warm boundary layer 1s small compared to its length.

The entire forward portion of this layer up to £ +values approaching
those for 1 1s then entirely unaffected by 7. Therefore the solution
of (16) for the boundary conditions

T=T; for 0SS, "and 17 =0
or ' <e<
i 0 for —o S ESO and 1 =0

gives, at the same time, the correct sclution for the correct boundary
conditions, '
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For sufficiently great £ values, the usual omission of the

boundary—layer theory in the differential equation leaves << —f%
hence on
T _ 4T :
—_——— =0

Leveque (reference 6) already transformed and solved this partial
differential equation by substitution of

N =l (29)
(9¢)
into the ordinary differential equation
= dET
372 dﬁ =0 (20)

with the boundary conditions

T = Ty for 7 =0

T="T, for n =
Transferred and resolved, the temperature field is

T = Ty — (Tw T JF(R) (21)

‘//ﬁe';ﬁ3dﬁ

- o _

)———-—/‘m =3
JO

Therefore, the temperature depends solely on the parameter 7, or,
in other words, the temperature profiles, the thickness of which increases

with ¢ /3

with

(22)

» are similar in sections & = const. Computing the heat
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volume Q transferred from it, then the Nusselt number Nu as function

of 1 gilves

_ 5v2/3 _
T = g§.= (97) - 0.807 12/3 (23)

6 we"ﬁBdﬁ
0

or, when 1 1s replaced again by the original quantities,

1/3
- 0.807(23 / /3 (2h)

Tu = L
T

!

. e

The Nusselt number Nu and the heat—transfer factor @ are in this
case, proportional2 to the third root of the wall shearing stress. On
assuming that the warm boundary layer remains within the laminar sub—
layer, the dependence of Nu on the Prandtl number cancels out
sltogether.
T, T

In figure 2, the temperature field v— F(q) is plotted
against T according to equation (22). Defining the wall distance at
which the tangent to the temperature profile in point ¥ = O and the
asymptote to the temperature profile meet (fig. 2) as thickness of the
thermal boundary layer, the latter follows as '

5, = 1. 86(%’5)1/3 (25)

The thickness of the leminar sublayer is given by the following
relations

wlr, _ c (26)

v

where C 1s a constant, which, depending upon the demands made on the
laminarity, ranges between 1.5 and 10. By equations (25) and (26) the

cp' /6 e 1/3
By _ 10,86(%)1 <11:'§l) (27)

B,

ratio 2¥ follows as

81,

2(Derived independently by Reichardt.)
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T

where cp' = 7 w2 -1is the local coefficient of friction, that is, the
p/2U0 - }

wall shearing stress T, made dimensionless with the dynemic pressure

outside of the boundery leyer. The factor Re; 1s the Reynolds number

formed by 1, the veloclty U outside of the boundary layer and the
kinemetic viscosity V, and Pr the Prandtl number. Since cy' wvaries

rather little as a rule, (ordinarily ranging from 0.002 to 0,003,
%; 1/6 is practically a constant. '

On entering the material constants for air, the velocitles usually
occurring in air and the practical element length 1 of gbout 1 mm,
into equation (27), it is seen that the thermal boundary layer generally
extends a little beyond the laminar sublsyer. Nevertheless, it is antici-
pated that with the use of small 1, the law, equations (23) and (24),
st11l reproduces the relationship between heat transfer and shearing
stress approximately because the change in heat transfer due to turbulence
occurs only in the outer zones of the thermal boundary layer, where the
temperature gradient 1s small in any case. Furthermore, two effects,
compensating in part, occur in this case, The turbulent exchange is
accompanied by a greater heat transfer and the exchange of momentum by
a decrease in the mean flow velocity, which 1s equivalent to a reduction
in heat transfer,

Incidentally, it should be borne in mind that this dipping of the
thermal boundery layer into the turbulent part detracts in no way from
the validity of the relation between heat transfer and shearing stress,
save for the change in the form of equations (23) and (24) which has no
effect on the present measurements, since the relationship between heat
transfer and shearing stress is to be determined by a calibration measure—
ment anyhow,

In the derivation of equation (24), the assumption that the thermal
boundary leyer remains entirely within the laminsr sublayer was supple—

mented further by the assumption SE% << QE%’ which is certainly justifi-

on
gble for greater &, while, for very small values of ¢ quite near the

forward edge of the element, %EE is no longer negligible with respect

to éég. But an iteration, in which gfg is replaced_by the value from
on g .
Leveque's solution as first approximstion, indicates readily that
substantial variatigps in heat transfer occur only for £ values less
then 5., BSo, when 1 1s considerably greater than 5, as is the case for

air flows with the usual velocities, the omission of term 5 plays no
ot -
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essential part. Therefore, it i1s expected, according to equation (24),
that in the tests which are to be made in air, the third root of the
shearing stress 1s approximately proportional to the coefficient of heat
transfer. Obviously, for very small 1 values, where the omission of
term %%% is no longer permissible, the relationship between heat

transfer and shearing stress remains unique.
iV. DESCRIPTION OF SHEARTNG STRESS INSTRUMENT

Figure 3 represents the instrument for measuring the shearing stress,
which has proved very practical in the shearing measurements in air,
described in section V. The construction and mode of operation is
explaeined by way of this drawing. A steel ring D is fitted and screwed
tight into the smooth wall C on which the shearing stress of the air
streaming pest is to be measured. It is essential that D insure the
best possible heat conduction with the wall C (large contact area), in
order that the heat passing from the measuring instrument to the wall
as & result of imperfect heat insulation, does not heat up ring D. The
measuring element 1s fitted into the hole of ring D as closely as possible
and held by a hard rubber lock nut F. To obviate the use of an instru—
ment for each test station, dummy plugs may be used. Naturelly, all
pieces must be fitted flush so as to leave no edges at the Joints which
might disturb the boundary—layer profile of the flow.

The instrument itself consists of & brass casing B in whose hole
the 2— by 9— by 6~mm copper block A is mounted. The block is held by a
cellulold diaphragm E of about l/lO—mm thickness cemented on the 2- by
S—mm surface, which is cemented over the opening of the casing as
smoothly as possible., A pressure—equalizing hole H in the wall of the
housing prevents the diasphragm from bulging during a pressure difference
between inner and outer space, A thread l/lO mm deep, cut in the cas—
ing B at the seat of the diaphrasgm, insures & very smooth surface. This
method of mounting the block A provides adequate heat insulation relative
to housing B, because with the small dimensions of the hole in the cas—
ing B, for which the convectlon produces no essential contribution to the
heat transfer, the air forms an excellent heat insulator, and the dia—
phragm itself, being of little thickness and low conductivity, transfers
no great volume of heat to the casing A, The heat transfer from block A
to the air, on the other hand, is little affected by the celluloid dia—
prhragm because it is thin., Block A also carries a little electric hesater
of about 0,13 watt, In addition, the temperature of the block can be
measured by a thermocouple whose Jjunction is located near the heat—
transferring surface. The four wires of about l/lO—mm gage pass
Insulated through the bottom of the casing A. Back of the bottom, the
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wlres have a greater cross section. The wires pass through the hard
rubber cap A to keep the casing B from being heated by the heat of the
operator's hand when changing the instrument., An indicator K and dial L
marked off in degrees above ring A complete the setup. This way the
direction by which the block A 1s fitted can be read from the outside.

V. MODE OF SHEARING-STRESS MEASUREMENT AND DETERMINATIOR

OF THE CALIBRATION CURVE

According to Segtio?3III, a definite relatlonship exists between
= — 157

Nu = %% and 1 = ( paw when the Prandtl number Pr is given. It
was also indicated that the exact form of the relationship for the
present instrument was to be determined by a calibratioff measurement.
The first problem consists in finding how the quantities o and Nu
can be measured with the instrument. It calls for the measurement of
the hest volume Q transferred from the intrument A in unit time and the
temperature difference (Tw - Tw). The heat volume Q 1s readily meas—

ured by applying a certain electric voltage, and with it also heat input
at block A, and walting untll the steady state is reached; for the
amount of hest transfer must be equal to the input, which is readily

measured. - The temperature difference (Tw - Tw) is best determined by

using a second instrument, which 1s installed in the same wall, as cold
junction of the thermocouple when the heating is turned off, The
appearing thérmocouple voltage, which is proportional to (Tw - Tw>, is
measured with a potentiometer or a sensitive ammeter. In the second
case, the voltage drop due to the finite resistance of the lead—in wires
must be taken into consideration as a rule, From @Q and (Tw - T“J

the value of o and Nu can then be computed,

However, it 1s to be noted that the amount of heat given off by the
block A consists of two portions, the heat volume transferred direct
from the block toc the flowing medium and that transferred to the wall C
as a result of the Imperfect heat 1lnsulation of the block A, The deter—
mination of o and Nu Jjust indicated, comprises both portions, while
the theoretical considerations of Section III refer only to the first
portion. However, since the second depends only on the Intrument itself
and 1s unaffected by the transmitted shearing stress, it merely results
in a parallel displacement of the calibration curve.

To provide a known shearing stress for the calibration measurement,
the instrument to be calibrated was installed in the rectangular test
length described by Schultz—Grunow (reference 1) in a flat sheet steel
wall, 6 meters in length and 1.4 meters wide. The opposite, movable
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wall was set for constant pressure over the entire test length. A
boundary layer, like on an infinitely thin flat plate in parallel flow,
forms then at the wall. The friction coefficients, and hence the shear—
ing stresses, have already been computed by various writers (references 1,
7, 8, and 9) by various methods and are therefore fairly accurately
known. The present calibration tests were based on the Schultz-Grunow
test data, since they had been secured in the same test length by direct
force measurements, and so any defects in the experimental setup do not
involve the calibration measurements, Now, according to the arguments
in Section III, the assumption of a fixed Prandtl number mekes Nu =a
single-velued function of 1, but the derivation was made on the assump—
tion that the temperature rise (Tw —-Tw) is so small that the material
constants within the thermal boundary leyer still can be regarded as
constant, For instrumental reascns, CDW —-Tw) cannot be made so small
that this assumption is rigorously correct. For this reason, the rela—
tionship between Nu and 7 is somewhat different, depending upon what
temperature difference (Tw - TaJ is chosen. Aside from that, 1t also
depends somewhat on whether or not the dimensionless quantities Nu and
7 are formed with the material comstant corresponding to T, or Ty.
This difficulty is overcome by stipulating that the material constants
corresponding to T, be made dimensionless, and also that the same
temperature difference (Tw'—'Tab always be used, The second require—
ment is replaced, for reasons of measuring technique, by the stipulation
that the operation slways be cearried out with the same heat input. This
also ensures a definite relationship between Nu and 7. The adjustment
of the fixed heat. input is much more convenient than the adjustment of
the fixed temperature Ty, where it is necessary to await the slowly

approeching steady state first before an sdjustment can be made., As

calibration curve, 72/3 is then plotted as abscissa against Nu as
ordinate. On the assumption that the thermal boundary layer does not
extend appreciably beyond the laminar sublayer, the calibration curve

is, according to equation (23), approximately a straight line, which,
however, -does not pass through the origin of the coordinate because of
the smount of heat passing through the imperfect heat Insulation onto

the wall. Figure 4 represents the calibration curve for this instrument.
It shows the approximately rectilinear variation of the calibration curve
over a wide 7 range (1 range equivalent to & shearing—stress range of
about 1:223). The curvature is largely attributaeble to the presence of
the celluloid diaphragm between the surface of the copper block and the
flowing air. Measurements with other instruments fitted with glass
diaphragms (greater heat conduction) exhibited much straighter cali—
bration curves, but poorer heat insulation relative to the casing.

The straight line anticipated by equation (23) is shown as a dashed

line. The variation of the shearing stress and of quentity 1 was
effected once by varying the flow velocity and then by shifting the
position of the instrument. The instrument was first mounted 1.78 meters
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from the front edge of the wall, then 5.28 meters from the front

edge. In both cases the total speed range was covered, The points of-
both test series are seen to be in good agreement. The slight system—
atic difference is not necessarily attributable to the instrument, since
it i1s not greater than the measuring accuracy of the Schultz-Grunow
measurements used as basis of the calculation. According to the theo—
retical considerations in Section IIT, it was possible to carry out the
calibration measurements with a different flowing medium also as long
as the Prandtl number was the-same in both cases. When the imperfect
heat insuletion of the block A is taken into account, this is no longer
possible as is readily apparent from the following reasoning:

When quantity 7 is given, the Nusselt number corresponding to
the direct heat transfer onto the flowing medium is fixed, but the
Nusselt number corresponding to the direct heat transfer onto the wall
is somewhat different for various flowing mediums, since not all of the
heat flows through the casing into the chamber, but a part passes directly .
through the celluloid disphragm and through the heating and thermocouple
wires. For this reason, the - calibration and the principal measurements
are carried out as much as possible on the same medium and at the same
temperature, since the different temperatures correspond to different
material constants of the medium, and hence the effect is the same.
However, this temperature effect is quite small so that temperature
fluctuations of 5° C have no measurable effect., In measurements at
greater temperature fluctuations, the relation of calibration curve and
temperature must be determined separately.,

VI. DIRECTIONAL SENSITIVITY OF THE INSTRUMENT AND

MEASUREMENT OF THE DIRECTION OF THE SHEARING STRESS

The shearing stress transmitted by the flowing medium on the wall
is a vectorial quantity; hence its exact ldentification is predicated
upon knowing its absolute magnitude and direction, In meny cases, the
direction is automastically given by the direction of the flow outside
the boundary layer, that is, when no pressure gradient perpendicular to
the direction of flow exists, because then a two—dimensional flow is
formed in the boundary layer. In such cases, only the magnitude of the
shearing stress is of Interest., The Ilnstrument is then mounted in such
a way that the narrow side of the surface of the block is parallel to
- the direction of the shearing stress. In this case, it is desirable
that the instrument have a low directional sensitivity in order that
minor angular errors during mounting of the instrument do not result in
erroneous measurements., In figure 5, the measured Nu divided by the

Nusselt number at angle @ =0, Nupo 15 plotted against the angle o
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(angle between shearing stress and direction of the narrow side of the
surface of block A). The more than satisfactory directional sensitivity
of the probe is readily apparent. Up to angles of +15°, there is mno
error at all, and even at greater angles it is very small.

But frequently there are also flows with pressure gradient at
right angles to the flow. In that case, the flow within the boundary
layer has a different direction at different wall distances. The
direction of the shearing stress 1s then determined by the direction of
the flow in the immediate proximity of the wall, This is a case where
the direction of the shearing stress is not given to begin with and must
be ascertained by measurement. The same instrument can be used, but it
1s mounted in such a way that the direction of the shearing stress is
approximately parallel toc the long side of the surface of block A, A
heat—transfer measurement gives the directional dependence of the

' Nusselt number represented in figure 6; it shows a distinct minimum

when the shearing stress is parsllel to the long side of block A, A
few measurements at three or four points on either side of the minimum
give this minimum, and with it the direction of the shearing stress,
fairly accurately.

Translated by J. Vanier
National Advisory Committee
for Aeronsutics
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Figure 1.- Diagrammatic representation of the test method. Laminar
sublayer (straight streamlines), thermal boundary layer (cross hatching),
turbulent part of boundary layer (wavy streamlines).
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Figure 2,- Temperature profile of thermal boundary layer for the case of
thermal boundary layer contained entirely within the laminar sublayer
(according to equation (22)); 8 defined as thickness of thermal
boundary layer.
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Figure 3.- Instrument designed for measuring wall shearing stress.
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Figure 4.- Calibration curve of instrument shown in figure 3. The parallel
displacement between the two curves is due to the fact that the direct
transfer of heat tc the wall is not taken into account for the theoretical
curve.
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