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" TEGHNICAL MEMORANDUM NO. 1085

CALCULATION OF TURBULEﬂT EXPANSION PROCESSES*

By Walter Tollimien

3 1176 01351 7173

~-On:the basis.of certain formulas reééntly established by
L, Prandtl for: the turbulent interchange of momentum in sta-::*
tionary flows (reference 1), various ecases of "free turbu-
lence" - that is, of flows without boundary walls - are treated
in the present report. Prandtl puts the apparent shearing
stress introduced by.the turbulent momentum interchange

Xy , dy | dy .o
where
u . average velocity in’ % direction'
¥y coordinate at right angle to x
1 mixing length
The underlying reasoning is as follows: The fluid bodies en=-

tering right and left through a fluid layer with the time av-

erage’value of the velocity u, at turbulence, have the aver-

age velocity u + 1} %E or u ~ 1 %E, wnile the transversely
) . o i v

directed mixing velocity is 1 IQE , discounting a constant of

proportionality included in the more or less accurately known

1 of formula (1); 1 ,is no constant - at,a,wall 1 = O.

The previously cited report by Prandtl (reference 1) contains

a lucid foundation for formula (1).
The present report deals first with the mixing of an air

streamvof_ygifqgm velocity with the adjacent still air, then
*q

Berechnung turbulenter Ausbreitungsvorginge." Reprint
from Zeitschrift fur angewandte Nathematik und Mechanik vol.
6, 1926, pp.-l 12. . ‘
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2 ' NACA TM No. 1085
with the expansion or diffusion of an air Jjet in the surround-
ing air space. Bxperience indicates that. the width of the
mixing zone increases linearly with x, if =x 1is the dis-
tance from the point where the mixing starts. This fact is
taken into .account by -the formula -

L Vo= ex ' (2)

The constant of proportionality ¢ can as yet be determined
only by comparisgon with experience; it is the only empirical
constant of the theory. In many instances 1t will be expedl-
ent to introduce N = y/x as a second coordinate.

1. MIXING OF HOMOGEXNEOUS AIR STREAM VWITH THE
ADJACENT STILL AIR

(Two~dimensional problem of the free jet boundary)

By reason of the limiting conditions for the average ve-
locity the formula is preferadbly expressed with

u = f(y/x) = £(N) (3)

Then the stream function is .

/f(%) dy (4)
x/f('ﬂ)d.n = xF(7N)
oV

v=- o= -F(N) o+ 0PN

v

hence

Quantity T is put according to formulas (1) and (2)

" I = c‘?’ x2 QE'. g’.\.l_'
P dy | dy-

The following boundary conditions exist: At the first
boundary T, (homogeneous air stream), wu = constant or by
introduction of a suitable scale wu = 1; that is,
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'a condition by -which the-continuous connection is secured -
that is,

F(n,) =0 | (6)

!
o

that is, 7(n,) =1, (7)

at the second boundary Tz (still air) must be u = 0
that is,

oo . . .Fl(-rlz) = 0 » T (8)

and, to assure continuous connection f%%;=;b; ‘that is,

1 OF
l -

i(n,) =0 ()

\- AT w3 v ! oA B
T 2 PR IRS-S
K i ) ]

dor RN SO o weleaL T
§ince the pressure, in first approximation, can be

assumed to be constant, the equation of motion reads
e o= " Vi

' oT
a o, you 17 xy
ox 3y p OV
Counting vy vand N from the still toward the moving air,
gives, after introduction of the formulas®, the equation of
motion: :

’

FF' + 3c2 FNFMaz O

*It is readily apparent at this point, that the formula
u = f(ﬂ), necessarily requires an 1 ©proportional to x.

5




4 NACA TM No. 1085

which is solved by F" = 0 or ‘¥ % 2¢® F" = 0, It affords
uniform veloecity in the one case, variable velocity in the
other. The latter solution odbviously applies betiween Ny

and T,, the former, outside of these limits. In the bound-

ary points the solutions coincide with discontinuity in FW%,
In order to determine the velocity distribution in the mlxing
zone, the differential.equation of .the third order’

F 4 2¢°F" =0 (11)

must be solved. TFor the time béing. a new scale for T 1is
advisable, so that formula (11) simplifies to

F s+ PM =0 (11a)

The result then is

F = ¢, =T & cz eﬂ/3 cos 4‘2 N + ¢z en/a sin -Eé M

The five boundary conditions define theAcéﬂsfanﬁs of integra-
tion c¢,, ez, ¢5;, and, in addition, the still unknown bound-
ary points T, and TNz themselves;

The calculation is suitably arranged as follows: Put

M=N-N or.NM=17n24+170,
80 that
P =4, e"'n + d, en/a cos —— ﬁ + da en/2 sin — 1
The boundary conditions‘are:

F(M) =0, B =1, () =0 for T = 0, Fr (M) = 0,

F'(M) = 0 for T, (l2a-e)
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From (12a to:c), d,, dz, and d, . can be linearly expressed
in T,, equation (12d4) yields M1, expressed. by na.mjﬁaq;p.

(12¢) finally gives a tranacendental equation for nas éoli-
able by successive approximation. It follows that

Mg = -3.02, N, = 0.981, 7, = -2.04, d, = -0.0062,
dy = 0.987, dg =:0,577°"

With this F and F! areudéfinéd as function of 1. For
comparison with experience, the orizinal scale must be used -
that is, the reduced T, - .employed thus far, must be multi-

plied by §?2ca, and the reduced F' by U, the veloclty of
the homogeneous air stream. - The curves of the velocities and
of the streamlines are given in the table and in figures 2 to
4. The streamlines are plotted for equidistant values of the
stream function. The streamline emanating from x =0 1is a

straight line with angle of inclination

~tan™ (0.19%72e%) - .-

For comparison,a G8ttingen measurement (reference 2) of the
dynamic pressure distribution with an automatic pressure re-
corder at the edge of the nozzle of the big tunnel was em-

ployed. The distance from the nozzle edge was 112 centimes

.ters, the dynamic pressure of the undisturbed Jjet g = 56

kilograms per gquare meter. It can be presumed that the as-
sumptions of the two dimensional problem hold good for the
size .of the nozgle. .In:figure 5 the calculated dynamic pres-
sure is shown as a dashed line over the measured dynamic
pressure., The unknown constant of proport10na11§§ follows

“from the conversion factor for T, which is J/2¢° = 0.0845.

The width of the mixingizone is

2¢® x 3.02x= 0.0845 x 3.02.x= 0.255x

giving‘gfmixing‘lengﬁﬁ,of' ;

! = 0.0174.x = 0.0682 b
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The relative smallneds »¢f 1 1s unusual. . The agreement be-
tween the theoretical and the measured average velocxty dis~ ..
tribution 1is very gaod :

-

e {0

2. JET EXPANSION AS TWO-DIMENSIONAL PROBLEM

¢

Visualize a wall with a narrow slot, which for the study
may be regarded as being linear, through which a jet of alr
is discharged and mixes with the surrounding still air, As-
suming, for the first, that the pressure in the jet is the
same as outside, the application of the momentum theorem af-
fords a ready separation of the variables - that is, x  and
Tl. By reason of the constant pressure the momentum in 'x
direction must be

+oo
d/n u?® dy = constant
Futting u = @(x) £(N) results in
+co
0> (x) x‘/p £2(n) an = constant
Consequently .m(x) =J%§
= L | 3
u e £(n) (132a)
N o
v =/ L £(n)ay =A/x/f('ﬂ)d'ﬂ =/ F(1) (131v)
J vE . .
voe o2 () o+ ()N (13¢)
2.k Vx

The equation of motion can be set up again, which now,
however, can be immediately integrated once. This interme-
diate integral can equally be obtained direct from the momen--:
tum theorem. 3By marking off a control surface conforming to
figure 6, the impulse entering through the lower boundary is
puv, while on the other side the impulse variation
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v - - T R o
'p éi u? dy oceurs. The furbulent shearing“stresS Lha
x. : ' : ’

[+ = 30N . N . :
2.4 g - LI Y i

T':: ( ﬁ—
. Jéc {ay ay _

acts as oﬁtside force. hence the relation exists

uv + 2 ' u® dy = L

1
- 3

From this follows. the equation for F(ﬂ)

A
2.7 #® - FEo (14)
(valid for positive T}, reflected velocity distribution“for
negative T). With a suitable’ scale for 1 the differential
equation 1s simplified to '

LA L B P M {iaa)

. \ Coor . .
The order of this differefitial &guation can be lowered by in-
troducing =z = ln F; that is, F = e as new dependent
variable. Then, (z" + 2'°)® = z' whence, after putting
z!l-= &, -finally follows: the differential equatlon of the
first;. order. g .

i R T

The solution of the original equation then requires only
squaring and removal of the logaritnms. .
The following conditions must be saflsfie& For T =

(center of jet), = 0 - that is, F = e% = 0. Since

u o~ F' = zle® is not to disappear for T = O, z' must be
of the’same order. of - » for T = O- as eZ  is of. 0.  Hence,
for T = O by suitable scale determination,

s . - . H N PR Ameros v
tore A SR . o . t .

P =0 (15a)

F' = 1 (15b)
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Thus there are afforded two conditions through which the 'z,
that satisfies an equation of the second order, 1is completely

defined. vt L it

The boundary point Tip itself then follows from the
condition SR

w = 0:; that is, z' =2 = 0 (16)

for the boundary TN,.

Integration of equation (14) gives.x

N =0-2 1n Q/E + 1) - 1ln [(Z -./E + 1)1/

3

] + /3 tan-? ﬁl:;€}

(17)

¥

The constant of integration € follows from the condition
gt = 2 = ® for T = O

0=0=-22,/3T gt €=U
3 2 vﬁ;

The condition (16) 2 = 0 for TNy -yields

2 = -1 1 4 T :
=0 - 2/3 tan <- -->= 4T - 2,412
e 3 7w s ET R o

Compliance with equatidon (15) is predicatéd on a study of the:
behavior of equation (14) for T = 0, 2 = o As the solu- - :°
tion (17) in this range is 1nconvenient a new form of solu-
tion which applies for T =.0; & = o"1is derived.

For 2 —> >, obviously

+

L3 >-8% that1s, T 1
hence . ,wjf, "y .
z —>'1n 7 * ey, ’so that "é'z‘ e? = %; for 1N = 0.

Thus the last constant of integration follows from equation
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.(15b)‘as ¢ij = O0; and the ‘asymptotic approximation for .

n.

0 follows at

SN S
4 EURCHP S B AL SR TS

i

- 0.4/ +0.01 W%, . ., z=1nT1 - 2:8 n3/2 4 0.01 n®
~ ’ (18)

The quality of the asymptotic approximation (18) is easily ap-
praised by a comparison with the exact solution (17) in a
zone in which both forms of solution are appropriate.

The method is as follows: Compute T(Z) and hence
z(n) = z'(N) by equation (17), thus odbtaining z(N), possi-
bly by graphical integration, where in the region about 17 = O,
the previously determined asymptotic approximation (18) is.
taken into account and z' = o, Then the desired functions
F=e% and F' = z'e? are obtained by removal of logarithms
and multiplication.

The solutlog ¥ = constant Jjoins the just-derived solu--
tion with: ‘a discbntinuity in F"' toward the outside. In. the.
center ‘(M'=°0), 'F' acts as 1 - 0.4 ﬂ3/2 whlqh.entails a’’
disappearance of’ the "radius of curvatiare.* For comparison
with experience, it is necessary to revert from the reduced
to the original guantities as shown in the tabdle. The conver-
sion ‘factor for 1 1is ./Bca the letter s, in the tabdle,
signifies a characteristic distance from the gap, where the
speed in the center of the jet equals Ug, According to (133)
the” speed at get center dlstant x from the .gap is then

2 PP U = U _._S_
"1) m‘(X) ‘S,‘/x
(See tabvle.) '

T

. JET EXPANSION AS ROTATIONALLY SYMMETRICAL PROBLEM

The corresponding rotationally symmetrical problem, in
which a jet of air discharges from a very narrow hole in a
wall, is treated in exactly the Bame manner as the two-

* Prandtl has given a refinement of the theqry by which
the' dlsappearance of the radits” of curvature in the center
can be avoided. But, since it would lead too far afield, it
is not discussed here.
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dimensional problem. - Firgtisthe varkables: x:'and T are
easily separated again. For, on assuming that the pressure
in the jet 1s constant, :

+oo

. Znu/dﬁaﬁAay7= constant

‘ e
whence for u
et . ; . j R R

» !" X -x;],.-,,‘__:;_,
R S
Putting o '
ff‘(m namn= F(n)

affards S
. r1 . .F F
u = _— V = e oo e
b ai] x M

The differential equation for F is again obtained by inte-
gration of the equation of motion or by a second application
of the impulse theorem in analogy to figure 6: '

2(3*".. ) FP ;.:;.(19)

wlth the introduction of a suitable scale for W, ‘ﬁbg
differential equation is simplified to ‘ '

<F" - 'E'.)a' - PRV (19a)
n . .
By substitution:
z = 1n F, F = e%
there is afforded e
(z" '+ 2! - L‘_>3 = g!
)

and léstiy, after introducing Z = z', _tﬁéldifferential equa-~
tion of the first order . ,
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Ky . 4
AR
I

Za? -JT (20)

T

1P

In addition, the following conditions hold for T = O;
u' mdy not disappear, while v.= 0; that ié,ﬁ;?(O) ='e2(°)=0,

while %% = E%ﬁf gé@éinS'finité‘énd becomésfqugi to unity

by appropriate regularization. RS

Now a series development of 2(T) for T = O can be
applied in such a way that these conditions are satisfied; z
must be negative o_ for 9 = 0, in order that eZ = O,
which is like 1n nz; because F'/T, then assumes precisely
a finite value. ' The result is the following development in
powers of n3/2:' o T : :

Z = % »adM o+ b+ en?/2 & ans 4 en?3/2. . (21)
The coefficients are obtained by introduction of this fiormula..
in the differential equation and comparison.of egual powersi.::

a=-272 b=-.l, c=2«2, a=_237__ &= 0.000014
TV _ 15 240100

The convergence is poor on approaching the boundary point
Npr(2=0), but a development particularly suitable near Ny 1is

as follows: Put

—]=nr"'n

and

2 =

" IR

and obtaiﬁ

e . .
anNZ + bR+ N+ an+ene+en7 . . .

a=i v, T8 g __ 3
4 8 Nr 64 Mp? 64 128 Tp*®
- = - 19 _ 133 ¥ - _ 0.00878 . ...

266.%x 5 Tr. 256 % 40 My* . - M2 qg%.
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The unknown constant of integration' My 1is obtained by making
the values for 2, as known from the two developments, agree
in a certain junction point It results in Ny = 3.4.

Quantity F'/ﬂ acts like l - O 202 ns/a -in the center;
the outward Jjunction in F again takes place with a discon-
.tinuity in "F%™, The conversion factor from the reduced to the.
actual quantity T 1is ¢®; 8 signifies in theé table a char-
acteristic distance from the discharge hole for: whieh the
speed in the center of the jet 1is Ug.

The computed ve1001t1 €8 were compared with Gottlngen test
data. (See reference 2.) The diameter of the discharge nogz-
zle was 137 millimeters. The velocity distributions at 100, :
centimeters and 150 centimeters distance from the mozzle edge .
were used for the comparison. This nozzle distance’ & . may
not be put equal to x, 1in view of the point discharge ori-
fice assumed in the present calculation; X 1is rather con-
puted from* a by addition of a constant gquantity e - which
results - for example - from the fact that for greater a,
for which the comparison with these calculations is solely
permissible, the central velocity decreases as 1/x. In the
present case e = 26 centimeters. TFigure 13 shows the theoret-
ical a2nd the experimental dynamic pressure for a = 100 centi-
meters, it amounts to 104 kilograms per square meter at the
discharge orifice; the agreement: of the average values is good,
aside from a certain asymmetry of the jet which must have had
different reasons. From the conversion faetor for T follows

Yc® = 0.063
The radius r of the Jjet is

r =3/c2 3.4 x = 0.063 x 3.4 x = 0.214 x

The mixing distance 1 is = e¢x = 0.0168 x = 0.0729 r,

Zimm (reference 3) has made corresponding experimental
investigations at considerably lower speed. His findings

wounld yield

¥ec® = 0,080

with a dynamic pressure of 5.1 kilograms per square meter in
the discharge orifice. According to it, a slight increase in
mixing path by decreasing Reynolds number is likely.

!



e

NACA TM No. 1085 13

4. PREDICTION OF PRESSURE DIFFERENCE

So far, all cases had been premised on constant pressure.
This first approximation can be improved by analysis of the
pressure differences due to impulse variation on the basis of
the computed speeds and stresses. For the first step, start,
say, with the second equation of motion, which in the first
two cases reads

u.a_v.-{-v_.é_! l(ﬂ-}-ﬂ)_l’.?—l’-
: ox P P

dy dx dy -

("”énd_/) . )
o g%,y av .1 (ar ;.Eifzy_)_ﬁ)__l_ap
taE T T T &ty oy 5 p By

in the rotationally symmetrical cése; U& and 04 are nor-

mal stresses, respectively effective in y direction or at
right angles to y and x. Then, integrate with respect to

y: y ¥

‘:va]y+-a_ uvdy—l.é_ Tdy'--l—[cy:"y=-.-}- [P-]y- . .(22)
o ox. p Ox P ) P Jo

0 o
and

y y

. .
y 2 . 7

v?2 + 9 Juvay+ [ X2 dy - 1 8 Tay- 1 |g_ |V
y
o ox g J ¥ p ox, P J

o
o ¥ y_O_ .
_lfgl dy + lff.t_dy=~l[gp"y (23)
e ¥ P ¥ P L,
o] o}

which 1s equivalent to applying the impulse theorem. If, as
heretofore, the normal stress, in this case Oy and Og,

are discounted, there is obtained

nl

| i )
[QFF' N - Fa]nl - 2/’5"2 nan = & [p]
P H P Y2

2

for the free jet boundary,




14 NACA TM No. 1085

Yy .
[F o _%Tn 1 [:] |
P 1o
for the tw°“dimen31°ﬁélfﬁéﬁisiéanafbﬁzﬁf

AT | R : ﬁ; o
and 2 BN 2 opde eia [
[ x=N :,o +[x3n3 dn—'p [p]

for axially symmetrical . jet expangion, With p, denoting the
pressure at the jet boundary,” pp the pressure &t jet center

and of the homogeneous air stream, respectively, particulari-
zation of the above formulas yields

- a8/3 -
Pn = Pr . 0.410(2¢%)°/°0® ana 22T Pr 0.248(2c2)2/3Uma(x)
P - o

and

a/s

Pm = Py
P

= -0.316(c") Up®(x)

Quantity U indicates the speed of the homogeneous air stream,
and Um(x) the central speed at x. In the first and third
case, ¢ has been dgtermined. giving

- U2
Py ~ P, = 0.00584 P..z_._

and o - 2
pm - pr = ‘0.0025 -P—-E-In—-g.i_).
2

It 1s apparent-that the thus computed pressure differences,
being small, .do not cause a substantial modification of the

velocities.

When computing the pressure difference with respect to
still air, it should be borne in mind that at the jet boundary
a negative pressure equal to the dynamic pressure of the ra-
diel inflow speed prevails. With. p, as the pressure in still

air
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. afz .5 2 12
by - By = 0.838(267)7% p 07 0.00482 B
2 3/3 2
Pm - Pg = 0.124(2c") p Up (x)
. _— '8/3 }2 LI p Umz
i Pp = Pg = =0.8372(e") " p U "(x) = -0.00295 - (x)

Hence there is positive pressure within the Jjet in the two-
dirensional cases, but negative pregssure in the axially sym-
metrical case. This surprising result,which also 1s at vari-
ance with a rough impulse consideration, points to a defect in
the theory. The necessary extension will be given in the fol-
lowing. f

5. EXTENDED THEOREM FOR THE APPARENT STRESSES

The theorem applied up to now to the stresses introduced
by the turbulent impulse exchange

= gu| ou = = = 0
T el Oy Gy ‘Gt
is no more than a first approximation. "In any case, itsbeﬁfbe

easily proved that au/ay in the cases in point is great with

respect to S&, . 9OV and OY,. hence the theorem for the mix-
ox’ ox oy :

| du
'Oy
So. in a natural generalizatlpn of the previous theorem, the

ing speed 1

caused by the sneed dlfference is good,

Qe

9—"3[ (vx+ ¥v)
aY'; TR R .
TR T LRI . _ ;o

(yx = affinor of ¥; ¥V 4is théSconjugate affinor.)

'This relation is important for the calibration of pitot
tubes in a Jjet discharging from a nozzle.
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The stresses to be newly added here, ara,ain.general, neglected,
o | ou . =

except Gy = 21 3y ,%% and Oy = 21° -%? ; which are used

for calculating the pressure differences. Thig portichicancels
in the model problem worked out for the two-dimensional case
because of the employed boundaries, but not for the axially
symmetrical case. Here the pressure differences are augmented
by the integral -

Y .
f Oy - G,

so that
Pp - Pp = +0.151(c2)2/® p U 2(x) = +0.0012 B Up® (=)
and 2“
= 0.095(02)2/3 p U,%(x) = 0.00075 p Up®(x)

P, - P
m | o o

that 1s, positive pressure within the Jjet, as in the other
cases.

Translation by Jd. Vanier,
National Advisory Committee
for Aeronautics.
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Table I
Free jet boundary Flat jet Round jet
n ) id F n F F v 7 F P v
3 3 3 3 — 3 3 3 . 3 3
]/Zc" v vyVee|uyacy2et Ui Vs U-VsV2c Ua-]/sl/2c2l Ve Geesl U.-‘My-l/c2 UssV
0,981[1 0,981 0 0o |1 0 0 0 1 0 0
0,731/0,969| 0,732|— 0,022/ 0,05 | 0,995 | 0,050 0,025 |0,0625| 0,995 0031 0,031
0,481/0,895| 0,500|— 0,069{0,1 | 0,979 | 0,099 0,049 |o,125 |0,977 0,062 0,060
0,231]0,791| 0,286|— 0,104} 0,15 | 0,962 | 0,148 0,070 {o0,25 |0,941] 0,121 0,114
—0,019/0,668) 0,104|—0,117{0,2 | 0,940 | 0,195 0,091 }0,375 |0,805 0,176 0,160
— 0,269(0,538|— 0,047|— 0,096} 0,4 | 0,842 | 0,374 0,150 o5 |0,843] 0,227 0,194
—0,519(0,411|— 0,166|— 0,047| 0,6 | 0,721 | 0,530 0,068 }o,625 |0,789 0,274 0,219
— 0,769{0,296(— 0,254{+ 0,027} 0,8 | 0.604 | 0,664 0,151 |o,75 |0,727| - 0,314 0,280
—1,019/0,193|— 0,312{+ 0,115} 1 | 0,474 | 0,766 0,001 |1 0,606| 0,381 0,225
—1,2690,112|— 0,351 |+ 0.209] 1,2 | 0,357 | 0,850 0,003 |1,25 |0,487| 0,427 0,182
—1,519(0,049|— 0,371|+ 0,287} 1,4 | 0,254, 0,910 - | —0,099 [1,5 |0,376| 0,455 | 0,109
—1,769{0,012|— 0,379|+ 0,388/ 1,6 | 0,165 | 0,951 — 0,212 {1,75 |0,283 0,467 0,028
—2,018{0  |—0,379|+0,379] 1,8 | 0,095 | 0,976 | —0,318 |2 0,198 0,462 | — 0,066
—2,039(0 . |—0,379(+0,379]2 {0,046 | 0,989 —0,402 |2,25 |o0,130] 0,452 | —0,159
: 2,2 {0,013 0995 | —0,469 |25 0,077 0.430 | —0,237
2,4 |0 0,996 —~0,498 |2,75 10,089 0,405 | — 0,298
3 0,014/ 0,376 | — 0,334
3,25 |0,002] 0,350 | — 0,344
3,4 0,335 | — 0,335
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