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On;the basis.of certain formulas recently established by...
L. Prandtl fdr:the turbulent ’interchange of momentum in sta-:’
tionary flows (reference 1); various eases of “free turbu~ ~
lencetl - that is, of flows without boundary wal16 - are treated
in the -present report. Prandtl puts the apparent shearing -
stress introduced” by the turbulent momentum interchange

,(1)

where

u. average velocity in J ‘~ di-ret?tion
. . . .. .,,..,

Y coordinate at right angle to x

2 mixing length ,“

The underlying reasoning is as follow”s: The fluid bodies en-
tering right and left through .a fluid layer with the time av-
erage value of the velocity u, . at turbulence, have the aver-

age velocity U + 2 ‘u or U.-2 du

q ,:
while the transversely

‘Idu
~’

directed mixing velocity is 1 discounting a constant of
...6 ‘

proportionality included in the more or less accurately known
a Of formula (1); I ,is no constant - qt, a{wall 1 = ().
The -previously cited report by Prandtl (reference 1) contains
a lucid foundation for formula (l).

,. ,’,,. ..
The -present report deals first with the mixing of an air

stream of uniform velocity with the adjacent still air, then
,..

*“Berechnung turbulenter Ausbreitungsvorg~nge .l! Reprint
from Zeitschri$t ftir angewandte Mathematik und Mechanik, v,ol.
6, 19,26, ,pp. ,1V12. . .

.,.. .!, ,..: .:,:.?:;
., .,

., ..{-.”.... ,..,,.
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with the expansion or diffusion of ‘an air jet in the surround-
ing air space. ~;xpe:rience indicates that. the width of the
mixing zone increases ‘linearly with xi ‘if x is the dis-
tance from the point where the mixing starts. This fact is
taken into ~accqznt.,b,y:t.,he.;fprrnqla

., : ,, ~.. = Cx (2)

The constant of proportionality c can as yet be determined
only by com.paris”on with ex~erience; it is the only empirical
constant of the theory. In many instances it will be expedi-
ent to introduce ‘n= yj x as a second coordinate. ,.

,.

10 MIXING OF HOMOGEKEOTJS AIR STREAM WITH THE

ADJACENT STILL AIR

(Two-dimensional problem of the free jet boundary)

By reason of the limiting ,conditions for the average ve-
locity the formula is preferably expressed with

Then the

hence

Quantity

A

The
boundary

u= f(y/x) = f(q)

stre”amrfunction is

,J)+=’ f(: ‘y.
.,

=x

f

f(v)d.~ = xF(’il)
#

(3)

(4)

.-

alll
v=-—=

ax .
-1?(~) + fi F’(n)’

T is put according to formulas (1) and (2)
..

following boundary conditions exist: At the”first
v. (homogeneous air stream). u = constant or bsr.

introductio~ of a suitable scale u = 1; that is,
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,, .: ,,. ( ;5”?Fl”(~l”) = 1, ,:; .:., ,. .“. :,, .
.. .,, :,. : ,““.’,-, .:‘>.. . . .,, . f! ..:’,. ,. ,, .,:.,.::

$,-
furth~rqp,r,e ,, ,,. ..”..;.,i “:::.”.:;;:-‘:--. ‘ “’“- -,::, ~, ,,, ~,: -,,:.: :)!:5

..:, ;;. . ,;a~i’ “’. “ ,,”,.,,. . ..
“.....?:=.’? ; ‘ ;“s:

,.,.: ;.

,: !.1. J-.
. . . .

.,, ,,, $ ~..

,, ,.: ... ,

a condition. ”by ,whi:&h““ttie’con’ti”riu’otisconnection is secured -
that is,

:
.4

*V(TI J:= 0’ “

at the second boundary ma (still air) must be u = ‘O;
that is,

.. ...,,
!!;”/.. ...

.,” ,,’,,.. -,

F’(’f12) = ~ :, ..

and, to assure, continuous connection :m’=:’tl; “tHat. is,,.,‘,-’.. ,,. . . ~d~” ..... ,.
., ..,:,., h.

.,”

Fll(~2) :“()”
,, ;[ -; ,q-,1 j J

!., ,, .,, ,..:, :.,: :.. : “; ‘.;~.”:.-., ,,,

‘i’’ince:‘t”h’~’‘pressure , in first approximation, can be
assumed to be constant, the equation of motion reads

,. ....*:~= t,{..:,
i:

(6)

(7)

(8)

(9)

,.,,,.’.’..

-.....

Counting y and 11 from the still toward the moving air,
gives, after introduction of the formulas*; the equation of ‘
motion:

Fl?l~+ 2C2 F1l.Ffll’i=O .,,.... ...1 ,“(l.’(-)),.).. ,..>..”

*It is readily apparent at this point, that the formula
u= f(T]),,necessarily requires an t proportional to x.
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which is solved by F1t = ‘O or 1?’ + 2C2 F“’ = O. It affords”
uniform velocity in.the o,ne case, variable velocity in the
other . The latter solution obviously applies bet’tiee’n~% ‘

and 02, the former, outside of these limits. In the bound-..
ary points the solutions coincide with discontinuity in F#10

In order to determine the velocity distribution in the mixing
zone, the differential: qqu~tion of thethird order” -

must be solved. For the time bqing, a new scale for
advisable , so that formula (11) simplifies to

F+FH~=O

..

The result then is

(11)

~is”

(ha)

,. ... ,.
The five.“boundary conditions “define the constants of integra-
tion Cl$ C.a, C3Y and, in addition, the still unknown bound-

ary Points ~1 and T2 themselves;

The calculation is suitably arranged as follows: Put

so that

r ,

The boundary conditions ‘are:

F(i) = ml, F’(i) = 1, Fll(~) = () for $=0, F’(i) = O,
......

,.
. .

F!!(~) = O for Fz (12a-e)
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From (12a to:c), dl, da, and d~ can be lfnearlyezprebsed

in ml-,.iquati on.(12ti),yie,lds..........?.1*.e?Pre:se?bY ,ga!.::ynq:..l...
,,,.

(12e) finally gives a trafiscendentale quatton’f”or n2, eolv-
able by successive approximation: It follows’ that

.. ,,

52 = -3.02, ml = 0.981, T2 = -2.04, dz = -0.0062,

..’, ,:,.’. . .
..>....”’ ..,.
,“. . . da = O-987, ‘d~ =’ 0.577:’

With this Y and F! are,.defined as function of v. For
comparison with experience, the original scale must he use? -
that is, the. reduced 7],employed thus far, must be multi-’

plied by r3 2C2, and the reduced F: by U, the velocity of
the homogeneous air’ stream. ..The curves of the velocities and
of the streamlines are give,n in the table and in figures 2 to
4. The streamlines are plotted for equidistant values of the
stream function. The streamline emanating from x = O iS a
straight line with angle of inclination

-tan-l (0.19 ~2ca) ,,’

For comparison,a G/5ttingen measurement (refer~nce 2) Of the,
dynamic pressure distribution with an automatic pressure re-
corder at the edge of the nozzle of the big tunnel was em-
ployed. The distance from the nozzle edge was 112 centime=
,ters, the dynamic pressure of the undisturbed jet q = 56
kilograms per qquare meter. It can be presumed that the as-
sumptions of the two-dimensional problem hold ,good for the
~$zp .of the nozzle. I,n:figure 5 the calculated dynamic pres-
sure is shown as a dashed line over the measured dynamic
pressure. The unknown constant of proportionality follows
from the conversion factor for ‘7), which is $* =C0.0845.
~he,tw:idth of, the mlxirig’izone is

b= J32C2 X 3.02K= 0.0845 X 3.02.x= 0.255x
,,. . . ,., .,..*: ::. ,. . .

,,, . . .... . .. . . ...’,
.

,. ,: , .“

giving” a“mixing, lengt’~,of’ ,,.,..,.,-
.. . ,. ...

.,, ~... ,.’
‘...::.:”

1 = o ..ii74..x=0.068.2 b ‘.:.. ..
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The relative smal..hwids:~df 1 is unusual. The agreement be-. ‘
tween the tneoret.iaql .aq,dthe measured average velocity dis- .,
tribution is very g,Qod ~~

,,
.:,.,.~...!,.,,.,. . . .. .... .,., . . .
.%.if;:,...:-: “ ,,., .. ? i

2. J3T EXPANSION AS ?wO.DIMItNSIONAL PRO13LllM
j:. ., .

visualize a wall with a narrow slot, which for the study

may be regarded as being linear, through which a jet of air
is discharged and mixes with the surrounding still air. As-
suming, for the first, that the pressure in the jet is the
same .as outside, the application of the momentum theorem af-
fords a ready separation of the vari,a’bl.es- that is, ‘x.‘and
‘fl- By reason of the constant pressure the momentum in “x
direction must be

.
+Cn

! U2 d,y = constant
,
--OJ

Putting u = ~(x) f(~) results in

+Co

Cf(x) x

f

f2(~) d~ = coristant
,
-m

Consequently cp(x) = A
?.,. ...,.,

,;
@

:,..,., ,,,
,:

(13a)

(13b)

(13C)

The equation of motion can be set up again, which now,
however, can be immediately integrated once. This interme-
diate integral can equally be obtained direct from the momen-.
turn theorem. By marking off a control surface conforming to
figure 6,thcimpulse entering through the lower boundary is
puv, while on the other side the im~ulse variation
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Y “ ‘. ~~ ‘“”.’ ‘~ “-”’ ““’’””’ :-

J
...,:,, . ,. ,,, :,.,.

,“.’ ‘“ .. . . “.. ‘. .,

U& U= dy occurs. The turbulent shearing stress ,!~ . ‘

m,:.1:(”i.
,., ‘...’, . .! ,4..\ ~,..;,~, j’ ; :.. .

T’=
,1 I

‘;;“$ Q&p c= Xa
:.

,,ily.,’,,,. !. ., .. ,

acts as outside force, hence the relation exists

Y

f

a“~v”. +_ ’u2dy:=~

ax P.
m:!.,.,

! .. ... .. . .

Fi,”o~thi’s follows. the equation for F(v):

( .::,~.

2C2 F112 = FF’ (14)
,.,., .. ......- ,. ;~:;,,,,,,, .,, . .’ ..L. :.’ ‘.

,

. .

(valid for positive Tl,
.,,,.:,

reflected velocity distribution for
negative ~). Wit@ a suitable’scale for ~ the differential
equation is simplified to

!,,, .Flla = F~”l
/., .

‘(S4a)

The order of” {his di~fe~efitia’~’&auation ‘can be lowered by in-
troducing z = in F; that is~; F = eg as new dependent
variable . Then, (z” + 2’2)= = ~1 whence, after putting
Zt.:.=z, .finall.yfollows: the, differential equation of the :
firat,:prdar:, .: , *.f “!

,.
,,.”, ., ..,

..:.;- , ., ,: ; .,?.,..,!.
,..,,’. ‘)% “’ ‘“.:’.? .“’ii’::.; 21’= ;z2,-

,, .; ,-.‘
.2

The solution of the original equation then requires only
squaring and removal of the logarithms. .?,t ., ,-..

The ,following ”’conditions must be satisfied fior ~ = o
(center of jet), v = O - that is, F =8’ = O. Since
u -F1 = zje* is not to disappear for ‘Q = O, z! must be
of the same order, of.‘ m f~r, ~ = O-. as e~ .is of, 0.. Ij.e.nce,
for n ‘= O by ‘suitable scale determination,

:., :,!.. :!:!:. .,
,:, .,.,. ,:, i.,:.: .: .:,,:.,:. .:

. .. .. . “, ..“ .’

F =0 (15a)

Ft=l (15b)

..,.—- .— ....-.——--.--——. ———
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Thus there are afforded two conditions through which the “z,
that satisfies an equation of the second order, i.s completely
defined. “ “’ ! ‘“’ ““: :“ ‘ ..:..... .....

Th,e boundary’point Tr itself then follows from the
condition ,,..

..., ,.
u= o; that is, z’ = Z = O (16)

., j;.:

for the boundary hr.
.:,” ..

Integration of equation (14) gives .,

(17)

The constant of integration C follows from the condition
21 = Z= m for Tl = O:

The condition (16) Z = O fdr ‘l)r”‘yields

.’, , 1, ‘:TI , ,., .

Compliance:;wit”h equati&’ (15) is predic&teii’ o’n a studjof’the
behavior of equation (14) for TI = O, Z = m. As the SOIU-, .~
tion, (17) in this range is inconvenient, a new form of solu-
tion which applies for Tj =;0; Z = a+’’”isderived.

For Z +w, obviously,..,,.,,. 4 f. ,,

:,

~+-z% that is, z’ —> 1
.:,dTl,: ; :, ,,;?, z= . ~.
.,}.“. ;: ,,,,,-

hence . “’~, ‘“ ,:.! .. ,.‘.
‘; .,.,, ,.:’,..

.,,,
z ‘*”in n + c=, !‘so \h,at’:”’F’” =“ Z“t 62 = eel; for - T=o. -,.s’ .,,,, .) ..

Thus the last constant of integration follows from equation

., , .,
;. ‘-.
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(15b) as c1 = O; and the Asymptotic approximation for
~.,= o. f.olloys at, .,. . ‘ , . , . . ...[i~”’::~;.<:::,.~:.

., ..-,

z’=J- 0 8 @2 + OLO1 ~s, . .
0.4 fi+0.01~2. . ., z= ln~-—~

n ,- 3 3
(i8)

The quality of the asymptotic approximation (18) ‘is easily ap-
praised by a comparison with the exact solution (17) in a
zone in which both forms of soiution are appropriate.

,...
The method is as follows: Compute q(Z) ari~n)~ence

z(~) = z’(v) by equation (17), thus obtaining possi-
bly hy graphical integration, where in the region about TI = O,
the previously determined asymptotic approximation (18) isc
taken into account and z’ = m. Then the desired functions
F= e’ and F’ = zlez are obtained. by removal of logarithms
and multiplication.

The. so$utioq F = constant joins the just-derived Solu=..
tion w~th:a”di~cbntinuity in F$l toward the outside. In.the.
center :(~’=”:b), ”F~ ac~,s as 1 - 0.4 T@, which’.entails a“
disappearance of;the” radius of curvature.* Tor Comparison
with experience, it is necessary to revert from the reduced
to the original quantities as shown in the table. The conver-
sioii;factor for ‘(1 is ‘?~g; t“he“letter s, in the table,
signifies a characteristic distance from the gap, where the
speed, ,in the center of the jet eqvals U$. According to ;(13a)
the:;&#’eed’at jet center’ ”cii-staqt x from the ,ga.p,is then,..,

(See table. )
...“,.!, ...... . .....

3. J3T EXPANSION AS ROT~TI~NAL,LY SYMMETRICAL PROBLEM

The corresponding rotationally symmetrical ‘problem, in
which a jet of air discharges. from a very narrow hole in a
wall , is treated in exactly tlie same manner as the two-

* Prandtl has given a refi,,nement of the the~,,ryby which
t-h’&”’.d’isap@earan’ce of the ra”dihs:of curvature i“n t~.e cerit,,er “.
can be avoided. But , since it would lead too “fa’r’afield, it
is not discussed here.
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dimensional proble’m.; .IWi~s,tf,~F,tqhevaria:tile”s:,x :’”and ~ are””
easily separated again. For , on assuming that the pressu’re
in the jet is constant,

+03.: “.,/ . ‘r
,..,,.,, .!, .

,.~n ‘“ “ = ~o’n~tan’t
I& dy

J-m~~hence for u
... .. ,, -..,,,.,. .,. : ‘,,;.,;,...!,.!.;;.;, j r,..~.........,’

.. r“!:., ..“.,”.’, -t.,-y ‘= + f(m) ,, ‘ ‘
.!

Putting ,,

!

.. ..
r.

“f’(~) v,’d”~= F(q) ,, ““.,

affords
,..,.,.

FI ,Fi F
‘“u = —, v’= — - — “

xv x Xq

The differential equation for 3’ is again obtained by inte-
gration of the equation of motion or by a second application
of the impulse theorem in analogy to figure 6: .,,;’

,, ;.. ,.:..

.(2 ‘Fll )FI,2 =,:FFI ,; “
c . ,..? ~ , ..

... . .,:

With the introduction of a suitabl’e,,scale for ~,
differential equation is simplified “to “’

By substitution:

z =“ln F, F = ez

there is afforded .. ,.!.....,
., ,. !

‘( )
2

,:211+ ~lz - z’ = ~1

T
.-.. . ..

,...

(19)

‘the ,

(19a)

/

+

th”e ,differential e.qua-and lastly, afte’r ,in”troducing Z = z’, , ,
tion of” the first o,r:d,pr.,
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In addition, the following co,ndit,ions ~,old for TI = O:
u’ F(o) =miy not disappear’,”,while v = ,0; that is, eZ(0)=o,

.... .......!
:::

while U = ~ rern&ins finite’ and becomes equal to “uni...,y
q: ~?,:,” ,.,1,:,’.’..:;4. ” ..;..;

by appropriate regularization. “,
,.,’.;, ..f::~~:.~..,>.+...,.....,..

... .,..’ !.,,,::,,.;?..’.’ .,
Now ‘a series development of Z(n) for TI = O can be

applied in such a way that these conditions are satisfied; z
must be tiegative co for V = O, in order that ez = O,
which is’ like .ln ~2; because” 1?J/T; then assumes precisely
a finite val’ue.’ The result is ,the following development in
powers of ~31a: ,

.,”

z ~ + afi:+l)?{’ + ;~’~’+ ~q’ + @3b’o . . (~1)‘h ,.. .
The coefficients are obtained by introduction of this fDrm.@~a~.
in the differential equation and-.comparison,.of equal. powers’:,:(’

,, ,., )

a=- +d% b = -:&. =&, d= 37’ = 0.000014 . . .
..245 ,c 1715 240100’ e. .

... . .. . . .,,

The convergence is poor on approaching the boundary point
~r(z=o)s but a development particularly suitable near or is

as follows: Put
...., .:,...., ,.

i=qr -i
and x’”:-,....’’” . .

-.
z = a 92 + ~T3 + 254+ XT5 + G56 + ~F’ . . ..... . . ,,.... “: ‘...; ,“. , . . !.

and obtain
,. - ,..;:~ .,. J .. -’. ,.

.,, :“..

e 19 133=- T=- 0.00278 + _ . . .
s

256:.x 5 ‘l)r. 256,,% 40 ~r4 i. Pr2< ~r=:::
,- !., ...:.,“ . . ,.,
.!.>! ~..,,.,.,. . “’.
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The’ uriknown constant of int,egra~idn:, Tr is oltained hy making

the values for Z, as known. froa the two developments, agree
in a certain junction point. It results in ~r = 3.4.

..:. “,.: ‘,:.. , , ...’.

Quantity.’F’/Tl” acts.lik’e 1 - ,0.202 v3/2 in the center;
the outward junction in F again takes place with a discon-
tinuity in ‘Fit’. The .c.onversion.factor from the:.’r;eaucedto the,
actual quantity m is w; s signifies in the, table a char-
acteristic distance from the discharge-hole for, which the
speed in the center of the jet is Us.

...

The computed velocities were compared with G~ttingen teet
data.: (See reference 2,) The diameter of the d“i.scharge noz-
zle was 137 millimeters. The velocity distivibutions at 100,:
centimeters and 150 centimeter’s distance from the nozzlee,dge ,.
were used for the comparison. This nozzle distance.’ a. may -:
not be put equal to x, in view of the point discharge ori-
fice assumed in th$,present calculation; x is rather com-
puted from’ a by addition of a constant quantity e which
results - for example - from the fact that for greater a,
fon which the.,comparison with these calculations is solely
permissible; the central velocity decreases as l/x’. In the
present case” e = 26 centimeters. Tigure 13 shows the theoret-
ical and the experimental dynamic pressure for a = 100 centi-
meters, it amounts to 104 kilograms per square meter at the
discharge orifice; the agreemen$: of the average values is good,
aside from a certain asymmetry of the jet which must have had
different reasons. From the conversion factor for n follows

w = 0.063

The radius r of the jet is

r =~~ 3,4 ~ = o.o~3 .3.4 ~ . o.~~4 x
.

.,, ,

The mixing distance t is =Cx= 0.0158 x = 0.0?29 r.

Zimm (reference 3) has made corresponding experimental
investigations at considerably lower spe,ed. His findings
would yield

with a dynamic pressure of 5.1 kilograms” per square meter in
the discharge orifice. According to it, a slight increase in
mixing path by decreasing Reynolds number is likely.
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4. PREDICTION OT PR3SSURE DIFFERENCE

So far, all cases had been premised on constant pressure.
This first approximation can be improved by analysis of the

pressure differences due to impulse variation on the basis of
the computed speeds and stresses. For the first step, start,
say, with the second equation of motion, which in the first
two cases reads

------

in the rotationally symmetrical case: ay and o-t are nor-

mal stresses, respectively effective in y direction or at
right angles tO Y and x. Then, integrate with respect to
Y: Y Y

[“q:+:}”dy-;&f’dY-;[.y]:=-;[P]{. . .(22)
o 0

and

which is equivalent to applying the impulse theorem.
heretofore, the normal stress, in this case (YY and

are discounted, there is obtained

1-1,
. .... .,.

[
2FF~~- ‘21::-‘~’2‘d’=t[’1:2a

for the free jet boundary,

(23)

If, as
ot ,

. . .. — ...—.—
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[ ,+ T:’=”’i”fP’:: .“ ‘:..,F!y,: ~,”::q..,.

,.. ,
for the two-dimensional “~~,~’!~,e:,x,$ansi’on~”;:(

.2.’..

for axially symmetrical jet expansion. With pr denoting the!“
pressure at the jet bdundary~” ‘pm the pressure at jet center
and of the homogeneous air stream, respectively, particulari-
zation of the above formulas yields

Pm “ Pr ~ a/3u2 and pm - p, = o ~48(2c21@3u ~(x)
—-= O.41O(2C )

●

P ,. - P
m

and

Pm - P= ~ 2/s ;
— =:.O.316(C ) urn (X)

P ‘

Quantity IS indicates the speed of the homogeneous air stream,
and Urn(x) the central speed at x. In the first and third
case, c has been determined, giving

Pm-Pr= 0.00584 @
2

and J

Pm “Pr= -0.0C)25 P ‘m’(x)
2

It is apparent. that the ‘thus computed pressure differences, “
being small, do not cause a substantial modification of,the
velocities. ..

When computing the pressure difference with respect to
still air, it ‘should be borne in mind that at the jet boundary
a negative pressure equal to the dynamic pressure of the ra-.
dial inflow speed prevails. With p. as the pressure in still
air

,...
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“, . ..
* .. 2 /3,

P’m - ‘P~ -=-0,.#,38(.2c~) 0.00482 ~ zp,u2= - ,.,
:,;(..

, a/3
Pm - PO = 0.124(2c ) p um2( X).

.,

/
,..

II: pm ‘PO = -0.372{c );: .,, f12QE (.)2 a 3 p ,Umz(x) = ...0.:00295:p

Hence there is positive pressure within the jet in the two-
dimensional cases, but negative pressure in the axially sym-
metrical case. This surprising result,which also is a..tvari-
ance with a rough impulse consideration, points to a defect in
the theory. The necessary extension will be given in the fol-
lowing’.

5.. EXTENDED THEORBM FOR THE APPARENT STRESSES
. .

The th’borem applied Up to now to the stresses introduced
by th? tur,bulei~$,i.rnpulseexchange

T= 12
I

@& au ~ =0 =Ot=o
ay %’ x y ,. .’, ?:..,,........ . ..

...: . . , ,,,

is no more than a first approximation. In’any case, it..’ana:bpbp
,

easily proved that dU/ay in the cases in point is great with

respect to ~,. ~ and =,.. hence the theorem for the mix-
ax dy

Hing speed 1 j@
~‘gy

caused by the speed difference is good,
.,..... ,,,,

,~$o,,ih a riatural:generalizatip~n:r of ~~’h,e’previ’ous~ theorem, the

kk’ress”ten”ko’r” is pit equal to ““ ~

.,.., : ... :. ,.. ,“:”,,.:.,: .,.’.

“1~
.,

“2’ &’ (Vx+xv)1
,, ?y,,,:,,,,e

.( ~. “

..:. .,. - .,. ,,,,. ,. ,:.,..:’ ..,}:., ..[~r,
.-,

( & =
..

7 affinor of I; ~V is th&f~conju”gate affinor.~” ‘

.. . . . i:. >.. ,.,

‘This relation is immortant for the calibration of pitot
tubes in a jet discharging from a nozzle.

4
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The stresses to.be, nmewly added here, are, in general, neglected,
,. .,,, ,,. . .. . ...

II
;,

except ‘Y II=212 ~ ~ and at = 21Z ~ ~ which are used
by ay ,ayy.

for calculating the pressure differences. This portidnccancels
in the model problem worked out for the two-dimensional case
because of the employed boundaries, but not for the axially
symmetrical case. Here the pressure differences are augmented
by the integral

Y

‘P o-
- ~>t .:.”’

,,

dy
,.t
..

0’
Y

SO that

~ .5!/3
= +0.151(C )

p Urea(x)
Pn - Pr p Urea(x) = +0.0012

2
and

a 2/3

Pm - Po = 0-0g5(c ) p Umz(x) = 0.00075
p um2(x)

2.;

that is, positive pressure within. the jet, as in the other
cases.

Translation by J. Vanier,
National Advisory Committee.
for Aeronautics.

+:.$.’
,,;{. ,:,,... .
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Free jet boundary

0,981 1 0,981\ O
0,7310,969 0,732–“0,022
0,4810,895 0,500– 0,069
0,2310,791 0,286– 0,104

-0,019 0,668 0,104–0,117
– 0,2690,538-0,047 – 0,096
– 0,5190,411– 0,166– 0,047
– 0,76904296– 0,254+ 0,027
–1,019 0,193-0,312 + 0,115
– 1,2690,112– 0,351+ o*j#9
– 1,5190,049’– 0,37”1+ 0,:$$
– 1,769‘0,012 i– 0,379+ O; 5’8
– 2,019Q – 0,379+ 0,379
– 2;039o, – 0,379+ 0;379

.

Table I

- —— Y

‘n

0
0,05
0,1
0,15
0,2
0,4’
0,6
0,8
1
1,2

1,4
1,6
1,8
2
2,2
2,4

3?

1
0,995
0,979
0,962
0,940
0,842
0,721
0.604
0,474
0,357
0,254
0,165
0,095
0,046
0,013
0

I?lat jet
—

F

,0
0,050
0,099
0,148
0,195
0,374
0,530
0,664
0,766
0,850
0,910
0,951
0,976
0,989
0,995
0,996

v

3

Y8”lliq2c~
——

0
0,025
0,049
0,070
0,091
0,150
0,168
0,151
0,091
0,003

– 0,099
– 0,212
– 0,318
– 0,402
– 0,469
– 0,498

0
0,062!
0,125
0,25
0,375
0,5
0,625
0,75
1
1,25
1,5
1,75
2
2,25
2,5
2,75
3
3,25
3,4

Round jet

F’——
7.*877

1’
0,995
0,977
0,941
0,895
0,843
0,789
0,727
0,606
0,487
0,376
0,283
0,198
0,130
0,077
0,039
0,014
0,002
0

0
0031
0,062
0,121
0,176
0,227
0,274
0,314
0,381
0,427
0,455
0,467
0,462
0,452
0,430
0,405
0,376
0,350
0,335

o
0,031
0,060
0.,114
0,160.
0,1!)4
0,219
0,230
0,225
0,182
0,109
0,028

– 0,066
– 0,159
– 0,237
– 0,298
– 0,334
– 0,344
– 0,335
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Figure 1

Figure 3.-
Free-jet
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Figure 9.-
Two-dimensionaljet: ‘%
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Figure 11.- Round jet.

Figure 10.- Round jet.
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Round jet: stremline --L .P
pattern.Width is

“w
I

1“
N

T(= 1,76). ‘i~es enl~gedo “+

Figure 13.- Calculatedand recorded dynamicpressuresfor a = 100 CM.
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