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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

-TECHNICAL MEMORANDUM NO. 886

TEEORY OF TWO-DIMENSIONAL POTENTIAL FLOW
ABOUT ARBITRARY WING SECTIONS*

By H. Gebelein
SUMMARY

Three general theories treating the potential flow
about an arbitrary wing section are discussed in this re-
port. The first theory treats the method of conformal
transformation as laid down by Theodorsen and Garrick; the
second is a generalization of Rirnbaum's theory for mod-
erately thick airfoils; the third is a general investiga-
tion of the complex velocity function with particular ref-
erence to the relations first discussed by F. Teinig.

The relative merits of the different methods in ques-
tion are illustrated on a worked-out example and will bve
published in a subsequent issue of this periodical.

INTRODUCTION

The present investigations relate to the two-dimen-
sional pvotential flow of a frictionless, incompressible
fluid arcund any simply connected region, particularly
around airfoils. Such a flow, as is known, is completely
described Dy a regular, analytical function - the complex
velocity funection. Since an analytical function, in turn,
is completely described by its values along any closed
curve¥ remaining wholly within the region of regularity,
it is sufficient to know this complex velocity function
along a curve enveloping, once, the zone washed by the
stream - for which purpose the limiting curve or profile
contour itself may be chosen, with observation, of course,
of any potential singularities on the limiting curve. In

"Theorie der ebenen Potentialstromung um beliebige Trag-
flugelprofile.” Ingenieur-Archiv, vol. IX, no. 3,
June 1938, pp. 214~240.
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any case the problem may be:coﬁsidered solved, once the
velocity along the profile contour is known in magnitude

and direction.

The very next problem is to find the flow -~ that is,
above all else, the velocity along the contour for any
predetermined region. In this case the contour with its
direction affords the direction of the velocity as well,
leaving simply the quest of the function for the absolute
value of the velocity along the contour. This, as is known
(reference 1), requires the supplementary assumption of:

1) the velocity at infinity in magnitude and direction,e dun
2) either the ecirculation, i.e., the line integral of the
velncity along a curve encircling the obstacle once, or

else the point on the conteur of one of the stagnation
points of the flow.

This general flow problem can be reduced in known man-~
ner to the mathematical problem of conformal transforma-
tion of the contour of the washed region onteo the contour
of a circle - a problem whose solution is afferded Dby
Riemann's law of transformation. It can be considered
solved if it is possible to construct this conformal func-
tion not merely by visuwalization bdbut by actual plotting,
according to a méthod which must be rapidly converging, if
infinitely many steps are necessary. Such a method was
advanced and proved by T. Theodorsen and I. E. Garrick
(reference 2) and in the treated cases, ylelds very qulck
results. It can also be proved that this method converges
under certain sufficing assumptions and solves the trams-
formation problem rigorously. The results, built up on
it, are the mathematically -exact solutions of the general
flow problem,,

- But in aerndynamics, the opposite of the above preblem
is also of significance - i.e., to find a profile along
which the flow about the conteur is accompanied by a de-
sired velocity distridbution. - F. Weinig has established
the surprising fact that this problem is mathematically
sinmpler and that, if the desireq’velocity distribution in
the potential flow about a sim»nly connected region can
take place at all, the contour of this region can be ex-—
actly determined without gn infinite method. “Admittedly,
the assumpticns required for the welocity distribution
along the contour itself cannot be summarily complied with,
hence it is impossible to take such distributiens directly
as a starting point for the calculation &6f profiles. A
suitable assumption, instead of this velocity distribution,
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is a freely available real functisn following from it by
distortion in abscissa dlrection. The method is particu-
larly suitable for. developing prof:les with nrescribed
characteristics.

In earlier airfoil theorles; special conformal func-
tions with a .varying number of parameters which give the
conformal transformatiens between circles and airfoil-
shaned regiens, formed the center of investigation, and
logically the results were predictions about special, multi-
parameter airfoil families. General relations between the
functions for the profile contour and for the velocity dis-
tridbution could not be obtained in this manner, with the
notable exception of infinitely thin airfoils by the so-
called "Birnbaum theory" which, preceeding from the image
of a nonuniformly covered flat vortex layer, appreximately
established a relation between the difference in velocity
on the upper and lower profile surface and the slopve of
the mean line of the profile. Notwithstanding its re-
stricted range of validity, this theery presented many ad-
vantages and made its generaligation to include thick air-
foils very desirable which, however, did not succeed sat-
isfactorily with the vortex layer concept.

In the present report it is attempted to combine the
past information on potential flow around airfoils, so
far as they are of this functional type, with a view to
nbtaining data which tie the profile contour and the com-
Plex velocity, or velocity distribution along the contour
in plainest and most amenable form for calculation.

In this connection, the findings by Theodorsen and
Weinig are significant. It might be surmised that by van—
ishing profile thickness these thensries lead back to the
0ld theory for thin airfoils. »But such is not the case.
It rather affords a new approximate theory - probably ‘suf-
ficient for all cases encountered in practice which, with-
out restricting itself teo infinitely thin profiles, con-
tains the equation part of the thenry of lifting vortex as
limiting case and to that extent represents its general-
ization. It ultimately affords a survey over a systen
of integral equations, every one of which is involved as
mathematical starting point for, a .general airfoil theory.
It is shown how the theory of llfﬁlng vortex surface and
Weinig's results aline themselves in this general qrrange~

ment'.
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1. THE POTEN”IAL FZOW ﬁROUND A CIRGULAR CYLINDER AND
ITS RELATION TO FLOW AROUND GENERAL PROFILES
‘The physical cenditions of two-dimensional vortex-

free flow in frictionless, incompre siblie. fluld are con-
tained in the two equations

v R0 g iviite Gl & —ol- M‘?*"W{-’
.= Qu 4 Y a du _ BF% _ g 1
deV= 52 7 3y S8Ry Tax (1)

where u and v indicate the velocity in "X and y
direction. They represent the Gauchy—Rlemann d1fferent1al
equations for the analytlcal Tunctlon :

W*(z) = u(x,y) - i v(X y)~;a¢ 2? , (2)
Y

J«r,

a3 ' o¥
the sg-—-called ”complex veloclty function™ ‘which completely
describes a two—dlmen31onal potential flow.

If it relates to'the flow around a finite regien, as,
for instance, a circle or airfoill in unllmlted fluid, sev-—
eral general predictions as to function w (z) can be
made. Since infinitely great velocities can ocgur only on
the border of the fluid region, the function w (z) is,
above all, redular everywhere outside the region. EHence
for ¥F&%t 'z, w'(z) can be represented by the series

c c
w*(z) = Cg + —> + <5 + ... (2a)
Z Z : .
The‘constant C indicates the complex velocity at infin-

o)
ity. The constant Cy 1i1s ovurely imaginary, if the con-
tour around the obstacle is a streamllne, a.s presumed
here, in accord with classical theory. C, 1is associated
with the circulation T of the body through the relation

C, = 1 g#- Whlle_ C1 is decisgive for the force exerted
by the flow on the'body, 0z 1is decisive for the'moment
on the body. If O, =4, + i By and -p 1is the density

of the flowing medium, Gramme“ﬁ Well~known equatlons (ref-
erence 3) give for the two componeéents Px and Py of the

force and for the moment M +turning clockwise about z=0:
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Px»=”2" P BoBy, Py = om p A 0By, M= - 2w p(A By+Boha)

For the most general flow about the unlt c1rcle
with the two stagnation p01nts z, = I(G~B) nd z, =
1(“+“+B) the complex velecity function is:
| ‘ | 1(a-8) 1 (akB)
wi(z) = W e~ia [l - g——;———].[l + Q—T;—~e (4)

‘The flow has the absolute velocity W at infinity where

it forms the angle o with the =x axis. Transformed,
equation (4) gives:

: s ia
w*(z) = W <e-ia 4+ 21 s;n B _ i52> .

The series (2a) stops in this case with the term z72,

The coefficient of 2z~! is, as should be, purely imaginary.
On the circle circumference z = ei® it is
w*(w) =21 W e 1% (gin (p-a) + sin B)
hence the absolute velocity on the circle periphery is:
w| = |w () = 2W | sin (p=a) + sin B (5)
The velecity is zers at the two stagnation points for

®=o =B and @ =7 + o + B. For the direction of flow

at point gz = el® we find u/v = = cot ®, which confirms
the fact that the function (4) actually represents a poten-
tial flow about the unit ecircle.

The potential flow about the circular cylinder 1is, as
known, of fundamental importance for the general theory of
votential flow about any simply connected regien B, be-
cause the conformal function =z(z) which transfers the'
contour of the unit circle on the contour of 3B, makes it

possible to deduce the velocity function W (% for a flow
around region B from the complex velocity w (z), accord-
“ing to equation (4). The relatien is: o

Wk (Z) = w*(z) 82 (6)

i
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The derivation nf equation (8) usually proceeds from the
fact that in the conformal transformation by Z(z) the
orthogonal fields of the streamlines and the potential
lines of Dboth flows merge.tie thw%w a&ww»c > bm@«h%%ﬁ
W Myad & ! "

But this formula can also De understood without re-—
sorting to the flow potential. TFor W *(2) is an analyti-
cal function, for whose functional values along the bor-
der of 3 the negative arwument agrees with the direction
of the contour. Function w (z) meets this requirement
for the unit circle. In the conformal transformation of

Zz(z), mvoint 2z movss toward 7 and the vicinity of 2z is
turned through an angle _arc d%/dz. Hence, to insure the
required direction.of ¥ (Z) at the border of B, it is

necessary that:
-~ are w (Z) = -~ arec w (z) + arc %f

But the analytical functien which complies with this re-

quirement is w'(z) gz
This.processAaffords-the potential flow about an infi-
nitely thin, flat plate. The analytical function which

transfers the nutside of the unit circle in' the z plane
into the Z plane rectilinear from -1 to +1 reads:

E:;% oz o+ —> z =% () /2"~ 1 (7)

which, written for =z in equation (4) and multiplied by
dz/d?, according to equation (6), gives for the complex
velocity of the most elementary flow about the flat plate
extending frem =1 %o +1° the following (with abbrevia-
tion W = 2W): ' ‘

¥ (Z) F'W»<COS a - i gin o z o+ i sin B - (8)

- This equation describes a three—parameter_system of
‘patential flews. - Two,; that 1s, the welocity ¥ at infin-
ity and angle of flow o  can be regulated at will,- The
value of the third-parameter. .. B 1is physically conditioned -~
i.e., the Joukowski. condition of finite velecity at the
trailing edge % = 1. In the present case W (1) 1is finite

if 1im (z sin o - sin. B). = 0, that is, if B = a, Thus,
- z—1 ' '
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the veloecity function for the flow around the flat plate

c e fw:;.—' . o

= ©

In ordexr to deseribe the velocity distributien on the
surface of the plate, the variable ® 1is employed. A¢~
cording to equation (7) Z = cos ©® = ¥ for % = o1®.  Then
it is for the surface of the plate: o '

W*(E) =W (Cos a - 1 sin o

Nnm

¥ (cos $)=ﬁ'<cos atsin o l:ESEfE) =W (co" otsin o tan >.

l+cos @
after which the absolute velocity at point X = cos @ De-
comes :
|w(p) =W ‘cos o + sin o tan g (r0)

With this method any aumber of other potential flows
can be mathematically described by different. choice of
conformal function. As it is easy to give conformal trans-
formations which transform the contour of the unit circle
into that of a simply coannected airfoil-like region, it isg
equally possible to give profiles which may be controlled
by mathematical theory.

The theories of general potential flow about airfoils
discussed hereinafter, give the relation between the func-
tion for the profile contour and the complex velocity along
the contour, and tie these functions in a fashion amenable
to calculation. The start is made with the strict formu-
las for the flow about any predetermined airfoil to which

the theory of Theodorsen and Garrick leads.

2. RIGOROUS THEORY OF POTENTIAL FLOW ABOUT ANY PRbFILE

The previeusly described classical method of obta1n~
ing the potential flow about any simply connected region
vields - in conjunction with the method of Theodorsen and
Garrick fer obtaining the conformal functlon for any ini-
tial region = a rigorous solutien of the basic prnblem of
airfoil theory; that is, to find the potential flow abdout
any given airfoil (references 2 and 4).
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If the values of the complex velocity aleng the pro-
file contour are known the problem is solved, because
then Cauchy's integral formula gives the velocity func-
tian for any point on the outside region replete with the
flowing medium. To find the velocity distridbution on the
profile contour, the procedure is as follows: The con-
formal transformation (7) which transfers the slotted
plane to the outside zone of the unit circle, transforms
the profile into an almost.circular region. With the aid
of the function which conformadly transforms the contour
of this region nnto the contour of the unit eircle, the
velocity distribution on the contour is then computed for
the flow around this region. From this distribution the
velocity distributien alsang the profile contour is deduced
with the aid of the first conformal transformation.

Agsume the arbitrarily given profile in the z plane
te be so plotted that its trailing edge coincldes with
point z = 1 and point 7z = -« 1 1lies in the profile near
the nose of the profile (fig, 1). If the z plane is con-
formadly transformed by'functiOn' { =% +/z -1 on the
{ plane, then for the given position of the profile with
respect to the fixed points 2z = L 1, the image curve of
the profile contour in the { "plane is the contour of a
simply connected region which, for the common profile
forms, is in more or less satisfactory agreement with the
unit circls.

The boundary curve of this reglion is (8) = e V(8)+i8
(fig. 2). The function V(8) is 4R wivoeal, uﬁ%ady, and
periodic with the period 2mw; the boundary curve viewed
from the origin t = 0, is c'’l:ew«sha,}ped

The problem is tn’ transform the dontaur of the unit
circle 1z = el® on the contour of the region bounded by
{(8). This conformal transformation is standardized by
the condition that the infinitely remote point of the 'z
plane and the direction of the positive real axis in it,
are coordinated to infinitely remote volint of the { plane
and the direétion of the positive real axis. According to
Riemann, there is exactly one analytical functisn ((z)
which meets this requirement and coﬁformaoly tranéforms the
two outside regions., But in view of this fact, the con-
formal functien {(z) has the form.

E(z) = 5z oF(2)
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where F(z) for |z > 1 dinclusive of 2z = », 1is a reg-

-ular analytical.function Whlch assumes a real value for

Z ——» w.

Owing to 2z = el® ana ¢ = e““'ie it is

. - \ll ;1(8 Trovwsforma 8 [ﬁp‘?"’e)“‘."ds
L%._:_e i ———J Mmjiwy acle 79 on Ne g plavo.

on the unit circle. ' Thus the function F(z) assumes on

the circle 2z = oi? the boundary values V¥ + i(® - o).
Given either 6(p) or V(p), the function F(z), and
hence the conformal function ¢((z) can be directly writ-
ten.l Since F(z) takes a real value at infinity, we have
here h(e) = 0; hence by steady WV(p) for any =z with

lzZl > 1. +the equation

I1¢ F(z) =g+ inh is an analytical functlon that is reg-

ular for |z >R including = o and éﬁe&éy on the cir-
cle lz] =R, all gz = p or® with p >R follow the Pois-
son integral formulas:
21
' 1 v8 - RrE !
g(\),tp) = g(R, Cp‘) d-cP ’
. 2“,//) v? - 2v R cos(p!—p) + R?
) o
g(eo) = j;h/P g(R,®o') aop'
21,
and %” 0o
. 1
g(v,9) = g(x)- 51—/ (R, o) 2v.E sinl@ =@l 4o
. V8 . 2v R cos{p'=p) + R
0
which, combined, read: oo
3 icpl
F(z) = 1 h(w) + £ | a(r,p') 22 R e 50!
. 2T, z - R ot®

o]

The second equation yields for R =1, vV—sR, the impor-
tant formula 297 '

1 ; .
g(1.9) = (=) - é{-;_f B(1,0') cot L5 do

amag 2 ' 0 ~ ]
The ffégﬁxiixe integral here stands for Cauchy's principal
value (ef. Harry Schmidt, Aeredynamik des Fluges, p. 87).
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21

A i
F(z) = 5% | (o) EE-8i ag (11)
Z = e
is applicable, while on the unit circle itself, we find:

21

- . S . T
- @+ 8(p) = = / Y(p') cot =2 g
- : . 217 N 2

Introducing'thé ?hése difference @ - B8(p) as new
function €($)

€(®) =® - 8(p) - .. (12)
gives ‘for the present 4
2T
' 1
e(p) = 21 // V(o) cot 222 ap!
L2, -2

o]

If V(®) has a contlnuous first derivativy, partial inte-
gration leads to

277

I

d\U i 2 EP' Sp-dcp'
. E(® - 1n n e e
( ) ETT/ dep 8t 2
0

Actnally this is not -the function W(®) dut rather
¥(6). and the prodblem is to find the function ¢(8) for
the given V(B8). Then the function @(8) follaws frem
¢(0) .according to equation o(8) = 6 + €¢(8), and P(6)
tagether with VY(8) gives the function V(p). With W(ep)
the conformal function can be elDllCltly written, accord-
ing to equation (11). '

There remains the relation ovetween Y(8) and ¢€(6)
wnich, howev r, is easlly establlshed when assuming that

d@/de is steady and other than ‘zero, because then
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2. ) 2

ool A gin® R = Pt o ) AV 1, aqn2
/‘dcpln sin 5 AP —,_/,de in sin? ...

0] (o]

[9'2.49 + E(Gr)_z_ev(e')] ae!

and consequently,
21

'y = L/ aw a2 |88 e(e'>~e<e>]
€e(8) Eni/P G 1n sin [ 5+ 5 aer
n (13)

This is the equatisn upon which Theodorsen's meth-
¢d is based. It is a nonlinear and singular integral equsa
tion and therefore does not aline itself in the known the-
ory. But, according to Theodorsen, it can be successfully
applied by iteration process. This method is similar to
the Picard-Lindelof method of solving differential equa-
tions. It consists in temporarily substituting the unknown
€(8) on the right-hand side for any suitable function

(for instance, €,(8) = 0). Then equation
21
/r) v g 5
1 y o2 6 - 0 1
51(9) = 551/ 15 1n sin 5 ae (13a)
o

defines €,;(8) and generally gives €,+1(8) with the aid
of € (8) through the recursinn formula: -

2m

1 av 6! = 8 . ex(B') = € (8)]
€rr1(8) = §Ht/[35§ ln sin® [. 5 + 5 | e

o)

o padeezs
Ee%\$$oﬂﬁ~ﬁf~%he convergence it weuld have to be
shown that the functions €k(9) tend toward a limiting

function which satisfies the integral equation (13), This
proof is not adduced in the original work of Theodorsen
and Garrick, but rather in the practicability of the de—
scribed method instead, by showing on several solved exam-
ples that in them the functions €k(8) are practically no
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longer distinguishable after a few iterations. The solu-
tion of the integral is effected with a quadratic formula
which considers 20 points in i;he interval (0}2 ™)

Incidental to the present work some searching inves—
tigations concerning the. convergence of this methad were
carried out. It could be proved that the functions (8)

converge uniformly toward a@s#egﬁy limiting function 6(6),
which complies with equation (13), if the initial function
V(6) can be represented by a Fourier series whose coeffi-
cients a, and b, are of the order of magnitude of

-
—————— where p > 2) and A ere smaller than an individ-

ually specifiable, positive figure. Aj different from O.

But the calculations of this proof are too extensive to-be
reproduced here,

It might be noted that the very first step of the
method affords, in general, such a satisfactory approxima-—
tion that it suffices for practical purposes. The numeri-
cal evaluation of the integral of equation (13a) may be ef-—
fected with Theodorsen's calculation scheme.

Suppose that the function €(8) is known: then, be-
cause ®(8) =6 + €(6) and %%) =1 + %e’

equation (11), the conformal function ((z) is:

according to

217 . (6+ )
_2_3:_ 7ow(e) EigiTEHeT >de

t(z) =z 6 © E | (14)

from which the enlargement ratio of the conformal trans-—
formation at infinity follows immediately at

5 f W(e) 1+ ¢ de (142)
a = 1lim <§£> = e <

7 ——> oo M2
But on the boundary of the unit circle we have, Decause of

{ = o VHib at the point of gz = el®+e) - o1
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. g ovit (g r) oW "'1“'1%% v-1e
- o d mi(e+67 d (6+€) gc °
| 36 B (1 * e) * Trae

(15)

By reason of this the‘velocity_distribﬁtion in the
¢ plane is possidble. The values of the complex wvelocity

function w**(f) along the contour follow from w*(z),
according to equation (4), and df/dz according to

w**(e) - W**(c)g;e\!l+ie = <w*(z) %%)Z:eicp

But on the circle periphery it is, according to equation

i (2)

w (z) g = 21 W e~1® [sin(p=-a) + sin B] =

2i W e‘l(e+€) [sin(f+€=-a) + sin B]

Hence
1o+ %i ' :
w**(g) = 2i W e~V-1i8 _"W_E% (sin(e+€=a) + sin B] (16)
1-1 Eé‘ '

—k
For the determination of the complex velocity W (%)

in the z plane along the profile contour, the transfer from
plane { to plane Z must be effected. Both planes are mu-—

tually related through the conformal function { = %7 +

/%2 = 1 or <§ + C> Using the elliptic coordi-

nates V,8 the equation of the profile contour in plane
% reads:

- 1 . 3 s iU ) _
2(8) =3 <§+%)g=ewie =L [e1(8=1V) 4 o~1(0=1¥)] = cos(o-1¥)

Along the contour, it is:

—W i6
dz -1 ___ 1(8=1Y)_ =i (B-1¥) _
a7 . W+18 <§ f>§=eW+ie e ° }

= i o~V-18 sin(B«iW)
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Besides the enlargement ratio of this traﬁSfprmation_at
. . s . . i—\) =l. B L. 'd. '.o-b -
infinity is Cllmm <d% 53 }henge the velocity distribdbu

tion along the profile contour:

1+ 4 . '
— : A6 sin(6+e-a) + sin B
*(g) = 2W 17
w*(¢) . v PR (17)
ae

Now the parameter B must be so defined that at the
trailing edge, that is, for 6 = 0, the velocity remains
finite. The conditien for this is:

B=oa=-c¢ with ¢ = e(6)g_,

To make the final result agree with the result for the
flat plate, equations (9) and (10), the insertion of this
value for B is folléwed by the following changes:

sin(g+€~a) + sin(a-e,) = sin(a-¢,) + sin[(® +e~ey)~(a=ey)] =

sin(a= ¢ ) + sin(6+e—¢y) cos(a~e,) = cos(6+e~¢,) sin(a=ey) =

11

1~cos(6+€~€o)} 3

11 € — + g1 Y,
sin(g+e=¢€, ) [cos(m €n) +sin(a~ey) Sin(6 reacg )

—

i

; Brc—c_
sin(e+e=cp) |cos(a=¢p) + sin(a—-€ ) tan——7§—9 ]
L

_ In additien, we substitute the absolute flow veloclty
W in the plane 3z for W, It is with the constant a
according to equaticn (14a)

W = im l W*<Z) —= —:~l= W 2 and hence 2W = aW

Z,(—>0o

giving as final prnfile eontour

in(B+e—-€.) 1o+ Eé
T —a W2 -9 S | cos (a=€,) +
W (?) & sin(e—-i\ﬂ 11 i_\y [C R
a6

+ sin(a-¢,) tan __ET_Q ! (18)
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_But, on account of

lsin(p=-iV)| = v/51n2€+31nh\v and 'l— ggv

the absolute velocity takes the form , _" )
. s ,

| l'ﬁ(e)l- = a W sin(g+€—€y) . 1+ 35
| Nsin® 6 + sinn’ ¥ avy?
- e

[cos(a—ec) + sin(a- €, )tan __7?_95 (19)

Equations (18) and (19) are the strict equations for

f the velocity of the potential flow along the profile con-

i tour. To obtain an explicit expression for the complex

! velocity at any other point =z of the outside region, the
‘ Cauchy integral formula is applied. Since the complex ve-
locity function Ww*(Z) outside of the profile inglusive

of infinity is regular throughout, if =z denotes any point
of the outside zone and %' & point of the profile con-
tour, the equation® reads:

TH(Z) = W(w) + s W*(zz), az!

2mi C ZF =
WE( ) = Wai® gt infinity, and T' = cos(6-iV),

hence dz! = <} - de\ sin(g-ivV) de on the profile con-

] tour. Thus equation (17) gives the complex velocity funec~
tion in the form

277
N ) . - + . -
F4(3) = T e~lo 4 1"”“”/ sin(te-a)* sin(a- &) (2 + %%) a8

em % - cos(g=-1iV¥)
d

(20)
s | 7| > | cos (B 1W)| the series development for ‘

3*02) is

f 21¢ F(z) is a regular function of a simple region eG
) bounded at infinity and everywhere else outside of a part-

sy

dk 1y smooth curve C, and F(z) is steady on C, every =z
2 of the outside zone of G follows Cauchy's integral for-
; mula ) : ~
F(2) = Fle) + o5 6 T8 at

X oni C z - C

See also reference 1, p. 68.

o
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G, .
2+ ..

— . 1
sk (o —_ =10Q == =
w*(Z) = We 3 H%“z.

Y

with o

Cp = 1aW 4/n[31n(6+€~a) + s1n(@“€o>5]cosn’l(9“1W)

° (1 + SN 44 reoe)
de/
Thig integral can be computed for the coefficient C; and
leads to a known formula. It is with 6 + € =
: o ,
ci'= 1aW /p[sln(e+€—@) + s1n(a—€o)] <1 + %%) a8 =
2T '

1 : .
- %?E // [sin{p=a) + sin(a~ ¢ )] d@:iaﬁ sin(a=~¢5)

0

Regarding the result (20), it should be noted that
this formula naturally is not the only possible explicit
presentation of the wvelocity function, since Cauchy's in-
tegral formula can also be applied to every regular func-
tion in the outside zone of the profile crmbined with

w*(%).
3. APPROXIMATE THEORY OF POTENTIAL FLOW

OF THIN WING SECTIONS

There is a theory for thin wing sections which, pro-
ceeding from the image of a nonuniformly covered flat vor-
tex layer, establishes an apvroximate relation between the
velocity differences on the upper and lower surfaces of
the wing section and the slope of its mean line (reference
5). It constituted for a long time the only one affording
a functional relation between velocity distribution along
the wing section and its contour, and precved very useful
despite its restricted range of validity. Hence, the de-
sire to exvand this theory to incliude medium wing sections
in approximate validity, though no satlsfactory gsolution
has been found up to now.. et :
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Theodorsen's theory,:described in the Drecedlng sec—~
" tlon, affords the-striet- relationghip between the wing--.

. section shape and the velocity distribution along the con-
tour, It, moreover, affords information about thin wing
sections, and it might be conjectured that for vanishing
thicknéss the equations of this theory, with proper omis-
sions’, would become the equations of the old theory of
thin airfoils, which would mean that Theodorsen's theory.
represents the desired generalization of the old theory.

. However, that is not the case, as is readily proved:
Theodorsen's theory contains a theory of thin wing sec-.
tions as limiting case, the results of which are a system
of equationg different from those of the theory. of the
lifting vortex surface. : :

‘he theory develeped hereinafter leads, for vanishing
airfoil thickness, to the formulas of the linear vortex
theory and represents, in its formulas, if not in thought,
a generalization of the o0ld thenry. In distinction from
Theodorsen's theory, it is fundamentally an approximate
theory dbut it involves in return no infinite method. Its
result is rigorous only in the specific case of the flat
rlate exposed at angle o to the stream; but the more the
wing section departs from the flat plate - that is, the
greater its thickness and camber - the more the results
assume an appraximate,charaqter.

'The method, like that of Theodorsen, begins with the
conformal transformation of plane Z into a plane. z -
with the given airfoil = by means of the function

Y

wheredby the wing-section contour becomes a curve z(6)

+3
vie) 19, not much different from the unit circle. For

this almost circular contour, that flow with the complex
velocity w*(w) = W ™% gt infinity must be determined,
for which at point 2 = 1, which corresponds to the tra11~
ing edge, the velocity assumes the value zero.

But, while in Theodorsen's method the flow about the
almost circular curve is rigorously computed by méans of
the analytical funetion - obtainadble, to be sure, nnly in
infinitely many steps - which transforms the contour of
this eurve smnothly into the curve of the unit c;rcle, the
solution of this flow is now effected approximately on
the basis of the following reasoning:




18 N.A:C.A. Technical Memorandum No. 886

At point P ' on the contour of the almost circular
curve the tangentlal veloc1ty hag a certain magnitude
"ut(e) Hence the radlal veloc1ty component in P is, for
small &, anprox1mate1y ug (6) 9(8), 'Iwnereby the radial
velocity in outward direction, and the tangential velocity

?n dlrectlon of 1ncrea51ng 6 carry the positive sign
fig. 3) . o .

About the magnitude of the tangentlal veloclty in P,
the corresponding flow about the unit circle affords, for
the present, some information because, when' the almost
circular curve changes into the unit circle in which dis-
tance PQ and angle 9 uniformly tend toward zero for
all 6, the flow changes into that about the unlt circle
and converges. the tangential velocity .ut(G) P against

the tangentlal ve1001ty uto(G) at pplnt Q@ of the unit
“circle. - o

Then it is assumed that the d1s+ance 'PQ and the an-
zle 3 are so small for all .© that no dlfference need
be made bretween ut (6) and ut(e) in the intended ap-

proximate calculatlon. Hence the radial velocity in P 1is
approximated at 'utb 4 and, while the change on transi-
tion from P to Q is ignored, this quantity substitutes
for the normal velocity wu,(6) at point Q of the unit
circle. Accordingly, since the flow about the unit circle

(with velocity W e"iOL at infinity and with the rear stag-
nation point at point =z = 1) 1is ug = - 2 W [sin(6-a) +

sin a], we have:

u,(6) = utO(G) 36) = -~ 2 W [sin(p~a) + sin «] 8(e)
T : (21)

In this fashion the problem approximately reduces
to the second limiting problem of the potential theory for
_the unit cirecle. Formulated for the complex velocity, the
problem consists of giving a regular analytical function
in the outside of the unit circle, which has the value

W e % at infinity, a zero point at- z = 1, and whose
normal component on the unit circle takes the value pre-
scribed by equation (21). Desired, above all else, 1is the

eXp11c1t expression for the tangentlal velocity on the
unlt circle.
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In any flow at point 1z = o 16 of the unit cirele, the

ﬁ”fdlloﬁing'édﬁdtfoﬁESE e

Un, = Uy cos § + u, sin ¢, Uy = = Uy sin 6 + uy cos 6

¥y

exist between the normal component un(B), “the tangential
component wu4(6), and the components 1uy(€) and uy(e)
of the velocity in x and y direction.

Combining wux and Uy into the complex velocity
funetion wu*(z) = ugx - i Uy affords. for z = eif

[izu*(z)]Z =elf (1 ugtuy) = (cos € +1 sin €)(1 ugtuy) =

i
= ~uy sin E+uy cos 6+i(uy cos 6+uy“sin €) ug(6)+i uy(6)

The result is a distribution of the tangential veloc~
ity over the circle periphery feasible for a potential
flow with the aid of Poilsson's integral as real part to the

imaginary part wu,(€), according to eguation (21). This
function
2m -1
3
- L ' &' =6 - ¥ 3 b e +
2ﬂ_// u, (E') cot s—— 4! = = [sin(g'=a)
0 ' o

. €' . €
+ sin o] (€') cot ——5—— 4§

is, however, not the desired result because, since the re-
lated analytical function i z u*(z) at infinity is reg-
ular, u*(w) = 0 is contrary to the posed problem for the
related flow. ‘

To obtain the desired flow, the most general poten-
tlal fleow for which the normal velocity on the circle
periphery disappears and the velocity at infinity has the
correct value, must be supervosed. This is the flow abdout
the unit circle with the tangential velocity

ug (6) = - 2w [sin(g~a) + sin B]

Hence
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v;%(@) - - oW {sin(G—a) + gin B - é% // [sin (6 '=a) +

o
+ sin a] 8(g!) cot giig—g de}

Lastly, the available pargpmeter B must be so deter-
mined that the velocity disappears for 6 = 0 (Kutta-—
Joukowski theory). For B the equation reads:

2m
sin B = sin a + é% /[)[sin(e'~a) + gin a] 9 (g1) cot %% ag!

(o

which finally gives the sought—for tangential velocity as

(6) = - 2W {sin(ﬁ—a) + sin o +

/p &ip(6'~a) + gin o] 3(0') (e2)
' ey n
<cot %r - cot Q_mé_ﬁ) d 8’}

or, transformed,

’ 1
sin(@'=g) + sin o = sin 9"<cos a + sin o tan %;)

.. 9.
. , ' : sin —— : )
sin O! (cot Q-—-—c 7 Q~_§> sin 0! 2_ =
2 .. & . B'-8 '
sin =5 si -
2 ' '
= - gin 6 sin © - °E e 1 ”=
8 gin 6! . B'-6 .
2 = v v
cos 5 sin 5
!
sin cOS 7?

|
m[@tD
[an)
l
(«p)

cos
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,and consequently N
.ut(e) - EW sin 9 [cos CL +7 sin o tan _29_"__ SRR
. v (22a)
cos =5
= ‘”“*-_** <§osm+sina tan __>é(9) ________ ae!
e cos 1n E1-6
2 -

This equation presents the velocity distribution on
the almost circular contour in plane z; from it the dig-
tribution over the airfoil contour is obtained by trans-
formation of the z plane into the original plane with the

aid or the function % = % (z + —> The enlargement fac-

tor of this transformation for 2z = eW+ie' ig

4z - ' 1 < >l “Yeif s .

= o= lE= (g - = e sin(e-ivVv)| =
dz| ,_gU+i0 2z smo V10 = | |

= e"w J/ sin® g + sinn® ¥

and the absolute velocity on the airfoil contour with W =
2W (absolute velocity at infinity) is:

| Vo
IW(e)l =W e__sin § cos a + sin o tan O ~
v sin2 6§ + ginh2V e
o .. r(23)
A ‘ cos =
A 2
SO @osaﬁsinuxtan%£>ﬂ(6') ~~——~T—— ae
2m cos % & ‘ ‘ sin ngﬁ
J

In"order to establish a relationship between this re-
sult and the linear vortex theory, the equation needs fur-
ther conversion. To this end, the periodic function

£(g) - (cos @ + sin o ban §>6(e)

below the integral is divided in a component f1 (€) symmet-
rical to € = m, whose Fourier series consists of cos
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terms, and an unsymmetrical component_ fg(e) whose Four-
ier series consists of sine terms only. If 9,(6) and
92(6) are the thus-declared components of function 3(g),
that is, if

8,(6) =2 [9(e)+d(2m= )],  9,(6) =% [8(8)=8(2m=0)] (24)
we have: |

£, (6) = % [£(6)+£(2m=€)] = cos a $,(g)+sin a tan g 35 (8)

£, (8) = % tf(e)~f(2n—e)] = cos a 95(6)+sin o tan % 3,(6)

Owing to the symmetrical qualities of the functions
f,(6) and fz2(€), the integral in equation (2%) can dbe
substantially simplified. It 185

3 s s ' .
Auxiliary conversion formulas are:

x+y .
. sin =% sin =2
x 1 L _ X .2
cos = -~ = Cc0S =
2\ q3p XX i XFY T ot A
S R TET BRR B sim == sim T3
2 co£~% sin % » 2 cos® £
= cos £ = - 2 gin % - 2 =
2 % (cos X - cos y) . cos cos ¥y
= - 2 gin ¥ 1l + cos X
2 cogs X = CcOS ¥
' sin XY 4+ gin EZE
X 1. 1 x 2. - 2 _ .
cog — -+ = CcO0S = : =
2 X=y Xty e . Ry . xX+v
‘sin —5— sin 5 sin —5% sin —5=
2 gin - ¥ : in & X
) x _51p.2 cos 5 . , ¥ 2 gin 5 cos 3 B
= cos 3 1 - CO% 5 %os x - cos ¥
-5 (cos x = cos y)
sin x

¥
= ~- 2 cOos —
2 cos X =~ CcOS8 ¥
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~__
em oo Y-
. . 40 @ Y / ) cos =
R a6! = £, (') —————=— 46"+
sin -Q-—'—— 0 B sin _6..!_:_.&
2 o ‘ e
: cos ~—;§:§~
+ ffl(En 6) B ST =6 a(2m-g)
i 2
™ . g €'
cos —— cos >
) 2
= £, (1) - , ae! =
-._/1 ain E'_.'__:__gi. in _6_......__....E
)
™
) 1 + cos 6!
= - A ag!
B 2sin2“/ f1<€’)cos €' - cos € ¢
J
and likewise
27 il
/f‘ cos 52—' o ) cos -Q2—‘-
" e = / f_o(E!) ————— e a6 +
J = e s ) Y TR
0 S 2 o 2
o o = €
cos —mss —
+ fo(2m=T) - d(em=€) =
. s 2T = £ = §
“ sin =————g—-
T 2
T 6! £!
cos = cos =5 ,
= [fa(e') —tv g * T E det =
: . sin “———= sin 5
) » .
™

23
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N
R T Ll
. +1
1 ‘Ma)de] 1 . / 1+t o
o3 [ 0] e B [ o0 SR
-1 .
‘ 41 - .
p
Lo [ o) /)
- > (26)
y /1 - x? 1-x\
|W <X>'“W ewﬁ(x}*//cosha WX—XO A<cosa—31naﬁ//;+x
+1
f1 )ﬁ<€)d€] 1= / 1+g d
L1+1—;.£/ —% e e cosocf 9, (¢) Tt _i-+
+1
3 % sina{// By (¢) ii% é%;
-] S/

This general result contains several specially note-
worthy cases.

1. Flat plate.— In the case of flat plate, it is
Vo (x) = Vyu(x) . =.0, and also. $o(x) = dy(x) = 0, as a re-
sult of which equation (26) reduces to :

|76

cos o * sin o R

in accord w1th the Drev1ously derived equation (10) for
the absolute velocity on the plate surface. This 1s the
only case where equatlons(EG) cive the rigorous result.

2. Symmetrical airfoil,- For this, it is Wo(x)
VY (x) and éo(x) = - 6u(x); hence &,(x) = 0, d(x)
55 (x). In this case the velocity distribution is, accord-
ing to equation (26):
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‘W(x)l:W Wo(x) ; fwxa 5 (cosa £ sinc J/i;~
R . cos -
+1
‘3 (E)di .
, 1 :
B / e geur-all| EEREN (27)
C T R .

This equation is fundamentally an approximate equa-
tion. PFirst of all, no good agreement can be expected for
the trailing-edge viclnity ~ that is, " for x values ap-—
proaching +1, 1if the edge angle is flnite. In fact, for
3,(1) #£ o, the principal value of integral

+1

/ do(t)at
J TEx

increases beyond all limits if X———yi;

The explanation for this is as follows: With finite
angle at the trailing edge, the tangential velocity ut(e)

approaches zero differently for small 6 +than it does at

the circle. Hence it is not justifiadble to solve the nor-
mal velocity according to equation (21) on the bvasis of
the velocity distribution over the circle. And on this

point, equation (27) must also fail.

For practical purposes, it is recommended to figure
either with a sharp trailing edge or, what ‘amounts to the
same, round off the. trailing edge and locate point =z =1

_mldway between peak and center of peak curvature. In the

second case, the ¥irst factor of equation (27), and with
it the velocity, approaches zero for 6 = 0. '~

3. Infinitely thin airfoil.-~ For infinitely thin air-
foils, it is Wy(x) = = VY (x) and J,(x) = 8,(x); hence

d1(x) = §,(x), da2(x) = 0. Since, in this case, the fune-

tion WY, (x) disappears for x =+ 1 and x = - 1, WO(X)

may be approximated at WVo(x) = O if the camber is slight,

while function ¥, (x) = %%(x)’ can, in this case, be ex-

pressed with bo(x) = - %X = = y' Tbecause the airfoil
ol .

follows completely in proximity of the piece of the x axis
between «1 and +1. Accordingly, equation (26) gives:
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‘W(X)Iiﬁ cosa-—% 51n; J/qy (E)‘//i:% J%% L
oM F (28)
o3 [t e [ [ ]

The chief result of the linear vortex theory is a re-
lationship between the velocity differences on the top
and bottom of an infinitely thin airfoil and the slobpe
y'(E) of its median line. Eguation (28) gives for this
reclation the formula

+1

ﬁq(x)-ﬁu(x)=2W / %ii [sina-o% cosa L/GY'(ﬁ) %E% g%%} (29)
x| . e . . s

which for o .= 0 reduces to

| o
7o (x)Ty(x) == 2T [1=x / gy JEEAL
-1

and renresents the known result of the linear vortex the-
ory (reference 5°). The approximate theory developed here
for medium thick airfoils contains the -old linear vortex
theory as special case and, in that respect, rebresents its
generaligation,

5., CONTRIBUTIONS TO:GENERAL POTENTIAL THEORY

OF WING SECTIONS

The potential flow about an airfoill is completely de-
scribed by the related complex velocity function, as ex-
emplified in equations (4), (9), and. (20), which give the
velocity function flows about the unlt c1rcle, the flat
plate, and about any other airfoil. The velocity function
is an analytical function, regular at.any point in the out-
side zone of the airfoil, For the vicinity of the infi-

¥
Fuchs-Hopf, Aerodynamik, Bd. 2, S. 87.
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nitely remote'point the series develdpment (2a) is appli~-

“eable. ~The coefficients -of this series-are.associated

with the force and moment applied by the flow on the body
(equation 3),.

In the following, these arguments about the complex
v31001ty are substantially complemented, wherein relation-
ship is established between function and velocity distri-
bution on the airfoil contour and with the direction of
the airfoll contour., This reasoning léads first to devel-
oping new integral equations for the basic problem of air-
foil theory, which connect the velocity distribution along
the airfoil contour with the direction of the airfoil con-
tour at every point in exact manner; and secondly, it in-
dicates a method for developing airfoils with required
characteristics. .

Assume that the airfoil is plotted in the complex ¢§
plane. If the flow strikes the airfoil at an angle «a,
then let w*(a;f) be the complex velocity. This function

ig regular in the outer reglon of the wing. For {-— w,
it ie:

lim w*(ajt) = W e~ia

—>

The residuum of w*(a; §) is purely imaginary. For the
values of w*(a'g) along the airfoil contour, the for-
nula .

w (@it (s)) =.w*(ais) = |w(ays)| e~id(ais) (30)

is valid, whereby s 1s the arc length on the contour
measured from the trailing edge in positive direction of
rotation |w(a;s) indicates the absolute velocity at
point s, and d(a3;s) is the angle formed by the veloci-
ty and the positive real axis (fig. 4).

Further, let { (2z) represent the analytical function
which transforms the contour of the airfoil in the ¢§
plane into the contour of the unit circle in the =z plane.
- The function ¢ (z) " is regular for all finite .,z with
fz] > 1. In the foregoing, ¢(z) had been standardized

by the requirement that 1lim %£ should be real, the im-
Z

g >
age point of the airfoil trailing edge being a wholly. ar-
bitrary point of the unit circle. In distinction from it.
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a subéeqﬁent rotation with the anglev'B-iisvto-bfiﬂg-ﬁhe_'
image point of the trailing edge to point 2z =.1. Accord-
ingly, it is at infinity .

lim at . ae~ 1P
z—>o 42 .

'Eor great =z the series development

t(z)=a e~1f 3 6ﬁ-——-¥§§ + ...) (By,By «.» complex) (31)

Then the substitution ((z) in w*(x3l) gives an
analytical function

w*(as;z) = w¥(agt(z)) (32)

which is regular outside of the unit circle and assumes

for =z = e1$, according to egquation (30), the values:

(7*(as2)] _ ip = | wi(ass(p)) | e=id (ass(p))
ECH] o1 (i) (30a)

This function serves as basis for the subsequent investi-
gations. The series development of w*(a3;z) for great

2 is intended for later on. Because of equatien (31) and
of the development

Cl Og A - il-"
I S g T
valid for ‘W*(a;@),v the first terms of this series are:
. o ig -1iB 21
F*(a3z) = We 1% +7°C, -z——z—-— + (Cz~01 B,a e 2——-28- + ... (32a)
AN

The behavior of the function w*(a;z) at the point
z = + 1, resembling the trailing edge, is of special in-
terest. If {, is.the point of the trailing edge in
plane { and Y the edge angle, we find:
2Ty ' | 1
THT L =Y

(L~ L) ~(z ~1). 7 “or (z-1)~ (- to )



%/

B NSIRET 2 ok it

o T
R Sl

]

e it

T LB

N.A.C.A. Technical Memorandum .Ne: . 886 31

for the vicinity of point z = 1.

: Since in the flow about the clrcle with stagnation
point at =z = 1, the complex velocity acts like (z = 1)
the flow about the airfoil v

wait) = (= 1) $o- (L2t

For the function w*(ajyz) resulting from substituting
t(z), it is: - :
2my\ Y Y
— A "
wH(asz) ~\(z - 1) T JFT L (g L1

Hence the following result: If the airfoil has at the
trailing edge: the angle Y, then

i
Q
Q
o]
[&]
¢t
N
«

l
-
SN

3

w*(a;z) (33)

for the vicinity of 2z = 1.

The relatisn of conformal function {(z) with
w*¥(a; {) -and W*(a;jz) has some surprising consequences.
The function {(z) ties the complex -velocity of flow about
the arbitrary airfoil to the velocity function of the flow
about thé unit ecircle. If W! eo~ica! is the velocity at
infinity for the flew about the unit 01rcle, and 7z = elwl
the forward stagnation point, the complex velocity, since
the rear stagnation point must lie in the image point of
the trailing edge, i.e., at =z =+ 1 . is, according to
equation (4)

et (3 21) (- 252) nai gy e e
where, according to equation (6)

z o3z)

From this it follows that the forward stagnation point
of the flow about the unit circle is coincident with the
zero point w*(a3z) Dbelonging to the forward stagnation
voint of the airfoil flow. Herewith .®, and, since @, =
m+ 20!, a' itself is determined. For the infinitely
remote point equation (34) gives:
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a e~1B - w1 e~iat §-1 Gia
hence o . B
a = —TWF,— o i B =qat! - o (35)

The cenformal function {(z) itself follows from
equation (34) by integration. It is: .

Z
C(Z)=§O+a w e’i(“+B)L/P<1;,l> E__ dz (36)
1

w*(a3z)

ei(ﬂ+2a+28)J
Z ‘2

s . e, .
which gives for =z = e the profile contour {((p) re-
lated to a predetermined function %*(a3;2). From the fact
that the airfoil contour is a closed curve, it follows
that the residuum of the integrand in equation (36) must
be equal to zero. The function w*(x;z) therefore, has
the important characteristic

= i{mt+2a+2B)
. 1y el( 1 \
T — = — = 7
Re51duum-{<l z) Ll - }_*( ;z)} 0 (37)

For the coordination of the circle périphery and the
airfoil contour there exists, according to equation (34),
the following relationship:

ds

ds _ g )sin(w ~_a‘) +-gin o (78)
aeo ELCH )
This equation is recommended for solving s(®) when the
distribution of the absolute values of Ww*(w;z), that is,
the function |w (a3p)] on the unit circle is known., a!
must be so chosen that % (a;m+2at)| = 0. Then the func-
tion 1w(os o)l can be replotted -with s(p) and the ve-
locity distribution Iw(m;s)’ on the profile contour ob-
tained.
Conversely, for given velocity distribution lw(a;sﬂ

‘equation (38) gives, inasmuch as point s; of the forward
stagnation point on the profile contour corresponds with
point @, = m + 2a!

E A, i , o

/P lw(a;s)| ds = EWf’ ‘/ |sin(p~a!) + sin at] dp  er
Q;S 'ngéa“ | :
/p‘w(a;s)l ds=2W!| cos(p-a') +cos a'(m+2a'-®)sin a' (39)

53
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wherein the constants - o and ' W! are left for determi-
nation. ' This. is achieved by the fact that s = O relates .
to ® =0 and s =85 to ¢ = 2w, where S is the air-
foll contour. The, solution for o' and W' is:

et : . N
_j/ |w(a;s)| ds 1 + (g-+ a?) tan o!
g | o
5 - e - = plalt)
/P |w(ass)| ds 1 = Cg - m') tan !
s, : . , > (39za)
' 8

1

) . ’ .
/( lw(as;s)| ds

o]

r T S
4 |cos a'! + <~’+ a'w sin o!
Lo 2 /

J

The function p(a') occurring in the first equation in-

creases petween ol = - g and ol = + g monotonically
from O to o. Hence there is one, and only one a! for
each value of the quotient between these limits. Then the
second equation gives the value W! for a'. . Equation
(39) gives with these values a«' and W! the function

s(p), with the aid of which the function  |w(a;p)| can
be obtained from Iﬁ(m;s)'. : - :

Hence the remarkable fact that for the conformal transg=-

formation between the contours of an arbitrary airfoil and

the unit circle, the coordination of the boundaries can be
determined without knowing the shape of the profile if the
velocity distribution along the profile contour for an ar-
bitrary potential flow about the profile is known.

Lastly, the distribution [w(a;s)l for any other an-
gle can be deduced according to equation (38), equally
without knowing the profile, from the velocity distribu-~
tion |w(as;s)] for a certain angle of attack «. Since
the same function s(p) relates to both flows about the
same profile, it is with o = o(s)
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gin(p-a!t=ata) *+ sin(a'+a~o)

lw (33 = |w(ass oAl 40
JW(a.S)' IW(“’S)” sin(p~a'!) + sin a! (40)
In partiéular, it giveé for @ = @ - al! = - B the wveloc-
ity distribution for the circulation free flow
JW(S)| = |w(ass)] - sin o (40a)
sin(p-a') + sin !

Thus the velocity distribution along the profile con-
tour related to a certain potential flow about the profile
determines the velocity distribution for other angles of
attack as well, and can be obtained by elementary calcula-
tion. And the fact that the related profile itself can Dve
defined in simple manner without having recourse to an in-
finite method is one of the ensuing results.

Following these more general arguments about the ve-
locity function and the velocity distributions on profile
contour and circle periphery, the relationship with func~
tion &(s) and "d(p) decisive for the shape of the con-
tour, is discussed. Reverting back to equation (30a), we
revlace ¢ by s, so that it now reads:

[E*<a;z)}z=ei¢ - |§(&;®)~Ie~iﬁ(a;$) (302a)

What are the connections between the functions ]ﬁ(a;m)/
and 6(@;@)? '

With the complex function ‘w*(ajz) new complex func-
tions f(z) = f(z,v*(a;z)) can be formed which are regu-
lar in the outside zone of the unit circle with inclusion
of the infinitely Temote point, and on the circle contour.
With - ' ' '

f(z,w*(a3z)) = g(v,cp)l + i h(v,Cb‘)

the two.interrelated equations exist between real and im-
aginary parts of f(z) on the unit circle
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| 2 o
R AR R LS LQQ;:;Q \
g(l,.cp’) = g,‘(oo).... B f h(1l,o )‘90t 5% 49
. T . :
o

h(l,9) = b(w) + £ | a(1,9') cot 2L =P gop!

‘ -..E’n' E >

Coae . o - -' "

at the same time. g(l,9) .and h(l,p) are functions of

v, "(a;p) and d(a;p), according to equation (30a). The
result therefore is a diversity of integral equations, all
of which establish the relationship between the functions

|W(a;w)| and E(a:w) in exact manner. A few illustra-
tions are given:

1. The function #*(a;z) has itself the characteris-
tics required of f(z). The next example therefore is

f(z) = w*(a;z). In this case

zg(l,p) = IW‘ cos 9, glew) = W cos «
and _

h(l,CP) = - 'T! sin 6, h(on.) = ~ W gin o

Hence the identities

% () cos T (p) ¥ cos a +

2T
¢ — ' ."‘
+ 5% \/PIW(m‘)I sin 3{w') cot . dep!
)

W sin o -

()| sin 3(p)

217

. _' !t )
- g% L/P§ﬁ(w')‘ cos 9(p') cot @—?;—9 dep!

o

Every such equation can fﬁndamentally be used_to de~
termine the other function for given ]W(m)] or (o),
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and it should be possible in various ways to give infinite
iteration methods which lead to results, and might even

be advantageous for the anpllcaflon. This finding like-
wise exvlains the surprising fact incident to the compar-
ison of the two theories (3 and. 4) that different assump-
tions may lead’ to substantially unlike profile theories
which in limiting cases, as of the infinitely thin air-
foil, give outwardly entirely different equations.

2. A very interesting examnle ig the following case:

£(z) = 1 <z - _—/\ (5% (as2) = 5% (o)

i3 g

e i (s emd ~ig
Here [f(Z)JZ=ei@ = i gin o(w e - )

. e

= |%l sin ¥ sin o - W sin o sin o +

+ 1(|%| cos § sin @ = W cos a sin ®)

and, on account of egquation %2a) with Ci = ;E
~ ig
f(m) = 1im '1.‘ (Z — 1") (Cl e ...\ =
2 z) " az /
7 —>00
iR
ile ™"

Hence the two identities read:

|wl cos ¥ sin @ = W cos a sin @ =

217
s
I" cos B 1 / —
~gos k (1l

= —— 3 Y * . | -
ina + 5 t/ sin 9 sin o

(o]
el .
-~ W sin o sin ') cot QMY;—@ ap!' =
_ L _cos B ;
= dre - W sin a cos © +

2T

- 1 -
+ f% 1//]ﬁ| sin 9 sin @' cot EL7§_9 do!

(o)
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The value of the constant £—§9§~§' follows from the
Ta

Kutta-Joukowski condition that 'at the trailing edsme - that

is, for @ = 0, the’#eloc%&y must be finite. It is.

Leos B - W sin o - = |5 @)| sin 3@") sin @' cot By ap’
4ma =TT -7 _ 2
(o}

hence the integral equation:

‘§(¢)‘ cos S(p) = W (cos a + sin o tan g) + _
om ' (41)

r)

o T sin dlo')ei ' o'-v £t ©\go!

S r—y cp,/‘w(cP )| sin d(@)sin o (cot S co 2) ®
o0

J
This exact equatien is intimately related to the the-
ory of the lifting vortex surface. For the replacement of
Iw(®)l ©below the integral by the velocity distribution of
the flat plate, according to equation (10) in first approx-
imation, leads to_an equation which (substituting 6 for
®, and 3 for ) agrees with equation (23) for the case
¥V = 0. Thus the result is again among others.the result of
the theory of the lifting vortex surface - this time, how-
ever, not as limiting case of a gsomewhat more generaligzed
approximate theory as in (4), dbut as first approximation
of an exact equation for the most general flow about any
arbitrary profile.

8. The equations obtained, according to the described
principle are, as a rule, integral equations possessing,
as in the two examples, combinations of functions |w(®)|
and d(p) below and outside of the integral. However,
these functions can be separated by so choosing the func-
tion f(z) that its real part depends upon |w(®)|, and
its imaginary part on d(®») only.

If the airfoil has the trailing-edge angle Y, and
the forward stagnation point of the flow lies at e1®1,
then according to equation (33),

: o ) Y . -1
Sk (gen)) = 1N W . ei%1 F*(a:z)
f(z,w*(a;z))= 1n [(l - ;> w (1 e w*(m,z)] (42)

2

is a regular function with the characteristic required for
all |z 2 1.
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Now in general
l’ln <]_ - & >:L 1n <2 sin L=A 4 3 T :_._(_Q:?_\l
L =el® 2

for AN <@ < 2m + A, -while for ® « A and for o Z 2m+ A
the two functions for real and imaginary part must be con-

tinued with the period 2m. Hence (for A =0 and A =
®,)

[ln <1 - l)J ., = 1mn (2 sin Q) i ——@ for 0 S o < 27
. 2/ 1 z=21® A , ,

and

ip | ey - ol ®y - P -
(ln (1 ~ 9—<l>J .. = 1n (2 sinl—i————> + i <~1—§—— +
L h : z=01? 2

rof3a
~_

0 ®< @
for
P, < P = 27
In this case it givés for f(z) = g.+ ih
_ ) lF(@)’ \;_
g(l,p) = 1n _ g(o)=1n W
-0
(2 sin > <2 sin £23—~L-
N
_ = T ;-0 T < =
h(l,cp> = = Q(CP)-'— “é"‘""‘-"—'g—“— + 5 (fOI’ .('.D > CPQ, h(C’O)—— a8

henae Poisson's integral leads to

Y
T
w@) =7 (2 sin )
2m - \
éL | 9 @)+ Y o=, 0229 7 g]cot QEQ aep'
fh i 2l BT ]
N T
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$(@) =o'~ = T3 2 7H9122 * * 3 - . ,
2T )
1 iR . L oo v
- = d_L ot =% (44
5 L/pln ¥ - cot > ao (44)
0 1\ o1-9)
59_> ( iq JP21-®Y
(2 sin 5 2 sin 2

The advantage of using the function 1n w*(a;z) as
basis had already been recognized by FP. Weinig, who 1ike~
wise cited equations (43) and (44).

The discussion of. the general airfoil theories is con-
cluded with Weinig's 1In W method, involving the question
of profiles of prescribed characteristics, of profiles re-
lating to a given velocity dlstrlbutlon ~and the potential
flow about a given profile.

-

5. THE WEINIG 1n w METHODZ

- In preparation of the treatment of profiles with pre-
determined characteristics, the appearance of the most im-
portant profile characteristics with the function w*(ajz)
is first ascertained. For this purpose equation (42) is
used to formulate w*(aj;z) with F(z) f(z) = £(»)

1@1
F*(a3z) = W e~ 1o (1 - _> (1 - ,_ > F(z)
with . . > (45)
[oo] o +'
F(z) = £ -B=.3 Eg_ihg, since F(e) =0
nz1 g% nx1 R J

The parameter Y in the formula is, according to equa-
tion (33) the trailing-edge angle of the airfoil. The fact
that the contour is closed affords some prediction concern-
ing the coefficient ¢;. If it relates to an airfoil with

zThe connections between the velocity distributions . at 4if-
ferent angles of attack and the 1n w method has been re-
vrorted by F. Weinig in the following publications: Z.f.a.M.M.,
9 (1929), p. 507; Werft Reed. Hafen 14 (1933) P. 131l Luftf.-
Forscag. 12 (1935) . 221,
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fixed center of pressure, a second condition for e¢; must

be added. The condition for ¢, follows from equation
(37). It is

Residuum (l - £> <1 - l)__ 1 } =
z Z w*(a;z)

1.5 % Sn| .

i . T — n 1a Y

) ela esiduun (1__l> . n=1 2 - e - —1‘+-~01> = 0
W z v "

hence the final condition

a; =~ 1+ =, b, = O (46)

The condition of fixed center of pressure follows
from the fact that an airfoil has a fixed center of pres-
sure when the mement for zero 1ift is zero. In this case
the aerodynamic center of v. Mises' 1ift paradola 1is zero,
and the air force therefore passes through the aerodynamic
center of the airfoil at every angle of attack (reference

5). This means, according to equation (3), that by series
development for w*(a;f) in the case of G0, = 0 for
Cp = Ap + 1 By, the relation '

must be fulfilled.

According to equation (%2a) the disappearance of O,
is accompanied by that of the first coefficient €3 of

the seriesg development for F*(a;z), and the second coef-
ficient Cz 1is, in this case, connected to Cz Dby

Cg = age—EiB Eg'
But, according to .equation (45)

. Y eincpl 1

oo
In w*(a;z).= In W =« i o + Cpy = T = T -
(asz). 22 (Cn " am - pe

hence,

_ . o y N
Cw*(azz) =W e @ {l + <cl - - e1®1> % +
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That is, N | |
T Wi (LYY e

therefore Ei”= 0! if ¢, = m; that is, if o«

is the condition for lift=free flow about the
tion. e

For e+®1 - . 1 and o = - B, we have:

— . ., / s Y
Ca:Wel'B Ca*~1~l>=wels<aa+ib2"_é?r~

= a2 W o~if (aa + i by - é% - %)

The conditinn for fixed center of pressure is

O, which means that the imaginary part of CoCa

apvear. But, since o = - B, +the constant is
2 2 s — =
Coly = 2= W (az + 1 by - 5r =

41

ei®1)

-

B. This

wing sec-

o

)

AyB, + BoAa =

must dis-

Co = W olB

so that the condition for airfoils with fixed center of

pressure reads

'b3=O

(47)

The closing condition and the condition of fixed
center of pressure are also predictions about the func-
tions w(a3p) and F(aj;p). The particular formulas can

be readily obtained on the identity:

[1n ¥*{a52)] . 1% = 1n |F(ai@)] - 1 S(ag@) =

by division into real and imasinary parts and integration.

It is for funmction 1n W(ajp)
27

N . N M . 4
// in f§(a;¢)l dmf;NZﬁ 1n W.
:

(48a)
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277
3
/ln 'x?(o,;cp)l sin ® dp = ~ 7 sin ®, 7]
o > (clos%ng (46a)
S S - condition)
/Pln lﬁ(m;@)l cos @ dp = = mw(l+cos wl)
° on
3 e ~ (fixed cen-—
1n lw(a;@)lsin 20 4P = - g sin 20, ter of (47a)
: _ N h - pressure)
and for function §(a;®)
2 ‘ ' ’
_’/ﬂ_é(a;co) dep = 27 : S (48b)
O 21 ' ' |
:“- R
/ Haip) sin @ dp = - w(l+cos ;)
: g )
on N~ (closing
‘e -~ comdition) (46b)
Hasp) cos © AP = + m sin O,
o 277 -
— - (fixed cen-
No3ep) cos 2 dp = + 5 sin 29, ter of (470)
; " pressure)

The general theory presented here is superior to the
0ld method, particularly in the manner of developing math-
ematical profiles. The calculation needs no special con-
formal functions with a number of correctly chosen parame-
ters aos basis, but rather proceeds from the general func-—
tion w*(a;z) which is connected with the airfoll charac-
terigtics in the described manner.

Either the coefficients ¢, in equation (45) can bo

n

prescribed, noting that ¢; must always = - 1 + s and
that b, = 0O for fixed center of pressure; or else, the
function |%(ap )i can be given for a certain angle of at-

tack o, from which the velocity distributiom along the
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profile contour (and hence the flow characteristics of the

airfoil -in-question) can be deduced, according to equations

(88) and (40). By the selection of [w(a;p)|l, it shoulad
be observed that equations (46a) are complied with. and, if
a fixed center of pressure is involved, equation (47a).
For o = 0,  |¥(a;p)| must, like oY’7, “become zero if

the airfoil is to have the trailing-edge angle Y.

With this chosen fﬁnction |§(m:¢)

1% (o3 o)l
ln - v
; 9)" < ; fEE:?L)
<2 sin 5 2.31n 5
must be formulated and developed in Fourier series. Ir
this development reads
in | % (a3l - 1n W+
Y
m
(2 sin 9> <2 sin i?;:?i)
2 . 2
[02]
+ ngl (an cos n ® + b, sin n ) =
2T
1 ; Y
= 50 // In w(asp) dp - (1 ~-F) cos © +

[o+]
: + ¢ (ap cos'n ® + b, sin n ©)

%he)related function Jd(ax3;®w) is, according to equation
44 ): : ’

© _P1 =P .m - Y) o
- 5 = (1 o) sin @ +

2 2

. (o]
+ T (an sin n ® - b, cos n ®)
n=s .

~and the ﬁrofile contour itself, according to equation (36),
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z
i P
L. R P { 1 1 - dg
()= to,'# WHe™t® /(1~-> <1~ >
¢ Lo # W1 © w*(asz)
with z = ei$.i Hereby, acborﬁing~to equqtion 4),
z o
3 /3 - .
z:elcP, /...dzz‘/...ielcp acp,
v o
[w*(a3z)] = 'E(a;w)l o=id (i),
!—W’ ..1a,!_<l ~ _]:> (l . 9,1:9.5.)‘] o
t RS 2 e

205 Wt o~1% (gin (p-a') + sin a')

and consequently, ®

t(p) = ﬁo - 2a WA/n

o]

[ I

) + sin o eiﬁ(d:w) deo

©)]

sin(p—~a (362 )

iw (s

The sevaration of real and imaginary parts gives for the

profile contour the

parameters

(p—c ! )+sin o

¥
E(p)=t,~2a w‘/

-

SiRNPTa . cos d(azp) do
Iw ()l
° 9 S (36D )
] i —-at )+el \.J' Y \
N(P)=Ty-2a W / sin@-x!)rsin ol ip F(are) ap
- EACH]
[¢] -
The constant a is a scale factor for the profile, These

integrals can be grabhlcmlly evaluated.

As regards the cuestion of profile for a given wvelocity
distribution |w(ai;s)| along the profile contour, raised
previously, the following can now be sta ted. If it has
previously been proved that Iw(a;s)l Tbelcngs to a poten-
tinl flow about a closed profile, then | w (s )l can be
ascertained from equation (39), and the cited method gives
the mrofile contour. Hence the problem of determining the
profile for a certain velocity distribution is, as origili-

—
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nally discussed by Weinig, explicitly solvable and conse-
quently essentially simnler than the reversed problemn.

"Nevertheless, the fuhction |w(aj;s) .. is no suitadble start-

ing point for prefile calculations - for the choice of
I%(a3p) as the choice of |w(ass) is restricted by the
final condition (46a). These equatlons are, as follows by

substitution of ¢(s), a very complex reguirement for
function |w(a;s) ~which is not summarily met, and would
involve a return to |w(a; m)l " which would brlng us back

to the previously described method

Lastly, the problem of- computing the velocity dlstr1~
bution for a prescrived airfoil can be treated by the 1ln w
method. The deciding condition is equation (43). But,
since with given profile (and forward stagnation DOlnt) the
function ¢ (aj3s) dis exactly known, while J(a;®) is not
known, the problem leads progresslvely to the executed avp-—-
proximation of the function 3 (o m) which, however, means
that the principal problem of the alrf011 tneory leads
here also to an infinite method.

The first formula for 9(aj3p) can be odbtained by the
followving process:

Select the Jjunction line between btrailing edge and
airfoil nose as profile axis. Draw a straight line from
point P(s) on the contour to this line. If the base
point P' has the coordinate x, and t 1is the profile
chord, put

x(s)

p(s) = arc cos 572

and coerdinate the upper surface of the profile to the in-
terval O < ® < m, and the lower surface to interval

T < P <2 (fig. 5).

Now, od{a;s) 1is replotted on the basis of this approx-
imately valid coordination of s and ¢; let, theredy, the
function é(a;m)z originate. Since s(w)_ is not accurate-

1y known, this d(a3;p) generally does not comply with the
final condition (46Db), and therefore is not as yet practi-
cal for the calculation, according to ecquation (43). For
this reason, a correction of the form.- Ad(ajp) = A.a sin-®
- Ab_cos ® with the free constants Aa and Ab,--ls added

to d(a3p) in such a way that
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Ty (aig) = Tase) + & 3(ase)

complies with ecquation (46b). With this 3, (asp) a first
approximation. |W,(a3;p)l of the velocity distridbution is
then attempted by means of equation (43).

This correction in respect to (46b) results in the
suppresseion of the cos term in the Fourier series for

S(G;w) + % I 5 Y 4 P ; ? 3 g and the addition of the co-

jofficient - 1 + % to fho sine term. - Then the series

for the integrand of (43) reads:

- . x-n_.ifp CPJ_—-CP___E___<~X>. :
vy (asp) + + 5 5= 1 =) sin © +

T 2
o
+ 2 (ap sin n ® - by cos n ®)
n=g
and the first approximation lﬁl(a;m)l is, according to
equation (43):
i
— \ ’ ( P TT
le(a;@/I = W {2 sin 2> - X
Y ® .
p . ~(1-chosq)+ Z (a, cos nop +b, sin n P )
« (2 o1n 222N
N\ 2
With this function lﬁl(a;@)l the connection between

s and ® can then be newly computed, according to equa-
tion (38), and a new approximation d(w;®) obtained from

8(a;s). The method can be continued at will. Its con-
vergence is not easily followed mathematically. But there

is zood reason to surmise that results are quickly achieved,

and also confirmed by VWeinig.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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