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THE TRANSPORT OF VORTICITY THROUGH I?LUIDS
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,, IN TURBULEI$T MOTION*

(In the light of the Pran$tl and ,Taylor theories)

By C. I?ettiari

SUMMARY
(

The author studies the problem of the transport of
vorticity or of momentum in the light of the Taylor ,and
Prandtl theories which he briefly reviews. He shows how
the formulas of Prandtl could be brought into agreement
with experimental results in those cases where they agree
with the principle of statistic similitude of K~rmbn, and
particularly in the problem of the distribution of veloc-
ity and temperature in the wake of a heated cylindrical
obstacle. He shows that when the formulas are extended to
two-dimensional motion with streamlines whose curvature is
not zero, they lead to unsatisfactory results and that in
this case the formulas differ completely.from those de-
rived from the principle of similitude when the latter is
applied either to the configuration of disturbed flow or
to the distribution functions of the turbulent velocities.
He then examines the relations of this problem of trans-
port of motion with the theory of Mattioli, which appears
susceptible of some observations. After .pointing out the
difficulty of obtaining a satisfactory theory of turbu-
lence based tin the concept of transport and deduced by the
methods of classical mechanics, he indicates the reasons
therefor and shows finally how the problem may find a so-
lution by applying the methods of statistical mechanics
according .to the theory of Gebelein.

1. The essential defining characteristics of the ‘tur-
bulent motion of a fluid is the well-known irregular fluc-
tuatfo”ns~ bo:%h In magnitude and’ direction; of the velocity

-.—.--.--_-——--- __________.___________.______—__________
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at each point, corresponding to an energetic mixing of the
mass whereby a fluid particle may? in the course of its
motion, occupy any position whatever in the field. The
fluctuations. bf the””modulus and argumentof tlie velocity
vector about their mean value~ though both irregular, are
not, ‘however, independent. There exists between them a
statistical correlation, in consequence of which the mean
time value of the product of two velocity components along
any two perpendicular directions is different from zeros
There result upon each element of surface immersed in the
fluid virtual stresses perfectly analogous to the viscous
stresses produced by thermal molecular agitation. TO char-
actefi?e this turbulent agitation of the mass Prandtl (r&f-
erence 1) and Taylor, (reference 2) have independently in-
troduced the concept of mixing length or llMischungswegt’ ,
denoted by 2, which is quite analogous to the molecular
mean free path A considered in the kinetic gas theory,
and which may therefore be defined as the path normal to
the line= of flow which the particles can trace out and
still maintain their individuality; that is, without as-
suming the physical characteristics of the medium in which
they are immersed. But whereas Prandtl and his collabor-
ators assume that throughout the path 1 each fluid parti-
cle maintains its momentum, Taylor objects that the in-
stantaneous differences of pressure may cause the velocity
of the displaced particle to vary and that therefore it is
more logical to assume that it is the vorticity, upon which
the instantaneous local pressure distribution has no ef-
fect, that is maintained constant.

2, In order to understand t“hese two concepts more
clearly, let us limit our considerations to. two-dimensional
fields of motion in which the flow lines are exactly or
approximately straight lines parallel to the X axis, along
which the characteristics of the motion may be assumed con-
stant. If U! and VI are the two components of the ve-
locity due to the, turbulent agitation, the transport of
the momentum across an element dx is equal to,.

—.——

Txy dx=- P Utvf dx (1)

————
where Utvt dehotes the mean time value of the product of
u! and vt; the increment of momentum per unit volume com-
municated to the fluid layer of thickness dy is there-
fore

d~xy = - p $. ~’i-;i-j-——-—
dy

(2)
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and therefore if the mean, motion takes place in the direc-
_t,,io,n._o”ftheX axis with a pressure gradient-,,- apfax, the
equation of “motion’ is ““’“’”.““ “-’ ‘-”” “ --- - L ~~

Lui=. S._ (Utvl)
pax ‘“ ,dy

(3)

on the other hand, considering the motion from the
Lagrang~an poirit of view, the fluctuations in v’e.locity
appear as a consequence of the transf”er of fluid particles
from layer to layer, so that if II is the distance, a“t a
given iqstant, between the layer from which the particle
comes to that. which it occupies, and, if, it is assumed with
Pra.ndtl that within the distance 11 the velocity remains
coilstant, then

(4)

where U denotes the velocity of the motion. Yrorn (3)
there results

(5)

. . ,.,,

Equatiofi (5) has further heen”transformed’by Prandtl
by making the plausible assumption that’ the correlation ‘
between u! and v! and therefore between 1 I and V1
is constant over the whole field,
to put

so that it is ~ossible

in which c is a constant and t’ the mean square varia-
tion of t!, or, according to ‘the definition given ab~ve,
tile mean “mixing length.l* Considering next two fluid par-
ticles wnich, moving from the layers of height y .+ t!

l!*
and

Y- meet at the layer of height y; they will approach
each other or move away from each other with a relative
velocity Zut and will therefore induce in the fluid a
velocity vi tihich, on account” of” the continuity of the
fluid,mass itself, shoild” be Of “the same order of magni-. .. ,, ,
tude as ..u!:. that is’, ,vl.’=au~” an,d

~v”=(cl~+ -= Clt,,,..,.,
where c1 is likewise a constant.

therefore, – .,”,

d~
dy

(6)
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By means of (6) equation (5) is’ transformed into

:%=${X.2:[ZI)
(7)

in tyhich c1 is included in t.

3. To deduce the increment of momentum co~unicated
per unit volume’ to the’ element of thickness dy under the
hypothesis that not the momentum but the vorticity remains
constant during the transport of the fluid particles,
Taylor considers the equation of motion ~ofa perfec,t fluid
which, under the assumption that the mean motion is uni-
form and parallel to the direction of the X axis, assumes
the expression

1 ap——- = 2vil)
p ax

(8)

i-n which

is the vorticity; and therefore, in the fields of motion
considered above the increment of motion due to the tur-
bulent agitation is, according to Taylor

.&Txy _–––
———— - 2i71(Jlay = (9)

if to! and V1 are the instantaneous values of the os-
cillations of the vorticity and of the component v~ of
the velocity. There is then obtained the equation corre-
sponding to (3)

.1 ap _.-—-—
- —— = z~lvl
pax,

(3’)

in which the correlation between Q)l and Vt is brought
about by the same causes that produce that between Ut
and v’ in the theory of Prandtl. On the other hand, if
11 has the meaning defined above, then according to Taylor,

1/ &uu’=-–
2 iy7

and therefore,
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1..@ ____ d2U—.— - =Vfzl ---”” ““-
p ax &y 2.,, ..... .. .—___.. .~’,’- .’.~-~. .-

(51)

or also, from (6) and thte assumption of constant correla-
tion between v? and t

(7’)

4. Without entering’ for the present into the merit
or justification, of th”e criteria which led to equations
(5) and (51’), ‘these may simply be discussed, as has been.
indicated %y Taylor (reference ,3) and Fage (reference 4) ,
on the basis of a “comparison of the results to which they
lead with those deduced from experiment. Now it is known
that in the uniform flow about a flat plate, when t is
set equal to cy as required from simple considerations
of the homogeneity of the formulas and of dynamic simili-
tude , equation (7) leads immediately to a distribution of
the velocity ab the surface of contact of the plate itself,
which fact has been brilliantly confirmed both by the clas-
sical turbulence theory of K6rm&n (reference 5) and by the
experimental investigations of Nikuradse (reference 6).
There is, in fact, obtained by double integration of (7)

U=alogy-t-b (8)

and from the tests of Nikuradse,

u
= 5.5 + 5.75 log

Y&/P.———_ _

m

————.——
v

in which ‘o is the tangential stress at the plate.

Equation (7!), on the contrary, in the case which we
are examining, does not give any significant result; in

fact, if
dp
z;

= o, then either Z should be equal to zero ,
_——

which case corresponds to nonturbulent, motion, or dU=o
z;

or, finally, ~:~ = 0, and therefore the velocity. at the
dyz.

surface of’ contact of the plate “should vary either ‘linear-
ly or parabolically.

Although the example just discussed appears to bear
out the theory of Prandtl, a contrary result is obtained

-- mm■ nmnm-,mm, I I. m ..,, ,,, ,.. .,.,,—.,, —,,-. ,.--,—.,,. —,.. . - , . . . .. —-
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if there is considered the phenomenon of turbulent diffu-
sion in the wake %ehind a cylindrical obstacle with axis
of symmetry in the direction of the X axis. This problem
has been studied theoretically and experimentally by
Schlichting (reference 7), who has found that the velocity
U along the X axis may be expressed by means of the for-
mula

u~-u ~-.l/2——.—— = f
U*

()-~,

where U. is the velocity of the undisturbed stream.

The velocity V along y perpendicular to x, by
the equation of continuity, is given by

while the mixing length t is proportional to xl’2, or

~ =~~1/2, Now if the wake is narrow and therefore y is
small compared to x, then according to (7) there is ob-
tained the equation of motion:

while according to (71) there is obtained:

?Zquations (9) and (9!) are formally identical, hut
the coefficient of turbulent transport resulting from (9)
is dou%le that contained in (91); it follows that the dia-
grams of velocity deduced from (9) and from (91) are iden-
tical, but the results will not bc identical if the trans-
port coefficient calculated from (9) or (91) is applied tq
other problems intimately connected with this one. Let us
consider, for example, the temperature in the wake of the
same obstacle which is assumed to be heated. The equation
of the heat transport is

(1’0)
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and by” comparing (10) with (9) it is immediately recog-
~..— nized’that the latter ,is,s,~tisfied if ~+e+put,,.,...-.—...,.. .., ,., ... .

T =bU (11)

that ‘is; the law of distribution of temperature in the
wake of an obstacle should, according to P,randtl~s theory,
coincide with that for the velocity. If, however, (11) is
applied “to (10), the latter is not transformed into (91)
and therefore according to the theory of Taylor, the tem-
perature diagram does not coincide with that for the ve-
locity. For the velocity there is obtained

Uo-u——_____
Uo-uc=

where Uc is the value of
whose width is 2Y and t
temperatures

.

(1 -
*3/212

U on the axis of the wake
is equal to Y/v , for the

~3/2.,,

i’; = 1- g.

where Tc denotes the temperature on the axis.

Now the tests of A. Fage and of Falkner (reference 8) ,
carried out on two cylindrical heated obstacles of circular
section and lenticular section, respectively, have shown
an excellent agreement between the velocity and tempera-
ture distribution agreeing with the theory of Taylor, and
they particularly well bring out the difference between
the temperature and velocity diagrams, respectively (fig.
1). In this connection it should, however, be remarked
that the similarity between the distribution diagrams of
the temperature and velocity affirmed by the theory of
Prandtl, has been experimentally confirmed by F. alias
(reference 9) for the flow about a flat plate. It there-
fore appears that while the theory of transport of momen-
tum is confirmed Py experiments’ in problems of bound tur-
bulence (at the contact of the solid wall), at least for
the very simple cases considered above, the theory of
transport of vorticity gives better results in the prob-
lems of free turbulence. Taylor and Prandtl attribute
this singular behavior to the fact that in the case of
bound turbulence, as demonstrated by the experiments. o’f
Fage and Townerid (reference 10), the perturbations which
make the particles move from layer to layer are produced

—.
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essentially 3Y vortices arranged so that their ?xis is
parallel tO the wall of the abst,acle and along the undis-
turbed stream, so that the phenomenonof turbulent agita-
tion is three-dimensional, whereas in free turbulence the
transport of the fluid particles is due principally to
vortices arranged with their axis normal to the flow line
of the mean motion and to the plane o.f the motion. In the
first case migrations of the particles can take place with-
out having the velocity influenced %Y the differences in
local pressure; at any rate, Taylor observes that the
transport of vorticity is now given not only by

-. —-—
26.)rzvi ,

but by .2~5:G~ - G;–iq , where z is the direction nor-

mal to the plane of the mean motion and w~ and hf<y the

component of the oscillation velocity and of the rotation,
respectively, along the Z and Y axes. From the general
laws of vortex motion of Helmholtz (see Lam%, Hydrodynam-
ics, 4th cd., p. 197), Taylor deduces that the transport
of vorticity in the case of three-dimensional perturba-

‘–= ‘~-–~-~ d~ z
tions is given by vt ––wz + t vt —— ——-

ac aC dy ‘
instead of by

_——— do
Z?vt -&, where c denotes the initial coordinate z of

the fluid particle, or the value of z whereby the vortic-
ity is considered equal to that corresponding to the mean
motion at t“he same point. If a fluid element initially
parallel to z keeps its orientation constant, then obvi-

Ously %= 1’ or is always constant, and therefore

——_—.
v, ;:= c); but if the instantaneous velocity also has a

component along z, p;.- 1, which represents the defor-

mation of the element defined above along z itself, it
—————

may assume any values whatever and. therefore
v, $: may

be different from zero. Taylor shows that if t is suffi-
ciently small, in the special case of flow about a flat
plate, the application of the principle of the transport
of vorticity allows an equation to be obtained that is for-
mally identical with (5) , derived from the entirely differ-
ent concept of Pr,andtl.

5. Taylorls conception is certainly ingenious and
may perhaps give useful results in those more complicated
problems where the other theorems prove powerless. Never-
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theless, it does ‘not appear to the writer that it is neces-
sary to have recourse to,a three-dimensional’ theory of tur-
bulence in order to explain the limits of applicability of
formulas (7) and (71), to give” reasons for the erroneous
results to which they may lead, and to’ substitute for
these other formulas of greater ,generality. ‘

It is interesting to compare the results of the pre-
ceding theories with those that may be deduced by the cor-
rect application of the equations of Navier, which are nat-
urally assumed valid not only for the instantaneous motion
but also for the mean motion. Under these conditions,
there is obtained from the equation of projection of the
momentum in the x direction

-.

in which u and v are the instantaneous values of the
velocity, or u = U + UJ , v= v + v’; u and v

i
a ways

being connected by the equation of continuity a;au+–ll=o.
ay

There immediately results in place of (3) for the mean mo- “
tion

v! = a~l~ in which a may vary in time but is inde-————- ———.————.————.———.—————————

pendent of y_————————_- >

and therefore, including as before the single constant a
in 2’,

If the motion is independent of x, (11) reduces to

(12)
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“which is fonmally identical with (7) and therefore, under
equal assumptions on the-form of 1 , leads to the same
distrilnztion of velocity. In particular, for the flow
about a flat plate’,

d-p

z; =
o; t=ky

and there is therefore obtained

dU=~. ~
Z? y’

= k ~Og y+ b

On the other hand, the temperature distribution law
for the same case is given by

(13)

which, by putt ing

T=b U

P
$comes out identical with (12) (since ~ is zero) , and

therefore assures the similitude of the diagrams of the
velocity and temperature distribution in the tur%ulent
flow about a flat heated plate.

In the wake of a heated obstacle, however, at a great
distance x downstream, equation (11) , with the same de-
greo of approximation by which (9) is written, the term

:+ m’]being negligible compared with $! [12 (~;y] 9

gives:

(14)

which agrees with (91) resulting from the theory of Taylor,
while the temperature distribution is always given by (10).

6* Irom what we have said above, it therefore turns
out that the lack of agreement of the experimental results
with those deduced from (7) in the problem of turbulent
diffusion in the wake of a cylindrical obstacle, is not a
consequence of (4) and (6) and therefore of a possible i-n-

——- . . . ,,,,.,..-.,. ,,.... ..... . .............. , , , , ,,.,,,,, .,- , ,,,,, , ,,, ,,, ,,, , ,
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fluence of the local pressure gradient which, by varying
t!l~,,quant.ityof mot$on. of ,th.eparticles, increases the co-.
efficient of heat transport with respect to that of impulse,
as deduced by Taylor, but of the’ fact that the equation of
motion is not (9) but (14).

.,

This conclusion does not”, however, yet’ justify us in
dedwcing any principle of general character as regards the
poss.ibility”o’f the application of the Taylor,and Prandtl
concepts .to the ~robl:ems of turbulence. In fact, the fun-
damental relations (:4) and (6) whose validity we have just
shown for the cases of the two-dimensional motion conside-
red, and which in the theory of Prandtl define’ the con-
stancy of the momentum in the transport of turbulence,
have ‘been deduced by an entirely distinct procedure by
K&rm&n, and by this method acquire an essentially differ-
ent significance, which determines also the limits of ap-
plicability.

In 1930 X&rm&n had already determined equations (4)
and (6) , assuming the condition that the disturbed motion
corresponding to the turbulent agitation of the fluid par-
ticles is statistically similar at all points ’of the field,
differing from point to point only by the scales of time
and of length. This assumption, as K~rm&n observes, per-
fectly corresponds to that whick is normally made in the
lkinetic theory of gases and which permits tho stresses duo
to the thermal agitation of the molecules to be simply ex-
pressed by means of local derivatives of the’ general ve-
locity of the motion, and of the mean. molecular trajectory,
and yields as a consequence the consta”nt correlation between
the components of the turbulent oscillation velocity, to
which we have already referred at!ove and which has been
confirmed’ by the experiments of ?attendorf (referenco 11)
a~d Kuethe at pasadena,. and by Reichardt (reference 12) at
Gottingen (fig. 2). In this way, urider the assumption
that the general motion takes place very approximately .
along flow lines par”al.lel to the X axi”s, there result the
fundamental relations of Karman;.

which, being formally identical,with those ,es’ta%lished by
Piandtl, differ substantially by th,econcept frpm which
they were derived and by the definition of the length 1, .
which in the theory of,K&~m~n, is.given by
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dU/dy
x = ——- .—

d2T,J———
dy2

The meaning of (4) and (6) has been recently general-
ized by D&d&bant , Schereschewski, and Wehrle (reference
13) , who have shown that the KArm&n relations may be 03-
tained by applying the law of similitude not to the con=
figuration of the velocity field, but only to the law of
distri%uti.on of the disturbed velocity; that is, by assum-
ing that the disturbed velocity distribution functions 3e-
cone identidal by a suitable change of scale.

It should still %e observed that the equation (3~)
leads to the same laws as those derived from (12) by assum-
ing that the ‘fluctuations of the vorticity at each point

~ au, but to ~~ 1 ~~, andare proportional not to
ay ay

therefore not to the derivative of the mean rotation hut
to the derivative of the displacement.

7. I?or the more accurate comprehension of the effec-
tive meaning of the preceding formulas and of the real pos-
sibility that the concepts explained above offer for a sat-
isfactory solution of t’ne problem of turbulence, it is of
great aid to consider the motion along flow lines of non-
zero curvature. For simplicity of treatment and by analo-
gy with what has been done a%ove, we shall suppose that
the mean flow always takes place in a plane and along arcs
of concentric curves. We shall denote the velocity tan- .
gent to the circle of radius r by vt and the radial ve-
locity by Vr ● The natural extension of the concept of

Prandtl (references 14, 15, and 16), leads to the conclu-
sion that the fluid particles in being transferred from
layer to layer as a consequence of the turbulent agitation,
maintain their velocity moment constant w$th respect to
the center of rotation - that is, vt r = constant = c.
A fluid parttcle, therefore, which arrive-s at a la~er of
radius r after transversing a radial distance t has

decreased its own velocity by Avt = - ;; tr = + tt,
dvt

and since it had initially an excess of velocity tt –––,
dr

the increase in velocity that it has with respect to that
of the layer to which it arrives, %ecomes
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,(
dvt vt

)

..~~ d
V$t = It g;- + ,;,-”=

.r i~(Vtr)
(15)

. . ..——..,...-

The mean, increment in the momentum communicated to the el-
ement of radial thickness dr and of length
therefore,

r d ~, is

——---
d2M = ‘r ~~ dr v~r~t id; (v~r)

t’o,which there corresponds a virtual tang,ential ’stress

——-_
vtr 1‘d

T = Pr ———.- ~~(vt r) (16)

different from zero on account of the co~r elation which
in general exists between Vlr and Vlt, or between v~r

and tr.

There is thus obtained the equation of motion in the
mean direction of flow under the assumption that vt is
COnStant along a flow line of the mean motion:

From (17) and (16), however, there follow erroneous
results or results that have not been confirmed by experi-
ments. K~rm?an, in fact, observes that from (16) it would
be deduced that T becomes zero at the point at which
vtr assumes its maximum value, and that the sign of T is
determined by that of .& (Vt,r). NOW ?iattendorf (refer-

ence 17) ha’s”recently conducted tests. on a channel wi”th
circular axis, having an elongated straight rectangular
cross section (ratio of the sides 1/18), so that the ef-
fect of the secondary flows might be assumed negligible,
and from the fall of pressure along the channel, and from
the direct measurement of the stress tangential to the
walls , deduced the diagram for T along the radius. Kbrmhn
remarks that from this the relations given above between
T and vtr (fig. 3), are not confirmed. However, this
observation of KArm&n and lTattendorf does. not appear suf-
ficient to the writer to invalidate the assumption of
Prandtl, and therefore, indirectly,” the hypothesis of con-
stant moment of velocity during the turbulent transport.
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Iv fact, from, the equations of Navier, applied to the
particular type of flow nom considered, there is obtained
for the instantaneous motion:

I ap = avt

(

Vr I avt
— ——

)
–—+vt —+––––

p raq ‘r ar r r a~

and for the mean motion
e

.————————————— ————————.— .

1 ap.———= Vlr [r ‘~>- d (r vft)+ vrt] = “r ~~ (18)
p a~

w’nich, with the assumption of Prandtl~ becomes

(19)

Now since for the determination of T, lfattendorf availed
himself of the relation

By comparing (19) with (17), it follow that the virtual
stress which gives rise to ‘the pressure gradient is not
that which results from (16) but that given by

_————..——.——————— ———

[
~=~~ frv’r -&-~t’ ;d;Vtr)] dr -+ a1

A very remarkable observation on the theory of Prandtl
is also made by Taylor, who remarks that the theory of the
transport of the moment of momentum necessarily leads to
expression (16) for the apparent stress, and therefore a
rotation of the entire system as a rigid body with angular
velocity Q would change the tangential stresses, increas-

——————
ing them by an amount 2pvfr L’n.

Taylorls theory does not present this incongruence
inasmuch as the addition of a constant vorticity to the
entire fluid field does not have any effect on the trans-
port of vorticity itself.

8, In this respect, too, however, it seems fitting
to show how every difficulty for the determination of the
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expression for the fluctuation velocity might be overcome
not by assuming .a certain transport length, and more or

,— ““less-plausible hypothesis based’ on the’law of motion of
the particles during their transfer from layer to layer,
tiut by applying the principle of statistical similitude
according to the concept of K~rm&n mentioned above.’

In the coordinates r, (p of the plane, the equation
of the transport of the vorti”ces becomes:

where ~ denotes the flow function of the field and D the
symbo 1

Setting $, the flow function of the motion corresponding

to the turbulent agitation, and denoting by Vt and ~,
respectively, the velocity and the mean vorticity at any
point, equation (20) may be written:

Let us now make the assumption that with respect to a
system of axes with origin at any point P of the field
and moving with P with the same velocity, the field of
flow in the neighborhood of P may be considered as sta-
tionary. We can then put, in the neighborhood of P

dVt

()

Vt
Vt = Vtp + ~~– (r - rp)

}

-~~~ (r- rp) + ...
P,

(22)

w =UF+
()
dol
ZF p

(r - rp) + ...

since we “should evidently put in the second member of the
first of equations. (22) the disturbing velocity of the
fluid element.

There results immediately if., in”analogy to what was
already done by Karmhn for the rectilinear motion, we put
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and

(23)

If the form of the function ,f which defines the
fluctuations of the velocities due to the turbulent motion
is to be independent of the particular position of the
point P, then it is necessary that

[(2-)P-~] z=‘2 (:)p=$
or the characteristic length t becomes

71

dVt Vt——— - —.
dr r
————————

a.w
z;

while A is given by

A= “[(~) - W

(24)

(25)

and therefore: the am~litude of the turbulence velocit~————— ———————————————————————————— .-———

L3vt
is proportional to ~ (---- ~~~ whereas Prandtl put the
.____.______________LcL___-_r_L-------------------------

amplitude of the fluctuations themselves proportional to------------------------------------------------------ _

dVt VtJ
t (ii- -1-–-,
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Since the firs,t expression in a rigid, rotation is zero, it
has no effect on the amplitudes of the oscillations them-

-.. s-el-ve”s;‘“andtherefore on the expression for the virtual
tang~ntial stress.

9, It iS interesting to compare (24) and (25) ob-
tained by the principle of similitude of K~rm&n from the
equation,of the transport of vortices-with those that may
be deduced hy extending the procedure already mentioned of
D6d~bant, Schereschewski, and Wehrle to the t~e of flow
we are now examining.

Let us assume that the distribution functions of the
perturbed velocities at each point of the field may be
made to become idential simply by a suitable change in the
scale of the velocity and of the time, and let us suppose,
following the method indicated by D&d&bant, Schereschewski,
and Wehrle, and moreover, the procedure used by Lorentz
(reference 18) , and by Chapman (reference 19) in the kinet-
ic theory of gases, that the distribution function f- is
very nearly the same as that of Maxwell, so that indicat-

-b(u!2+v12)ing the latter function by fo, (f. = a e ),
f=fo (1+ ~), in which c is a small quantity of the
first order. Assuming as unit velocity at each point of
the field the mean quadratic variation o of the disturbed
velocity, the values of f. are everywhere identical; the

values of c should therefore be the same. Now c, ~~hich
it should be possible to represent “by a series in the com-
ponents of the disturbed velocities u! and VI (which
we shall now assume as referred to the mean value a a s-
sumcd as the unit), contains the terms which define the
nonuniformity of the field; or those of tho velocity of the
general motion and those which D6d6bant calls the lldonsi-
ties.11 In fact, an order to make the statistics of the
disturbed velocities comparable, it is necessary that the
time of observation of the velocities themselves vary from
point to point in such a manner that the number of the
fluctuations examined be everywhere equal. Now in time t
the particles observed arc proportional to ~ ; resulting
in a density, if N is the constant number of fluctuations
considered proportional to K/t2 . The corresponding non-
uniformity is therefore now defined by the variation of t.
The distribution function, however, is an invariant; that
is, it does not change in form or in value. Since f. is
by itself invariant, c should be the same; but the invari-
ant quantities, functions of u~ and v! and of the deriv-
atives along the same axes of t and of the general veloc-
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ities of the components U and V “are
following elementary invariant:

No, 799

functions of the

corresponding in polar coordinates and by thed~ssumed char-
acteristics of the motion considered to Tlr ––,

dr
and

U?2 au + V!2 ay + Ulvt
(
~q + ~y

ax ay ay ax )

corresponding to

dV t

(
-.—
dr

Vt——
r )

There results, according to Chapman, the following ex-
pression for 6:

(
dVt Vt

)

dt
c = A Vttv~r dr——— “ —— +Bvl

r r &

in which A and B, on account of the homogeneity of the
formula, Vlt,V1r being simply numerical, should ‘beput

proportional to t and a, respectively, Since c should
be independent of the coordinates of the point at which

tli6 distribution function is determined
~~~=

dr
constant

Vt
is proportional to –~ - and

(
t g%- ;–) =or 0 dtfir

con-
dr

1 dVt
stant , or t is proportional to ——————— -

dVt Vt ●

But ––– -
dr—— - —-

dr r

Pt—— is equal to y and therefore, the mean quadratic
r r~

variation of the velocity of fluctuation is

where t is now given by

(26)
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There is thus found the property that the amplitude
of the velocity fluctuations due to the turbulent a~ita-
tion, is proportional to ‘ro

but the characteristic

length ,1 does ..notdepend, ‘as’ bef’ore, on the derivative
of the rotation, but still on the” derivative of the yrv.

This conclusion immediately maketi the results of the pre-
ceding investigation ”more understandable: When the rota-
tion is zero at every p’oint, as in the velocitY field
which i’sgenerated in a viscous fluid about a rotating
cylinder of infinite axial length, it i’s logical to assume
that turbulence cannot take place.

Now while (26) and (27) do not tell us anything about
this point, (24) and (25) assure us of the impossibility

of a motion having the assumed characteristics since dw =
~;

O and therefore t = CO.

10 ● The considerations just developed bring out
the difficul~y of developing according to the methods of
classical mechanics any theory whatever based on the con-
cept of transport, inasmuch as the conclusions to which
they lead are intelligible only insofar as the relations,
which the introduction of the concept of mean distance I
permit to be written down, may be interpreted by means of
the principle of similitude of the turbulent oscillations,
while a’ generalization of the relations themselves with-
out this check easily leads to erroneous conclusions.
Thus in the case of plane motion with rectilinear stream-
lines (4) and (6) are correct since dU/ dy represents the
excess of velocity with respect to the fluid layer at
height y of the particle distance 2, as well as.the
fluid displacement between the two contiguous layers,
while (15) leads to unintelligible results since avt + VJ

EF- r
is proportional to the excess of moment of momentum while

dvt - vt
the fluid displacement is given by ~~- - <-. On the

other hand, the reasons for such difficulties are easily
understood, for although the concept of the mixing length
is very intuitive it is not:prescribed for a fluid parti-
cle which penetrates a certain layer after having trav-
ersed more layers, how many of the dynamic and kinematic
characteristics that it possessod initially, it conserves
after each crossing- . ..,

. .

11. With the problem of the transport of momentum
and of vorticity is intimately connected the theory - re-

1.
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markable in many respects - developed recently bY G. !*
Mattioli (reference 20). The latter supposes that in tur-
bulent agitation each fluid particle maintains constant .“
not only its momentum, as Prandtl, aSsumes, hut also its
rotation, as assumed by Taylor, Mattioli, who considers
the motion in tubes of circular cross section, derives the
following equations:

where V is the general velocity, c = 22 k, in.which t
has the meaning’ given above, while k is a function which
has the dimensions of a frequency and is called by Matti-
oli the “mixing frequency.tf

Now if Prandtlls theory is applied to this particular
type of flow, we have, using the above notation

which is identical with the first of equations (2.8) putting

On the other hand, from the equation of ?favier, which rep-
resents the motion in the direction of the tube axis, we
have: ,.

where W’ is the “instantaneous fluctuation of the vortic-
ity at any pdint. “ Therefore, according to the Taylor con-
cept,

from which

or

(30)
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Equation (30) does hot gi’~e,satisfactory result s,.how-
ever~ Taylor, as explained above, concludes. therefrom

>-. “-thatthe theory -of-trans’port--’ovorvtiicityicouldnot”not” beap-
plied in this case except by considering the turbulent agi-
tation as i.t is actually, n,arnely,three-dimensional. Mat-
tioli, whose theory is one-dimensional, .ins,o.faras the
transport of the Bsses takes place only with radial tur-
bulent velocities, and the continuity of the mass itself

_____

is restored by associating with the discontinuous turbu-
lent transport a continuous transport that is.always radi-
al, does not at all consider (30) or the connections set
up by the equations of” Navier, and since he shows that the
first member of (30) represents the increment of vorticity
communicated to an elerne.ntof fluid, he deduces that, for
the permanence of the motion, there should be applied to
the same element a corresponding couple which he puts

equal to ar d?~*
dra

He maintains (reference 21) that this couple is due
to the viscosity of the fluid and therefore dissipates at
each point the increment of vorticity which the turbulent
agitation produce%.” This interpretation is open, however,
to some reflection even if the fact that the fluid, in the
original theory, was assumed to be perfect?
., . .

The first member of the second of equations (28),
which I shall denote by A, represents the excess of vo.r-
tici”ty which iS to be dissipated in the time to corres-
ponding to the mean period of the oscillations. Now the
veloc’ity of dissipation of the vorticity W in a fluid of

gg = vA(A), by
,.

kinematic viscosity v is given by

ZG
dt

which the mean velocity in time to may be put ZG =
d~ xc

v&ii and the dissipated vorticity wil”l be

In this way it may be understood why in the second
member of (28) there does not appear the viscosity, since
putting the time to necessary for the dissipation of A
proportional to 1/v seems logical, and in any case agrees
with what may be deduced in several s.i)nplecases (refer-
ence 22). Equation (31), however, would make A depend
not on the second derivative of V but on the third de-
rivative.

,-
——
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Apart from the difficulty of justifying the second of
equations (28) which has already been the subject of some
remarks by the author (reference 23) , the theory of, Matti-
oli leads to results which agree both with those obtained
experimentally and with those deduced from the theory of
Prandtl and KArm?m; in particular as regards the logarith-
mic law for the resistance of smooth tubes as indicated
by Mattioli himself (reference 24) and the logarithmic dis-
tribution law of the velocity at the wall of the obstacle,
as may easily be deduced.

11. The problem of the transport of momentum or vor-
ticity in turbulent flow, presents a particularly sugges-
tive aspect and is susceptible of a general solution if
the phenomenon is considered as belonging to the domain of
statistical physics and is therefore studied with the metli-
ods appropriate to the latter. In this connection, it
should be observed that the statistical character of the
flow is assured, not only by the irregularity of the ve-
locity fluctuations, but by the existence of universal
laws of distribution of velocity independent of any ini-
tial condition of the flow. Important progress in this
sense is represented’ by the theory recently developed by
H. Gebelein (reference 25).

Gebelein assumes that in the fluid motion, the circu-
lation of the momentum, and the energy difftxse in space
according to the same law of probability that governs the
diffusion of matter in statistical phenomena; that is, in
which the motion of any particle from p’oint to point is
not determined in an unequivocal manner, with certainty
(as in problems of deterministic mechanics) , but takes
place according to a law of probability, which is a time
and space function. Under these conditions, the density
of the fluid in a space element, which is proportional to
the probability with which molecules of fluid are found
in the element considered, received in each elementary

d~ + P div. V,volume an increment which by the continu-
ZE

ity of motion should be zero, and whose analytical ex-
pression is given by the equation of Kolmogoroff:

k=3
dp i=3a~ ‘~3 _L(uip)-––-l-pdiv. V=--+ ~ ––~~––( bfk~)=() (32 )
dt at i=l ayi i=l ayiayk

k=l
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where Yi now, repre.s.ents,,any of the three ,coordinate -axes

(Y1...Y&s Y=)* ,,pi the ,co.mmn?nt, @,. t~?.,,.Yi ..d%T.?Ft.+o.nof.
the mean velocity of the motion, “while bik depends on

the mean quadratic variations of the velocity itself,
liore precisely, let P (Xl, X2, x=, y~, yz,, y3; t; t.+ A)-

be the function which defines the probability with, which a
particle, which at time t is at the point whose coordin-
ates are xl, X29 x: will be at the point Yl ~,Y2.% Y3 ,a,!
time t+A, and Ai and Bik, the moments of first and”

second order, respectively, of P, or the mean value% and
the quadratic variations, respectively, of the distribu-
tion function P, that is

-!--l--l-

Ai = fff (yi- xi) P dyl dy2 dya
-a2-=Q-

Bik = ./-,f f (Yi-xj. )(yk-xk)p

Then

-co -co -e

Thus the equations of motion, according to the statis-
tical mechanics, do not require a knowledge of the form of
the function P, but only of the values of the static mo-
ments afid of the second order moments of P itself, pre-
cisely as in the deterministic mechanics, in which the gov-
erning equations of motion contain only the static moments
of inertia of the mass in motion and do not rtiqui.re a knowl-
edge of the form of the distribution law of the mass.

According to the hypothesis given abovo by Gebelein,
if the mechanical characteristics are diffused by the
same law as ,the density, the increment of the component of
the momentum of an element dT in the direction Y1 ,

which, on account of the translation equilibrium along the
same axis, is equal to - ap/ ayx is given. by ~~

—mm. 89 .,.. — —.—...
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NPUJ ap
––&i;-- + z, + (U~PUi) - Z ~~~~~y~ (bikpll~) = - ~~-

i

while analogous equations are obtained for the directions
Y~9 Y3*’

If, instead of the momentum, it is assumed that it is
the vorticity that is diffused, there is obtained:

12. The solution of the problem requires a knowledge
of the coefficients bik and this is obtained %y Gebelein

by using a relation between the mean quadratic variation
of the velocity and the characteristics of the mean mo-
tion, and the expression for the llcharacteristic time”

(Verweilzeih) which is a measure, so to speak, of the
‘?s atistic or deterministic character of the phenomenon un-
der consideration, in the sense that the phenomenon itself
observed for an interval of time less than To appears to

be governed by a deterministic law while observed at inter-
vals of time very large compared to To, appears as a sta-

tistic ~henomenon.

Gebelein assumes as a fundamental theorem, that the
mean quadratic “variation of the perturbed velocity is pro-
portional to the fourth root of the vorticity, correspond-
ing to the mean motion

—4
ra=w (33)

but this proposition is, in fact, not demonstrated, at
least ilot in a convincing manner, and therefore appears

“essentially as a hypothesis to which Gebelein gives an ex-
perimental confirmation based on the tests of I?ikuradse,
of 1926. Since, however, the determination of the mean
quadratic variation in these experiments is not made by -
direct measurement, it seemed proper to the author to ver-
ify the hypothesis of Gebelein by means of the results
obtained experimentally with a hot-wire anemometer %y
Roichardt and 3Y Wattendorf in a very elongated rectangular
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channbk so as to approximate as far as poss.i%le two-dimen-
sional motion. ‘The results which have been calculated
usi”~g”th-e va~u’es-”’”’i’ndicatedabove,

—-.-,... .
are sliown irifigure 4 in. which is also indicated by dotted line the theoretical

diagram according to the assumption of Ge%elein. The ap-
proximate” character of (33) is deduced by the comparison.
On the other hand, if the motion takes place with a varia-
ble ~res,sure gradient in the direction of the motion it-
self between a convergent and a divergent section, (33)
does not give any indication of the eventual dissymmetry
between the mean quadratic variations of the components
Ut and VI of V, while it is known, for example, that

r

_——
in the motion within a convergent

2UI decreases, along
the axis of the channel, about in proportion to L, with

J
———

2
which the mean velocity increases, while VI increases
in proportion to L 1/2

In this connection, it is very
desiratle that systema~ic tests be conducted to determine

the law of variation of the dependence of ~ a.d of

P on the mean motion, the knowledge of which is es-
sential for any theory of turbulence.

The characteristic time To is determined by Gebelein
after an actual analysis of the reasons which could give
rise to a statistic phenomenon destroying the causes which
tend to produce it in a deterministic manner. The cause is
essentially the same as that leading t.o the production of
vortices at the contact of rigid walls which, either on
account of the roughness of the walls themselves or the
disturbances which may be produced, for example, at the
mouth of the tubes, takes place not according to a deter-
minate law but by pure chance. This is what makes the
vortices in the boundary layer, in two-dimensional motion,
have only in the mean a direction parallel to the walls
and normal to the mean motion; to this mean vorticose
layer is added a layer in which the axes of the vorticese
are disposed along any direction whatever. A comparison
of the results to which the theory leads with those ob-
tained experimentally would indicate, that ’the axes of the
perturbed vorticese are essentially directed along” the
mean motion, and this “conclusion appears in s“ingular agree-
ment with the hypothesis of prandtl already referred to,
namely, that the. transport of particles in bound turbu-
lence takes ~~ac’,e,by just the vor?i,ces hav’~”n~,thi~ dispo-
sition.

..’,.
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13. The calculation of To has been made by Gebelein

for several’ simple cases (flow about a flat plate, within
a convergent and a divergent tube, and within a straight
tube); and some of the results obtained by him by relative-
ly simple methods, although at the price of .over-simplified
assumptions, we shall now point out in what follows.

In the problem of the flow about a flat plate, the
equation of Gebelein obtained by assuming that the momen-
tum is diffused according to a law of probability corre-
sponding to that of the diffusion of the mass, considering
the fluid as perfect, becomes

(34)

while the diffusion of the vorticity leads to the equation

1 dT d

(

dul— .—— = —— V2 J
)

2 T ––– = o
P dyz dyz 0 dy2

(35)

———

By the assumption made on the relation between v!
2

du~and --——
dyz and with the expression for To calculated by

Gebelein, we have for the two cases, respectively:

dz

( dul
———— c1 Y22 )——— U1 = o
dy22 dy2 ~

Equation (36) gives

from (37) is obtainei

%(Y2) =

u (Y2) =~a + b log y2,

a + b log y2

(36)

(3’7)

while

(38)

which is the well-known logarithmic formula confirmed ty
the tests of Nikuradse, mentioned above.

●

Thus, it is the vorticity and not the momentum which
is diffused according to the same law of probability as
that corresponding to the diffusion phenomenon of the m“ass.
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This conclusion may, h~wevert. be invalidated by the
>, a-ssumptions which are at ,t,h.e,@as.e_o,f,the calculat ions; in

particular, it “may.be difficult “to admit fha.~”the mean-
quadratic variations of the fluctuation velocities zor the

r

dul
flow about a flat plate are proportional to --- anddy~.

therefore by (38) to y-xi4. This even appeaks ’to le con-

trary to the principle of the constant correlation between
Ut and v!, which would lead,. in this problem, and in
accordance with the principle’of I&rm’an, to the equation

A.m%/’==-s%nt . (39) ,
. . ,.

It may, nevertheless, eakily be seen that the con-
clusion stated above holds true even if equations (39).
are admitted. In fact, analogous to what is done in the
kinetic,theory of gases, it is possible to ,assume

.,

z ‘
—-_ --“’;=+

if Z has the meaning of “the mean free path~~ already
considered many times above; there is deduced

.,

,.. .

,’ ,Z w=”
dy

constant

whiclt leads to (38), as already previously derived.

14* The theory o,f Gebelein, developed according to
the methods of statistical mechanics, thus allows the af-
firmation of the principle ~f diffusion of the vo.rticity
in turbulent ,mot.ion,. This principle had been confirmed %y
Taylor, but its application, using the r.lethods of classical
mechailics, had not led to, a .satisfacto~y solution., The
real reason for this fact ‘appe&’rs to depend On’the circum-
stance that a.theoryb ased on the concept of transport ,, . :
and developed ,acco,rding to classical mechanics$ would rep
quire a knowledge of the h~stor”y of the particle during
the transport, whereas statistical mechanics, observing

II Ilmmmlm ., -.,.,-.-H.! ,, .-, ,—.!.—— I .
., .,.
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tile phenomenon at in.tervqls of time for which every ‘effect
of cause is destroyed, repders itself independent of any
knowledge of the states assumed by the particle during its
deterministic motion.

Translation %y S. Reiss,
National Advi”sory Committee
for Aeronautics.
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