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SUMMKRY

The variation of pressure distribution is calculated for a tw+
dhensional supersonic airfoil either eqeriencing a sudden angle-of-
attack chamge or entering a sharp+dged gust. From these pressure
distrlbutiona the indicial lift functions applicable to unsteady
lift problems are determined for the two cases. A close similarity
is shown to exist between the calculated functions for varying free-
stream l&ch number and the corresponding functions in three-
dimensional incompressible flow for varying aspect ratio.

Results are ~esented which permit the ‘determinationof
maximum increnmnt in lift coefficient attained by an unrestrained
airfoil during its flight through a gust. As an application of
these results, tie minimum altitude for safe flight through a
specific gust is calculated for a particular supersonic wing of
given strength and wing loading.

3XPRODUCTION

The study of the unsteady lift of wings in am incompressible
medium has been developed along two different lines. In refe>
ence 1, R. T. Jones introduced the concept of indicial lift
functions for wings of finite aspect ratio and, using as a basis
the work of Wagner (reference2) on the twtihwmd omal potential
theory of airfoils in nonuniform mction, has ehcwn how the
calculation of U ft under various conditions of motion can be
effected. In reference 3, Theodorsen consfdered nonsteady motion
in its relation to the general theory of aerodynamic instability
and the determination of the aerodynamic forces on harmonically
oscillating airfoils. This latter approach has been extended to
include high-speed problems and in two recent papers Garrick and
Rubinow (references 4 and 5) have given results on flutter and
oscillating air-force calculations for wings in supersonic flow. .
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!l%epresent report employs the ~thod ~ attaok introduced %y
Jones and considers the case of a tw+dimensional airfoil moving
supersonically in an arhitrary mmner, provided the assumptions of

1621 - .

.

small perturbation theory me satisfied. The prinoipal contribution
lies in the determination of indicial pressure distributionswhich
are readily oaloulated in supersonic motion and from which indicial
lift, drag,.and pitohing momenta may be oomputed. Fra these
results the indfcial lift functions are calculated eqlicitly.
The methods used to find the pressure distributions also afford
considerable insight into the seam problem for airfo~ls at subscmic
speeds.

As an application of the analysis, the results are ap@ied to
the special case of an unrestrained airfoil entering a s~dged
gust. The resultant forces are found to be ccmqw.rableinmagni–
tude, for -h numbers in the nefghbahood of 1.3, to those given
in referenoe 1 for subsonic incompressible flow.

SYMBOLS

a speed of sound

o chord length

c% section lift o’k.efficient

eta indlcial lift coefficient for angle-of+ttack ohan.ge

ox~ indicial lift coefficient for wing entering gust

6 acceleration of gravity

M free-streamMach nuniber

m In9as

Ap difference in pressures betieen lower and upper surfaoes of
airfoil

~ (*##)

s distanoe measured in half-ohad lengths

s axea of wing

.

.

P perturbation static pressura
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tim in seconds

t

‘r

u

V.

w

W.

w

x,z

a

w

P

P.

u

transfcxmed time variable (See equations (7). )

t/c

~rturbation velccity component in x direotion .

free-stream velocity

perturbation velooity component in z direotion

z oomponent of velooity of gust

weight of wing

Csrbesian Coordina-ks

angle of attack

2m/pMsc

perturbation density

free-stream density

area over which surface integral is evaluated

perturbation velooity potential

Subscripts

o free-stream conditions

1 variable of integration

u upper surface

2 lower surface

ANALYSIS

Derivation of Basic Differential Equation

The pressure distribution over an aitioil in a compressible
medium is obtainable frcm the solution of a boundary value problem
associated with a particular second+rder partial differential
equation. The derivation of the linearized form of this equation,
obtained under the assumptions of s~ll perturbation theory,
prooeeds as follows:
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let U,W be perturbation velocity components parallel,
respectively, to the Cartesian ares x’, Z1 and.denote by
p perturbation pressure, by p perturbation density, and
by a the velocity of sound. Then if t’ denotes t~~
V. is the constant free-stream velocity, and P. is the
constant free-streem density, the linearized Eulerian equations
are

(1)

awhw= lap
—+vo —

at f axl —P. azt

The linearized equations of continuity aad state am, respectively}

p=&p
ao2

After the introduction of the perturbation velooity potential o
integration of equations (1) yields

while equations (2) and (3) give the e~ession

(a ) ._&+#-.-cbap’
~ + ‘o ~ poaoz

(2)

(3)

(4)

(5)

.
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The ccmhination of equations (k) and (5) leads to the desired
ptial clifferential equation

(6)

where M is the free-stream Mach number.

Equation (6) cam he reduced to the normalized.form of the two-
dimensional wave equation of mathematical physics by means of the
transformation

x= x? _ Maot t

Z=zt

t = aot t 1
In these variables the equation is written

___ $o=a*O a%
8%2 ax2 az2

o

(7)

(8)

In accordance with the assumptions underlying the derivation of
equation (8), its application to problems in airfoil theory is,
of course, limited to cases where the induced velocities are snmll
oompared to the free-stream velocity and the effects of viscosity
do not alter the resulte of the potential flow solution.

The rectangdar coordinate system associated with equation (6)
is fixed h the wing which is, in turn, inmersed in a free stream
of velocity To directed along the positive =x5E. The transforma-
tion introduced in equation (7) fixes the X,Z cordinate system
in space so that the airfoil moves in the negative x direction and
the free-stream velocity is zero. A distortion of the time axes

is also involved so that the differe~tial.equation appears in
canonical form. Equations (6) ad (8) are, of course, well known
in the theory of unsteady motion and in the study of sound waves.
It is natural that these two fields of study should yield the same
fundamental equations since, in small perturbation theory, the wing
may be thought of as a distribution of acoustic radiators.
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Solution For Given Boundary Conditions

The bcundary conditions whloh are to be ~atisfied have the ssme
property as those encountered in steady-stata thi=irfoil theory;
that is, the prescribed data are given in the z = O plane. The
particular problems with which this report=eals are those of
finding pressure distributions over a flat plate. !l%us, w will
be specified over a portion of the z = O plane and, elsewhere
throughout the plane, loading must _bezero.

Two boundary-value problems are to be considered: first, the
case of an airfoil either starting from rest at a given angle of
attack a or experiencing along the entire ohord a change a :n
stream direction without a pitching motion, and seoond, the case
of a constrained wing entering a sharp-edged gust with a vertical
velooity Wo. In the former ease the motion is that of an aitioil
suddenly slnkhg without rotation. These boundary conditions are
more readily pictured with the aid of figure 1. Figure l(a) shows
the conditions which mustibe satisfied in order to solve the angle-
of-attack problem. The trace of the leading edge of the wing
traverses the line x = - “Mt,while the trailhg edge lies on
x=o- Mt where o Is chord length. The region boundedby these
lines and the line t = O is the region oooupied by the airfoil
as t- passes. Since the axes are fixed and the airfoil moves in
the negative x direction, the velooity atwhioh the airfoil
travels determines the inclination of the 100i af the leading- and
trailing-edge traces. Over the “area” occupied by the airfoil in
the x,t plane, w must eq~l -Voa and elsewhere no $zmp in
pressure oan ocour. The gust problem (fig. l(b)) does not differ
essentially from the previous problem except that here the region
over whioh the modification of w is effective is not entirely
the region oooupiedby the airfoil but rather the region oocupied
simultaneously by the airfoil and the gust. Fixing, for convenience,
the edge of the gust along the &.axis, this axis will form the right+
hand boundary of the region over whloh w = -wo.

Sinoe the partial differential.equation is linear and the
Eolutions are therefore additive, these boundary conditions clearly
should fit the following physical event: a wing of trawzoidal.
plan fozm, indicated in fl.gure2, flies at a steady lift and angle
of attaok prior to t = O; att= O the wing either exp3rienoes
a change in angle of attack a with no pitohing motion or enters
a sha~dged gust of oonstamt vertical velooity Wo, the ~st
extending from its edge to all negative values of x. The wing in
each ease is then restrained so that, relative to the original wind
vector, the wing remains at an angle of attack u or, in the gust
case, oontinues fixed at the same angle of attack.

.

.



.

.

.

.

.

NACA TN No. 16s21 7

The solution to similar boundary-value problems has been
discussed at length in reference 6. In that report the develop-
nwnt was adapted to the case where equation (8) represented the
steady-state equation for wing problems in three dimensions and
the characteristic cones of the equation had the immediate physical
interpretation of Mach cones or inflnites3mal shock disturbances.
Green’s theorem was applied to solve the loundary-value problems
involved and it was shown that the solution obtained could be
fiterpreted as a surface distribution of sources and doublets.
Finally, the difficulties arising in the discussi- of the
singularities on the characteristic coues and the integration of
the supersonic doublet were overcome through the introduction of
an integration technique which involved using the “finite part”
of the given integrals.

The methods and conclusions obtained in reference 6 can be
adapted immediately to the problems discussed herein for the
mathematical reasoning re-fns almast identical. The physical
interpretations of the two cases must, of course, be modified.
Thus, the characteristic cones of the differential equations,
traces of which ere shown in figures 1 and 3, are no longer the well-
bown Mach cones; rather, they represent the distance to which a
disturbance occurring at a point fixed by the a-x of the cone
will tiavel in the time t. Despite the fact that such physical
interpretations ere undeniably useful in understanding and applying
the results, the solution of the basic clifferential equation for
the boundsry values involved is quite independent of these material
dissimilarities. It follows that the methods developed and discussed
in detail in reference (jcan be applied directly to the given
problems with only minor changes in ~o-ti~a

Referring to figure 1, it is evident that”for su~rscmic flight
the air ahead of the wing is unaffected by the approach of the wing
and, further, that the induced velocities on tie uPmr mace cf
the airfoil are independent of the shape of the lower surface.
Consequently the pressure distribution will be found on the upper
surface, as if the airfoil section were spmetrical, and then, for
the flat plate, the yressure distribution on the lower surface will
be equal in magnitude and opposite in sign. As in reference 6, the
solution to such a pro%lem can be obtained from a distribution of
sources.

~ the actual computation of the pressures over a section
traveling at su~rsonic speeds, certiin regions are conveniently
defined. These regions de~nd on the relative slope of the traces
of the leading and trailing edges and the trace of the characta~
istic cone in the x,t plane (fig. 3). The per~~tion velocitY
potential is given by the formula
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Wu
@

J
dxl dt~=-—

a
%tl)’ - (H~)2 -.2

(9)
it

where u 18 the area in the x,t plane of the region oocupied by
the wing bection and bounded by the trace of the forecone from the
point X,z,t . E ~ and pz denote, respectively, pressures on

the upper and luwer surface of the wing

Using equations (9) and (10), direct oaloulation shows that for a
sudden angl~-ttaok ohange, the follawing relations hold

Region A (between lines x = - Mt, x = - t, and x = G - Mt)

(1.la)

It folluws _&at in this region the steady-state Aokere&type load
distribution has been attained.

Region B (between linee x = - t, x = t, and x . c - Mt)

Region C (between lines x = t, t = 0, and x = o - Mt)

&=4a
~. -F (ILc)

The result obtained for Region C is of particular interest siuoe
it holds for airfoils at subsonic as well as supersonic speeds.
Moreover, the mechanics of the interaction between the airfoil and
the fluid are suoh that other methods of derivation, furnishing
added insight into the nature of the phenmenon, nmy be developed.
Consider a flat plate of infinite aspect ratio flying at a velocity
V. either greater than or lees than the veloofty of sound a. in
the undisturbed air. The airfoil is assumed to undergo a chamge h
its motion at the tdme t = O so that subsequent to this time it
hae increased ite angle of attaok by the amount a.. It foUows that
the sudden Increment in lift can be oaloulated from a knowledge of
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of the plate equal to

9

the air prcduced by an added vertical velocity
-Voa. As a result of this vertical rcotiontwo

plane Rayle@ waves will emanate from the plate, a compression wave
from the lower surface and an e~sion wave from the upper surface.
The Velocities of the wave fronts are equal to a. whfle the
induced veloolties in the waves are equal in magnitude to Vou.

The lift on the wing can be dstarmined in two ways: from
impulse relations and from energy considerations. ~ the former
case, asmune that the forces per unit span on the upper and lower
surfaces are fu and fl, respectively. After em elapse of time
At the wave frents have advanced a distance a@ and each
Includes a mass of air equal to p.ca~t per unit span. From
Newtonts second law of n&ion “ “

(f2-fu)At = (PocaoAt)

and, converting to lift coefficient,

(2Voa)

fz-fu 4aoa 4a
Cz. —. —..

$oVo*c V. M

Since the force Is distributed uniformly along the ohord this result
. is the sq,uivalentof equation (llc).

Ih the development of the theory of plane waves of snELll
. amplitude (see, e.g., reference 7) Raylei@ and Lmib have shown

that the energy in a wave is divitid equally into kinetic and
potential energy. Denoting kinetio energy by T,

T = &~]w~&

where w is the perturbation velocity within the wave. Sinoe the
energy induced
it can be seen

in-the wave must result from work done on the plate,
that

a&t

f(fZ-fu)vodt = * Po o Vo=u=o&

-!

I



or
(f~-fu)At = 2poVoa ca&t

ThIs equaticm is in agreemnt with the one obtained previously.

As a consequence of equation (UC) it follows that the
starting lift coefficientrof an airfoil is equal to ~/M for both
subsonic and supersonic flight. The magnitude of cz thus
inoreases as M hemmes smaller and for incompressible theory,
where the velooity of sound is indefinitely large, must necessarily
beccme infinite. This fact was lamwn previously along with the
understanding that the indioial lift function experiences an
infinite discontinuit~ at t = O. (See fig, 6.) For values of M
other than zero the starting lift is finite and a continuous lift
funotion results●

For a sudden gust with vertical velocity W. the following
e~ressfons can be found for the corresponding regions

Region A

Ap 4W0—=
q To&

(12a)

Betion B

AP o Mx+t
—=

.Vo;i
- ‘Os a

(12b)
q

Region C

&o
—=
q

(12c)

APPLICATIONS ANO I?ISCUSSIOMS

Discussion of L&ad Distributions

Figure 4 shows the variation of the loading on a section which,
while traveling at supersonic speed, is suddenly deflected.to a new
angle of attack. The loading varies according to equation (11) for
eaoh of the three regions A, B, and C of f@ure 3. Att=O the
pressure is discontinuous, jumping from its original value, just
before the sudden deflection in angle of attaok, to k/M just
after the deflection. Figure 3 shows, however, that the initial
load distribution is modified over the forward portion of the section
as time increases since regions A and B must be considered.

.

.
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For t ~, the wing lies entirely in region A so that

AP k
—=—

~m

and the loading has attained a static value agreeing with the Ackeret
type of distribution. The loading in region B varies between the two
constant values of regions A and C, dipping below that of region C
and having its minimum value at x = O.

The loading produced upon entering a ~dged gust is pictured
in figure 5. The loading in region C is zero,since that portion of
the wing is unaware of the ohange in stream conditions. Over the
forward portion of the airfoil (regionA) the Ackeret type loading
corresponding to the modified angle of attack is in evidence and for

t >& extends over the entire chord of the wing. In region B

the loading experiences a reduotion in magnitude from the value over

the forward portion of the wing.

The load disln?ibutionswhich have been developed were obtained
for flight velocities in the supersonic regime. It is qparent,
however, Mat the basic differential equation is not restricted to
the case where M>l and that the method of analysis affords a
means whereby transient load effeots cam be studied for subsonic
speeds. The essential difference between the latter problem and
the results derived here lies in the relative position of leadlng-
and trailing+dge traces in the x,t plane and the traoe of the
characteristic cone. Thus, for subsonic flight, the tracs x = -t
does not cut across the region oocuyied by the airfoil; whereas the
cone sterzningfrom the trailing-edge point c,O does. A qualitative
picture of the problem is obtained if the amalogy letween the non–
steady tw~nsional case and three-dimensional wing theory is
used. The loading functions given in equation (11) are equivalent
to loading existing on a swept-fozward tip of a three-dimensional
wing. Thus, in figure l(a), x can represent distance nwasured
spanwise, t can represent distance measured chordwise, and the
shaded area can represent a portion of the plan form of the Wing.

Using this analogy, the loading which has been determined is merely
load distribution over the swe@+fcmward ttp of awing with constant
chord and supersonic leading edge. When the case of the airfoil
section traveling at subsonic speeds is to be considered, the problem
becomes one of determining the loading over the swept+forward tip of
a wing with constant chord and subsonic leading edge.
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Development of Indicial Lift Functions

Sirme section lift mefftaient, cL, is given by the emesOicm

1

J

‘~ ~
cL=-

Coq

the relations presented in equations (H) and (12) are sufficient
far the determination of cI& indicial lift coefficient for change

in az@e of attack, and c
%5’

intioial lift coefficient for an

airfoil entering a gust. As a result of direct integration, the
foXbwing results are obtained.

o<t<~ l+M

%=%

k*t
% “ Cvo

Second t- interval ~< t< ~
M-1

(13a)

(14+3)

(lsb)

Mc+t=-hi%
arc Cos

c

(lkb)

(130)

(140)”

,



NAM TN NO. 1621 13

Values of the lift fumtions are plotted in figure 6 as
functions of s, tie distarme traveled by the airfoil measured h

2Mt
half+hord lengths where s = —. The curves shown were oaloulated

for values of M equal to 1.2,01.31, and 1.46, sinoe the asymptotic
vahes of c% - CLg for the three oases agree with the values

given in reference 1 for the subsonic wing at aspect ratios of m,
6, and 3, respectively. No direct snalogy, of course, can be made
between the tuo cases. It is, hawever, worthy of note that the
variations in the Indiclal functions for the su~rspnio case are of
the ~ order of magnitude as those found in the finite+pan
ino-essible case.

llmm a knowledge of the lift function ~sulting fram a sudden
unit angle of attaok,it Is possible to express the lift oozzresponding
to a given variable motion by considering the given motion as being
mmposed of infinitesimal steps and summing the lifts corresponding
to each step. hkthematically, the problem corresponds to the use
of the indicial admittance In determining the current response for
an eleotiio network and leads to the so-oalled superposition theorem
which oan be “writtenin the form

tf

f

fk( T’) ,
CL(t’) = a(o) cL#*) + C% (t’-Tf )

o . ~ ‘T

(15)

The primes on the mxriabl.esin this equation indioate that true t-
is used.

Motion of Airfoil in Gust

The results which have been obtaine& will now be applied to
determine the forces on an unrestrained airfoil entering a gust.
Sinoe the motion of the wing is not prescribed it beccmes necessary
to equate the dynamioal forces in order to relate the variables
involved. Neglecting pitching moment and using l%wtonls second law
of motion,

dw

I
foroesm~= (16)

where w is the vertical veloolty of the wing, m is tie =66 of
the wing, and the forces to be summed result from the lift on the
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wing and the impressed force resulting from the action of the gust.
By means of equation (15), equation (16) can be rewritbn in the form

(17)

Introducing a change of variables such that

T=.#so, T==~ao

and setting

u-= CL,
alv =—

v PJUSC

the equation becomes, fInally,

(18)

Since a(o) = o, ●equation (18) can be integrated to give:

integral eauation of the second kind with a variablewhich iS m

upper limit. The solu;lon to thla equation can be obtained quite
satisfactorily by means of LiouviUe’s m od of successive
substitution. E“Using the rebtion CL = ~ and perfornlhg the

proper nwmipulati.onsgives:

m

Equation (20) Is lmuwn to converge uniformly for T <
~~ M2-1

4
and in the applications of this report the maximum lift wae always
experienced in the region of convergence.

The values of lift inefficient cL determined from the solution
of eqyation (20) are shown in fQures 7(a), 7(b), and 7(c) for

—

.



mm mNO. 1621 15.

.

.

various values of u and for M = 1.2, 1.31, and 1.46. Figure 8
shows the variation of the maximum lift coefficient attained plotted
as a function of the density parameter w for the eam three values
of M. Figure 9 furnishes a ccmrparisonbetween the maximum lM*
coefficient increment given in reference 1 for an aspect ratio of 6
and the corresponding value calculated in the present report for

M= 1.31. The results are plotted as functions of W$ h=- to

correspond with the density parameter used by Jones. The
correspondence which was noted for the indicial lift .fumtions with
Mach number replacing whg aspect ratio is still in evidence.

Foroes Developed on Given Wing

As an eqle of the uses to which the results just obtained
can be applied, consider an airplane with wing of plan form such
as the one shown in figure 2. Assure a wing loading of !0 pounds
per square foot, a chord length of 8 feet, and let it be specified
that the wing is flying at a Mach number equal to 1.2 and that the
whg is built to withstand forces producing accelerations between
-3 and 5 times gravitational acceleration. It is proposed to find
at whataltittis the whg may be eub~ected safely to a gust
possessing a vertical velooity of 50 feet per second.

If F denotes total force on the wing,

F= W+Lg (21)

where W is wing weight and Lg is the total lift producedby the
gust. ~ (ML)= is the maximum Incremnt in lift coefficient

attained in a unit gust and A Is the acceleration factor measured
in multiples of g, then equation (21) is expressible in the form

A=
W. s

1 + (~L)=x~~ povo

Since it is required that IA–11 ~4, it follows that

Figure 10 shows the limit

of flight altitude. From

curve of (Lc~)mx

a knowledge of u =

(22)

plotted as a function

~/Po@c, however,
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the value of (M~)mx aotually attained by the wing enter~ng the

gust can be cal~ulated. Such values are also included in figure 10
and indicate that, under the given conditions, the wing should not
fly at an altitude less than approximately 28,000 feet.

Ames Aeronautical Laboratory,
National Advieory Committee

Moffett Field, Calif.
for Aeronautics,
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Figure I. - Boundary conditions for supersonic wings.



Figure 2.- Type of ph form studle d in mulysis.

Region A
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Figure 3.- Sketch indicating Iocotions of regions A, B Qnd
C and time In t ervuls used in onoi’ysis. .

.
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Figure 4.- Vuriafions of Ap/q with chordwise station after sud-
den chunge in angle of attuck. Regions defined in figure 3

.
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