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SUMMARY

The variation of pressure distrlibution is calculated for a two-—
dimensional supersonic alrfoll either experiencing a sudden angle~of-—
attack change or entering a sharp—edged gust. From these pressure
distributions the indicial 1ift functions applicable to unsteady
1ift problems are determined for the two cases. A close gimilarity
is shown to exist between the calculated functlons for varying free—
stream Mach number and the corresponding functions in three-
dimenslonal incompressible flow for varying aspect ratio.

Results are presented which permit the determination of
maximum increment in 1ift coefficlient attained by an unrestrained
alrfoil during 1ts flight through a gust. As an appllcation of
these results, the minimum altitude for safe flight through a
speclific gust is calculated for a particular supersonic wing of
given strength and wing loading.

INTRODUCTION

The study of the unsteady 1lift of wings in an incompresslble
medium has been developed along two different lines. 1In refer—
ence 1, R. T. Jones introduced the concept of indicial 11ft
functions for wings of finlte aspect ratio and, using as a basils
the work of Wagner (reference 2) on the two-dimensiopnal potential
theory of airfolls in nonuniform mction, has shown how the
celculation of 1ift under various conditions of motion can be
effected. In reference 3, Theodorsen considered nonsteady motion
in its relation to the general theory of aercdynamic instability
end the determination of the sercdynamic forces on harmonically
osclllating airfoilsg., This latter approach has been extended to
include high—speed problems and in two recent papers Garrick and
Rubinow (references 4 and 5) have glven results on flutter and
oscillating sir-force calculations for wings in supersonic flow.
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The presert report employs the method of attack introduced by -
Jones and considers the case of a two-dlmensional airfoll moving
supersonically in an arbltrery manner, provided the assumptions of
small perturbation theory are satisfied. The prineipel contribution
lies In the determination of indiclal pressure distributions which
are readily caloulated in supersonic motion and from which indicial
1lift, drag, and pitching moments may be computed. From these
results the indiciael 1ift functions are calculated explicitly.

The methods used to find the pressure distributions also afford
congiderable insight into the same problem for airfoils at subsonic
gpeeds.

As an application of the anelysis, the results are applied to
the speclal case of an unrestrained alrfoil entering a sharp-edged
gust. The resultent forces are found to be comparsble in magni—
tude, for Mach numbers in the neighborhood of 1.3, to those given
In reference 1 for subsonic Incompressible flow.

SYMBOLS
e speed of sound
c chord length
¢; section 1lift coefficlent

G}y 3indiclel 1ift coefficient for angle—of—attack change

°7-g indlcial 1ift coefficient for wing entering gust -
acceleration of gravity

M free—stream Mach mumber

m mass

4Ap  difference in pressures between lower and upper surfaces of
airfoll

q (‘é‘povoz)
8 distance measured in helf—chord lengths
S ares of wing

P perturbation static preasure
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t',r time in seconds

t transformed time variable (See equations (7).)
T t/c

un perturbation velccity component in x direction .
Vo free—-stream veloclty

W perturbation velocity component in z direction
Vo z component of velocity of gust

W welght of wing

X,z Cartesian coordinates

a angle of attack

i 2m/pMSe

P perturbation density

Po free—stream density

o srea over which surface integral is evaluated
& perturbation velocity potential

Subscripts

o fres-stream conditions

1 varisble of integration

u upper surface

1 lower surface

ANATYSTIS

Derivation of Basic Differential Equation

The pressure distribution over an airfoll in a compressible

medium is obtainable from the solution of a boundary value problem
agsoclated with a particular second—order partial differential
equation. The derivation of the linearized form of this equation,

obtained under the assumptions of small perturbation theory,
proceeds as follows:
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Let u,w be perturbation velocity components parallel,
reapectively, to the Certesian axes x', z' and denote by
p perturbation pressure, by p perturbation density, and
by a the velocity of sound. Then if +' denotes tims,
Vo 1is the constant free-stream velocity, and p, ia the
constant free-stream demsity, the linearized Eulerlan equations
are

du . Ju 1 Jp
dt! © dx* P, Ox'
_ (1)
Mo LR
ot ox!' Po oz?!

The linearized equations of continuity and state are, respectively,

.a..‘.’...+v__+ < =0 ()
ot!? ox! az‘
1
p = _—- P (3)
o

After the introduction of the perturbation veloclty potential ¢
integration of equations (1) ylelds

=) 00 _ 1
g;+v°-a-;'__-p—o'P + const. ()

while equations (2) and (3) give the expression

2.y, 2 ) o (2 22 )
Jtt 90x'/ po8o? xt2 * oz! 2
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The ccambination of equations (%) and (5) leads to the desired
partial differential equation

oo | o922  2M 970 1 030 _ (6)

- - =0

(1-M2)
O0x'2 J2'2? ag Jx'dt'. 8% Jt'E

where M 18 the free-stream Mach number.

Equation (6) can be reduced to the normelized form of the two—
dimensional wave equation of mathematical physlics by means of the
transformation

2 = 2 (1)

In these varilables the equatlon 1s written

3% %0 3%
. — =0 8
ot2 Jdx2 9z=2 ©)

In accordaence with the assumptions underlylng the derivation of
equation (8), its application to problems in airfoil theory 1is,

of course, limited to cases where the induced velocities are small
compared to the free-—streem veloclity and the effects of viscosity
do not alter the results of the potential flow solution.

The rectangular coordinate system associated with equation (6)
is fixed in the wing which 1s, in turn, immersed in a free stream
of veloclty YV, directed along the positive x—axis. The transforma~
tion introduced in equation (7) fixes the x,z cordinate system
in space so that the alrfoil moves in the negative x direction and
the free—stream veloclty 1s zero. A distortion of the time axes
is also involved so that the differertial equatlion appears 1in
canonicel form. Equations (6) and (8) are, of course, well known
in the theory of unsteady motion and in the study of sound waves.
It is natursel that these two fields of study should yleld the same
fundamental equations since, in small perturbation theory, the wing
may be thought of as a distridution of acoustlc radiators.
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Solution For Given Boundary Conditions

The bcundary condlitions which are to be satlsfled have the same
property as those encountered in steady—state thin—airfoll theory;
that is, the prescribed data are given in the z = 0O plane. The
particuler problems with which this report—deals are those of
finding pressure distributions over a flat plate. Thus, w will
be specified over & portion of the 2z = 0O plane and, elsevwhere
throughout the plane, loading must be zero.

T™wo boundary-value problems ere to be consildered: first, the
cagse of an airfoll either starting from rest at a glven angle of
attack o or experiencing along the entire chord a change « In
ptream direction wilithout a pitching motion, and second, the case
of a constralned wing entering a sherp—edged gust with a vertlcal
veloclity wg. In the former case the motion is that of an airfoll
guddenly sinking without rotation. These boundary condltions are
more reedily plctured with the aid of figure 1. Figure 1(a) shows
the conditions which must—be satisfied in order to solve the angle—
of-attack problem. The trace of the leadlng edge of the wing
traverses the line x = — 'Mt, while the trailling edge lies on
x=¢ —Mt where ¢ 1s chord length. The region bounded by these
lines and the line +t = 0 18 the region occupled by the airfoil
ag time pesses. Since the exes are flxed and the slrfoll moves in
the negative x direction, the velocity at which the alrfoil
travels determines the inclination of the loci of the leading— and
tralling—edge traces. Over the "area" occupled by the airfoll in
the x,t plane, w must equal -Voa and elsevhere no jump in
pressure cen ocour. The gust problem (fig. 1(b)) does not differ
essentlally from the previous problem except that here the reglon
over which the modification of w 1is effective 1s not entirely
the region ocoupled by the airfoil but rather the reglon occupled
gimultansously by the alrfoil and the gust. Fixing, for convenience,
the edge of the gust along the t~axis, this axis will form the right—
hand boundary of the reglon over which w = — wp.

Since the partial differential equation 1s linear and the
golutions are therefore additlive, these boundary conditiona clearly
should fit the following physical event: a wing of trapezoidal
plan form, indicated in figure 2, flies at a steady 1lift and angle
of attack prior to t =0; at t =0 the wing either experiences
a.change 1in angle of attack o wilth no pitching motion or enters
a sharp-edged gust of constant vertical velocity wgy, the gust
extending from 1ts edge to all negative values of x. The wing in
each case is then restrained so that, relative to the original wind
vector, the wing remains at an angle of attack o or, in the gust
case, continues fixed at the ssme angle of attack.
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The solution to similar boundary—-value problems has been
discussed at length in reference 6. In that report the develop—
ment was adapted to the case where equation (8) represented the
steady—state equation for wing problems in three dimenslions and
the charscteristic cones of the equation had the immediate physical
interpretation of Mach cones or infinitesimal shock disturbances.
Green's theorem was applied to solve the boundary-—value problems
involved and it was shown that the solution obtained could be
interpreted as a surface distribution of sources and doublets.
Finally, the difficulties arising in the discusslon of the
singularities on the characteristic coues and the integration of
the supersonic doublet were overcome through the introduction of
an integration technique which involved using the "finite part"
of the given integrels.

The methods and conclusions obtained in reference 6 can be
adapted immediately to the problems discussed herein for the
methematical reasoning remains almost identical. The physical
interpretations of the two cases must, of course, be modified.

Thus, the characteristic cones of the differential equations,

traces of which are shown in figures 1 and 3, are no longer the well-
known Mach cones; rather, they represent the distance to which a
disturbance occurring at & point fixed by the apex of the cone

will travel in the time +t. Desplte the fact that such physical
interpretetions are undeniably useful in understanding and applylng
the results, the solution of the basic differential equation for

the boundary velues involved is quite independent of these material
dissimilarities. It follows that the methods developed and discussed
in detall in reference 6 can be applled directly to the given
problems with only minor changes in notation.

Referring to figure 1, it is evident that for supersonic flight
the air shead of the wing is unaffected by the approach of the wing
and, further, that the induced veloclities on the upper surface of
the airfoil are independent of the shape of the lower surface.
Consequently the pressure distribution will be found on the upper
surface, as if the alrfoil sectlon were symmetrical, and then, for
the flat plate, the pressure distributlon on the lower surfece will
be equal in magnitude and opposite in sign. As 1n reference 6, the
solution to such & prcoblem can be obtained from a dlstributlon of
sources.

In the actual computation of the pressures over & sectlon
traveling at supersonic speeds, certaln regions are conveniently
defined. These regions depend on the relative slope of the traces
of the leading snd trailing edges and the trace of the character—
istic cone in the x,t plane (fig. 3). The perturbation veloclty
potential is given by the formmla
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0 =2 ] e (9)
n ﬂ: (t—=t1)2 = (x-x1)2 - 22

where o 1s the area in the x,t plane of the region occupled by
the wing section and bounded by the trace of the forecone from the
point x,z,t. If p, and p; denote, respectively, pressures on

the upper and lower surface of the wing

AP PPy, L 3% a¢> L o0

+ T, = — 10
aQ a Vo2 N3t © 3x'/ VYoMt (20)

Using equations (9) and (10), direct calculation shows that for &
sudden angle—of-attack change, the following relations hold

Region A (between lines x =~ Mt, x=—1%, and x = ¢ — Mt)

&p _ _ha _ (11a)
. JSea

It follows that in this region the steady—state Ackeret~type load
dlstribution has been attained.

Region B (between lines x=-~t, x=1t, and x = ¢ — Mt)

Ap Lo [1 Mx+t+./_w"-_1n %>] (11b)

_— T e | - 8YC COS — + arc sin
q Jﬁ x x+Mb xM 2

Region C (between lines X =%, t =0, and x = ¢ — Mt)

A by,
712_' TR (11c)
The resuli obtalned for Region C 1s of particular interest since

it holds for aslrfolls at subsonic as well as supersonic speeds.
Moreover, the mechanics of the interactlon between the airfoll and
the fluld are such that other methods of derivation, furnishing
added Iinsight into the nature of the phenomenon, may be developed.
Conglder a flat plate of infinite aspect ratio flying at a velocity
Vo elther greater than or less than the velocity of sound aj, in
the undisturbed alr. The alrfoil is assumed to urndergo a change in
1te motion at the time + = 0 so that subsequent to this time it
has Increased ite angle of attack by the amount «. It follows that
the sudden increment in 11ft can be caloculated from a knowledge of
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the induced effects on the alr produced by an added vertical velocity
of the plate equal to —Voo. As a result of this vertical motion two
plene Rayleligh waves wlll emanate from the plate, & compresailon wave

from the lower surface and an expansion wave from the upper surface.

The velccltles of the wave fronts are equal to a8y while the

induced velocitlies in the waves are equal in magnitude to Vga.

The 11ft on the wing can be determined in two ways: from
impulse relations and from energy considerations. In the former
case, assume that the fcrces per vnit span on the upper and lower
surfaces are £, and f3;, respectively. After an elapse of time
At the wave fronts have advanced a distance apAt and each
includes a mass of alr equal to pyecayAt per unit span. From
Newton's second law of motlon

(fz—fu)At = (poca.OAt) (ev o°")

and, converting to 1lift coefficient,

[+] 1= =
20VoRe Vo

M

Since the force 1s distributed'uniformly elong the chord this result
is the squivalent of equation (1llc).

In the development of the theory of plane waves of small
emplitude (see, e.g., reference T) Rayleigh and Lamb have shown
thet the energy in a wave 1s divided equally into kinetic and
potential energy. Denoting kinetlc energy by T,

T = 40, [[] veaxayas

where w 1s the perturbation velocity within the wave. Since the
energy induced in the wave must result from work done on the plate,

it can be seen that

acht
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or .
(f1—£,)At = 2p Ve caAb

This equation is in agreement with the one obtained previously.

As a consequence of equation (llc) it follows that the
starting 1ift coefficient of an airfoil is equal to La/M for both
subsonic and supersonic flight. The magnitude of c¢3 tThus
increases as M Dbecomes smaller and for incompresslble theory,
where the velocity of sound is indefinitely large, must necessarily
becoms infinite. This fact was known previously along with the
understanding that the indicial 1lift functlon experiences an
infinite discontinuity at + = 0. (See fig. 6.) For values of M
other than zero the starting 1lift is finlte and a continuouws 1ift

function results.

For a sudden gust with vertical velocity wg the following
expressions can be found for the corresponding regions

Region A
Ap bw,
A (122)
Voo M2—1
Reglon B
P bew Mx+t
—1—’ = ———0——- arc cos m (lab)
Voo MB—1
Region C
Lp
T =0 (120)

APPLICATIONS AND DISCUSSIONS

Discussion of Load Distxributions
Figure 4 shows the variation of the loading on a section which,

while traveling at supersonic speed, is suddenly deflected to a new

angle of attack. The loading varies according to equation (1l) for

each of the three regions A, B, and C of figure 3. At t = O the

pressure ls discontinuous, Jumping from its original value, Just

before the sudden deflection in angle of attack, to ka/M Just

after the deflection. Figure 3 shows, however, that the initial

load distribution ies modified over the forward portion of the section

as time lncreases since regloans A and B must be considered.
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For % >ﬁ§I’ the wing lles entirely in reglon A so that

p  ka
q Me=l

and the loadling has attained a static value agreeing wlith the Ackeret
type of distribution. The loading in reglon B varies between the two
constant values of regions A and C, dipping below that of region C
and having its minimum value at x = O.

The loading produced upon entering a sharp-—edged gust is pictured
in figure 5. The loading in region C 1s zero,since that portion of
the wing 1s unaware of the change in stream conditions. Over the
forward portion of the airfoll (reglion A) the Ackeret type loading
corresponding to the modified angle of attack 1s In evidence and for

t:>E§I extends over the entire chord of the wing. In region B
the loading experiences a reductlon in magnitude from the value over
the forward portion of the wing.

The load distributions which have been developed were obtalned
for £light veloclties In the supersonic regime. It 1ls apparent,
however, that the basic differential equation is not restricted to
the case where M>1 and that the method of analysis affords a
means whereby transient load effects can be studied for subsoniec
spoeds. The essential difference between the latter problem and
the results derived here lies in the relatlve position of leading—
and tralling-edge traces in the x,t plane and the trace of the
characteristic cone. Thus, for subsonic flight, the trace x = -t
does not cut across the reglon occupled by the airfoil; whereas the
cone stemming from the traillng—edge point ¢,0 does. A gualitative
picture of the problem is obtained if the analogy between the non-—
steady two—dimensional case and three—dimensional wing theory is
used. The loading functions given in equation (11) are equlvalent
to loading existing on a swept—forward tip of a three—dimensional
wing. Thus, in figure l(a), x can represent distance measured
spanwise, t can represent distance measured chordwlse, and the
shaded area can represent a portion of the plan form of the wing.
Using thils analogy, the loading which has been determined is merely
load distribution over the swept~forward tlp of a wing wilth constant
chord and supersonic leading edge. When the case of the alrfoll
section traveling at subsonic speeds 1s to be considered, the problem
becomes one of determining the loading over the swept—forward tip of
a wing with constant chord and subsonic leading edgs.
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Development of Indiciel Lift Functlons

Since section 1ift coefficient, e¢1, 1s given by the expressiom

1 OQE
cL=_.f_d_'x;
C Jo o}

the relations presented in equatiomns (11) and (12) are sufficlent
for the determinstion of OLy? indiciel 1ift coefficient for change

in angle of attack, and CLg> indicial 1ift coefficlent for an

airfoll entering a gust. As a result of direct integration, the
following results are obtained.

Firet time intervael =
o<t<1+M

Ly = W (132)
ot
= 2
QLS eV, (lhe.)
Second time interval L <y S
1+M M-1
OI’U. = :—E[ -:i-(% + arc sin 2#)"’ ﬁf&l‘o co8 'b"'MO‘-th
+ %J tz-(o-tmjz] (13v)

oot C o—-Mt) Yowg, Mc+t2-M2t
= - + grc aln + —— OI'C GOS8 =
t Vo

GLG ¥ oC ./—M_z:i ¢
(14Dp)
Third time intervel < b
OLQ', = Mz (130)
—L
OLg = o (1ke)
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Velues of the 1lift functions are plotted in figure 6 as
functions of s, the distance traveled by the alrfoil measured in

2Mt
helf—chord lengths where s = ——. The curves shown were calculated

for valuss of M equal to 1.2, 1.31, and 1.46, since the asymptotic
values of CLy and cLS for the three cases agree with the values

given in reference 1 for the subsonic wing at aspect ratios of o,
6, and 3, respectively. No direct enslogy, of course, can be mads
between the two cases. It is, however, worthy of note that the
veristions in the indicilal functions for the supersonic case are of
the seme order of magnitude as those fourd in the finite—span
incompressible case.

From a knowledge of the 1ift function resulting from a suddsn
unit angle of attack,it is possible to express the 1lift ocorresponding
to a glven variable motion by consldering the.gliven motion as being
ccmposed of infinitesimael steps and summing the lifts corresponding
t0 each step. Mathematicelly, the problem corresponds to the use
of the indiciel admittance in determining the current response for
an electric network and leads to the so-called superpositlion theorem
which can be written in the form

£ '
cL(t!) = a(o) cr (') +£ oI, (£'=T) daéﬂf ) gt
!
=57 [ Ol (8'-7) @ () ot (15)

The primes on the variaebles in this equation indicate that true time
is used.

Motion of Airfoll in Gust

The results which have been obtalned will now be appllied to
deotermine the forces on an unrestrained alrfoil entering a gust.
Since the motion of the wing is not prescribed it beccmes necessary
to equate the dynamical forces in order to relate the varlables
involved. RNeglecting pitching moment and using Newton's second law

of motion,
dw
—_—= 16
B Zforoes (16)

where w 1s the vertical velocity of the wing, m is the mess of
the wing, and the forces to be summed result from the 1ift on the
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wing and the impressed force resulting from the actlon of the gust.
By means of equation (15), equation (16) can be rewritten in the form

tl
o+ qs___d:' [ oIy (6'=T)a(T)ar = "'r-'-g oIg (t')aS (7)

Introducling a change of variables such that

-t' T'
T = o 8n, TJ_ = o 8o
and setting
W 2m
L a, =
v ’ IV
the equation becomes, finally,
da , d T W
— T —— = Q
Lag * T A cLy (T-T1) « (T1)dTy 7, CLg (T) (18)

Since af(o) = o, “equation (18) can be integrated to give:

\ T
Wea 1 1l 4 =
a _‘Tg = £ °Lg (T, )ar, + EL‘ Ol (T-T1) @ (Ty) 4Ty = O (19)

which is an integral equation of the second kind with a variable
upper limlt. The solution to thls egquation can be cobtalned quite
satlsfactorily by meane of Liouville's me&od of successlve

subatitution. ‘'Using the relatlon cf, = ”"cﬁ' and performing the

proper manipulations gives:

T

v, 1
Qo =¢ p __fc T T )4T
' L (T p01,(,,'( 1) op, (T1)dTy

1 Ty : _
+ E_é‘TOLG (T—-Tl)dTl\L\ OLG. (Tl—Tz) ch (Tg)de —es (20)
N M2l

Equation (20) is known to converge uniformly for T<E—-—r
and in the applications of this report the maximum 1ift was always
experlenced in the region of convergence.

The values of 1ift cocefficient ¢ determined from the solution
of eguation (20) are shown in figures T(a), T7(b), and T(c) for
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various values of p and for M = 1,2, 1.31, and 1,46, Figure 8
shows the variation of the maximum 11ft coefflclent attalned plotted
as a function of the density paremeter pn for the same three values
of M. Filgure 9 furnlshes a comparison between the meximum l1ift—
coefficlent increment given in reference 1 for an aspect ratio of 6
end the corresponding velue calculated in the present report for

M = 1.31. The results are plotted as functions of pa = 14_-13__ to
J ~ pSc

correspond with the denslty parameter used dy Jones. The
correspondence which was noted for the indicial 1lift Pursctions with
Mach nunber replacling wing aspect ratio 1s still in evidence.

Forces Developed on Given Wing

As an example of the uses to which the results Just obtained
cen be applled, consider an airplane wlth wing of plan form such
as the one shown in figure 2. Assume a wing loading of 4O pounds
per square foot, a chord length of 8 feet, and let it be specified
that the wing i1s flying at a Mach number egqual to 1.2 and that the
wing 1s built to withstand forces producing accelerations between
=3 and 5 times gravitational acceleration. It 1s proposed to find
at what altitudes the wing may be subJected safely to a gust
possessing a vertical veloclity of 50 feet per second.

If F denotes total force on the wing,
F=W+1Ig (21)
where W 1s wing weight and ILg 1is the total 1ift produced by the

gust, If (ACL) i1s the meximum increment in 1ift coefficlent

attained in a unit guet and A 1s the acceleration factor measured
in multiples of g, then equation (21) is expressible in the form

Vo

= + in—
A=1+ (&) 5 7 Polo

=

Since it is required that |A-1| € L, it follows that

6.
PoVo

=

(o) s (22)

Figure 10 shows the limit curve of (ACL)ma'x plotted as a function

of £light altitude. From a knowledge of p = 2W /pogMSc s however,
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the value of (ACL)max actually atteined dy the wing entering the

gust can be calculated. Such values are also included in figure 10
and indlicete that, under the given conditions, the wing should not
fly at an altitude less than approximastely 28,000 feet.

Ames Aeronsutical Laboratory,
Natlonael Advisory Committee for Aeromautlcs,
Moffett Field, Calif.
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Figure [ — Boundary conditions for supersonic wings.
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