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‘SUMMARY

The structursl analysis of arbitraery solid cantilever wings by
small-deflection thin-plate theory is reduced to the solution of linear
ordinary differential equations by the assumption that the chordwise
deflections at any spanwlse station may be expressed in the form of a
power series 1n which the coefficients are functions of the spanwise
coordinate. If the series is limited to the first two and three terms
(that is, if linear and parabolic chordwise deflections, respectively,
are assumed), the differential equations for the coefficients are solved
exactly for uniformly loaded solid delta wings of constant thickness and
of diamond chordwise cross section with constant thickness ratio. For
cases for which exact solutions to the differentisl equations cannct be
obtained, a numerical procedure is derived. Experimental deflection
and stress data for constant-thickness delta-plate specimens of 459
and 60° sweep are presented and are found to compare favorably with the
present theory.

INTRODUCTION

One of the present trends in the development of high-speed air-
planes and missiles is toward the use of thin low-aspect-ratlo wings.
The structural analysis of these wings often cannot be based on beam
theory since the structural deformations may vary considerably from
those of a beam and, indeed, may more closely approach those of a plate.
In cases where the wing construction is solld or nearly solid the use of
plate theory in the analysis is particularly valid, and it .is this type
of wing which is considered in the present paper.

Exact solutions to the partial-differential equation of .plate
theory are not readily obteined, especially for plates of arbitrary
shape and loading; however, a number of approximate solutions to
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specific problems on cantilever plates have sppeared in the literature .
(see, for example, references 1 to 7). Of the approaches used in these - NS
references, only the one in references 6 and 7 is readily epplicable to
plates of arbitrery plan form, thickness distribution, end load distri-
bution; thus it is' the most useful one for the analysis of actusl wings.

In reference 6 the cantilever-plate problem is simplified by the

assumption that the deformations of the plate in the chordwise direction
(parallel to the root) are linear. By minimizing the potential energy
of the plate, the partisl-differential equation of plate theory is
replaced by two simultaneous ordinary differential equations for the
spanwise variations of the bending deflection ‘and twist. In reference 7
the same ordinery differentisl equations are obtained in a different _
menner.  Refinement of the analysis by inclusion of the effect of . -
parabolic, cubic, or higher-order chordwise camber terms is indicated i
in reference 6 and s the order of refinement is increased a corre- T
sponding increase in the number of ordinary differentlal equatlons is
obteined. .. .. ... . oo =

In the- present paper, which 1s an extension of reference 6, a general

set ofordinary differential equatlons is presented which may be used to T
obtain any desired degree of approximastion to the deflection of the plate.-
These equations asre solved exactly for several cases of delta plates under
uniform load first by considering linear chordwise deformation only and
second by including the effect of parsbolic chordwise camber. Comparisons
are drawn between the stresses and deflections computed from the equations
of—each approximation and also with some experimental results.

The differential equations presented contain coefficients that
depend on the plan form and stiffness distribution of the plate and on
the loading. In.the present paper, the plates considered in detail have
coefficients such that the differential equations can be solved exactly;
however, in cases--for which exact solutions cannot be obtained a numeri-
cal procedure must be used. One such procedure is derived and its
accuracy is demonstrated. ST B

SYMBOLS
[ length of plate measured perpendicular to root L
c root cherd of plate - - R - . .- ; s

P lateral load per unlt area, positive in z-direction L
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t local thickness of plate
tav average thickness of plate

| Et3
D local flexurasl stiffness 5

12(1 - B)
- . Bt
D flexural stiffness based on average thickness
La(l - ue

E modulus of elasticity of material
n Poisson's ratio
w deflection of plete, positive in z-direction
X,¥,2 coordinates deflned in figuré 1
Pp function of x, coefficient in power series for deflection

W = EN; op(x)y"
o

cy(x),co(x)  functions defining plan form (see fig. 1)

Xy varisble obtained by transformstion =x; =1 - %
Ty 0y normal stresses -

Txy shear stress ' .
o . maximum principal stress

A aspect-ratio parameter (?Z: \E(l - u))

RESULTS

The derivation of the general set of ordinary differential equa-
tions is given in sgppendix A. The general procedure outlined in refer-
ence 6 is followed; that is, the deflection of the plate w 1is
expanded into g power series in y the chordwise coordinaste, with
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coefficients which are functions of x the spanwise coordinate (see
fig. 1)

o= golx) + o (x)y + 90092 + . . .+ ()Y (1)

Equation (1) is substituted into the expression for the potential energy
of the plate-load ¢ombination which i1s in turn minimized by the calculus
of variations with respect to each of the coefficlents @,. The results
of the variational procedure appear as N + 1. simultaneous differential
equations with the coefficients @, as unknowns.

By taking a sufficient number of terms in the expansion of w, the
resulting differential equations can be used to obtain any desired
degree of accuracy in the solution for the deflections of any given
cantilever plate subjected to an arbitrary lateral load. Of most —
interest, perhaps, are the particular cases for N =1 and N =2,
which are obtained from the general set of equations and ‘are simplified
in. appendix A. The case for N = 1 (&lgo derived in references 6 and T)
includes. linear chordwise deflections, and the case for N = 2 tekes
into account parabolic chordwise curvature. Although formost practical
problems the solution by the parsbolic theory should be adequate, cases
might exist in which cubic, quartic, or even higher-order chordwise
terms should be included depending on the convergence of the series for
the configuration considered. -

The particular equations for N.= 1 and N = .2 are used to
determine the deflections and stresses of the following cantilever
plates subjected to uniform lateral loed:.

(1) A 45° delta plate of uniform thickness
(2) A 60° delta plate of uniform thickness

(3) A 45° delta plate of diamond chordwise cross section with
constant thickness ratio ) . : -

Fortunately, for these configuretions, the solution can be carried
out exactly by both the linedr and parsbolic theories, and the details
of these exact solutlons are included in eppendix B. In general, how-
ever, exact solutions cannot be obtained and some numerical methéd must—
be used. One—such method, based on replacing derivatives by their
first-order-approximation difference forms, is derived in appendix C.

A summary of the results for the three particular problems is shown in
figures 2 to 11. Deflections obteined by the Jinear theory and the para—
bolic theory for the three configurations are compared in figures 2, 3, and 4.
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»
Stresses obtained by the linear theory send the parebolic theory for the
three configurations are compared in figures 5, 6, and 7. Where avail-
able, experimental deflections and stresses are also shown in these
figures. The details of the grocedure_used to obtailn the experimental
deflections- of the L45° and 60° uniform-thickness plates and the experi- .
mental stresses in the 45° uniform-thickness plate are contained in
appendix D; whereas the experimentsl root stresses for the 60° uniform-
thickness plate were obtalned from reference 8. Figures 8 to 11 present
the comparison between deflections and stresses computed from the exact
solutions of the differentisl equations and those computed from the
numerical solution of the same equations. X

DISCUSSION

The results shown in figures 2 and 3 indicate that, with regard to
deflections, either the linear theory or the parabolic theory is
adequate for the case of a constant thickness delta plate subjected to
a uniform losd, the comparison belng somewhat better for the 60° plate B
than for the h5 plate. If accurate slopes .in the chordwise directlon
(angle of sattack)-are desired, however, the parabolic theory must be
used because the errdr in the angle of attack as computed by the linear
theory is as much as 30 percent (see figs. 2 and 3). The appreciable
anticlastic curvature, evidenced by the experimental results of figures 2
and 3, may be important serodynamicslly and is, of course, not taken
1nto account by the linear theory.

The apparent convergence of the aforementioned series in the case
of the diamond-cross-section plate (see fig. 4) implies that the linear
theory is adequate for this case. The lack of chordwise curveture in
the result obtained by the parabolic theory is attributable to the fact
that the natural tendency of the plate to have anticlastic curvature is
canceled by the opposite tendency of the thin edges to bend down under
the load. Unfortuhatéiy, no experimental results are gvailable for this
configuration. ) .

In figure 4 the plate stiffness D in the nondimensional param-

eter wD/éaZlL is the Jocal value of D at a point where the thickness is
equal to the. average thickness of the plate as a whole. Thus the

results of figure &4 are compareble with the results of figure 2 o6n an
equal-weight basis. It can be seen that the deflections of the dismond-
cross-section, constant-thickness-ratio plate are everywhere less than
those of the uniform-thickness plate although they increase rgpidly near
the tip.. This curling-up or singulsrity in slope at the tip is a result
of using a small-deflection theory and probably would not be so marked

in an actual case.
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The stress results for the 45° and 60° uniform-thickness delts
plates indicate that both the linear and the parabolic theories are.

adequate and that the parabelic theory is better than the linesar theory_

only near the root. It should be noted that, although the maximum
principal stress over a large part of the 45° plate is plotted in fig-
ure 5, only the stresses normal to the raot along the line % = 0.0087
of the 60° plate are plotted in figure 6 since only these stresses are
given in reference 8. (The meximum principal stress and the stress
normal to the root—are theoretically equal at the root since the root
shear stress 1s zero.)

Experimental data are lacking for the diamond-cross-gection delta
plate and, therefore, only theoretical stresses are shown in figure 7.
As In the case of deflections, the results obtained from the linear
theory and those obtalned from the parsbolic theory are almost coinci-
dent, the difference being greatest near the root. Figure T has also
been plottéd so that the results are directly comparsble with those for
the h5 uniform-thickness plate—in figure 5 on an equal-weightbasis.
As can be expected, the diamond-cross-section, constant-thickness-ratio
plate is a better design structurally; the stresses in the diamond-
crogs-section plate are everywhere smaller and are almost constant in
the spanwise direction.

The theoretical results in figures 2 to T have been obtained from
exact solutions of-the differential equations of the linear and
parabolic theories.  -In order to test the reliasbility of the numerical
method derived in appendix C, the dlfferentisl equafions were also -
solved numerically. The results shown in figures 8 and 9 indicate that
the agreement is good between the numerical solution in which five equal
intervals were used and the exact solution of the differential egquations
for the case of the 45 uniform-thickness plate. The same good agree-
ment can be expected in other cases where the—thickness and load dis-
tributions are not too erratic and where the plate stiffness does not
go to zero at the tip; that 1s, when no gignularitles appear at the tip.

Since the efficacy of the numerical method depends on how well
parabolic arcs fit the various functions between stations, serious
error can result from blind application. An example of the seriousness
of these errors and of—the manner in which they can be remedied is
shown in figures 10 and 11. In these figures a comparison is made
between exact and numerical results obtained on the h5° diamond-cross-
section, constant-thickness-ratio plate. As can be expected, the five-
station numerical solution fails to follow the exact solution in the

neighborhood of. the singularity at the tip. 8ince the region of trouble

is localized at the tip, & reasonable remedy would be to decrease the
spacing of the station points near the tip. This decreasé in spacing
may be accomplished either by using a greater number of equally spaced
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stations or by using unequally spaced stations crowded near the tip.
The increase in accuracy obtained by increasing the number of equally
spaced station points to ten is shown inh figures 10 and 1l. .

CONCLUDING REMARKS

The genersal method presented herein for finding deflections and
stresses of solid or nearly solid wings is, in principle, capable of
yilelding arbitrarily accurate results for any configuration. It is
seen that, for the examples considered, only the first two or three
terms in the series expansion need be considered to obtain adequate
accuracy. In addition, for most practical plate-like wings with clamped
roots the first two or three terms will probably be adequate, although
problems may exist wherein more terms are needed.

The nurericel procedure, derived for application in cases where
exact solutions cannot be obtained, gives good agreement when compared
with exact solutions' if enough stations are taken along the span. The
necessary number of stations 1s dependent on the type of thickness and
loading distribution considered, five equally spaced stations being
enough for the uniform-thickness delta wing subjected to uniform loeding,
and ten being necessary for the diamond-cross-section, constant-thickness-
ratio delta wing subJjected to uniform loading.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Fileld, Va., November 30, 1951.



8 : : : NACA TN 2621
APPENDTX A
DERIVATION OF DIFFERENTTAL. EQUATIONS

The structure considered herein is & thin, elastic, isotropic,
cantilever plate of arbitrary plan form and slowly varying thickness
subjected to. distributed lateral load (see fig. 1). By assuming that
the deflection of the plate can be represented by a power series in the
chordwise coordinate and by applying the minimum-potentlal-energy
principlé, a set of ordinary differential equations in the spanwise
coordinate is obtained from which the coefficients of the power series
may be determined. First the general set of equations i1s derived; then
the particular equaetlons for the cases of linear chordwise deflections
and parebolic chordwise deflectlons are deduced from the general set
and simpiified.

General equations.- The potential energy of the system under
consideration is . -

(x) _
Potential energy = JF ch?x) D(XQY) <ax ) <::;) QEE éE% *

Y

3
E{t(x,
D(x,y) = [t Y)e
12(1 -

and p(x,y) is the distributed lateral load.

. _ 2
2(1 - u) (%—)jl - p(x,¥)w ¢ dy-dx (A1)

in which

The assumption is made that the deflection w _ can be represented
by the power series

N
w = Z.; ‘Pn(x)yn ’ (a2)
n=

Substitution of this expression for w into equation (Al) givesg
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1 N ' oo
Potential energy = f dx 4 & _S_ E Em+n+1§°m 'q’n +
. 0 2 =0 n=

mn(m = l)(n - l)am.*.n_scpmq)n + Eu'n(n = l) am+n-.-lch“qJn +

2(1 - u)mnam_m m'@nj - g Pn+lq)1} (43)

in which
" ~ealx) )
= 8 D(x,y)rly (r=1,2, . + . 20 + 1)
8,
c1(x) .
r (Ak)
i ' Cg(x) L . ' _
P, = Jf p(x,y)y" tay (r=1,2, .. .N+1)
- 1 -/

and the primes denote differentiation with respect to x.

Minimization of the potential energy by means of the calculus of
variations gives

0

f }N__ i[_;mm (o B0 + %"lscpm',') +

m—O n=0

8(Potential energy)

m(m - 1)(n - Deagy 3(% 59y + 9 Sy .+
2un(n - 1) a‘m+n-:l_(Cf’m"sc"n * (-pn ng") *

o(1 - u)mnam+n_1(¢m'5¢n' + ¢n'5¢m'i] -

N

. .
g pn+l aan
n=
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Integrating by parts end collecting terms __rgsy_l_‘__b_s_ 1n

"

1 N N " "
0 = fo ax ﬁg 3y n; Eammﬂcpm ) .+ bm(m - 1) (8yan-1%n) -

2(1 - u)mn(amm-lq’m')‘ +pn(n - Vegyn 1%

m(m - 1)(n - 1)&m+n-.-3q)m] - Pn+-1} +{f: By iEmmﬂ@m" +
=0 me==
2
pm(m - l)a‘m+n-lqu£l} - {g& 5P, ; Kam+n+1@m‘v)' +
o - 1

(- 1) (o 10y ) - 202 - u>m?am+n-i¢m']} (43)
0

Everywhere in the region of the plate, except at the boundary x =
the variation of w 1s arbitrary. At x = 0 the cantllever boundary
conditions

=

1}
N

H

(@]

yield

2,0 =@ (0 =0 (a=0,1,...W (46)

and therefore the variastion in these quantities must also be zero
at x = 0.

Equation (A5) is then satisfiled if, in addition to equation (A6),

g l:(a'm+n+lq’mﬂ)

un(n - l)amm_qum" + mi{m - 1)(n - l)a_‘m+n—3q)x£'

" n '

-+—L‘1m_(m - 1) (am-r-n-lq)m) - 2(1 - H)_n;ﬁ(aﬁ-;n-l%') +

(n=0,1, . . .N) (A7)

»>
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and

g l:(a'm+n+lc9m“)' + pm(m - 1) (am+n-lq)m)' - 2(1 - “)mnam+n-lq)m':| =0
= ' : x=1

(n=0,1, . . . N) (A9)

Equations (A7) form a set of N + 1 simultaneous ordinary differ-
ential equations for the functions @,(x). The functions ¢, are .com-

Pletely determined by these differential equations and the boundary
conditions (46), (A8), and (49).

Partlicular case of linear chordwise deflections.- If N = 1, the
deflection function becomes

W= @yt Y9, _ (A10)

& linear function in the chordwise direction, where ¢y 1is the bending
deflection and P is the twist. Equations'(AT) become

(alqso")" + (aaq’l_")“ =P (A11)

aeqao“)" + (29" ;- 2(1 - p)(a,9") =1p, (A12)
3 (

The root boundary conditions, given by equation (A6), become
b4 ’ 1 .
?o(0) = 9,°(0) = @,(0) =9, '(0) =0 (A13)

The tip boundary conditions, given by equations (A8) and (A9), become

(%" * = )x=z =0 (A1)

(A15)

Il
(@]

acp"+aq>")
( 270 3Y1 . =1

Kalqao")' + (azq)l_")':]x=Z =0 (A16)
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S o = B )
[:(acho ) + (8-3CPl ) - 2(1 - I-l)a-lq)ljx::z = Q (A17)

Equations-(All) to (Al7) are the differential equations and corresponding

boundary conditions presented in reference 6 (if only distributed load

1s considered) where the symbols W and 6 are used instead of Po
and @, respectively. _ : -

If—equation (All) is integrated twice and the boundary condi-
tions (AlL4) and (Al6) are used, .

1 8.2 ”" 1 i 4 ) -
Py = _-a—I P, + a—l»/;; L Py dx (A18)

1
Substitution of ¢, into equations (A12), (A15), and (Al7) gives

n " . 1 t 8 1 Z Z 1"
(P ) - 201 - W (ay9") =, - <;§kz: ‘]: Py dxﬁ) (A19) o

11]
(b1¢1 ) =0 (A20)
x=1
b .“)' 2(1- ) ol = 8 (A21) _
1% ) A - e =
x=1

in which o . : e e
2 o ) .
b, =8, - 22 : - -
1 - a3 a.l' -

If equatlion (Al9) 1is integrated once and the boundary condition (A21)

is used,
1 t
l/n P, dx%) (A22)
x

(blcpln)' - 2(1 - p_)alclpll _ ’LZ_PE dx _—_%/};

The differential equation (A22) is a second-order differential equation
in cpl'. The. twist "¢ and then the bending deflection @y are

obtained by solving equations (A22) and (A18), respectively, by
applying the boundary conditions (A13) and (A20).

1
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Particular case of parabolic chordwise deflections.- The effect of
parabolic chordwise camber may be included by letting N = 2 in the
general power series (equation (A2)). If N = 2 +the deflection
function becomes '

2
V=0 TV Y9

Here @o represents the spanwise distribution of parabolic chordwise
camber. For this case the differential equations (A7) become

(alq’o ") T (aeq’l")

tn "

+ (a3<P2")" + 2 (altpe) =p, (a23)

n "

) = () ) )

2(1 . ) [(alq’li)' + e(aeqaai)'il = Do (A2%)

1n

(asq’o")" * @4‘1’1")

L(1 - w) |:(a2q>i')

with the boundary conditions '

+ <a5q>2") + 2u I:alcpo" + aecpl" + a3_q)2" + (a.3cp2) ] -

+ 2(a3cp2') ] + ba,p, = Py (a25)

4 1 1§
?,(0) =@, (0) =.(0) = (0) =o,(0) =g, (0) =0 (a26)
(19" + og®1" * agp" + 2uegey) =0 (427)
(aeqpo" + a3q>l" + aypy + 2ua2'q32) =0 (A28)
x=1

(230" + ms” + aspo” + 2uagey) =0 (429)
' X
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T

+ eu(altpg)':lxﬂ =0 (A30)

[am") +-eem”)' + (e92”)

[:(82‘1’0")' + (33“’1")' * (%22")' * 2“(32‘92)' -

2(1 - ) (alcpl' + 282@2')];::2 =0 (A31)
Kaﬂo")' * (ahq’lu)' i (a5q’2")' " 2“(8'3-“’2)’ -
ML - ) (2,9, +4a3¢2'_)] o (A32)

If equation (A23) is integrated twice and the boundary condi-.
tions (A27) and (A30) are used,

1 1
" 8o " 8.3 1 1 f f
P =-— P - =@ - 2upy + py ax2 (433)
0 a8y 1 %l 2 . 2 ay Jy X 1

"
Substitution of ¢ into the remaining d.ifferen‘bial equations and
boundary conditions results in

n wiM ' . h l [ "
(P201") + (ba®2") - 2(1- W[(eyey?) " + 2(82@2')] =Py - <z—§£{ j; Py dx2>

(A3Y)

(en") + (osm") - 41 - ) [(mn)

t

+ 2 a3q>2')i} + 14-(1 - ue)alqze =

p3-2u£zfzp dx2-<—ffpdx2)" (A35)

X

(blcpln + becpen)x =0 (A36)
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Kblcpl") + ‘(beqnz'") - 2(1 - p)(age " egecpe')]x:l =0  (a37)
'(bchl“ + b3q>2") =0 (A38)
x=1
Ij(becl’l") + (b3‘P2") - M1 - “)(aeq’_ll + 233<P2')] = o  (A39)
x= :
?,(0) = (0) =9,(0) =9, (0) =0 (ako)
in which
o2
S
&8s
by = 8y - aq
2
a
- 3
b3 = 85 - &,

If equation (A34) is integrated and the boundary condition (A37) is
used,

1
(e221") * (eo%") - 201 - W) (o + 20.9,") = ‘f Pp ax -
X

C—i/j /;z . dxz)r (Ak1)

Thus ¢, and ¢, are obtained by solving equations (A35) and (Ak1)
with the boundary conditions (A36), (A38), (A39), and (AL4O). Sub-
sequently, @~ can be obtained by solving equation (A33) with the
boundary conditions @0(0) = ¢O'(O) = 0.
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Stresses.- After the epproximate deflection of the plate is -
determined from equations (Al18) and (A22) or from equations (A33),
(A35), and (All), the extreme-fiber stresses may be calculated from
the well-known equations of thin-plate theory, which are (see, for
example, reference 9): . o o

X g2\ D=

+°\Jy ox
. _6(a -uwp
Xy t2: ox Jy

The meximum principal stress -o at any point in the plate can be
determined from o T 2 ’

o, +0
= __X_z i -l - 2 - 2
o 5 x5 (orx Uy) + lery
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APPENDIX B

EXACT SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR

SOME SPECIFIC DELTA-PLATE FROBLEMS

The differential equatlons of eppendix A for linear and parsbolic.
chordwise deflections are solved exactly for uniformly loaded delta
plates of constant thickness and of dilamond chordwise ‘cross section
with constant thickness ratio. The equatlons for deflections obtained
by the linear theory are presented in terms of the aspect-ratio param-
eter A for both kinds of delta plates. The equations for deflections

obtained by the parsbolic theory are presented for X 1 and %;j with
H = % for the constant-thickness delta plate and for % = l, also with

0

H = 33 for the delta plate of diamond chordwise cross section with con-
gtant thickness ratio. '

If the x-axis is paséed through the edge perpendicular to the root
and the substitution x; =1 - % is made, the differential equations

are clearly of the homogeneous typé for which the solutions are of the
form xl7 where 7 1is a constant. For the configurations considered,

the functions that define the plan form (see fig. 1) are then cj(x) =
and ce(x) = CXy, where c. 1s the root chord. In all the equations of

this appendix the primes denote differentiation with respect to the new
independent variasble CXq.

Delta Plate of Uniform Thickness under Uniform Losd

Since the stiffness- D d1s a constant for uniform-thickness plates,
the coefficients in the differential equations (see equation (Ak))
become o

*D
a,n = —1(;,—- xln (Bla)
2 3
. &8
- 2 Dec 3
b = 8. - = De” o Blb
1593 ay 12 1 . ( )
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b2 = a)-l- - al = = xl._ S (BlC)
8z Lpcd
B 3 Dc
by = a5 - a %, (B14)
Pcn o . S
pn = --1:1—— Xin ’ (Ble)

Bolution for linear chordwise deflections.- If the coefficients
given by equations (Bl) are substituted into equations (A422) and (Al8)
and the independent variable 1s changed to xy =1 - 5; the following

1
equations for linesr chordwise deflections resulti:

" - b
() - 1670 = -2 B (22)
. b
Po" = - % x99 + %%F 312 N _ (B3)
where -
= L3 -
M=y - n)

The boundary conditions to be used with these equations are obtained
from equations (Al3) and (A20) and are S . .

(1) = §p' (1) = 9(1) = @' (1) =0 ()

3p, " =0 B
(xl ke! )x1=0 ( 5_)
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The general solution of equation (B2) is

2
-7-1 X1 plh

7-1 .
Arx, + Agxy - - o) % (B6)

where

Y = VE + l§k2

and A; and Ap are arbitrary constants. Since x is inherently
positive, the boundary condition (B5) requires that Ao = O. One
integration of equation (B6) and the application of the conditions
@l(l) 91'(1) = 0 yields

7 3
o = 1 ch X7 - 1 i X,° - > =7)
1741 - 209 De Yy 3

If equation (B3) 1s solved for ¢y Wwith the conditions
9o(1) = 95'(1) = 0, the result is

1 o ;1 - x1h>
%o =8 1. a2 9(5 - A1 - g -
(B8)

Substitution of equations (B7) and (B8) into the equation

W= @y + ¥Pp
glves the expression for the deflection w of the plate under the
agsumption of linear chordwise deflections.

Soclution for parabolic chordwige deflections.- If the coefficients
given by equations (Bl) are substituted into equations (Ak1l), (A35),
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and (A33) and the independent varisble is again changed to x; =1 - %,

the following egquations for parabolic chordwise deflections result:

o) atens) - %+ ) = 2 B o

(xlhq,ln) noy :_ng(xfccpE") " 16AE l:(xleqfl') o %(xlBC%')‘il *

. o .
64h L1 +p L 2" \pl
ERRA mis R =;"§(7 T u)%ﬁ? %7 (B10)
1" c 1" C - T~ ?Z_uxlz
Po" =3 XP - F x 50" - 2%, + D 6 (B11)

The boundary conditions to be used with these equations are

20(1) = 95"(1) = (1) = ¢11(1) = 9x(2) = @o'(1) =0 (Bl2)

(xqu)l" + xlll'cqjen> ‘ =0 (513)
xl=0 _
Ll- n 16 5 -"-) _ '
x + & X;7c =0 (B1k)
1 P 17¢P2
( 2 *1=0
le)*cpl")' + %‘_—g-(xfccpe")' - 1602 (xlgqal' +-§i xi3c¢2"ﬂ =0
: e - - - xl=o
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The homogeneous solutions of the simultaneous equations (B9) -

and (B10O) sre of the form: -

-1

o' = hxy”

-1
P = Bxly_ -

Substitution of these expressiohs:into the homogeneous parts of equa-
tions (B9) eand (B1O) leads to the following cheracteristic equation
from vhich 7 may be determined:

¥6 _ 6(1 + 16x2)7h + [%éo(} + %%;_E)Xh + 480A% + §]72 -

hEaSO I+p 6. 80(4 + l—"*i)xl* + 9622 + ]:I =0 (B16)
- L-p '

and gives the following relationship between A snd B:

Ao (y - | T2+ ) - 16x2:|cB

72 -1 - 1602
The particular solutlions fpr_uniform:loading are given by
P o= AP;‘lE
Pp = Bpx;®
where

p3e+tlah ,2-p 22 41
1-4 T- . pik

=L
P I - i - (o - (0 1)
. |
X ll‘“i“ p(e)ﬁ 1) + 1+ 2 ok
Bp = -'% ' '

8 ;L_—‘_”L‘-(mﬁ -0k (82 - 1) (w2 - 1) DeP
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The genersl sclution is the sum of-the homogeneous solutions and

the particulsr integral

& gl o
. n-
P’ = Z Anx) + Apxy”
n=1
7n"‘1 -
¢2-?'§§ BpXxy + Bpx12
n=1

where the values
tion (B16) and the coefficients A, and By
corresponding to each of these roots.

xl')’n xl3
P = Ay + AP —_ Aq
- In 3

n=1

7n ere the six roots of the chsrdcteristic equa- =
are the coefficlents o
After integration ¢; becomes -

. NACA TN 2621

(B17)

(B18)

~

The genersl solution for Po from equation (B11) is found to be -

- E Iptl
P = Cpxj

+ Cpxlh +~qul + Cu
n=1 - - .

and : . ' C =

_ . .c | ocf, - 2uA2 pit
CP-HE[AP‘F?(I'FI-“)BP—EE

(B19)

ill

The coefficients Ay to. Ag, Aq, Cq, and C, must be determiped by

the boundary conditions (Bl12) to (B15).

L rmw——
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delta plates with Poisson's ratio p equal to 1/3 and with A = %

23

A complete set of coefficlents is given in the following table for

1

and iE; Deflection curves plotted from these results are shown in

figures 2 and 3 in which the 45° plate corresponds to

é =1 eand the

60° plate corresponds o0 Lo %;.
a Ay 2= B, De” Cn 2
pih pik pih
m
A=1 |a = %; A=1 | = %; A=1 | = %; A=1 | A= %;
1| 2.7034| 1.5671(0.7378 {0.09632[-0.3133 |-0.1022 |-0.02931 |-0.003223
2] 4,9437] 3.6347| .o2k11} .3707 | -.03039 | -.4313 .003074] .01347
3| 8.3816| L4.7258] .03827|-.1766 | -.006293| .07379| .000486| .002317
h|l-2,7034]|-1.5671]0 0 0 0 0 0
5 |-%.9437[-3.6347 |0 o) 0 0 0 0
6 |-8.3816|-4.7258 |0 0 0 o} 0 0
D |~mmmm e fem e -.8000 [-.2903 .3500 597 .ok167 .00L4032
L e o -.01557( -.0292k |~ m=mccmmaf e e -.07152 | -.0835k
o o) (NPUNVECEGUURY PUCEVEPEVRVV FIPRVUPORpRY SNV, PSPPSR, PN . 05668 . 06692

Substitution of equations (B17), (B18), and (B1l9) into the equation

gives the expression for the deflection w of the plate under the
assumption of parabolic chordwise deflection.

Delta Plate of Diasmond Chordwise Cross Section with

Constant Thickness Ratio under Uniform Ioad

For s delta plate of diamond chordwise cross section with a constant
thickness ratio the thickness is a function of x and y and is given
by the following equations:

A

(cxl
z
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where tgy 18 the average thickness.

NACA TN 2621

From these expressions for the -

thickness the stiffness can be found and the coefficlents in the dif-

ferential equations become

81

82—

83-

ay = ~—

a5=

o
N
i

[

Pn

275c L

2673Dc? .
e x®

- 9Dc3 6

X
80 %

gDk
88 %!

_ 2613Dc? .8

oolog 1

pct
ks

(B20)

Solution for lineer chordwise-deflectiops.- By use of the coeffi-

cients given by equations (B20), equations (A22) and (Al8) for linear

chordwise deflections may be solved for ‘@1 and @g.

The steps 1in thg

solution_sre the same in form as those for the uniform-thickness plate

end the resulting equations are:

(B21)
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(B22)
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and
-2 (7"
q>=i 20 4 2 (I %-l+l—x.+
° 2772-%7-3 y - & y
2 2
4
29 2 + 1 - pL7
(72 —%+ 3)’{1 logex:L 1 xl) 5
where

Solution for parasbolic chordwise deflections.-
ficients given by equations (B20), equations (Ak4l),

parabolic chordwise deflections may be solved for P15

By use of the coef-
(A35), and (A33) for
Pos and @g.

The steps in _the solution are again the same in form as those for the
uniform-thickness plate and the resulting genersl expressions for P15

9o, and @, are:

7n"g'
' b'q -1
= i e (B23)
P = An 3 T Ay 10g.x;
n=1 7n - E )
R
n 2 1
= B x + B — (B24)
Po = n"l P Xy
1.
X oy 2+ Cyey 1ogga |
Pg = Cpxy =+ COpxy logexy + Cgxy + C:_' (B25)

n=1



where the expoments Tn are the roots of the characterlistic equation

(2 25 _amo\[8Tfo  25\/,o 49\ _ 256 .of0 25\, 3201+u'i] o2 2 g0
)3 VTR A U ]

A L {1 o] LA A T-u™| R el
[ 2 ' : .
E(yg -?,?)- 2oox2] =0 - -  (B26)
For n=1,2, ...6, A, B,and C, are related by |
Z _.'E'j_ W2
Bn:_ 7 —E" 80)- é_q
’ 5\[7 7\/ 5\ 21 c
7'5)“7-5)7+-2-)-801_|
. -2 11
iz Rek VRO VA A VA A T
il_ AR
2

For uniform load the coefficients in the particular integrals of equa.tions (B23), (B2Y),
and (1325) are :

lzu s, 1021m2 + 320 ._].L‘_i’_‘i b 16(5 + —E}f—u :@)i{lox'a + 1)

L i
T (20;? + 1)(8—7—71 + 102102 + 320 7 14 ﬁ 1‘) (167L2 + 1)(10)?— + ]) o
_ A N N Y S i
A =£qu el ol e S | S Y
P 2T pe2 {eo;? +1 (9:";1 10219@ + 320 1 * b xh) 120(16)2 + 1) 1002 + 1)

a9z

1298 NI VOVN
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2 h
8 2f1 42 BM 2 pt-
Op =5 &p - T °(+21-p)BP+813

The coefficients A; to Ag, Aq, Cq, end C,, are again determined by

the boundary conditidns (A26), (A36), (A38), and (A39) in which the coef-
ficients given by equations (B20) are substituted.

For Poisson's ratio p equal to 1/3 and A = —Z = 1, the solution

of the characteristic equation (B26) leads to two real values and two
pairs of. complex conjugate values for ¥. The ldentity

xlai-ib _=_-xla'cos(b logexl) + ixl_asin (b' logex]_)

was therefore used to transform the terms involving the complex conjugate

values into real form. If é= 1 and u = 3, the solution is

L .

Py = i—c%E).OOILO"(Oxl?"gJ"'7 - 0.004363x18'075cos(2.825 logexl) +
0.0068 93x18.075sin(2.825 _1ogéx1) . o.oobééh'-xl—_:‘
1

9 = %l}o.oo3896xlh'9w + 0.00213ll-x19'075cos(2.825 logexl)

0.006381xl9'°7551n(2.825 logexl) + 0.01794 log x, + 0.001763]

R L - i . .
% = P% 0.0007715%,” 2T - 0.0000708x, %7 cos(2.825 loggx;) +
0.001234xll°'°755m(2.825 logexl) + 0.03331x; logx; - 0.04096x; +

o.olp026:|
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APPENDIX C
NUMERICAL PROCEDURE FOR SOLVING DIFFERENTIAL EQUATIONS

In cases where the equations of the present theory cannot be
solved exactly, a numerical method must be used. In this appendix,
equations (A19) and equations (A34) and (A35) are set up in diffevence
form for numerical solution. Initially the assumption is made that the
functions involved in the differentisl equations are continuous and non-
singular. In this case, first and second derivetives can be expressed

by the standard difference forms

(ggx) - Yn+l = B * Yn-1

2 2
dx n €
y 1 -7 1 _
), -
dx n €

where ¢ 1s the distance between equally spaced station points.

In the following development flve equally spaced spanwise stations
are used; however; the extension to a different number of statlons cen

be readlly made. B
First, consider equation (Al9) resulting from the linear theory

(bl¢l">" - 2(1 - u)(alml')' =D, - (;ijzz JCZ pq (x) dx2>" = q;

Because of the nature of the tip boundary conditions for this
equation, it can be conveniently put in the form
t
where

t

_ " ( [}
T___(blgl ) - 2(1 - wa,e;

B e
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In finding the difference equation equivalentJtO'equation_(Cl), the
quantity .(bl¢l")' is found in matrix form; from this expression is

subtracted the matrix equivalent of 2(1 - uw)a @l'; the resulting
expression for T 1s multiplied by a differentiating metrix; and the
product is equated to the right-hand side.

The quantity (blml")' at the half-stations can be expressed in

matrix form as follows:

1® — . —
P10 1 -2 1 ' ?1-1
® 1 e %10
"= 2 1 (c2)
W il o P11
" o
? 1 -2 1 ®,
114
P4 | 1 -2 b P13
P1y
P15

where the second subscript denotes the station poiﬁt, the subscript at
the root station being O and at the tip 5. The root boundary conditions
are now applied; namely,

.(0) = 0 = 9

P11 - P11 .
2¢

]

9, (0) =0

Thus, after the values of ¢10 =0 and ¢1-1 = ¢11 are substituted,

equation (C2) becomes
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e o o 1
P [ — — ~
o o o o (=3
| —t
— a
]
— o ~
I o —
o -
b N
1;2
w
I
Lo _d _«w SO
T T T -
o o e o o

Therefore,

(c3)

P11

12
®3

Py

-2

21
1. -2 ®

bl3

LT

%
)
)
)

=

)

One of the tip boundary conditlons is

1‘1’1")5

=(b

=0

(bl@l >x=Z

Pann)
=+
O
S
(@] — Ql o =
TS TN TN TN TS
& &8 & & &
— -~ [=! — 4
Q < £ £ i}
— i
4
~ i
I
— —
. 1
— —
1
—
A Ld b
| w
]
Qq (Y Ql Ql Ql
~ ~ ~ ~ ~
A - ™M - N - = - O
— 1 %.. — —
o2 o S o
— mul_ 1 — -
Lm\\ N L IMP\ /hW\




The matrix equivelent for the second term of T is

2(1 - p)

Ty /o
T3/2
Ts/2
T1/e
Tg/2

(alq’l')l/a —;1,1/2
(altpl ') 3/2 : a.l, 3 /2
' 2(1 - p)
(a'.l.q)l )5/2 = € %1,5/2
@fpl )7/2 %1,7/2
L ]
(lqi )9/2 L_
Therefore T becomes
c1 1 T[*10 - BIE
. 11 by -2 1
={3 -1 1 by 1 -2
-1 1 b3 1
-1 or
a1 1/0 11
a1 ) 31)3/2 -1 L
- W
- ®1,5/2 -1
®1,7/2
i “L9/2||

(c5) -

298 NL VovN

1€ .
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. The right=hand side of equation (C1l) can now be equated to the
derivative of equation (C5); thus,

E,- -
C 11 T1/2
. =1
T €
q13 -1 1 ) T5/2
Q) -1 1 1 T7/2
To/2

In order to obtain ql5, the boundatry condition

T=0

at x =1 must be used. In other words, T gaes from T9/2 at sta-

tion 1%'- to O at station 5. A straight line drawn between these two
o . - o
points would have the slope - —€9J—2- The velue of q15 is consgidered

to be this slope; therefore,

93 -1 1 T e
a5 ~1 1 ' T3/é
ql3 = % -1 1 T5 /2
qyy -1 1 T7/2'
W L T




or
- - [__ __ .
a7 12 1 b6 I 2
d12 1-2 1 byq -2 1
d13 = <:11I- 1-2 1 bio 1-2 1 -
e 1-2 b3 1-2 1
L. fo 1 by 1-21
A I \ L. P ] — —t
[ ¢ ]
-l ] %,1/2
-1 1 Bo ni/n
(1 - p) e
2(1 - w -1 1
62 31,5/2
-1 1
81,7/2
u gl NI 1,9/

If the matrix multiplication is carried out, the difference equivalent of equation (CL)

fipally becomes

= %ﬁ@l] - '2(1€; k) ED:L]}
L -

P15

(c6)

LS

T292 NI YOVN

€L




where
;"o+’*b*1+b12 ~2by; - Pyp by
~2by; - Zbypp bpy + Moy + By3 “#byp - BPy3 P13
Eh] = P1p 1273 Ppp Mgyt by, Bbyg - Bhyy
by 3 “2b g - Zby), byg + Uy
BT e
:1,1/2 T f,3/ #1,3/2 |
®,3/2 "8,3/2 7 %1,5/2 2,5/
E?l]= & 5/ “81,5/2 " B1,7/2. 8,1/
S,7/2 . TRL,T7/e T P9/
N ! 2),9/2

In order to determine P from icpl, ‘use must be made of equa.tion (A18) !

=== 2.._- . ,
ffpldx cPl

or, by use of the boundary condition q)o(o) = q)o'(O) = 0,

mﬁ/’r"lr"ﬂ ﬂvu_/"*/“‘zm"ﬂ,é
0o Jo By Jy Jodgm Tt &

by

gaiet!

#1,9/2

“81,9/2

7€

TE92 NI VOVN




In matrix form equation (C7) becomes

=
— _ - - — =
D1 [1 1/2 1/a, 11111 1111])p, g
o
Poo 11 1/2 1 1/5;]_1 1111 111 1flp, &\
cpo3=e”111 1/211 1/a, 111 111jpyg |-
| (1111 [j1/e111 1/a13 11 11(|pyy
s 1111ﬂq1/2111ﬂ@ ' o 1/alﬂ_ :E__ _l_P15/2
— "T ) - -
E e |[fep), N E o
‘11 1/2°1 : | (32 al)l -2 1 _ P1o
ri11 |jifern (2/21),, o | 1-2 1 P13
1111 [li/e111 . faofa) 1-2 1 [|ogy
\e R -
l1111ifji/21111 1-21
| _J _/ ' _J | : . (82 al))i | -] CP15

.(c8)

Thus, if the values of a1 (which can be determined numerically or enalytically according
to preference and feasibility) are known, the values of ¢; can be found by solving equa-
tion (C6) and the values of @y in turn by means of equation (C8).

Tha Pareming davalommant armltag 44 4ha -u"l-ua'nn 'n'lv- Jinear chordwise deformations are
wiG LOLCRULOE GWOYTLOPOICTOT aPpPa1E88 WO Lne waanLC sacas CaDdun Lo Ui 00Mavaillido ol

dallowed. A similar procedure is followed in expressing the dlfferen‘tia.l equations pertaining
to the parabolic theory in difference form; only the results are shown herein.

Ge




The matrix equivalent to equations (A34) and (A35) is

where

%s /2

2bnO ¥ kbnl + bn2

-2b

- 2b

n2

3] - B

el R Y

AR MR 3] 000k 6 -2

oy - Py po
Pl | Yot by By - By
"o = Py3 Do + s "o
bn3 -Ebn3 - by,
| b

nk

(C9)

gt
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—

“®p,1/2 ~ ®n,3/2

n,3/2

®n,3/2
"8n,3/2 T Pn,5/2 ®n,5/2
®n,5/2 2n,5/2 = ®n,7/0 %n,7/2
| ®n,7/2 "2,7/2 T %n,9/2
n,9/2
o —
%12
[=]- *13
By
L 35 |

and, 9, and q, &are the right-haﬁd sides of equations (A34) and.(A35), respectively; that is,

-

1Al . [e3 plopl .
q, =P, - EMM/‘ Jr p, dx= - (——JF ‘jp p, dx )
2 3 X vYX 1 al X X 1

. "
2
ST
ql‘Pe‘(a_l- Py
' X X .

T293 NI VOVN

LE




Po1
Poe
P03
Fol
%05

With ml and, N ¥known, mo can be obtained by use of equation (A33)

-
L] b1/2 ]
11 {172 1

i1 ||ie1n «4
1111 fj1i/2111
11:_11}___%/2111&

.
(aQ/al)o |
(2, |
(Be/21),
L 1 i
(a3/a1;)o
(/)
(#3/21)2

l/alo

1/8.11

Nk

1/&12

1/313

1111
1111
111

11

1

P11

ol

P
P15

11111
1111
111

11

oy,
Poo

Pok
P25

P3|

P35 /2

(c10)

gt
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It should be noted that, as can be expected, the matrix equa-
tions (C6) and (C8) are merely special cases of equations (C9) and (C1O),
respectively. In addition, the square matrixes in equations (C6)
and (C9) are symmetric, a result that is consistent with the fact that
the differential equations under consideration are self-adjoint.

In the beginning of this appendix the assumption was made that the
functions involved in the differential equations are continuous and
nonsingular. The difference solution, however, may be adequate for some
cases in which thils assumption is not strictly correct. TFor instance,
the deflections of a plate with a discontinuous stiffness distribution
could conceivebly be not very different from the deflections of a plate
with & continuous stiffness distribution closely approximating the
discontinuous distribution except in the nelghborhood of the discon-
tinuity. The results yielded by the difference solution in this case
would be those associated with the continuous stiffness distribution.
The number of stations may have to be increased, however, in order to
minimize the ilnaccuracy introduced by the discontinuity or, in other
cases, by a singulsrity. The case of the dismond-cross-section,
constant-thickness-ratio delta plate, discussed in the body of this
paper, is an example of a treatment of a singularity. In this csse,
although the solution is singular, adequate. accuracy is obtained by
the difference solution if ten equal intervals are used.



Lo . NACA TN 2621 T

APFENDIX D o S ' LT =

DEFLECTION AND STRESS EXPERIMENTS ON SOME TRIANGULAR

CANTILEVER PLATES _ _ SR+

Test specimens.- The specimens tested were: (1) a 45° right- T
triangular plate clamped along one leg and (2) a 60° right-triangular )
plate clamped along the longer leg Each specimen, cut—from
24ks-Th aluminum-alloy sheet of 0.250-inch thickness, had a length per- .
pendicular to the clamped edge of 30 inches. . TTTTE
Methaod of testing.- Figure 12, a photograph of the test setup, shows
the methods of—clamping, loading, and measurement of-deflections. A -
1,000,000-pound clemping load (held. constant during the test) was applled i o
to the root area of each specimen and a uniform load of 0.20L psi was T
applied by 2-inch washers giving a tip deflection in each case of-approx- _
imately 3/4% inch. - _ BN

The deflections were measured by disl -gages placed at the points ) 5
indicated in figures 2 and 3. o ) _ _ oo

Stresses were obtalned from the 45° specimen only. On this speci- -
men, 13 resistance-wire rosette strain gages were placed at the points
indicated in figure 5. The plate was loaded with 2- -inch washers in four
increments of 0.0847 psi per increment.and the maximum tip deflection ) -
was 1.13 inches. Readings of-all the strain gages were-recorded at each
increment of loading.

Analysis and discussion of data.- The deflection w was plotted in

figures 2 and 3 in terms of the nondimensional parameter wD/pZ y in

which the elastic constants were-taken as E = 10.6 X lO6 pel and p = i, o

It was found that the dial-gage forces reduced the tip deflection of the
pPlate by approximately 2 percent; however, since this error is of the
same order of magnitude as that in the material properties and from
other.sources, no corrections are made in the results presented.

The readings of each of the 39 individual strain gages were plotted
against load, and the slope of each .of the resulting linsar curves was
taken as the average strain per unit load of the individual gage. The
principal stresses were then calculated and plotted in flgure 5 in terms
of the nondimensional parameter ot2/p12. : - R Rt
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Figure 1l.- Coaordinate system used in the present analysis for a canti-
lever plate of arbitrary shape with arbitrary thickness variation.
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Figure 2.- Deflections of a U5° delta plate of uniform thickness under

uniform load.
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Figure 3.- Deflections of a 60° delta plate of uniform thickness under

uniform load.
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Figure 4.- Deflections of a 45° delte plate of diamond. chordwise cross
section and constant thickness ratio under uniform load.
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Figure 5.- Maximim Principal stresses in a 45° delta plate of uniform
thickness under uniform load.
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