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TECHNICAL NOTE 3421 ObkbSY

AERODYNAMICS OF A RECTANGULAR WING OF INFINITE ASPECT
RATTO AT HIGH ANGLES OF ATTACK
AND SUPERSONIC SPEEDS

By John C. Martin and Frank S. Malvestuto, Jr.
SMMARY

Perturbation of the flow over a two-dimensional fiast plate at finite
angles of attack is used to obtain a first-order evaluation of the damping
in roll, the lift and moment due to an increment in angle of attack, and
the 1ift and moment due to a steady pitching velocity for a rectangular
wing of Infinite aspect ratio at supersonic speeds. Approximste expres-
sions are derived for the 1lift and moment due to & constant vertical
acceleration.

The results ere wvalid for the ranges of Mach number and angle of
attack for which the flow behind the shock is supersonic. The analysis
is based on the equations for rotational flow, so that the change of
entropy is taken into account.

Design charts are presented which permlit repid estimations to be
mzade of the aercdynamic derivatives for a glven Mach number and a given
angle of attack.

The results for the infinite-aspect-ratio wing are used to make
estimates of a number of the serodynamic derilvatives for rectangular wings
at finite angles of sttack.

INTRODUCTION

The development of the linearized theory of supersonic flow has
permitted a first-order evaluation of a number of aerodynamic steblility
derivatives for a variety of plan forms st an angle of attack of 0°.
Second-order theories similsr to the one introduced by Busemsnn (ref. 1)
and extended by Van Dyke (refs. 2 and 3) have been used to obtain second-
order evaluations of a number of the aerodynemic derivatives for a few
simple airfoils (refs. 4 to 6) at supersonic speeds. The second-order
theories predict no variation in the serodynemic derivatives with angle
of attack. There is a need, however, for values of aerodynamic derivatives
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at angles of attack beyond the validity of the second-order theories
developed in references 4 to 6. At the present time, little published
Information can be found on the aerodynamic derivatives at finite angles
of attack and supersonic speeds.

The only published papers assoclated with these aerodynamic deriva-
tives that have come to the authors' attention are the analyses of Ivey
(ref. 7), Carrier (refs. 8 and 9), and Chu (ref. 10). The analyses by
Carrier and Chu meke use of the linear perturbation theory for rotational
flow (refs. 11 to 13) which allows first-order estimates to be mede of
the flow variables behind a strong shock attached to the leading edge of
a two-dimensional wedge or within the region bounded by the lower surface
of an airfoil at finite angles of attack and the strong shock from the
leading edge of the airfoil.

The present paper contains a first-order evalustion of a number of
serodynamic derivatives for a rectanguler wing of infinite aspect ratio
at finite angles of attack, based upon the linear perturbation theory for
rotational flow. This analysis, including the development of the line-
arized rotational-flow equations, was performed independently of previous
analyses, an sttempt being made to present a completely unified treatment
leading directly to the evaluation of aerodynamic stability derivatives.
Wherever possible, similarity of results from the present and previous
analyses are noted.

The results are valid for the ranges of Mach number and angle of
gttack for which the flow behind the shock from the leading edge is
supersonic. A flrst-order evaluation of the following aerodynemic deriva
tives is made: +the lift-curve slope CLa’ the rate of change of pltching

moment with angle of attack Cmm’ the demping in roll Czpr, the 1ift due
to constant pitching CLq, and the moment produced by a constant rate of

pitech Cmq'

Simple approximate relations for CLa’ Cmm, Czpu, CLq’ and Cmq _

are derived. These approximate relatlons yield results which are in good
agreement with the exact first-order values, éxcept at angles of attack
near the angle where the flow behind the shock is sonic. In addition,
approximate expressions are determined for Cp, and Cms, the 11ft and

pitching moment due to a constant verticel acceleration. It should be
noted that, although the shock-expansion theory can be used to calculate
CLQ and Cmm (see ref. 7) with relastively little effort, the use of

this theory to evaluate the remaining derivatives becomes difficult, if
not impossible. The methods used hereln yleld the first-order evaluation
of the aerodynamic derivetives for the airfoill considered with relatively
little effort.
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A series of design charts presented herein permits rapid estimatlons
of the aerodynsmic derivetives to be made for a given Mach number and &
glven angle of attack.

The results for the wing of infinlte aspect ratlo are used to make
estimates of a number of the aerodynemic derivatives for rectangular wings
at finite angles of abttack.

SYMBOLS
A aspect ratio
a=1+ KII
M127(7 - 1)
B=\M -1
Bo = \/ Mo® - 1
Bp =\[M% - 1

b wing span

bi,bo,b3,by constants

c chord

cq velocity of sound behind shock

Co velocity of sound in f£low over upper surface of airfoil
Cy speclfic heat at constant volume

G(x,y,z) = 0 equetion of perturbed shock surface
g acceleration due to gravity

8185 arbitrary functions of (x - Byz) and (x + Byz), respectively
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pd

Po

P1
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enthalpy in free stream

enthalpy in flow behind shock from leading edge

unit vectors in x-, y-, and z-direction, respectively
mechanical equivalent of heat
constant

perameter defined by equation (47)
parameter defined by equation (52)
parameter defined by equation (92)

Mach number

free-stream Mach number -

Mach number behind shock
Mach number of flow over upper surface

slope of shock (see fig. 5)

pressure coefficient

pressure coefficlent due to a constant rate of roll
rresgure coefficient due to a constant rate of pitch
pressure coefficient due to an increment in angle of attack

pressure coefficient dve to & constant vertical acceleration
pressure
rate of roll

free-stream pressure

pressure behind shock in unperturbed flow
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b2

apl

T
t

u,v,w

pressure in unperturbed flow over upper surface of airfoil

first-order perturbation in pressure of flow behind shock

rate of pitch
entropy

first-order perturbetion in entropy

distance along shock from leading edge of airfoil in
Xz-plane

temperature
time

perturbation velocity components in x-, y-, asnd z-direction,
respectively

qd=31iu+ Jv+ kv

free-gstream velocity

component of free-stream velocity that 1s normal to the
shock

component of free-stream velocity that is tangential to
the shock

veloclty of unperturbed f£low behind shock
velocity of unperturbed flow over upper surface of airfoill
velocity vector of perturbed flow behind shock

normal component of velocity in perburbed flow behind shock

tangential component of veloclity in perturbed flow behind
shock

component of Vbt in xy-plane

component of vlt' in xy-plsne
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maximum velue of W

W= (VL +wWi+v)+wk

vertical veloclity of eirfoil assoclated with Ao

distance from leading edge of alrfoll to center-cf-gravity
location

rectangular coordinates
angle of attack
fixed value of «

motion of the wing corresponding to a constant vertical
acceleration; sometimes referred to as a plunging motion

ratio of specific heat at constant pressure to specific
heat at constant volume (1.400 for all calculations)

angle between free-stream direction and unperturbed shock
profile (see fig. 5)

density

free-stream density
density in unperturbed flow behind shock
density in wmperturbed flow over upper surfece of airfoil

first-order perturbation in density behind shock

scalar potential function defined by equation (97)
scalar potentlal function

scalar potential function associated with rolling
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¢q scalar potential funection assoclated with a steady pitching
velocity

g scalar potential function associated with perturbation
in o

¢&' scalar potential function associated with a constant

vertical accelerstion

- O . x 9
V—-iax+,jay+kaz

vh=1312§-+3§-+k3_

X dy dz
Cy normal-force coefficient, Force
%POVOE X Plan-form'area
Pitch t
C pitching-moment coefficient, ching momen
%DOVOEC X Plan-form aresa
Cy - rolling-moment coefficient about stability axis,

Rolling moment
%povoac X Plan-form area
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oCw

po Sl
Vo Ja=ag

CLq = cos Qg

Note that Cp, 'CL&: and CLq as defined herein are the component deriv-
atives normal to the free stream.

Cm
" (o

3¢,
C t = ——
Zp Pt.b

Wherever the variables x, y, 2, and t are used as subscripts,
a differentiation process with respect to these verisbles is indicated. ~

PRELIMINARY REMARKS

The alrfoll considered in this paper 1s a rectangular wing of
infinite aspect ratio at finite angles of atteck (fig. 1). The airfoil
is taken to be thin so that the thickness effects can be neglected in
the first-order evaluation of the serodynamic derivatives formulated
herein. The aerodynamic derivatives are obtained by finding the first-
order perturbatlon in the flow over a two-dimensional flet plate et a
finite angle of attack (fig. 1(a)). The reader is sssumed to be familiar
with the shock-expansion theory of two-dimensional supersonic flows. The
stability sxes used in the ansalysis are shown in figure 1(b).



NACA TN 3421 9

The Cy, &and Cp, derivatives are determined by considering the
effect of an infinitesimel increment in . The Czpl derivative is

determined by analyzing the effect of an infinitesimal constant rate of
roll about the x stability axls.

The CL and Cmq derivatives are determined by considering a con-

stant infinitesimal rate of pitch sbout the ¥y stability axis. Since the
type of motion analyzed in finding CLq and Cmq is often misunderstood,

this motion is discussed in detail. A constant rate of pitch is associated
with a constant rate of rotation about the axis of plteh while the angle

of attack with respect to the free stream remains constant. Viewed from

a point fixed with reference to the undisturbed air, the wing is flying

in a circle of radius Vb/q with a constant angular velocity q and with
a constant angle of attack (fig. 2). Note that the flow associated with
this motlon is steady. Since the rates of pitch considered are very small,
the radius of the circle is very large and the basic flow for the airfoil
considered herein can be teken to be the steady flow over a two-dimensional
flat plate.

The spproximate expressions for the CL& and Cm& derivatives are

determined by assuming a constant infinitesimal acceleration in the
z-direction of the stability axes.

In general, the boundery conditions on the airfoll surface are com-
plicated by the presence of the shock and expansion fan from the leading
edge of the wing. As an example, take the case of a small increment in
the angle of attack, which can be considered as the result of & small
constant vertical velocity wg superimposed on the original flow. In

the stability-sxes system (which is fixed relative to the airfoil}, the
free-stream direction has changed by the angle /o (fig. 3). Since the
shock and the expansion fan at the leading edge change the directlon of
the flow so that it becomes parallel to the airfoil surface, the normel
component of the perturbation velocity on the surface must be directly
proportional to Aa ‘times the unperturbed flow parallel to the surface.
The normal component of the perturbation velocities 1s related to the
angle of attack only through the unperturbed flow parallel to the surface.
The boundary conditions on the surface due to other types of motions can
be determined in a similar manner.

PERTURBED FLOW OVER UPPER SURFACE

The basic unperturbed flow over the upper surface is uniform and
irrotational. The flow begins with the termination of the expansion fan
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around the leading edge of the airfoil. Inasmuch as the flow is irrota-

tional and the small disturbances produced on the upper surface will not
interact with shock waves upstream of the tralling edge of the wing, these -
disturbances can be calculated by the use of a potential function.

The coordlnate axes used in the anelysis of the flow over the upper
surface are indicated in figure 4. The potential function must satisfy
the following partlal differential equations:

For steady flows,

By + By + By, = O (1e)
For unsteady flows,
av.
B + By + B = D2 ey - g = 0 ()
C2 C2

The subscript 2 refers to the conditions on the upper surface of the
alrfoll.

The boundery condlitions associated with the various motions are:

Upstream of the end of the expansion fan from the leading edge of the
alrfoil,

-
n
o

For an increment in o,

<¢:)z=0 = ~fo Vp

For a constent rate of pitch,

<¢§)z=o = -Q(X - xcg)

For a constant rate of roll,
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For a constant vertical acceleration,

<¢CZL>Z=O = -Vt
The potentiel functions assoclated with the various motions are:

For en increment in a,

LV (x - B z)
¢ = 2 - 2

For a constant rate of piteh,

£ - afx - Bz )° _ og(x - Bpz)
2Bo Ba

where the axis of pitch is located a distance Xeg from the leading edge
of the wing.

For a constent rate of roll,

¢P' - P'Y(x - 322)

B2
For a constant vertical acceleration,
. . M %2 M 2
gr = =\ —g—+-—§—z2 +V2t(x - Bgz)

The pressure coefficient based on the free-stream conditions is
given by

P=__a_f1_22_P2-¢—X.+gt_ (23)
MoPpo 2 V2
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or

a‘a Papz

POpO\Vo VEVO

(2b)

It follows that the perturbation pressure on the upper surface of the
alrfoll resulting from the various motlons 1s:

For an increment in o,

o _ _ Do MRy (30)

B:Mo2p,,

For a constent rate of pitch,

pa . _gc Mo PoPp x - Xeg

2Vo BoMg {f PoPo ¢ (30)

For a constant rate of roll,

pp' . . BY Mo | [PaPp (3c)
2VO BzMo PoPo

For a constant vertical accelerstion,

o oo Mo Pepa/ _ VB t) (38)
Vo o 3Mo PPo\C



NACA TN 3421 13

STEADY TWO-DIMENSIONAI. PERTURBED FIOW

BEHIND AN INCLINED SHOCK

The perturbed flow over the lower surface of the airfoil due to
steady pitching and a small increment in « 1s a special case of the
first-order, steady, two-dimensional perturbation of the flow behind a
two-dimensional inclined shock. This flow may not be irrotational;
therefore, the snalysis is based on thé equations for rotational flow.

As stated in the introduction, expressions for the evaluation of first-
order perturbastions of fiow variables behind a strong shock have been
derived in a number of papers. The development and gpplication herein

of the linearized equations of rotatlonal flow are an effort to present

a complete unified treatment appropriaste for the evaluation of aerodynamic
derivatives. The coordinste exes end some other dsta used in the analysis
are indicated in figure 5.

The equations for rotational flow sre (p. 202 of ref. 14):

The Euler equations of motion,

2
Vﬂé—+(VxW)xW=--%‘-Vp (&)
The equation of continuilty,
The entropy equetion,
2 - Slev (6)
p?
The equation for conservation of enthalpy,
2
_7 B, W Waex N

¥y-1p 2 2

The preceding equations are presented in their three-dimensional forms
because these are needed in the anaelysis of the rolling motion. Egua-
tions (4) to (7) represent six equations for five varisbles (p, p, and
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the three components of W) since the entropy S is determined from the
boundery conditions. Tt follows that there are only five lndependent
reletlons contained in these equations. The six equations are retalned,
however, because the sixth equation 1s used to shorten the analysis.

The flow behind the shock can be expressed as:

W= 4(Vi +u) + Jv + kv (8a)
P =p3 + B3 (8p)
P = Py + 8py (8e)
8 =8; + 85, : (83)

where u, Vv, and w are perturbations in the velocity amnd 8p,;, 8pj,
and ©B8S3 are the first-order perturbastions in density, in pressure,

and in entropy, respectively. The subscript .1 refers to conditions
on the lower surface of the airfoill.

Substituting equations (8) into equations (4) to (7) and retaining
only the first-order terms yields (these operations are given in +the
aeppendix):

ov  du! ow Jdu 1
vu + 3O - ow) Ly fSw _Qu)_ 1 5 9
J(Bx ay) (Bx az) Vyoy 01 ®
§E+§X+_a_w.=_“v_l§zj_l. (10)

ox Jdy Oz P1 ox

op Op &S
1. = (11)
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8p1 -7V 8T
1_%1_ _y-1Ver B

Py Py V4 Py Ty

(12)

Inasmuch as the entropy is constant along streamlines, the change of
entropy 855 is a function of 2z only. The initial velues of SSl

at the shock are part of the boundery conditions on the shock.

When the perturbation flow 1s two-dimensional, v and all quantities

operated on by g—y are zero, and equations (9) and (10) reduce to

Vvap
vu+k<~a—"‘r—§"—1)=———l (13)

Su,ow_ Y1771 (24)

The partial differential equations for u and w can be obtalned
es follows: Since 8S; 1s not a function of x, the partial derivatives

of equations (11) and (12) with respect to x are

ia_.sp_l_La_SQJ;:o

1
P x Py Ox (15)

and

o5p o5p V-p
1 1 1 l+7—l ll_aE:__o . (16)
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By eliminsting Bapl/ax and Bapl/ax from equations (14) to (16) and
by using the relation

the following equatlon can be obtained:

2 Ju _ dw
B, 94 _ OW (17)
1 3 oz
Equation (17) is one relation between u and w. A second relation can

be obtalned as follows: The perturbation pressure can be eliminsted
from the z-component of equations (11) and (13) to yield

721 9%y Py 085,

(18)
oz Vip1Cv oz

21

2
Vipq

The perturbation pressure can alsc be eliminated from equations (11)
and (12) to give

o) v oS
Pr_ _ 2P 1 (19)
pl 7pl (')’ - l)c-v'
Equatione (18) and (19) can be combined to yileld
v _du, Pl o8y (20)

x 3z Vypqey(y - 1) Oz

Equation (20) is the second relation between u and w.
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The following partial differentisl equations for u apmd w can
be obtained from equations (17) and (20):

2
5,2 % _ % _ Py 9788, (21)
32 32 Vpew(y - 1) 322 |

)
=

2
2 O _ O

3%  dz

(22)

I
o

n

The general solutions of equations (21) and (22) cen be written as

.o - gl(x-Blz) . ge(x+Blz) ) Py 8Slﬁz) (23)
By By V1p1(7 = Dev
W = gl(x-Blz) + g (x+Blz) (24)

From equations (11) and (12), the perturbation pressure is related
to u by

Py 853
Bpy = - Vipqu - (25)

(7 = Vevy

Also from equations (11) and (22), the perturbation density is related
to u by

2
M u 8BS
My pju  py 85y (26)
Vi (7 = ey

5p1 =

Equations (23) to (26) are the solutions of equations (11) to (14%). The
functions g3, 8o, and 883 must be determined from the boundary con-

ditlons on the surface of the body and on the shock.



18 NACA TN 3421
The boundary condition on the surface is given by

(W) z=0 = Vq£(x) ' (27)

where f£(x) is 2 known function of x determined by the type of dis-
turbance belng lnvestigated.

It should be noted that although the shock surface is free to move
and deform, the boundery conditions are not satisfied on the actual sur-
face but along the shock profile of the unperturbed flow. This approxi-
mation 1s valid within the bounds of the linearization process used
hereln.

The boundery conditions on the shock must be determined from the
baslc shock equations. These equations are (from pp. 97 and 98 of
ref. 1h): '

PoVop = plvln! (28)
2 \2
pOVOnvO-b = plvln‘vlt' (30)
1 2 1 < .)2
+ = Von = Jhy + =(V (31)
‘Th'O 2g On, 1 og 1n

From equations (28) and (30) it follows that

Vor = V' (32)

Since (from p. 99 of ref. 14)
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and.
b
Jhy = —L— L
7 - 1&py
equation (31) can be expressed as
b 1 P11 2
-7 _° _von2=_L_+._(vl ') (33)
y-1Py 2 y -1P] 2\1n

The normal and tangential velocity components can be written as
(see fig. 6):

Vop = Vo 8in @ Vin' = V;'sin(6 - a)
Vo, = Vo cos © Vit' = Vy'cos(6 - a)

Substituting these four relations into equations (28), (29), (32),
and (33) yields

Vo Sin 8 = p Vv, 'sin(e - a) (34)
2
poV,2s1n%6 + P = pl<vl*) sin®(8 - @) + Py (35)
Vo cos 6 = V;'cos(8 - a) (36)
2
y - 1Po 2 y-1P1 2

The first-order variastions across the shock wave can be determined
by taking the total derivative of the preceding equations whlle considering
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Pos Pos, and V, as constants. The differentials dp,, dp;, 46, da,
and d.Vl' can be considered as first-order variations of the variables.

Thus, from the four preceding equations, the differentials are related
by the following equatlons:

PV, cOS 8 36 - v, 'sin(6 - a) dpy - pp 8in(6 - o) 4Vvy' -

prl'cos(e - a)(ds - da) =0 (38)

2
20,V,2s1n 6 cos 0 d6 - (vl') sin?(6 - @) dpy - 2pqVy'sin®(e - a) avy' -

2
2pl<vl') sin(6 - @)cos(6 - a)(d6 - 4a) - dp; = O (39)
~Vo 81n 6 @0 - cos(8 - a) dVy' + Vy'sin(8 - «)(d6 - da) = O (LO)

dp Py do
VoPsin 6 cos 6 a9 - —L— L4 2 "1 "1 _y tsin2(e - o) av;' -
y-1P ¥ - 1P3 Py

(Vl')esin(e - a)cos(d - a)(dd - da) = O (41)

From figure 6 it can be seen that

dVl' = 1u
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By making use of these relations and equations (3%) to (37), equations (38)
to (41) can be expressed as

V. PV,
(po-pl)vocosede-poousine+ 10 4 cos @ -
1 vy
\/
oPo sin 6 dpy = 0 (42)
5 _
1
2 2
20 2y 2v
°e_0 usinze-—o-powsinecose+
P17 Vi
Po \2 2 2
[e) —
(q)vo 8in®0 dp) + dpy = O (13)
P1 - P v Po V.
= °vosinede+-2ucose+—°v—°wsine=o (k)
P1 vy Py V1
p 2 p 2V2 PV
.._C’vo sin 6 cos 6 dg - [Eo Lusinze+°~°wsinecose-
Py Pr/) v PV
1
y dp P1dp;
R A 2 (45)

y-1P1 7—1(91)2-0

Equations (L42) to (45) are linear with respect to the differentials
and, since there are five differentials and four equations, linear rela-~
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where

p
14+ L+ M2 PofPo | 1)sin26 |cot o
Po P1\Py
Kp = - (&7)

Mo2ppq /o o Mo=p oD
o:L—o-l+-3=cosee- l—-—':"-cotae +———°—°sin29
PP P31 7 Po P1Py

Note that for zero angle of attack

(KI )cx.o=0 = - El—o

Velues of Ky are given in teble I for verious angles of attack and
Mach numbers.

Equation (47) is one of the boundary condiltions on the shock. It
remains to determine the values of 887 1n the flow behind the shock.

Since &Sy dis constant along streamlines (and hence is a function of =z

only) the velues of &3] are determined by the conditions on the down-
stream side of the shock surface.

The expression for Sjfey 1s (from p. 202 of ref. 1k)

S .
1
= 1oge Py - 7 108 Py (48)

Taking the total differential of equation (48) ylelds

as 55 &p 5p
1 1 1 1
= = - 7 ()-[-9)
Cv Cv Py P1

This equation is true for points located directly behind the shock; thus
for points on the downstream side of the shock, equation (49) becomes
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551 dpz dpy
= -7 (50)
Cy 1% 1 Py

Expressing dp; and dpy i1n terms of u by the use of equa-
tions (42) to (45) gives for equation (50):

S
—L- (k2 (51)
Cvy Vl
Z=IX
where
2 Po/P1 2 Pl 2 Ps P p 2
[] o Po 2 2 o] 2
—{—= - 1)1 - —= — — gin“6 -~ —| sin
Mo Pl(%) (y )( po)<M° Dr By 8in<e 1) cos“8 + (91) sin<e
Py p P 9]
M2 21 - Llsin2e + =1 4+
Py Po 7o Po

(52)

Values of Ky are presented in table I for various angles of attack and
Mach numbers. Equation (51) concludes the expressions for the boundary
conditions. The other expressions for the boundary conditions are equa-
tions (27) and (46).

The boundery condition on the lower surface of an airfoil due to a
small increment in the angle of attack is (in the coordinates shown in
fig. 7)

(W) p=p = 20 Vq = g1(x) + gp(x) (53)
Tt follows from equation (53) that

W=A1vl
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and from equation (46) that

u=Kr & Vy (54)

The perturbation pressure is (from eqs. (26) and (5%))

P 53]_( z)
8Py = -pyV; |y Lo Vy + (55)
vlpl(7 - l)cv
Since (from eqs. (51) and (54))
851
<y - KoKy &
equation (55) can be written as
K
II .
8py = -pyVy°Ky 4|l + —— - (56)
My“(y - 1)

This expresslon for the pressure has previously been derived by Chu

K
(ref. 10). The quantity Ki|r + — I equals ~tan A 1in equa-
)

My2y(y - 1
tion (43) of Chu's peper. The increment In the pressure coefficient
based on the free-stream conditions is

M2 p Koy
=-—J'_-KI_£1+—._E——

M2 ol myPy(y - 1)

P
~ (57)

Figure 8 presents the variation of AP/AJ, with angle of attack for various
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b
Mach numbers. The values of M, —25 El, and 6 were teken from ref-

Po Po
erence 15 and from unpublished calculations.

The effect of the change in entropy in the perturbed flow can be
eveluated by setting Kyt equal to zero in equation (57). The change

in entropy is retained in the boundary condition on the shock which
reletes the velocity components u and w. Figure 9 presents a com-
parison of values of AP/Ax with and without the change in entropy
ineluded in the perturbed flow.

An approximation to the pressure due to an increment in o can be
obtained by assuming that the presence of the shock in the perturbed flow
can be neglected and by assuming that the perturbed-flow velocity com-
ponente can be expressed by derivetives of a potential function. This
potentisl function is similar to the function associated with the flow
over the upper surface and is based on the velocity Vl. Under these

sssunptlons, the veloclity component u can be expressed as

Lo V1
By

U e

(58)

The pressure coefficient assoclated with equation (58) and based on the
free-stream conditions is

2
My7py

P27 (59)
fot Bleapo

Figure 10 presents a comparison between exact and aspproximate values of
the increment in the pressure coefficient on the lower surface of an alr-
foil for en increment in o at various Mach numbers. In view of the
assumptions involved in the approximation, figure 10 indicates that equa-
tion (59) is a very good approximstion to the pressure coefficient except
in a very small angle~of-attack renge near the angle of attack for which
M1= l.

PERTURBED FLOW OVER LOWER SURFACE DUE TO STEADY PITCHING

The boundary condition on the lower surface of a pitching airfoil
is (in the coordinate system shown in fig. T)
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(W)z=0 = a(x - xcg) = g1(x) + ga(x) (60)

If g (x-B1z) and go(x+B1z) for 2z # O are assumed to be of the form
gl(x-Blz) = gbp(x - Blz) + bo

go(x+B1z) = qbz(x + Byz) + by

where by, by, b5, end by are constants, then u and w are given
by (from eqs. (23), (24), and (51))

w = q(by + b3)x - a(b1 - b3)Byz + by + by (61)

g{by = D bs = b K
u=-—(—l———5—)x+q_(b1+b3)z- 2 b il u (62)
By By My2y(y - 1)
Z=mx

From equation (60),
q(x - xcg) = q(by + b3)x + b + by
Equating powers of x yilelds

by + by = -qxXeg (63)

by + b3 = 1 (614-)

On the shock (from eqs. (46), (61), and (62)),

q(by - bz)mz N a(by + dz)z by - by
B Bya a - Bya -

[q(bl + b3)mz - q_(bl - b3) B1z + bo + bl;]KI (65)
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where

K11
M12y(y - 1)

Equating powers of 2z 1n equation (65) yields

1+ K1Bja oo 1 - KIBla b

B Biya 2 Bia

1+ KIBla IBl

1l-
Bja (m - Bl)bl -

(@ + By)bz =

a7

(66)

(67)

Equations (63), (64), (66), and (67) are four equations containing

the four unknown constants by, bp, bz, and by.

unknown constants yilelds

(m + By )(2 - KBy2)

Solving for the

by =
2(m - KIBl2a)
by = - =S8 (1 - KIBla)
ba — (m - BlL(l + KIBla)
> 2(131 - KIBlaa)
X
b)_l_ = - Treg (l + KIBla)

The veloclity components w and u are
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= (G L Sl
W= —=—lim - KfB1%a}x = (1 - Kyma)B,"z |- gx 68
I 181 yme) By IXcg (68)
u=-——q'——l:(l-KIma)x-(m—KIBlQa)z]-q_xc T8 +
m-KIBlaa.
gK——K m2 - B.2
—Q—-EI—I—xcg———l?z (69)
M=y(y - 1) m - KB, %a

The pressure on the surface is (from ege. (25) and (69))

m - K1a
8p1 = pP1V14 T rntm x + xcgKya (70)
= &TPL

This expression for the pressure can also be readily extracted from i
Chu's analysis (ref. 10) by substituting in equation (72} of that paper
qx/vl for f£'(x), the condition requiring the flow to be tangentlal %o

the airfoll surface.
The pressure coefficient on the lower surface of the airfoil is

Y n - Kra X '
p = 3¢ 1 [P1P1 xR E‘*‘KIE'"? (71)

2VO MO popo 1l - KIBJ. a ¢

Figure 11 presents the chordwise pressure distribution on the lower sur-
face of an airfoil for verious angles of attack at Mgy = 2.00 where

the axis of pitch is located at the midchord point.

The effect of neglecting the change in entropy in the perturbed flow
can be obtained from equetion (71l) by replacing a by unity. The change
in entropy is retained in the boundary condiltion on the shock which relates
the velocity components u and w. Thus, the pressure coefficient on
the lower surface of & pltching airfoil with the change in entropy neg-
lected is



NACA TN 3k21 29

It pqf{ 1 - K X
- Qc 1 (¥ l " x =cg
—+KI

eV, M, PoPol\m - K7B;2 e

(72)

Figure 12 presents the chordwise verilations of the pressure coefficient
including and neglecting the change in entropy for M, = 2.00, for two

angles of attack with the axis of pitch located at the midchord point.
This figure indicates that the change in entropy has a strong effect on
the pressure for the higher angles of attack. .

An approximation to the pressure due to pitching can be obtained
by meking the same assumptions as were made for the approximation to
the pressure due to an Increment in «. This procedure will lead to the
following relation for u:

a(x - Xg

~ g
u 5 (73)

The pressure coefficient associated with equation (73) and based on the
free-stream conditions is

P 3 g 191/5 _ ¥eg (74)
2Vo BiMg popo\c e

Note that equation (74) cen elso be obteined by replacing K; by - 1/131

in equation (72). Figure 13 presents exact (from eq. (71)) and approxi-
mate (from eq. (74)) values of the chordwise pressure on the lower surface
of a pitching airfoll for two angles of attack at Mg = 2.00 wlth the
axis of pitch located at the midchord point. This figure indicates that
equation (T4) is a good approximation to the pressure distribution

for ap = 9.7° and 20.7°.

PERTURBED FLOW OVER LOWER SURFACE DUE TO ROLLING

The perturbed flow over the lower surface of an airfoil due to rolling
can be determined from equations (9) to (12). The coordinate axes used
are shown in figure 7 where the y-axis is directed into the plane of the

page.
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The boundery condition on the surface is

(W)z=0 = P'y (75)

The boundary conditions on the shock are determined from the equa-
tlons expressing the conservation of mass, momentum, and energy. The
continuity of mess flow requires that (eq. (28))

Dovon = plvln‘ (76)
Tt can be seen in figure 14 that

Vo Vo sin 8 cos(ax)

It

n

Vi," = V1' sin(e - a) cos(dh)

To the first order in dA the preceding equations become

Vo, = Vo sin 6 (77a)

Vln !

= V' sin(6 - a) (77P)
Thus, to the first order in d\ equation (76) becomes
poVo sin 8 = p1V1' sin(e - ) (78)

This egquation is the same as the corresponding relation for the two-
dimensional case.

The conservatlon of momentum in the direction normal to the shock
requires that (eq. (29))

2
poVo,” + Do = ol(Vln') + Py (79)
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From equations (77), the preceding equatlion cen be written (to the first
order in dA) as

boVo2e1n28 + po = pl(vl:)as:u@(e - a) + Py (80)

This is the seme as the corresponding relstion for the two-dimensional
case.

The conservation of the tangential momentum requires that (eq. (30))
povonvot = plvln' :Lt' (81)
Tt follows from equation (76) that
Vo

Figure 14(a) shows that the tangential components in the xz-plane are

(Vot)xz = V, cos 8 (83a)
(V1g") ., = Va'cos(e - a) (83b)

Thus (eq. (36)),
Vo cos 8 = Vy'cos(6 - a) (84)

This is the same as the corresponding relation for the two-dimensional
case.

From the preceding results, the energy law can be expressed as
(eq. (37))

2
y Po. Vo 2sin0 __y P, (Vl') sin®(6 - a)

(85)

Y -3 p0 2 Yy -1py 2

This is the same as the corresponding relation for two-dimensionel flows.
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The equation for the conservation of mass flow, the equation for
the conservation of momentum in the direction normel to the shock, the
energy equation, and the equation of the tangential velocity components
in the xz-plane are the same as the corresponding equations for the two-
dimensional case. It follows from the amalysis of these relations given
for the two-dimensional case that two of the boundary conditions on the
shock are given by equations (46) and (51).

Figure 14(b) shows that the tangential velocity components in the
y-direction are (to the first order in d4A)

(vot)y = V, sin 6 aA (86a)

(Vlt')y_= Vi sin(6 - a) @\ - v {&6b)
Thus, from equation (82),

Vo 5in 6 A\ = V9 sin(6 - a) dA - v

or
v = ‘[ﬁo sin 6 - Vi sin(e - mi]dh (87)

The slope of the shock surface in the y-direction dA 1s gilven by

an = 26 (88)

where G(x,y,z) = O 18 the equation of the perturbed shock surface.
This surface G can be expressed as

-

5
G=f ae ds (89)
0
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where s 1s the distance along the shock surface in the xz-plane measured
from the leading edge of the airfoil. From equations (87), (88), and (89),
the velocity component v can be expressed as

g8
_[vo sin & - Vy sin(e - a)]%;f de ds (90)
0

From equstions (42) to (45), the velocity component u and 46 are
related by

ds = (KIII v?'—J_) (91)
Z=mx

where

2
1 - M2 20 P0 51420) 1 4 [PL) cote
P1 P31 Po

Krrr = (92)

P P
1-Z)cot 6 {1+ —=-M2207 ginog (1 - L0
Po Po Py Py

Values of Ky are given in table I for various angles of attack and
Mach numbers. Substituting equation (91) into equation (90) ylelds

<]
v = -[vo sin & - V1 sin(e - m)il 3;11 j; (g—;‘) ds (93)

1 Z=mx

Equations (46), (51), and (93) are the boundary conditions on the shock
surface.

The following relation can be obtalned in a manner similar to that
used in deriving equation (21):

“Bif —+ —+ — = (9k
SN )
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The components of equation (9) are

ov_ . _1 %m
ox Vipq oy
v 1 aap1

Ox 3y 32
Pu _
d dz i~
Fv _ B
ox dz Ox dy

These equations can be expressed by the vector equation. |

NACA TN 3k21

(958)

(95b)

(95¢)

(96)
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Since the vector 03/dx is irrotational, it can be described in terms
of a scalar potentlial function where

-
o = ~ (97)

From equation (94), it follows that

_ v, - %: 0 (98)

Substituting equation (97) into equation (98) yields the following
partial differential equation for &:

B2, + Oy + 0, =0 (99)

Thue, the scalar potential function ¢ must satisfy the three-dimensional
wave equation.

The boundary condition on the surface for ¢ is (from eq. (75))
(¢Z)z=o =0 (100)
The boundary conditions on the shock surface are expressed in terms of u,
v, and w and are not easily expressed as conditions on o.
A solution of equation (99) which satisfies the condition given by.

equation (100) is

& = Ky

where K is-a constant. If the conditions on the shock can be satisfied,
the partial derivatives of the velocity components with respect to x
are glven by .

3
ox

|
o

cH 14
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N _v,_ g
dy ox
dz x

Thus, the veloclty components u &nd w are independent of x end can
be written as

u(mz,y,z) (101s)

il

u(x)yJ z)

w(mz,y,z) (101b)

w(x,y,2)
The boundary condition on the surface requires that
(W)z=o =p'y
Thus, the velocity component w must be of the form
w=7p'y + Q(z) (102)

where Q(z) 1s an unknown function of 2z which is zero when 2z is zero.
The velocity component u 1s given (from egs. (46), (10la), and (102))

by

u = KII:P'Y + Q(Z)] (105)
Since
N _x
ox

then by integration

V = (V) y=mz + K(x ~ mz)
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From equations (93), (101b), and (103),

(V)x_:mz = [VO gin 6 = Vl sin(e - G:)] K:[:[IKI\’I!].2 + 1 PIZ

Thus,

S B
v = l:VO sin 6 - V; sin(e - cr.ﬂ m® + 1 p'z + K(x - mz) (10k)
V1

Substituting equations (102), (103), and (104) into equation (94) yields
the .relation

Thus,
o(z) =0

because Q(0) = O.

The velocity components u and w are

u = Krp'y ' (105)

w=7p'y (106)

The change in entropy is given (from egs. (51) and (3105)) by

&5 1 KIIKIP ! NA
Sy vy

(107)

The pressure is (from egs. (25), (105), and (107))
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P1KrKpp 'y
(y - Dvy

8py = “V1p1Kqp'y - (108)

From equations (95b), (104), and (108) and the relstion

v . ¢
Ox

the consteant K 1is found to be given by
K = Kiap'

Thus, equation (104) becomes

KiKtry

™+ 1p'z + Kyap'(x - mz)
Vi

(109)

v = [V, sin 0 - 7y sin(e - )]
The pressure coefficient based on the free-stream conditions is given by

YKMy [P1P1 K11

L. 14— (110)
P'y My \ Poro M12y(y - 1)
2Vo

Figure 15 presents the veriatlon of ———EL—— wlth angle of attack for
p'yf2V,
various Mach numbers.

The effect of the change in entropy in the perturbed flow can be
evaluated by setting 'KII equal to zero in equation (110). The change

in entropy is retained in the boundery condition on the shoek which
relates the wvelocity components u and w. An examination of equa-
tions (57) and (110) indicates that the percentage chenges in the pres-
sure coefficlente which result from neglecting the change in entropy are
the same for a small Increment in o and for = smsll rate of roll.
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P
Thus, the effect on of neglecting the change in entropy can be
P'y;2V6

obtained from the values of AP/Ax given in figure 9.

An epproximation to the pressure due to rolling can be obbained by
neglecting the presence of the shock and assuming that the perturbed-
flow velocity components can be expressed by derivatives of a potential -
function. This potential function is besed on the velocity Vi and is

similer to the potentlal function assoclated with the flow over the upper
surface. Under these assumptions, the veloclty component u can be
expressed as

a~RY (111)
By

The pressure coefficient associated with equation (111) and based on
the free-stream conditions is

P _ 80 [pp;
P'Y BiMo \/PoPo
Vo

(112)

Figure 16 presents a comparison between exact and approximate values of
the pressure coefficient on the lower surface of a rolling airfoll for
various Mach numbers. This figure indicstes that equation (112) is =
good approximation to the pressure coefficient, except in a very small
angle-of-attack range near the angle of attack where Ml = 1.

AFRODYNAMTC DERIVATIVES FOR RECTANGULAR WING OF
INFINITE ASPECT RATIO
The expressions for the pressure coefficlents on the upper and lower
surfaces of an airfoil due to the various motions considered permit the

calculation of the aerodynamic derivatives assoclated with these motions.

The derivative CLa for an airfoil at an arbitrary angle of attack
@, will be defined as
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¢
Cy, = —li CO8 Qg
o O a=do _

Tt follows from equations (3a) and (57) that Cr, is given by

2
K M
cLa.="—2§ 21(112[14. L1 :l- 2_ P2 cos oy (113)
Mo Po M12y(y - 1)

Note that the center of pressure remains at the midchord point. Figure 17
presents the variation of Cr with angle of attack for various Mach

numbers.

The derivatives ch and Cmq for en airfoil are (from eqs. (3b)

and (71))
lpl/ m - Ka N Kyax,g + My 292/_.'1_._ _ xcg) cos ag
PoPo \l - KIaBl ¢ Ba \[PoPo \2 ¢

(11k)
- . )“'Ml lp m - KIa /l xcg) + K:Mcg(g: - i{EE) -
gmq Mo \ PoPo l - KIaBlam\? 2e ¢ Va ¢
[ 2
_%2'21_5@”(&_&) (115)
MoBp Y PoPo | ¢ ¢

Filgures 18 and 19 present the variations of CLq and Cmq, respectively,

with angle of attack for various Mach numbers when the axis of pitch is
located at the midchord point.
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The derivative CIP' of an airfoil is (from egs. (3c) and (110))

p K Mo [Pop
M= S N ) GO
PoPo My=y(y - 1) B2\ PoPo

_ 1
Czpl = E MlKI

Figure 20 presents the varistion of Clp' with angle of attack for

various Mach numbers.

APPROXTMATTIONS TO AERODYNAMIC DERIVATIVES FOR WING OF

INFINITE ASPECT RATIO

The approximate expressions for the pressure coefficients on the
lower surface of an airfoil permit the derivetion of simple approximate
expressions for the aserodynamic coefficients associated with the motlons
congidered previously.

An spproximate expression for GLa is (from eqs. (3a) and (59))

2

M, 2 MoS D

z_a__iﬂ-[-i._zcos (||"()
%o

M2\B1 P, B2 Po

Figure 21 presents a comparison between exact and approximate values
of CLQ for various Mach numbers. This figure Indicates that equa-

tion (117) yields a good approximastion to the exact linearized value
of CLm given by equation (113), except in a very small angle-of-attack

range near the angle of attack for which M; = 1.

Approximate expressions for ch and Cmq are (from egs. (3b)

and (74))
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‘ My fere1 Me‘ eopp \/1 Xeg
PPy P p#\?. e J°9% %o (128)
~ - /ﬂ 1P1 M2 2P2 1-3 Tog + 3(&’&)2 (119)
Cmq \Pl PoPo 32 PoPo c c

Note that the approximation for CLq (eq. (118)) yilelds a value of zero
when the axis of pltch 1s located at the midchord point.

Figure 22 presents a comparison between exact and approximate values
of Cmq over a range of angles of attack for an axis of pitch located

at the midchord point. This figure indicates that equation (119) is a
good spproximstion to equation (115), except near the angle of attack
for which M3 = 1, when the axis of pitch is located at the midchord
point.

An approximste expression for CZP, is (from egs. (3c) and (112))

Crp m-gﬁg Bl"plp + = B2 2 2)cos % (120)

Flgure 23 presents a comparison between exect and approximate values
of CZP, for angles of attack up to the point where M; = 1, for various

Mach numbers. This figure indicates that equation (120) is a good approxi-
mation to equation (116), except near the angle of attack where M; = 1.

The results of the approximate expressions for the pressures and
aerodynamlc coefficlents indlcate that these expressions are in good
sgreement with the exact values except for angles of attack 1n a small
range near the angle of attack where M; = 1. An approximate expression

for the pressure on the lower surface of an alrfoil which has a constant
vertical acceleration can be obtained by neglecting the presence of the
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shock and by using e potential function based on the velocity Vq.
This potential function is given by

. M, %2 M,°
¢ = = -1——+i-z2+vlt(x-Blz) (121)
B1 | 22 2

The approximate pressure coefficient based on the free-stream conditions
is, for + = 0O, :

L My [Pipy

R ot e —

313 MO PoPo

z (122)
c .

glg'lm

Approximate expressions for Cps &and Cpg are (from eqs. (3d)

and (122))
M
CL&‘”-i 1 [Para , Mp  [Bappl o oo (123)
MO 315 Popo 325 Popo
Oy, ~ b M1 [pipy  Ma [P2P2)fi  Xeg (124)
Mo\B13{ PP BA Y PoPo/\3  2¢

g

cos agp

Figure 24 presents the variation of the approximete values of

or _im.,; with angle of attack for various Mach numbers.
1 Xeg
3 2c

The sum of the aerodynemic coefficients Cmq and Cma_ partly

determines the damping of longitudinal osclilletions of aircraft and is
directly proportional to the aerodynamic damping of slowly oscillating
alrfoils (see sppendix B of ref. 6); for these reasons the sum Cmq + Cg,
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is considered separately. Figures 25 to 28 present the variation
of Cmq + Cmg, (calculated from the approximate relations, eqs. (119)

and (124)) with angle of attack for various Mach numbers and center-of-
gravity locations. These figures indicate that, for an axis of rotation
located between zero and the midchord point,__cmq + Cmg, is positive

(destabilizing) for some part, or all, of the angle-of-attack range for
which the results apply. Figure 28 indicates that, for an axis of rota-
tlon located at the three-quarter-chord point, Cmq + Cpg, 1is negative

(stebilizing) for all angles of attack for which the results apply.

ESTIMATES .OF AFRODYNAMIC DERIVATIVES FOR RECTANGULAR

WINGS OF FINITE ASPECT RATIC

The development of exact and aspproximate expresslons for the aero-
dynamic derivatives of the wing with infinite aspect ratioc permits
estimations of the aerodynamic derivatives for rectangular wings. These
estimations can be based on either the exact or the approximate expres-
sions for the infinite-aspect-ratic wing. The approximate expressions
will be used because they are much simpler and they yleld results which
are within a few percent of the exact values for most of the angle-of-
attack range for which the expressions will be used.

The pressure within the tip reglons can be approximated by assuming
that the chordwise and spanwise variaetion of the pressure in this region
is the same as the pressure variatlon determined by linear theory for
small angles of surface deviation. The Mach number associated with the
velues from the linear theory is teken to be the Mach number of the flow
over the surface in the region which is unaffected by the tips. Thus,
the Mach number assocliated with the linear-theory values for the flow
over the upper surface is Mp, and the Mach number assoclated with the

flow over the lower surface is M;. With these assumptions, the following

approximete expressions for the aerodynemic derivetives based on the
approximate expressions for the wing of Infinite aspect ratio and the
exact linear-theory expressions (from ref. 16) can be written as

2 2
M\ p D

o, ~ef2) AL L\ (2) Pl 1 )ieq  (105)
Yo/ Po\Bl 2882/ \Mo/ Po\B2 2aB,2
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2
. ~ lil.) ﬂ;_e_-_“gxcz(l_ 1) s reale
Mo/ Do BL|3AB1 c 2AB1, Mo/ Po B2 |3ABp

1+2x£<1__1_) ' (126)
c 2ABo

My /'13191 1 |64By - 2 X 1
CLq Mo | PoPo Bl[ 3AB1 c 2ABy ¥

6AB, - 2
Ma P2 1 |_ 2 - L xcgé_ I ) cos a, (127)
Mo | PoPo Bal_ 3ABp ¢ 2

My fPae1 1 P - 8By Xegfo _(xcs)ag__‘t_ +
g Mo VPP 8BL| 3AB; ¢ ABy ¢ ABy

Mo [PoP2 1 |P - 8ABp o Eegf  k _(xcg)a( S
MO popo 2B2 i 3AB2 c ABa [« A32

(128)
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- 2 - 2
M 4 + 2B M TS
CLO",m _i El?_l___l___2+_____l_ +_2. _.e_pgi_gq.___aB?_ Co8 ag
(130)
2 .
Oy, ~ ok [22L 1 /E_a"%_e”Bl , Xeg b+ 281°
Mo |/ PoPo 315\3 c 2ABy c  3ABy
2 , 2
Mo fpop2 1[4 o Xeg _ 2 + B T Sl 2Bp (131)

MOVPOPO 3,5\ s " o s a5,

The expressions for the aerodynemic derivetives based on the lin-
earized theory which were used in equetions (125) to (131) are limited
to cases where the parameter AB i1s equal to or greater than 1. Thus,
equations (125) to (131) are limited to angles of attack and Mach num-
bers where AB; 1is equal to or greater than 1. For angles of attack

and Mach numbers that cause AB, to lile between 1 and 2, the tips affect

over one-half the wing area on the lower surface; thus the values cal-
culated from equations (125) to (131) may differ considerably from the
true values. Figures 29 to 39 present the variations of the estimated
aerodynemic coefficlents of rectanguler wings with angle of attack for
aspect ratios of 2 and 4. <TIn these figures the dashed portions of the
curves indicate the region where the parameter AB; 1lies between 1 and 2.

DISCUSSION OF RESULTS

If the change in entropy in the perturbed flow is neglected and the
change in entropy in the boundary conditlons on the perturbation velocity
components on the shock surface 1s retalned, a large error results for
Mach numbers of 3 and 4. The results also indicate that the aerodynamic
derivatives for the wing of infinite aspect ratio can be approximsted
very well by simple expressions over most of the angle-of-attack range
for which the theory is valid. g '
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The results for the aerodynamic derivatives seem to indicate that
there is a rough analogy between increasing the angle of attack at a
given Mach number and decreasing the Mach number at zero angle of attack.
For example, the approximste expression for CL@ given by equation (117)

can be written as

2 2
(ora)_ = (‘2) AR (&) P2 T
La a=dg Mo/ Po 2 |p=B; Mo/ Po 2 B=Bo
a=0 a=0

As the angle of attack inereases, the first term on the right-hand side
of the preceding equation lncreases anj the second term on the right-

2,
hend side decreases. TInasmuch as G}L@ o approaches infinity as the
o=

Mach number approaches 1, this type of variation will dominate the varia-
tion of equation (117) as the angle of attack epproaches the angle for
which M; = 1. An examination of the other approximate expressions for

the serodynamic derivetives shows similsr analogies between increasing
the angle of attack at a given Mach number and decreasing the Mach num-
ber at zero angle of attack.

The calculated values of the aserodynamic derivatives show very rapld
changes with angle of attack near the angle of attack where M; = 1. It

is expected that, provided the lower surface of the airfoil is not flat,
the thickness of the airfoil may tend to modify the rapid changes with
angle of attack because the thickness of the airfoil would change the
local flow over the lower surface.

The variatlions of the estimated aerodynamic coefficients of rectangular
wings with angle of attack presented in figures 29 to 39 indicate that the
effect of aspect ratioc on the varistion of these coefficients wilth angle
of attack is quite strong. These varietions can be explained on the basis
of the results from the wing of infinite aspect ratio at finite angles of
attack and the results from rectangulsr wings at zero angle of atiack
(linearized theory). For example, consider the variatlons of the esti-
mated cLa with angle of attack for Mg = 4.0 eas shown in figure 29.

At the higher angles of attack, the changes in the pressures, the den-
sities, and the local Mach numbers in the basic flow cause the contribu-
tion to the estimated CLm of the lower surface to outweigh greatly the

contribution to the estimated CL@ of the upper surface. The region

influenced by the tips on the lower surface increases as the angle of
attack increases; thus, the tips tend to decrease the estimated Cp at
o?
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the higher angles of attack. This effect causes the curves of the esti- L
mated CLm at the higher angles of attack and the higher Mach numbers o
to have slopes conslderably lower than those of the curves for the wing -

of infinite aspect ratio.
CONCLUDING REMARKS

Perturbation of the flow over a two-dimensional flat plate at finite
angles of attack 1s used to obtain a first-order evaluation of the damping
in roll, the 1ift and pitching moment due to an increment in the angle of
attack, and.the 1ift and pitching moment due to a steady pitching velocity
for a rectanguler wing of infinite aspect ratio at supersonic speeds.
Approximations based on the results of the linearized theory and on the
flow over a two-dimensional flat plate at finite angles of attack are
derlved and are shown to yleld results which are in good agreement with
the exact first-order theory. Approximete expressions are also derived __
for the 1ift and pitching moment due to a constant vertical acceleration.
Estimations of the aerodynamic derivatives for rectangulaer wings of finite
aspect ratlo are derived by the combined use of the approximate relations .
for the infinite-aspect-ratio wing at finite angles of attack and the
results of the linearized theory for vanishingly small angles of attack.

The same type of anaelysis used herein can be applied to the swept-
back wing of Infinite aspect ratlio wlth supersonic leading edges. The
results for the aserodynamic derivatives of this wing could also be used
to meke estimations of the aerodynamic derivatives for a number of finlte-
aspect-ratio wings in certasin Mach number ranges 1n a manner similar to
the method used 1n the present paper for the rectangular wing.

Langley Aeronautical Leboratory,
National Advisory Committee for Aerconautics,
Langley Fleld, Va., January 25, 1955.
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' APPENDIX

- DETERMINATION OF FIRST-ORDER~-PERTURBATION EQUATIONS

FOR FLOW BEHIND A TWO-DIMENSTIONAT SHOCK

( %iésider first the vector form of the Euler equations of motion
eq. (4)):

we

V—2—+(vx w)xw=.—%—vp (A1)

The first term of the preceding equation can be written, by the use of
equation (8a), as

+-

2
VVE=V{V1 +2Vlu+u2+_v£ ﬁ
2 \ 2 2 2

= i(Yl éli-+ u éE + v §E-+ W é"—f»)-+

ox ox ox ox
J(%l

kiV —+u §2'+ V—+ W=
dz oz oz dz

I

+udly yO¥, oW,
oy

When only the first-order terms are retained, this expression becomes

2 :
2
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The second term of eguation (Al) can be expressed, by the use of

2)-

equation (8a), as

du

(VxW)xW=i<w
Z

-,

W — -

-V

ow
dx

v

oz

v
ox

v + Vv

ou

J _(Vl +u)§i- - (Vl +u)a— - W

Y

- (Vl + u)?z- +

foicd
oy

4

(vl +

NACA TN 3421

ov
oz

w

3
u)—::

i

When only the first-order terms are retained, this expression becomes

dv  du ow du
v x W W=1(0) + gV X - SB) 4 kv (SX - &4
(7 ) x (0) + 4 l(? ay) é&x az)

X

(43)

The last term of equation (Al) can be expressed as

1 1
-5 =- VP1+5P1)
P Py + 8y \
S (R R .| v8p,
P P1

When only the first-order terms are retained, this expression becomes

P Py
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To the first order, equation (Al) can now be expressed, from equa-
tions (A2), (A3), and (Ak), as

Vu+j(—§v;-%l)+k<§x-a—u)=-—]-'—vwl (A5)

This is equation (9) in the body of the paper.

Consider now the equation of continuity (eq. (5)). This eguation
can be expressed as

oW = V.(pl + Spl) [i (Vl + u) + Jv + kw] =0 (A6)

When only the first-order terms are retained, the preceding equatlon can
be expressed as (eq. (10)) _

du, dv, dw__Y1%e (A7)

s s e —=

dx Oy Oz P ox

The entropy equation can be expressed as
Sl+581
Pl + BPl = (pl + 591)7 e
or

ply eSl/cv

Py + 0P =

-1 S1/Cy 88 S
+ 780y 07t e /V+Ti‘;p17el/cv+'

(48)
since (from eq. (6))

S
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Thus, to the first order in pressure, density, and entropy, equation (A8)
becomes equstion (11):

Sli V4 Sp_l = ?.S_l (A9)
Py Py Cy

Now equation (Al) cen be written, by the use of equations (8), as

2 2. 2
oy pl+8pl+vl+2Vlu+u_+ﬁ+£=w
7 - 1pq + Bpq 2 2 2 2

2 -
8p Vi +2Vu +u v o e
__LP + 3p _J;]_..._l.[.,,. +l 1 +__.+w_.=w__.
1 1

(A10)

When only the terms up to and including the first-order are retained,
equstion (Al0) becomes

2 2
Y op Py O V. W,
~r A,y iy Lyl oivu=-EE (an)

Since

2 2
v 2. N1 Mmex

equation (All) can be reduced to equation (12):

%y %P1 __y-1V1P1 PN

B P Y P Ty
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(a) Basic flow.
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Z
(b) Stebility axes.

Figure l.- Rectangular wing of infinite aspect ratio at a finite angle
of attack.
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Z

- Figure 2.~ A set of axes fixed to an airfoil which has a constant rate
of pitech.

xpansion fan

T

.’

V =
‘( My Shack \

0 Z

I

FPigure 3.~ Illustration of change in free-stream direction viewed from
the stability axes for a given increment 1n angle of attack.
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(a) side view.

Z
A

Y

X

(b) Rear view from free-stream direction.

Figure 4.- Coordinaste axes used in anaslysis of flow over upper surface.
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Figure 5.- Coordinate axes used in analysis of perturbed flow behind g
two-dimensional shock. o
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Figure 6.- Veloclty components assoclated with perturbed flow behind a
two-dimensional shock,

X

Figure T7.- Coordinates used in analyzing flow over lower surface of an
airfoil,
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Flgure 8.- Variation of AP/Aa with angle of attack on lower surfece of
an alrfoil for various Mach nmumbers.
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Figure 9.- Comparison of values of AP/Aa. on lower surface of an zirfoil
with and without change of entropy included in the perturbed flow.
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Figure 10.- Comparison between exact and approximate velues of AP/Aa on
lower surface of an airfoll for verious Mach numbers.
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a,deg
207 - -
14.7
- 9.7
o
P
¢
P4 A .

- 6‘ 1 ]
o 50 /100
Percent chord

Figure 11.- Chordwlse pressure distribution on lower surface of an airfoil
pitching about its midchord point. My = 2.00.
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With entropy included

———-With entropy neglected
in the perturbed
flow

_7 1 1 G ——_
0 50 100

Percent chord

Figure 12.- Chordwise variation of pressure coefficient on lower surface
of an airfoil pitching about its midchord point, with and without change
of entropy included. My = 2.00; ag = 9.7° and 20.7°,
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a,deg
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P
gc
2V,
, Exact (eq.(71))
_q —-———Approx.(eq. (74))
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-6‘ 1 ]
0 S50 100

Percent chord

Figure 13.~ Comparison between exact and approximste velues of chordwise
pressure on lower surface of an airfoil pitching abou‘c its midchord
point. M, = 2.00; ag = 9.7° and 20.7°.
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(a) Side view.

y Shock
A
V, sin 6 Y V sin(6 - a)
% > X
(a4

(p) View in plane d-d.

Figure 14.- Velocity components and associsted date for two-dimensional
shock with three-dIlmensional perturbed flow.



28
24}
| |2 1.5 /2.0 /3.0 4.0
r6f | / f
P
W4
2v, 12}

0 4 8 12 16 20 24 28 32 36 40
Angle of attack!_ deg

Figure 15.- Variation of pressure coefficient on lower surface of a rolling
alrfoil with angle of attack for varlous Mach mumbers.
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Figure 16.-~ Comparison between exact and approximste values of pressure
coefficlient on lower surface of a rolling airfoil for various Mach

TeHe NI YOVN

69



® llh
.
AN
N

oL

~ ]
Ny
A
&

150 175 Jl 200

—f

£\

N

Q

J}'—_ / ~ i} 7 — - —
L1 _,.-J-—-/:,._ar/
—--"‘F‘__-
- M o~ PeVal P O J Py W) - b & g Y, ]
o ol e 10 4 Pl s o JE 20 o«

Angle of allack, deg

(s}
=y

=
&

t

<
o

gt
-

(=]

a0 =

Figure 17.~ Variation of cIu, with angle of attack for various Mach mmbers.

Q

TeHE NI VOYN



NACA TN 3421

»
S .
1S =<
ST TS BN
LR ;/////,
N S TN
o N /9
\
. W\l
‘ s o\
— .0 8 S
e
N\ s, =
////, H Q ;
WWs TSI
/A///Z Q
\
i
v w &N~ N
®© ¥ N & ® © ¥ W
&

<
N

D
Y

W

Sy

N

Y

(]

<

Angle of aflack, deg

(b) M, = 2.50 to k.00.

T

Figure 17.- Concluded.
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Pigure 18.- Varistion of ch_ with angle of attack for verious Mach num-
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Figure 19.- Variation of Cmq with angle of atback for various Mach num-
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T2hS NI VOVN

¢l

X0t




L L T [ [ T |
\Qﬁ\:‘#‘\:‘\
-! 0 N TN\ NN
\ AN
-2t -2
::\\\§\
By
BE] ST E A\ Y
G, - iy 4. oo‘\‘\i\:*r‘\
i
-4} -6 350 \‘\\\\\ M=250
3.00 ===
| VWA
sb g 275 it 275
250 T
6l 0 [ LY 3.00
o 0 20 30 40
350
-7
4.00
-8
o 4 8 12 16 20 24 28 32 36

Angle of attack, deg

(b) Mo = 2.50 %o 4.00.

Figure 19.~ Concluded.

40

L

Tehe NI YOVN




0
- i s
_8 \\\ \ \.. \ \\
T N N ENENA
A \ \ \
C \ \ HEEL
d \ | | \ \
1.6 \ i - - !
\ 1.50 #
-20 } 175
Mz125
200
-24
225
.28
52 250
e 4 8 2 16 20 24 28 32 36

Angle of ollack, deg

(a) M, = 1.25 to 2.50.

40

Flgure 20.- Variation of CIP' with angle of attack for various Mach

nmmbers.

Tche NI VOVN

Gl




\
s 75
Al P oVl _JY\VA L BP9
-4} -6 My~ ‘i.(.l/U A LW ALY 2.0
M (N
5 -8 3'?0’”/1 \ 3.50
2.;5—/,/\ | |
250 |11}
-6} -10 s
o 10 20 30 40 4.00
S 8 12 16 20 24 28 32 36 40

Angle of allack, deg
(b) M, = 2.50 to %.00.

Figure 20.- Concluded.

gL

Tehe NI VOVR




=
>
/61 | i 2
: | ' 2
| |
! 1
14} . ! , ‘§ |
Exact : ! !
1ok leq113)) ! |
""" Approx I :
] OF (eq. (1t7)} : i
lI :
|
!
o :

12 /16 20 24 28 32 36 40
Angle of altack, deg

Q

Tionra 21 .o Crmnardenn hobtwman evast and arvmroavyimata wvaluaa ~F Prv
ole el Tt - A d e "l f Yt Nk et il Bk S WS Sl “-E-E‘- Nl ol e el P Nt LA L L N ke e el h
8

Mach mmbers.

O
Lo,

LL

varliou




Orc
-______‘\ —\N
-/t
-2t
| 4, =15 20 3.0 4.0
Exact \
- .3 L_ /_, Framu ) ]
(8G.(/{D// [ |1
| I
[ {
R {
-4 Approx. : |
7 /eq.f//&'}/ ' |
1 [
-5r | .
! ]
! ]
-6 : i
{
| 1
1 ! !
7L ]
-7 | ' !
! 1
1 \ \
-8 ! L i I I N (- [ |
0 4 &8 /12 16 20 24 28 32 36 40
Angie of aiiack, deg
T romvmmm N M med e oadrrnar ocwvast amnmd armeavimeata valriae nf n_ e
J.'J.E S Lle™ KN} L VATCL TAGL Y G G VA LG U bbb Wl vmq. - Al
various Mach mmbers when exls of pitch is located at midchord point.

8L

T24% NI YOVN




Tehe NI VOVN

ZP’ |
-2.0f Exact : !
(8q.(116}) ‘. |
I
-24F ! !
-==~ Approx, { I
(eq.(120)) | '
-2.8f [ !
| |
| ]
- 32 1 1 L L 1 : 1 .
0 4 8 12 16 20 24 28

|
!
I

Angle of aflack, deg

Figure 23.- Comparison between exact and approximate values of

varione Mach numbers.

for

)




/14 200

| |
7 TN
|

~—
D
\
“_"\“
F—]
~— ]
——
——

20, / /
cos a, 5 | |/ / [V
or / JARVINAVIVID A,
7 Vi /4 J y I Ji 7 f’
Cn ARNANAVEAAVE
_l__._;_ag_ / // / // A / /
J ¢ 4 /// / / / ,/ A /
-~ /// // /// ,
2 | L1 | A //,5////,/.4// curves approach
e e e
0O 4 & (2 6 20 24 28 32 36 40
Angle of afttock, deg
(a) M, = 1.50 to 4.00.
-2C; . .
Figure 24.~ Variation of approximate values of EE?:: or. T cm;cg with
3 e

angle of attack for various Mach numbers.

08

TeHE NI VOVN




80 T ] I | T
M=l 25 150 75 2001225
70
60 All curves approach o
—2Q_:50
cos a, .
or 40 I ]
Cm.
__f'g_j.o 7 /
7= RN
20 / / I
T
10 / ,
L+ AT 1]
— F"""_______,_ql:'_:____ﬂ__-—-/
0 q 8 12 16 20 24 28 32 36 40

Angle of attack, deg
(b) M, = 1.25 to 2.25.

Figure 24.- Continued.
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Figure 25.- Contlnued,
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Flgure 31.~ Varietion of estimated CI'q of rectangular wings wilth angle

of attack for various Mach numbers.

Aspect ratio, 2.0 and 4.0.
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Figure 31.- Concluded.
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Flgure 35.~ Variastion of estlmated CL_.[ of rectanguler wings with angle
of atteck for various Mach mmbers. Aspect ratio, 2.0 and k.0.
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Figure 35.- Concluﬂed.
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Figure 36.- Variation of estimated cm‘1 of rectengular wings with angle

of atteck for various Mach numbers. Aspect ratlo, 2.0 and ¥.0; cemter
of gravity located at querter-chord polint.
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Figure 37.~ Variation of estimated Cn'u, of rectangular %rir*s with angie
0

of attack for various Mech numbers. Aspect ratio, 2.0 and 4.0; center
of gravity located at midchord point.
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Figure 37.~ Concluded.

N
Q

oTT

TShe NI VOVN




-2
-4
C . —
ma - | \:177 //2.0 - Ji B
*+ o~ \\ s 13 o 7.
~ -6 > ™ S 4 7 '
u’"a" /Wo:/ 2 o Zg\\ // /
-.é?——ﬂ_‘ : / /
\ﬁ::_,_/i/ J/
1.0 L
-12
0 4 & 12 /16 20 24 28 32 36 40

Angle of attack, deg

{(a) Aspect ratio, 2.0.

Figure 38.- Variation of estimated (.‘.m(1 + Cmc'n of rectangular wings for

various Mach mumbers. Aspect retio, 2.0 and 4.0; center of gravity
iocated st quarter-chord point.
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Figure 38.~ Concluded.
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Figure 59.-~ Varistlon of estimated Cmq + Cm& of rectangular wings for

various Mach numbers. Aspect ratio, 2.0 and 4.0; cemter of gravity
located at midchord point.
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Flgure 39.- Concluded.
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