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OF BOUNDARY-VALUE PROBLEMS IN SUPERSONIC FLOW
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SUMMARY

.4 direct analogy is edablished between~hewe of source-sink
and doublet dtitribuiion~ in the solution of .spem”fiboundury-
ralue problems in subsonic wing theory and the corresponding
problemsin supersonic theory. I%e concept of the “jinite part”
of an integral is introduced and used in th calculation of the
improper integrals awom”atedm“th wpersonic doublet dMri-
butimzs. The general equations dereloped are shown to include
sereral prem”ouslypubh%hed results and partimdar examples
are @“renfor the loading on rolling and pitching triangular
wings w“th supersonic leading edges.

INTRODUCTION

The problem of finding pressure distributions over airfoik
of arbitrary shape and plan form or of finding airfoils which
have arbitrary pressure distributions is one of the most
fundamental probIems in aerodynamic theory. At the pres-
ent time the most important and satisfactory approach to
problems of this type is provided by the methods of so-caIIed
thin-airfoil theory. The essential assumptions in this theory
are that the perturbation velocitk induoed by the airfoil
are small relative to the free-stream velocity and that the
boundary conditions can be specified in a fixed referenoe
pkne.

Under the assumptions of thin-airfoiI theory the theoreti-
cal analysis of a probkm in wing theory resohs itself into
the task of determining the solution of a second+rder linear
partial differential equation with prescribed boundary
conditions. In the casieof pureIy subsonic flow, Laplace’s
equation in three dimensions must be considered, while in
purely supersonic flow the dMerentiaI equation which arises
is algebraically equivalent to the t-irodimensiona.l wave
equation of mathematical physics. The classicaI scdutiona
of these two equations have been developed alo~~ two dis-
tinct Iines: First, by use of orthogonal functions which can
be deri-ied in terms of the boundary conditions, and alter-
natively by means of Green’s theorem which in turn utilizes
a known particular solution of the. partial differential equa-
tion together with the given boundary conditions.

One particular solution associated with Laplace’s equation
and subsonic aerodynamics has been found to be outstanding
in its mathematical usefuhess and, when identified with the
velocity potential, has a physical interpretation -ivhiohcan
suppIy, in direct application, added insight into the nature of
the probkm. This function is refwred to as the “funda-

mental soIution” and can be deveIoped from the concept of
a so-called source. A concomitant development to the
source potentiaI is the doublet potential, and appropriate
distributions of these functions are known to be sufficient
for the solution of all probkme in subsonic wing theory.

The extension of t-heuse of the fundamental solution to
problems in purely supersonic flow introduces mathematical
difllculties -which differ essentially from those encountered
at low speeds. Both the source and the doublet potentiak
possess singularities on their conical characteristic surfaces
or Mach cones and, in the case of tha doublet, the singukrit.y
is of higher order than can be treated by elementary mathe-
matical methods. In the historical devdopment of the
solutions of the wave equation this trouble was circumvented
by replacing the source potential by other particular solu-
tions of the differential equation. k an example, Volterra
(reference 1) introduced the integral of the fundamental ._,__
soIution and in that way reduced the order of the singukit.iea
invoked. The analytical development of Vokrra’s theory
presents no inherent difficulties (e. g., reference 2) but the
phyaicaI significance of the particular solution is lost., the _
dim% analogy with subsonic theory no longer exists, and a
certain amount of mathematical inefficiency arises skce,
after using the integral of the source potential, it is found
necessary to resort at the end of the analysis to taking a
final derivative.

In this report, following methods introduced by Hadamard
(reference 3), a general solution to the thin-girfo~ problem
in supersonic theory w-illbe.given in terms of the chstribut.ion
of sources and doublets over the given reference plane.
Furthermore, a discussion of the nature of the boundary
values required w-ill be given. For properIy set problems _
in wave theory it has been found necessary to specify,
usmdly, both the required function and its derivgt.ive_~th
respect to time along the boundary considered. In am- _. >
dynamic application of the -wave equation associated -with
Lifting-surface theory and thickness distributions it will be .._
shown that onIy a Imowkdge of the unknown function or
its normaI derivative along the boundary is needed since a
reIat,ionship between the two functions w-ill be estrtblished
on the boundary surface. --

In the theoretical portion of the report a brief presenta-
tion will be made of the differential equations involved and
the two forms of the fundamental scdution. An outLine is
then given of the types of boundary-value probkms encount-
ered and, since the purpose of the report is to extend the
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concepts of thin-airfoil theory which are used in subsonic
theory to problems arising in supersonic theory, a discussion
will be given of the subsonic development as a basis for tho
analogy which exists between the methods of solution corre-
sponding to the two regimes of flow. In the d@wsion of
the pure~y supersonic case it will be shown that the intro-
duction of the concept of “finite part” wiU provide a tech-.
nique whereby the improper integrals arising from the use
of doubIets may be evaluated in a straight-forward manner.
The applications of the theoretical developments will include
the rederivation of some previously published results and
will also contain the calculation of load distributions for
rolling and pitching triangular wings with leading edges
swept ahead of the Mach cone from the vertex. of the
triangles.

SYMBOLS

span of wing
chord of wing
free-stream Mach number
normal to arbitrary surface
direction cosines of normal n
static pressure
rate of roll about X axis
free-stream dynamic pressure
rate of pitch about Y axis

(2–X*)’+ (Y–W)’+ (2–2,)’
$(X–XJ’+(Y–YJ’+2’ ‘- “- -““ .:_ -:” : .:-“ “-””
{(z–z,)’– (y–y,)’– (z–z,)’” -
J(&@’-@-–-yz2’-z2 “- - -
axbitrary region of integration
surface enclosing region R
perturbation velocities in direction of X, Y, and Z

axe9 respectively
free-stream velocity
Cartesian coordinates in original space variables
transformed system of coordinates

J_W=I
infinitesimal used in analysis
surface along which stream enters induced field of

wing
conormal to arbitrary surface
direction cosines of conormal “
variable representing either acceleration potential,

veIocity potential, or any of the three perturba-
tion veIocity components

surface on which boundary conditions are given
perturbation velocity potentiaI
variable representing either acceleration potential,

veIocity potential, or any of the three perturba-
tion velocity components

pressure coefficient

Ioad coefficient __ _

(
moment about X axis

rolling-moment coeflkient qbxwing area )

Vz

c’

r

u

1

1
c

t

(

& & ~%
differential operator ~+

)#~%

(
v az V

)
_differential operator ~y–~–=

- sign denoting “finite parb” of integral

SUSSCRIPTS

subscript denoting value of variable on upper sur-
ffice of wing

subscript denoting vaIue of variable on lower SUE
face of wing

subscript denoting variable of integration
subscript. OD r denoting fun&unentaI solution in

superwmic flow

SUPERSCRIPT

superscript denoting valuo of vmiddo on opposite
side of ~ from tlxed point (z, y, z)

THEORETICAL DEVELOPMENT

LINEARIZEDEQUATIONSAP?DBOUNDARY CONDITIONS

The linearization of the second-order @ifTerentialcquntion
for compressible fluid flow is developed under the assmnp-
tions oifin-airfoil or snmII-perturbation llwory, If the
velocity vector of the free stmarn is parallel to and in the
dixection. of the positive X axis, the resulting differential
equation is expressible in the form

‘am Ml m
(1–M’) @-b~+~,=o (1) -

where Q represents a.velocity potential, accclcralion poten-
tial, or ariy one of the perturbation velocities while M is th.c
constant valuo of the freo-atrea.mMuch number. hsuming
the piano of symmetry of the airfoil to lie in the Xl’ piano,
the boundary conditions associated with equation (1) me
given for Z=O. N oreov~,if u, v,and w represent, reapcc~ivc-
ly, the pwturbation velocity components ahmg the .l~, P, ““
and Z axes, and if ~he~mlocityof the free stream is V, the
direction. cosines of any streamline are proportional to the
point functior& V+u(X, Y, Z), v(X, Y, Z), and w(X, Y, Z)
while pressure coefEcient Gr is given by the relation

c,= –+ (2)

Detailed &cussions of thesa results may be found in refer-
ence 4. 1..

Introducing the affine transformations

x=x

y= ~~-Y-

Z= ~~qz

where the signs under the radicals are chosen so tha~ real
values result, it follows that in the subsonic case (M< 1)
equation (1) reduces to

(3)
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while the supersonic case (M> 1) y;elcls

The fundamental solution associated with equation

:=[(4’+ (&ld’+(z-zrl‘4
or, in terms of the original space v-ariabks,

;=[(x–xJ’+p’(Y–Y-J’+/3’(z-z,)d

(4)

(3) is

(5)

(5a)

vvhere
p’= (1–W)

When the wave equation is to be considered the fundamental
solution takes the form

+=[(z–zI)’–(y-y,)’– (Z–z,)p (6)

or

$=[(.x–-xl)’-/l?’( Y-Y*)’-#’(z-z,)I-* (6a)

where
p’= (31’–1)

These fundamental solutions are directly related both in
subsonic and supersonic flow to the velocity pot entjals at
the point (z, y, z) or (X, Y, 2) of unit sources situated at the
petit (21,VI, zJ or (XI,Yl,ZJ. Tbe velocity potential of a
doublet may be obtained by taking a directional derivative
of the source potential, the direction of the axis of the doublet
coinciding with the direction rdong which the derivative is
talien. These two functions will be seen to be of paramount
importante when Green’s theorem is applied to the given
boundary conditions.

It remains now to mention the types of boundary condi-
tions which appear in problems associated with wing theory.
As a convenience to the development of the theory the
norndized forms (equations (3) and (4)) of equation (1)
will be used and boundary conditions will be assumed known
with respect to t-he z, y, z coordinate system. Retrans-
formation to the X, Y, Z system of ~xes can be made quite
simply wherever needed in application, In order to detlne
the boundary conditions, two subscripts will be introduc@:
The first, u, denotes the vahe of the required function on the
upper surface, that is, the limit of the function as z ap-
proaches zero from the positive direction; tho second, 1,
denotes the value on the lower surface, that is, the Iimit of the
required function as z approaches zero from the negative
direction.

Using these definitions the four boundary-vahe problems
of principal interest can be defined as foIIows:

1. Symmetrical nonlifting airfoil with specified alope.—
In this case ‘wU=w1=O over all of the w plane except for
region occupied by the airfoil where 2wti= —2wJ=Aw=j (x, y),
the function being determined by the geometry of the wing.
Over d of the w plane, Au=O.

2. Lifting plate with specified loading.-It is given that
Au=uM—u1=O over the w plane except for the region
occupied by the airfoil where Au=j(r, y), the function being
determined by the speciikd loading. Moreover, Aw=O “ ___
everywhere.

3. Lifting plate with specified camber, twist, and angle of
incidence.-owr the w plane Aw=O everywhere. And,
except for the region occupied by the airfod, Au=O. Over
the region occupied by the airfoil w=j(z, y) where j(z, y) is
determined by the given camber, twist, and angle of .. .
incidence.

4. Symmetrical nonlifting airfofl with specified press~e
distribution.-Over the w plane Au= O everywhere. And,
except for the region occupied by the airfoiI Aw= O. Over
the region occupied by the airfoil CP=j(z, y) wherej(z, y) is
given.

It shouId be pointed out that the first two problems con- ,
sidered here differ from the usua~ type of boundary-value
problem encountered. In the so-called Dirichlet or Neu-
mann problems, which arise in connection with Laplace’s
equation, the value of the normal derivative of the function
or of the function itself is specified alo~ the boundary while”
the Cauchy probkm for second-order partial ditleregtial
equations involves the knowledge of both the function and a
derivative. In the fit two aerodpamic problems listed
above, no absolute vrdues are given but rather the jump in
the value of the function song the boundary is prescribed.
It is this type of problem with which the present report is
particukdy concerned.

BOUNDARY-VALUE PROBLE31S IN PURELY SUBSOhTC FLOW

Since the purpose of this report is to extend me COIWWptS

of thin-airfoil theory tied in subsanic theory to problems
arising in supersonic theory, some discussion of the former
wilI be given to provide lucidity as well as to furnish a basis
for the analogy which wiII be shown to exist bettieen -the
methods of solution arising in the two regimes of flow.

The method whereby the solutions of the given problems
can be effected is provided by Green’s theorem which relak
a vohune integmd over a region R h a surface integral over
the surface s enclosing R. If r, Q are any two functions
which, together with their first and second derivatives, are
finite and single-valued throughout R, then for me subsonic. ..-——-c-
ase

Ss(s “:-Q~)ds=-ffRf(”v2Q-Q‘n
-wherethe Laplacian operator,

is introduced and the directional derivatives on the Ieft side
are taken along the normal n, drawn iriward, to the surface JS.
Identifying now the function uwith the fundamental solution
l/r and specifying that Q satisfies Laplace’s equation, equa-
tion (7) simplifies to give

Lr[xa-+ws=o (8)
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where
1
y[(z–xl)’+ (Y–Wl)’+ (z–z,)q-*

The variabka of integration in the .aquation are xl, vI, z],
while x, y, z are the coordinates of a point P either inside or
outside of the region of integration.

If the pcin~ P is assumed to be inside the region of int&a-
tion, it is evident that the function l/r becomes M.nite at P,
and it is necessary to exclude this point from the region if
formula (8) is to apply. Describing a spherical surface z
with radius e about the point P, and considering the integral
over the two surfaces z and S’ which enclose the region, it
can be shown that in the limit as E+O equation (8) becomes

--WE(3-’W” ‘9)Q(L?/, @- 4; ~

The physicrd signifkancc of this hist relation follows im-
mediately: the term 1/?’ represents a fluid source and the

b(l/r)
term ~ repr~en$s a doublet wi~ its .tt.@ lying Qlong

the normal to S, both source and doublet being situated at
the surface point xl, y], 21. The value of the function Q at
the point z, g, 2 is therefore given as an integnd of a source
and doublet distribution, the strengths of the two being
determined directly from the respective boundary values of Q
and b~[a~.

Equation (9) eipresses the” vahle of” “Qin t“ti “of” the
surface values of Qand b@n but this relation does not imply
that a knowledge of both these variables is necessary for the
determination .of Q. & can be shown easiIy, another con-
dition may be established which relates the two surface
values. Applying equation (8) to the case where P lies
outside the region of integration, it follows that the integnd
is equal ta zero and that Q and M1/bn.on the surface are
functionalitydependent,

Sufficient information is now at Land to provide a solution
for the t.hin-airfol boundary-value problems, Consider the
region R bounded by the xy piano and a hemispherical dome
of infinite radius lying above this plane. For all problerns b
which the resuhs will be applied, the value of Q m~y be as-
sumed equal to zero at infinity.1 The contribution of the
surface integral over the hemisphere is thus zero and, from
equation (9),

where the integration extends over the entire plane and the
subscript s indicates the function is tc.ho evaluated at Zl= O.
The directional derivatives are necessmiIy in the direction of
the positive z axis and subscripts are again introduced to de-
note conditions. on the upper side of the plane. Keeping P

1If 0 k theper’turbat!orl-fekdty potentiala, it,h amment to easrlrmthat * andas~
arem on thesphereat all polnfshavingradiusvwtorawhichmakeSrdte(rmnzero)ai@~
with thepmithe%axtswhile@andN,’& aremerdg bmndadatW prdutainfhdtelyd!stmt
Mm theMhrg eurfamat a drdtedktb.ncefromthepwitives ark. Thus,therwukeofthe
=lysfs @ beappliedto Jlfting-gnrfaaaprob]em,qwith ijhti tm~~ voflex &&q.

tied and integrating over the lower side of tlm xv plane, it
follows:that

wher~the negative direction of the norrnaI mny be ignored
since the integral is equal ta zero. Subtrac~ing them two
equations givcw the expression

-wm(2-a-$-W,Y, z)= ~=

( )1
(%-%) :+ , dqdy, (lo)

the integral extending now only ovez the arm ~ for which t.ho
integrand does not vanish. Equation (10) is the basic equa-
tion fmm which N solutions in subso~ic wing theory will bc
developed. It sIiouId be pointed out thab the dcrivat ion
proceeded from the assumption that llw. point (z, y, z) Iay
above the xy plane. When (z, y, z) lies Mow tho zy phmo,
howevm; the derivation can be carried through in exactly
the same manner. Such a deve~opmcmtrovcak tkiL equa-
tion (LQ) is general and that no rcstric~ion need ha imposed
on the position of (x, y, z) relative to. t.hcrcforoncc phmc,

As a particular application of equa~ion (10) consider a thin
symmetrical airfoil at zero angle of attack ttnd SCLQ=@
where ~ ia the perturbation velocity potcntiul. Condi~iona
of symmetry demnnd that

Qx=au=a’=fll

-while —.
MU
~=w=

and

Thus, if Wu–wt=ht?

1
‘=—4; SS

, Au)$ dxldyl (11)

and the velocity potential is given by a distribution of sourco
potentiahi. This distribution can bo immcdiatdy related to
the slope of the basic section by means of the equation

The symmetric airfoil can also be treated by replacing G?
by th. perturbation velocity w and in the caso of tio thin
Iifting surface with given loading the function Q can bo scb
equal h ,u. Employing, respectively, conditions of sym-
metry and irmtationality, itt follows that M&- MJ3z
vanishes and, after setting Afl=Qu-f21 cpquation(10) bccorncs
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BOUNDARY-VALUEPROBLEMSINPUBELYSUPERSONICPLOW

Applications of Green’s theorem,-The problem to be dis-
cussed at this point is the extent to which an amilogue to
equation (10) can be deveIoped for supersonic flow fields.
The fist step in the presentation is, once more, the introduc-
tion of Green’s theorem for equation (I) after it has been
modtied to the form given by equation (4). Employing the
operator

❑2=3 $ :’2———

Green’s theorem now beeomes

—m a.) -Js.s
G~–fI* d8–

s
(q--J7-uQm)cU2 (13)

where u is the so-cdIed conornml to the surface S and has
direction cosines equal to uI,w, w such that

uI=— nl, UZ=?21, ~=?’la (14)

where nl, nz, n~me the direction cosines of the normal to the
surface i3 (@. 1). (The conormal at any point xl, yl, 21of a
surface is the mirror image in the plane X=ZI of the normal
through the same point.) J-fu and Q are perfectly arbitrary
functions, aside from satisfying the usual conditions of
single-vahdness, etc., equation (13) reprwte an identity
and this fact will be useful at a.later time. For immediate
purposes, however, u and Q will be chosen as solutions of the
difl%rentialequation under consideration so that

❑ ’.= D’Q=o

and, consequently,

(15)

The use of equations (13) and (15) depends upon an under-
standing of the physical nature of supersonic flow fields.
The essential feature of such flow is the presence of Mach
cones which correspond to the characteristic cones arisii
in the mathematical study of the wave equation. Ii ac-
cordance with these concepts a disturbance in the flow field
can affect the flow only within its aftercone, that is, the cone
with vertex at the point of disturbance and with axis ex-
tending in the direction of the undisturbed stream velocity
vector; conversely, a point in the flow field can be affected
only by disturbances which emanate from points within its
forecone.

When the disturbances are gemerated by a wing it is,
moreover, necessary to speak more specifically about the
nature of the leding edge of the wing. For d cases con-
sidered here the assumption will be made that the plan form
is a polygon, that is, is composed of straight line segments.
If the wing is swept ahead of the foremost Mach cone, tie
cones arising at the leading edge will have as envelope a
wedge-shaped surface passing through and extending back
from the Ieading edge, while-if the wing is swept back of the
foremost lfach cone this cone wiIl be the surface along which
the air first experiences perturbations or disturbances,
Thus, a point P with coordinates x, y, z is affected by all

91)5S~5G12

disturbances lying within its forecone 1?and at the same time
behind the forward surface 1, the nature of the latter surface
being dictated by the leading edge. k @res 2 (a)- and
2 (b) these surfaces, along with the disturbance plane r,
are indicated for two difkrent vcing plan forms. In the
applications of equation (13) the ~ohrne integral is limited’
to the portion of space oommon to the surfaces I’, ~, and r
and the surface integral involves a discussion of conditions
on these surfaces.

Up to this point the analogy between the subsonic and
supersonic cases, insofar as the use of Green% theorem is “““
concerned, is quite apparent. The principal difference whkh
occurred was brought about by the use of the true normal in _
the subsonic field together with the fact t~at the w plane “”
was covered by a hemispherical dome of Mnite radius; ‘-
whereas, in the supersonic field, the concept of the conorrnd _.
was introduced and the volume to be considered was that”
enclosed within a finite region. In continuing the analogy,
however, far more formidable obstwles arise. To begin
with, the discussion of r and Q over the surface in the sub-
sonic case was relatively simple. Thus, with the exception
of footnote 1, Q could be assumed zero at Mnity and Ml
was specified completely in the w plane. But in the super-
sonic case, although AQ can be assumed known in the ~y
plane and, as will be seen later, Q maybe evaluated on the .. -.:.
forward boundary of the region, nothing is known of Q on
the forecone r. Hence G must be chosen properly so that
the knowledge of Q is unnecessary on I’. The most obvious
choice of u vvould be a parti@ar solution of equation. (4]
which would make u= O on I’ and this is in fact the choice
used by Volterra (reference 1) and applied to aerodynamic
problems in reference 2. Howeverj if the analogy is to be
maintained the choice of r is not arbitrary but must be the
threedimenaional supersonic source corresponding to the

z

Y

7h=C08 a VI = 00s (%-a]
?l==008 b u~ “ Cos b
72J= 00s o Va”cos u

FIGUBX1.-Oeomeh3arelatlonsbetweendktkm mdnes(m m m) ofnmd anddktkm
cmines(W WUI)ofconofmltosurfaceS.
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fundamental solution l/r in subsonic theory. But such a
solution

becomes infinite along the forecone I’ which has the equation

(x–z,)’– (y–y,)’– (2–2,)2=0

It is just this dii?lculty which apparently invalidates any
furtherance of the analogy and the prediction in advance
of an aerodynamic shape from a distribution of sources and
doublets in supersonic flow. However, it is also precisely
this d~culty which iE overcome by Hadan-iard’s general
methods.

Extension of analogy by Hadamard’s method,—The fuH
development of Hadanmrd’s methods cannot be given here,
but a rough sketch. of his reaaoning wilI perhaps be useful
The basis of his arguments stems ‘from equation (13).
First it is admitted that the right-hand side of equation (13)

wilI tend to infinity as the surface S approaches I’ so that
I/r, is not a regular solution to ❑2 Q=O on 11 However,
as has been mentioned, equation (1.3)still must hold whether
or not u or Q satisfy the wave equation and thus it still
providas an equality. Hence, if the surface integral t.ends
to irdir@y so also must the volumo integraI. Further, equa-
tion (13) implies that these infinite portions just ctincel since
the difference of the two integrations must always give zmo,
To. deal with such a problem quantitatively by the usual
mathematical techniques would require the study of u limit-
ing’ procees for each new boundary-value problcm. Htida-
mard’s contribution was the introduction and justification
of a concept which removed the necessity for studying the
infinite portions involved. This concept is best prcscntwl
by means of a new notation, thus the sign r is used and is
to be read” the finite part of.”

Using this concept-it is possible to show that if u were set
equal to I/rC,then equation (13) could be writtan

‘lJJHHE1’s “-”-

. . .-.

(16)

so that the “ilnite parts” of each side of the equation would
be equal. Such a notation would, of course, in gcmmd bo
meaningless since in discarding arbitrarily a part which
tended to infinity it would be possible, by proper combina-
tions, ta obtain as a remainder any finite vahe. The fact
is, however, that the integrals involved in equation (16) tend
to infinity only at a limit of the integration and this limit
always involves the forecone I’. It was consequently pos-
sible to devise a manipulative technique to handle equal ion
(16) without considering the singularities .jndividually, It
might be mentioned, without stressing the correspot]dcnm,
that a treatment of improper integrals is also employod in the
use of Cauc.hy’s principal value. In subsonic thin-airfoil
theory and lifting-line theory integrals of the Iatter type are
well known in the form

O<x<c

II certairily tends 10 infhity as X0approaches x but the uso
of Cauchy’s principal value allows the very large values of
the integrand obtained when XOis on either side of z t.o just
cancel in such a way that 11is tilte and unique. So again
the integral

,,=~, ‘-

is ftite and unique and given by Hadarnmd in the form

—

It is actually possible to generalize the idea of “finito part”
to the case when the exponent in the denominator is of the
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form j+ 1P where j is a positive integer but such a general-
ization is not needed for aerodynamic applications and wiIl
therefore be omitted.

In actual calciktion, the evaluation of the intagrt-d1* can
often be shortened. Thus, if the indefinite integral of

J
A(x)dx

(a–x)a~

is written in the form F(z) +0 then

It follows that if C is chosen sc that

c= Iim
[

M@J _~(x)
.~ >~x 1

then the expression for I, may be written 1,= – [F(a) +C’1.
When C is chosen in this manner, the notation for the cal-
culation may thus be modtied to the form

where the astwisk indicates that the upper limit is not
substituted into the indefinite integral F(z) + C.

The technique for the calculation of the finite part has
therefore been reduced to three simple steps: First, the
indefinite integral ..F(z)+ C is determined; second, the con-
stant C in the indefinite integral is evaluated by means of a
limiting process; and third, the lower limit of the integral is
substituted into the indefinite integral and a minus sign
prefied. As an example, consider the integral

G=l@238fi

In this case

F(z) + c= ~%2_1d)1B+c

and

[ 1C=5, (2qJ’4Lz)’fl- (a’:&)’/’ ‘0

so that, finally,

With the aid of this artitlce the analogy between the sub-
sonic and supersonic cases can be continued with relative
ease. Thus, in equation (16) the right-hand member is zero
provided we exclude the point P from the volume of inte-
gration. This can be done most easily by limiting the
integration to the q= cunstant plane, a distance Eupstream
from ~. The portion of this pkme intersected by the cone,
and thus the section over which the integration must be
carried, will be denoted by E @g. 3).

As drawn, figure 3 shows a cross section in a yl= constant

plane for the special case when P ia located directly behind

and above the foremost disturbance. Applying equation
(16) to the regions above and below the disturbance surface
r (plane of the airfoil) yields the two equations

IJJ
.. .—

(M=-- “-””-
).+r+r

(17)lsMw-%lds
Lr+o’w)-:a’’=”.’18)

where the prime indicates the surface value of Q on the
opposite side of r from P.

The integration over 2 can be computed for c very small,
For convenience, consider P to be the origin; then it follows
that since the conornml is in the ZI direction and the area
element can be vmitten

y d-i do
where

the right side of equation (17) will give

= 27rQ(x,y, z)
Z1

,/

/

,/’
/

/’
V1

. -Fweeone r

A f r’ercone A----
.

S&face .X - –

—- _—. — xl

●

FImEzS.–Cross8MMthroughregiond kdegrnt[onussdtoobtdn equatkm(1(r)
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Hence the value of Q at the point P, il(x,y,z), can be deter-
mined from equation (17) with the restriction implied by
equation (18). Further, since only the “finite part” is con-
sidered, the integration over I’ yields zero and the hvo
equations combine to give

$l(z,y,2)=-

HLI:F”:(HH’S:”” --”

. . ... .

(19)

The only remaining diflcrence between the subsonic solution
for the distribution of sources and doublets, equation (10),
and the supersonic solution, equation Q 9), is the integration
over surface L

DISCUSS1ON OF CONDITION9 ON SUEFACE k

By definition k is the timface on which the streamlines of
the flow first experience pressure disturbmces, that is, the
surface along which the stream first bccomea aware of the
existence of the wing. Figures 2 (a) and 2 (b) were i.utro-
duccd to show the nature of the configurations involved for
two different plan forms. It is apparent that when the wing
is swept ahead of the foremost Mach wne the wedge-like
form of x is comparable to the wedge appearing in purely
two-dimensional problems while the wing swept back ‘of the
Mach cone has for its h-surface a cone and thus ma-y be
thought of as involving a purely threedimensional problem.

In order to determine the value of@ on X it”is sufficient to
impose the cortdition that the tangential component of
velocity is continuous across k Such a condition represents
no esseutial restriction since it is an immediate consequence
of continuity of mass flow and cantimiity of the tangential
component of momentum across the surface. As a restdt
of this condition, howeveq it follows that the tangential
component of the perturbation velocity is zero on the down-
stream surface of h since i~is ob~ioudy zero on the upstream
surface. Moreover, velocity being equal to the gradieut of
the velocity potential the perturbation-velocity potential
must be equal to a constant on k But an arbitrary con-
staut can be added or subtracted from the vclocity potential
so that with no 10SSof generality the value of @ on A can be
assumed equal to zero and, since the conormal liee on the
surface A, ?M/&Jis also zero.

The complete analogue to equation (10) has now been
developed for Q=@ so that ,.

Q(x,y,z)= . . ;“”

When Q is equaI to one of the perturbation-velocity com-
ponent, it is obvious that boundary conditions over A and ~
cannot be considered to be abaolutely arbitrary since it is
necessmy to include the added restriction thti~tho rwul tanL
potential @ also satisfies the equation

Considerhig “&at the case where tlw wing is swept behind lho
Mach cone, it follows that

“-s

z
— ‘w(z, y, 21)(L21+iq.i

and, aftir evaluating the partial derivatives of @ and sub-
stituting in the given differential equation, clircct calculation
leads to the conclusion that on k the following difforcnt.itil
equations hold

au,
2y a3+2z ~+ul=o

where W, Ul,and WIare the values of u, v, and w on h. TIIa
general solutions of these linear pn.rtirddifTorentiaIequations
can be written as fallows

It has been stated, however, that the tangential compm~cnt
of the total perturbation-velocit y vector vanishes on h, or, in
analytical terms

lul+ntvl +nwl = o

where i, m, n are direction numbers of any hmgcrit to A ntld
therefore satisfy the relation

lx-my -nz=O

Substituting the known cxtprcsaiansfor
that

ul, vl, wl, it follows

Consideu now the special case when 1=0 and rn= –nz/y
Under these conditions

-2’’(9+:F’(3=0



SOURCE-SIXKA?NDDOUBLET DISTRIBUITON9IZXT’EXDEDTO SOLUTIONOF BO’UND~y-V~m ~ROB~~S m s~ERsomc FLOW 165

so that

“(:)=:F’(;)
Sims the variables z/z and z/y are separated, the solution of
this equation may be written

()F,:=
(Y)

Kand F8 ~ =K:x

where E is a constant. Returning now to the case where
/, m, and n m-e in the ratio x: y: z, direct substitution into
the above equation gives

$Fle)+:F’(:)+:F’(;)=O
so that

and

%)=-K%+:)
This equation can, however, be written in the form

F, (y/Z) =–K~,
z/y+ yjz x

from which it follows that K=O and F,= F4=F,=0. All
perturbation velocity components are seen to be zero, conse-
quently equation (20) is valid for all cases in -d&h the wing
is swept back of the Jlach cone.

A discussion of conditions on the surface k will mxxt be
given for the case where the leading edge of the wing Iies
along the y axis (fig. 2 (a)) and where S2represents u or w.
The perturbation-veIocity potential @ may be given by the
reIation

&r,g!,z)=
J

:Zu (z1,y,2)al

where the phls and minus signs in the limit apply, r*pective-
ly, to conditions above and below the xy plane. Since 0“
must satisfy the basic differential equation, m added re-
striction is imposed on u and m a result of this condition it
can be shown that -.

a%
z=”

where U1is the value of-u on either the lower or upper surface i
of the wedge. It folIovrs that the valum of u on the two
surfacw are

Ul=jl(x;y) and UI=~&, y)

and, since the scdution is independent of z, and x is propor-
tional to z in both cases, the tial e.xpressiomare

til=jl (y) and ul=f~ (y)

If O(Z, y, z) is defined m an integral involving u), the same
type of mmlysis leads to the conclusion that w on the two
surfaces can alsa be expressed as functions of y alone.
Perturbation velocity uwill not be considered for this type of

—.

leading edge since the inclusion of u and w covers all corn ___
mordy used bonndary conditions.

It remains to substitute the results just obtained into
equation (19) in order to study the contribution of the inte-
grals over X. Apparent.ly only one term in each i.ntegrand
need be considered since the cortormalis perpendicular to the
y atis and the gradient of Qin that direction vanishes. As a
preliminary step to setting up the integrak it is convenient,. .
to introduce a new coordinate system ti’, y“, z“ whi& is
obtained by rotating the axial system about the y axis so
that the z“ and z“ axes lie respectivelv in the lower and
upper wedge planes while the >~ axis-
y axis. The transformation ,of variables

=1 (x,– z,)
‘“ 8

Z“=jj (Zi+ZJ

coincides with the
is

TThen Q=U, the last two integrals in equation (19) ,~ay ‘-
now be mitten

;.lJ!EJ@)@’J-& (:)~z”- “-” -
——

~:
1

--—-—~

Substituting for rc, this-expression becomes ,:

. .

or
1

J

Y+@=7 flhfl)dyl——
2r #-~1 J9- (y.-yJ’-&—

1

s

u+@= fJyJdy*—.—
!z u-~@- (y–y,)’–&

—

It .is apparent that if J (y) = –jZ(y) the integrals combine to
give zero so that equation (20) may again be used in aIl cal-
culations; moreovei, the same condition applies when Q= w
The assumption that.J(y) = –~z(y) is equivalent to postu-
lating that in all casmj,(y) and~~(y) are odd functions of y.
In applicatio~ however, this property is alwap maintained.

It remains fhdy to consider the case when the leading
edge of a wing is swept ahead of the JIach cone and when Q
is a perturbation-velocity component. & a means of
avoiding unnecessary complication in treating tie probI~- “-
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it is possible to substitute first the transformation (refer-
ence 5)

#=–y+mx

7 =—x+?ny

where the leading edge has the equation y=mx, z= O, and
?n>l. Direct calculation shows that the basic differential
equation and the Mach cone are invariant under the trans-
formation and that in the new oblique coordinate system the
leading edge lies along the q axis while&o planes of the wedge
become

g+f=o

Because of the invariant.properties of the transformation, and
the fact that the z=O plane is fixed, equation (19) is appli-
cable directly to the boundary-value problem for the swept
wing m the new coordinate system. The treatment of the
integrals over k can therefore be developed algebraically in
exactly the same manner that applicd to the previous case,
hence u and w are constant aIong the lines

.E7t=0, q=const

and, again, if conditions of skew symmetry are maintained
above and below the z=f= Oplane the integration over the
surfaces X cancel. Thus equation (20) is seen to be valid for
Q equal to perturbation-velocity potential or perturbation
velocity for all types of straight leading-edge configurations.
And this is the complete apalogue of the subsonic theory.

APPLICATIONS

1NTEEPEETATION OF PREVIOUS RESULTS

As a means of indicating the various problems to which
equation (20) can be applied, thee previously published re-
sults will be discussed. These applications include, first, the
expression for the perturbation-velocity potential .of a sym-
metrical nonlifting airfoil (reference 6), second, the calcula-
tion of pressure distribution over a semiinfinite wedge with
leading edge swept back of the foremost Mach cone (reference
5) and, third, the integral equation method for determining
the load distribution over a lifting surface of arbitrary slope
(reference 7).

As in the case ofi.equation (11) for subsonic flow, let Q
represent veIocity potential@ and consider the case of a sym-
metrical wing at zero angle of “attack.

Then M@z=wU and bfl@z=wl, where WUand wl are in-
duced vertical velocities on the upper and lower surfacea,
respectively. Moreover, @u–@,=O for the. symmetrical
case so that, since w~—wl=2wU,

.

“=-m%= “-“““”-----”
The integral in this equation is finite at r so the finite part
sign may be disregarded and

(21)

This equation agrees with results given by I?uckeLt(refcrenco
6) and others.

As another mampIe consider the solution used by B. T.
Jones in reference 5 for a noxdifting symmetrical @rig. Set-
ting Q equal to w in cq~iation (20) and.using.the_f.ac!tLhatw
and u are related by the expression

itfollows that

“=w:’zlm=m=- ’22?
For a wixlge swept-behind the forward Mach cone and haviog
as the equation of its leading edge the relation VI= rnxl, the
expression for u maybe written in the form

where

,_hFzFG=) ““””““l— 1

Perforating the integration with respect to rl, it folIows that

“=WL-7’4Y’ ‘(z-%)?“ “[(1/-YJ’+zl\/(+–(Y-Yl)’-~

and, after reversing the order of integration.

H~=w> Z3 “1

“fi”dy’tin” ‘- ““” ““

““‘“““-”-=
~(’-:)-(y-yl~’-i(!(:),Y, “-J [4()+!g ,)y’_ln

x_& a–~ 1()(y-y,) ’-#+k X–;

where k.= 1 for z>yl/m and —1 for x<y~m. Taking the
partial derivative with respect to x and noting thut the value
of the logarithm at the upper limit is zero, tho value of tho
induced velocity is

and integration yiehis the final rwd~
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Using equation (2) and setting wJV equal to (dz/dz)O the
slope of the surface, th~ may be mitten

Equation (23) gives the pressure coefficient at any point in
the field produced by a wedge swept behind the Mach cone.
men z is set equal to zero the pressure distribution over
the wedge itsdf is determined and the equation corresponds
exactly with equation (12) of refercmce5.

IT’henloading is to be prescribed over a thin lifting surface,
Q may be assumed equal to the perturbation veIocity u. A
direct consequence of this assumption is that in equation (20)

since, from conditions of irrotationality,

By definition

C,u= –+, c,,= –+

and load distribution in coefficient form Ap/g is given by
the.relation

@ c,, C,u—.———

Equation (20) can therefore be -writtenin the form

If equation (24) is transformed to the original space
variables, the relation for u is

I Ss ‘~ Z dX1 dY1
U(x, Y,z) &.—

v 41r,{(x–xJL3’[(Y-~l)’+a}sfi’25)
Equation (25) is valid for arbitrary plan forms with known

load distributions. Particular examples which may be
worked out with relative ease are the Mting surfaces carrying
constant load. Once u is known the value of w can be
determined from the integral

imd from w the ordinate z of the surface as a functioti of x
and ~,is given by

where 1. e. denotes the leading edge. A discussion of
trapezoidal, rectangdar, and triangular plan forms with
constaut loading is given in refcrence !2although the method ~_. .
of derivation is different.

Merest in constantly loaded wings has been based pri-
marily on the fact that in certain cases they can be comtincd . .
to produce surfaces of given camber. Thus, a superposition
of trapezoidal plan forms of variable rake, the constant.
loading over each trapezoid being a function of its rake
angle, can be used to produce a flat plate of trapezoidal or
rectmgtiar plan form at an arbitrary angle of attack In
this case the loading as a function of rake angle is determined
so that induced vertical velocity is kept constant. For
problems in conical flow a Iifting element can be constructed
by subtracting from a constantly Ioaded right triangle with
angle of sweep equaI to 8 the constantly loaded right triangle
with sweep angle equal to &d& The resultant eIementcarries
a constant load and has a sweep angle equal to & By sum-
ming these elements it is possible to fid the load distribution
as a. function of 6 such that certain flat ltiting surfaces at
angles of attack are formed. In reference 2; ‘triangular_
wings swept back of the Afach cone were studied by this
method for arbitrary angks of yaw. Brown (reference 7)
has used ibis same lifting element to study the more restrictive
case of the symmehical triangular wing.

A brief discussion of dflerenc~ existing between the meth-
ods for producing the swept-back lifting element will shed
some light on the various lines of attack. The approach
used in reference 2 is ewentialIy mathematical in that a par-
ticular solution of the partial differential equation is used m
conjunction tith Green’s theorem to satisfy the boundary
conditions of the problem. The principal criticism of such
a method is that the physical interpretation is missing. The
use of equation (25), however, removes all such criticims
for precisely as in the case of incompressible flow the lifting
element is created by distributing doublets OVer the wing.
h Brown’s solution it was necessary for him to determine
first a line of sources by means of an integration along we
Lineand then to form the doublet line by dHerentiatiug aIong
the normal to the line. The order of differentiation for in-
compressible flow is immaterial, since the limits in the inte-
gral are independent of the position of the point P at X, Y, Z.
Supersonic flow des.txoysthis property and it is only after the
introduction of the concept of %nite part” that the deriva-
tive of an integnd maybe titten as the integral of the dif-
ferentkd coefficient of, the integrand. Equation (25) @s_ _.
maintains the analogy with previous work.

LOAD DIS’JXUBUTXONFOR ROLLING WING

The usefulness of equation (20) is not at all restricted to a
synthesis of previously known solutions. As an example of
its generality co&der its application to the problem of the
rolling wing with leadmg edge swept ahead of the Mach cone.
F~e 4 shows the boundary conditions involved. The value
of w is specified over the wing and, since the Mach cone is
behind the leading edge, the value of the perturbation veloci-
ties u, v, and w are of course zero ahead of the leading edge.
kw.me for the moment that a symmetrical body at zero
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angle of attack is considered. It follows that if QU=WU”and The area r in equation (27) is that contained lmtwcon the
Ql=wl then equation (20) can be written in the form leading edge and the trace of the forcconc on tho A-l” plane.

11 /*/.>/.\ ... ___.... .. ..- Fiie.5 (a) *owe the configuration for three Lracos corrc-

‘=WJ,wuw)’’’dy’ (26) I
since, for reasons of symmetry, the normal gradients of w on
the two surfaces are equaI. Using now the fact that file
Mach cone is behind the leading edge then the pressure over
the upper surface is independent of the shape of the lower
surface and equation (26) niay be apphd directly to the.roll-
ing flat plate if WUis determined from the given induced
velocity on either the upper or lower surface. This method
of approwh, of course, limits the solution to cases where the
leading edge is ahead of the .Mach cone.

If the rate of roll is given as P radians per second then
2ws=2Pl~ and equation (26) becomes

P 1ss
..w=!- /s2Y,ZdY,dX,

T T[(x–~J2–B’(y–yl) 2–B2@18’2 “’27)

spending t.c.forecon~. from the points PI, Pz, and T’s, TIw
region containing the point PZ is distinguished from thaL

“containing PI and P8 by the fact that ~ for Palies ahead of Lho
Mach cone from the apex and, furthrmoro, cmtireIyon tho
right of the Xl axis. The regions corresponding to F’, and
Pa differ in the fact that when integrating from + m to Z
to ilnd u, the upper limit of tho integral in the firsLcase is
the Mach cone .3?– 19V– 19XZZ=0whereas in tho lattm cam

the upper limit is the kading-edge wedge Z.=;-l) (fig.

5 (b)). The solution must be Wfied out separately for each
of these regions but only the details for the region c.orrc-
spondirig to Pi need be given here since tho olhcrs are similm,

It follows that the induced Yelocity u at the point P kgiven
as the.sum of the triple integrals

...- . .. .. . ._

~pz

s J
o

J

*
Y,d Y,

/32ZOdX1
‘qjz; ;d~ ‘~ A(W) -22 [(X— X1)2—P’(Y— Y1)*—19*zoq8/~+

m

~pz

J
dZO

J J
pzodx,

a; 1

A(-I,Z4) y,~yl : ~(x_xl)+y’~-

~lf=m. 0 z
K)2-P2ZOT’J

s
zo~l(x+k:)m ., -- -- (28)

‘z~f;(k,Z) ~(y_ yJ2r+~2’j (~+k ~‘k.%,, 23: ;;>

d ‘ ‘Y-
m’- YJ’-@’~’ ‘ J

where A(k,ZJ is the value of Y1 determhied by the ititm%ectionof the forecone w-it.hthe leacling edge ou thg righL and _
left sides with k equal respectively to – 1 and +1. (See fig. 5 (a).) Thus

-~;+p~y)+kp~(x+kfl+~~~-~)- ““ “’”’ ‘-” - -““

A(ii,ZO)= - ~ ..- . . .. . ... . .. .. .~.. . ..._.

i7-~2

‘ After reversing we order of integrating and integrating with respect to ZO,it follows that

u=
k-~1,1 k & & S:{k,z) “d~~n

[

(x+’%)-d(x+’:)-~’(y-=l)’-~’~ ‘- ““”1(x+’2)+d(x
Moreover, since. the integrand is zero at Y,= A(k,Z) the derivative with r=pect “toX can be taken inside tho integral nnd

u ,:2,1 :kJ;(k ~
Y,dYl=-=

‘ d(~+:k)-f12(y-y1)2-~’~-”’ ‘ ‘“”-’ “ ““ ““-”--

Integrating in thi? Equation and combbing terms it follows that induced veIocity u ia given by the expression

u—
:"'(:f~:;{arc~[,,(mi:gfi:i*,,;l-:}-:i#I;F2{arc`i:L,@ysi;txi,,m]+;} ‘

——

(29)
Setting Z= O in equation (29), pressure co-ficient C,= —2zL/~7is given by tho expression

{
m13’Y-”k”””arc sk rnfi2Y- X.

c,=% m’ (m~pf-l)~
[ 1

mf12Y+X
~~ – (rn2&l)a’2 -~cs~L=l+A%4 W)

when ~/3 Y. —



SOUFWE-SEYKAND DOUBLET DISTRIBUTIONSEXTENDED TO SOLUTIONOF BOmDfiy-V~~ pROB~~~ ~ s~ER~~c ~W 169
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This solution holds in both regiona containing the points
PI and Ps. However, in the region ahead of the Mach cone
but still on the wing (region corresponding to F’J it is easy
to show that

(31)
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where Y/m< X<6Y. F@re 6 shows a spanwize plot of

G [u@ ] form=2 and 13=1.

Equationa (30) and (31) provide sficient information for
the calculation of the st.abtity derivative for damping in roll, -
c,,. Integration of the load distribution yields the result
that -.

LOAD DISTRIBUTION FOE PITCHING WING

Another simple application of equation (2o) is found in
the solution to the problem of the pitching wing. F~e 7
shows the boundary condition involved which is that the
vertical induced velocity be a linear function of Xl. If Q.
is the rate of pitch in radians per second, then w= QX1 Ori
the wing. Again the solutiotn is obtained only for wings
-which have leading edges swept ahead of the Mach cotil –
(Although solutions cari be obtained for Ieading edges swept
behind the Mach cone, they involve integral equatiogs an=
do nothing to illustrate further the direct methods of thk .
report.)
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In tki tioll.ingwing case, Q was set equal to perturbation
velocity w and as a result a distribution of doublcds wns
used in equations (27) and 28). & an example of the
manner in which source-sink distributions may be used for
the same type of problem, equation (22) wiIl bc applied in
the present case. Since the wing is swept ahead of tho fore-
most Mach cone, induced eflects on the upper and lower sur-
face are independentrand

J -.

@

1

SS
QX, dX, dY.=——

1(X–-X 1) ’–m-m=’m
(32)u r?

Again three regions containing the points n, Pa, and Ps nro
distinguished (fig. 5 (a)) and the solutions wiII be derived
omy for the region containing PI. Integrating firs~ with
respect to YI and then differentiating with respc.ct to .1”
yields

where. .
X–j%4m–flk~(Xm-kY ‘ ~ l–?ng/97-a

B(k,”Z)=m ~

Consisting the limit as ZaO and integrating gives:

?nx(2”-?n739—

mX(2 —mzp~ — Y
T arcs’(ii=%)+

mX(2—m2B2)+ Y
w- arcsin(:i%%)

(34)

Formula (34)isvalid for the regions PI and P, of figure 5 (a].
For the region Pz the solution is:

““”c v,~ (m’82– l)alf= Y—2Xm+Xms~z (35)

,.

[ (Qc)lfo‘=2Figure ~ shows a spanwiae plot of # 1/ 2V

and @=l.
-...

Equations- (34) and (35) provide sufficient information for
the calculation of the stability derivative for tho damping in
pitch c~~. Integration of the Ioad distribution gives tha
rees.dt

c w. 4
“t=_=–@

where the axis of rotation is at X=2C[3.

AMES AERONAUTICAL LABORATORY,

NATIONAL ADVtiOILT COMMITTEE FOR AERONAUTICS,

NIOFFE~ FIELD, CALIF., January 1948.
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