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A METHOD FOR STUDYING THE HUNTING OSCILLATIONS OF AN ATRPLANE WITH A SIMPLE
TYPE OF AUTOMATIC CONTROL

By Rosert T. JonES

SUMMARY

A method 18 presented for predicting the amplitude and
Jrequency, under certain simplifyring conditions, of the hunting
oscillations of an automatically controlled aircraft with lag in
the control system or in the response of the aircraft to the controls.
If the steering device 18 actuated by a simple right-left type of
signal, the series of allernating fizxed-amplitude signals occurring
during the hunting may ordinarily be represenied by a “‘square
wave.””  Formulas are given expressing the response to such a
variation of signal in terms of the response to @ unit signal.
A more complex type of hunting, which may involve cyclic
repetition of signals of varying duration, has not been treated
and requires further analysis. Several examples of application
of the method are included and the results discussed.

INTRODUCTION

When an airplane or other aircraft is directed by a-simple
right-left signal from an automatic steering device, the
result is usually & meintained hunting oscillation about the
desired path. The amplitude of this oscillation is influenced
by the amount of backlash or ““dead spot” in the control
system and by the damping of the motion of the airplane.
In the following analysis the amplitude and frequency of
these oscillations is investigated in terms of the response
characteristics of the airplane.

ANALYSIS

The analysis is based on consideration of the response of
the airplane (in terms of angle of yaw or pitch) to a continued
(unit) signal (fig. 1). This response may be calculated by
the ordinary theory of dynamical stability and is conveni-
ently represented in operational form (references 1 and 2) as
follows:

E.(@)=RE\(D)1(1) (1)

The unit response ordinarily occurs in the form

BD)=HD
from which is obtained
Bi()=C(t)+(Cie+Coe' 4 . . ) @)

where Cft) is the steady-statec motion, G, and C; are the
constant coefficients of the Heaviside expansion, and A;, X,
and so forth, are the nonzero roots of the characteristic

equation defining the natural periods of oscillation and the
damping of the aircraft without signal. The function (D)
and the particular solution C(¢¥) depend on the time variation
of control displacement produced by a signal and on the
stability characteristics of the airplane in the degrees of
freedom in which the control operates. (See reference 3.)
In the case of a continued signal, the usual form of the func-
tion C(t) is
CH)=C.+Cd

where () is the steady rate of turn called for by the signal

and C_; is a constant. (See fig. 1.)
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F1GUrRE 1.—Typlcal response to continued signal,

During a hunting oscillation, the automatic steering device
reverses the signal periodically as the airplane swings through
the desired heading. A typical hunting oscillation is shown
in figure 2. Here it is assumed that the reversal of signal
is delayed either because of a ‘“dead spot” in the steering
device or because of backlash in the control mechanism or a
combination of the two. As indicated, the oscillation will
have a fundamental period 2#f/w (where o is the angular
frequency of the hunting cscillation) but may also involve

487



4388

components of higher frequency, depending on the natural
modes of oscillation of the airplane. Ordinarily, the shorter-
period components do not have sufficient amplitude to cause
a reversal of the signal during a half cycle. In these cases
the variation of signal with time will be represented by a
simple “square wave,” which may be expressed as a function

of time by
4 1 . =
= En ;7—1 sin nel (r=1,3,5,...) -3

or, more convenieutly, by the imaginary part of the cor-
responding exponential series; that is,

4. 1

where ¢=0 is taken to represent a time at which the signal
becomes positive.
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Flaurr 2.—Huntng osclllation with ‘“square” signal.

The response to the alternating signal is obtained by
substituting expression (4) for the unit function 1(f) in
equation (1). Thus,

R(®H)=I. P. RI(D)é Z% ginu ®)

1f the airplane is inherently stable, so that transient effects
following the start of an oscillation disappear with time, the
remaining steady oscillation will be represented by

R(®)=1I. P. § z}L By (inw) et 6)

Equation (6) gives the forced oscillation of the airplane in
response to an alternating signal in the form of a square wave
of any frequency w.

By investigating the form of these forced oscillations at
various frequencies it will be possible to ascertain whether
such oscillations, under the conditions of automatic control,
will give rise to the assumed alternating signals of equal
duration, and thus to establish certain ranges of » over which
hunting of this type can occur. It will also be possible to
establish, in these ranges, a correspondence between the fre-
quency of the hunting oscillation and the magnitude of the
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dead spot. With the frequency determined, it is possible
also to find the amplitude of the oscillation and the maximum
deviation of the airplane from its path.

In the simplest cases the required information may be
obtained directly from equation (6). In the case of more
complex motions, further analysis will be required as follows:

As g first step, separate R1(inw) into its real and imaginary
parts

B, (inw) = A(nw) +iB(nw)

The functions A and B may be plotted against nw as in
figure 3. These functions will show peaks near values of nw

T Regonant-. }
< frequencies ™
/ |
¥ ]
! 1
A [ |
and |
. B I
[ B I A
[ I
| |
(o] nw I M"

F1gURE 3.—Curves showing fn-phase and out-of-phase components of responss to
periodic signal.

corresponding to the resonant frequencies of the airplane.
‘Then, for any particular hunting frequency o,

R(®) =§_— ;7% [A(nw) sin nwt+B(nw) cos nwl] 7

At the time of reversal of the signal sin nwt=0 and
cos nwi==+1, the sign depending on whether the signal is
becoming positive or negative. The amplitude of the response
at this instant is therefore

+2[ B@+3BG+3BGa+. . .|

This amplitude will also be the amplitude of the dead spot.
(See fig. 2.) A plot of
4 1
Ryp(w) =;;EB(7M’) (n=1,3,5,...)
can readily be obtained from the curve of B in figure 3 and
will show the periods of the hunting oscillation corresponding

to various widths of dead spot.
The slope of the response curve at this same instant is

Rf3=(%§)3=%° [A(W) +AB)+AB)+ . . ]
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If the response to a positive signal is negative (as in fig. 1),
in order that the motion represent & possible hunting oscilla-
tion (that is, be consistent with the assumed variation of
signal), it is necessary that

(M Bp20
for a positive dead spot, and that
(II) R’5>0

indicating that the airplane crosses the dead spot in the
proper direction. A further condition is that no more than
one complete crossing of the dead spot occurs within one-
half cycle; that is,

(I11) R@t)>—R,
(See fig. 2.) The value of R(f) in the middle of a half cycle

is relatively simple to obtain v

R4=;{:A(w)—§A(3w)+%A(5w)- . ]

and may be used as a criterion, though R, is not necessarily -

the maximum or minimum vsalue of B() (see fig. 4) and
condition ITT may not be satisfied even though B,>—R;.

ey i Possible hunting regions---~_
e iy )
Pg { 6 g !
oﬁtﬂ Eg 2N\ 2
Ay ﬁj té B g
AN
> E;‘{' ¢ \\\ ,’/—j4->u)
4 E B\ \\-L//// 2
j E \\\ // g
P - 3
!
R(t)

Half~cycle of hunting motion

F1GURE 4,—Plot of R4 and Rp sgainst frequency, showing approximate regions in which
huntjng osclllations aro possible and width of dead spot In those regions.

. It should be noted that, in the regions excluded by the
foregoing conditions, & more complex type of hunting
oscillation involving a sequence of signals of different dura-
tions may occur. In these regions, the curves of R, and
Rp derived for the square-wave signal no longer apply to
the condition of automatic control. These oscillations re-
quire enalysis beyond that presented in this report.
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EXAMPLES

In order to demonstrate and check the procedure described,
assume a simple response characteristic in which the air-
plane immediately starts turning at a constant rate, as
directed by the signal. With this response

BED)=-5

= G, .
RBi(nwt =.a° 1
and, from equation (7),

4 G
RO)=-33 2

€oS Nuwi
T

which is the Fourier series for a “saw-tooth” wave 90° out
of phase with the signal. (See fig. 5.) In this case the
response occurs without lag and the amplitude of the hunt-
ing is exactly equal to the dead spot. The frequency «
is x(C,/2 divided by the width of the dead spot.
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FIGURE b.—Example in which response is instantaneous.

A simple example nearer the practical case is one in- which
the signal causes a force F to act on & mass m. In this case
the response to a unit signal is

F1
RI(D)‘——’E'ﬁz

and the hunting oscillation is seen to be

R(t _— Z—_i sin nuwt

The expression is recognized as the Fourier series for a
succession of parabolic segments (fig.- 6). It should be
noted that there is no component out of phase with the
signal, with the result that Rp is zero for all values of w.
Hence the calculation shows no possibility of hunting with
a finite dead spot. In fact, it can be seen from energy
considerations that if a dead spot existed the oscillation
would be divergent.
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Figure 6.—Hunting osclllation of mass acted on by force.

Intercsting applications of the method are furnished by
cases in which the response to a signal shows a lag, possibly
due to backlash in the control mechanism, in addition to a
dead spot. A simple exa.mple of this kind is illustrated in
figure 7. Here the response is similar to that in the first
example (fig. 5) except for the time lag 7. Use is made of
the well-known lag operator e 2. Thus,

P f(t) =/ (t—)
Applying this operator to the response in figure 5 gives

R(D)y=—e"" %
R (inw)= Go (sm nwr+1 cos ner)=A+41B
and, finally (equation (7)),
R(@)= Z) (sm T SIn ~wi-tcos nwr €08 Nwl)
=% ;% cos nw(t—7)

With the lagging response, the hunting oscillation is not
confined to the amplitude of the dead spot and, in fact,
hunting will occur with no dead spot. It is easily seen by
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Figure 7.—Example in which response shows lag.

reference to figure 7 that the half period of the oscillation
in this case (no dead spot) is

=27
w
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