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SUBSONIC FLOW OVER THIN OBLIQUE AIRFOILS AT ZERO LIFT
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SUMMARY

A preoious report gate calculations for the pres8ure dMri-
tndion orer thin oblique airfoils at supersonic 8peed. The
present report extend8 the ca&u.h%0n8 to &ub80nic 8p~ed8.

It k jwnd that the$ow8 again can be obt~ined by the super-
position oj elementa~ conical jow jield8. In the case of the
swept-back wing the pre8sure distm”butions remain qualitah”cely
similar ui swbsonic and euper80nic 8peeds. Thus a distm”bution
~“milar to the Ackeret iype of distribution appears on the root
8ect%n8 of the ~wept-back Mung at M=O. me resulting pom”-
~ire pres%ure.drag on the roof 8ection i8 balanced by negatice
drags on outbtird sections.

INTRODUCTION

So far as is known, attempts to extend airfoil pressure-
distribution calculations to three-dimensional flo~y have
been confined to cases of thin lifting surfaces. It has gen-
erally been assumed that the component of the pressure
distribution arising from the thiclmess of the airfoil vdl be
but Iittle affected by the tite span, or aspect ratio, of the
wing. This supposition is borne out by the known incom-
pressible-flow solutions for flat ellipsoids. These solutions
show that the usual variations of aspect ratio produce sma~
effects.

Corupressible-flow theory &ows, however, that the effects
of pkn form become more pronounced at higher speeds:
The theory indicates a progre=ive. reduction of the equiva-
lent aspect ratio as the Mach number approaches 1.0.
Hence at these speeds the three-dimensional character of the
flow can no longer be nq#ected. Of particular interest are,
the deviations from two-dimensional flow near the root
sections of a swept-back wing, since the adveme effects of
compressibility may arise fit in this region.

In the prwent report three-dimensional flows are obtained
from a distribution of “pressure sources” in the chord plane
of the airfoil. The shapes thus obtained are symmetrical
airfoils at zero lift. The calculations are simpMed by
considering airfoils composed of conical or cylindrical surfaces.
In these cases the sources can be arranged into fines of uniform
strength foIIowing the generators of the surface. The relat ion
between the strengtha of the line sources and the shape of
the airfoil is the same as in reference 1; that is, each line
source produces a deflection of the streamlines omssing over
the.source. The pressure field of the line source again can be
represented by systems of straight rays of equal pressure
(isobars) radiating from the ends of. the line souroe.

In general, the present developrneut folIows closely that of
reference I and the reader should consuIt that report for
additional details of the method. The scdutiona are given
explicit ly for M= Obut are extended to other Mach numbers
by the well-knom Prandtl transformation.

THE OBLIQUE LINE SOURCE

It is well known that an individual velocity component of a
potent.ial flow will satisfy the same differential equatkm as the
potential. In the approximation of the thin-airfoil theory
the pressure depends only on the individual component u,
that is,

Ap 2U
y=~ --(1}

whiIe the dope of the surface depends only on the imlividual
component w, that is

dz W
~=v (2) “

(See appendi~ for symbols.) Hence in the thin-airfoil theory
it is often more convenient to deal directly with the velocities
u and w as solutions of Lapl.aee’s equation than to derive
these components from a velocity potential P.

——

Siice u is proportional to the pressure, a solution of
Laplace’s equation can represent directly the pressure distri-
bution, hence the term “pressure potent ial.” In this
terminology, the fnndamental solution

(3)

represents a point- source of prewwe rather than a point
source of fluid.

To get the effect of a row of sources, or a line sourmjalong
the z axis between the points a and b, it is necessary to inte-
grate equation (3):

The pressure field of the finite line source thus consists of the
sum of two conical pressure fields radiat~ from the ends of
the line source. (See fig. 1.) In the supersonic case (~.er: _L-L~
ence 1), the radial isobars forming the conical field were
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FIGUREl.–ProEiirre field for ilne sourw.of fongth (b-u).

confined to the downstream Mach cone. Hare, however,
the iaobara extend. over the whole space.~

If the direction of flight is along the axis of the sourm.
(x axis), the flow wiII satisfy the boundary condition for a
body of revolution. However, if the line source is turned
out to a position oblique to the stream, the boundary shape
will be distorted and, if the angle of obliquity is Iarge enough
to place the Iine source well oukide the diameter .of the
original body, the figure formed @l be an. oblique wedge.
The nose angle of the wedge @formed where the streamlines
of the main flow crow the line source. .

At supersonic spc~ds the expression for the oblique line
source was obtained by applying an equivalent of the Lorentz
transformation, for which the wave equation is invariant.
The equivalent transformation for LapIace’~ equation is a
rotation of the axes, gjven by

1The cmfcd prweure McI for eithet the subsonio or the snpaeonk llne”rmmci may bo ob-
tainsd dfreotly from the gensraf eolrrtions of hplnce’s equations of raro dsgree in z, #, z $iven
by W. F. Donkfn. (SSSrefsmsm 2, page 8S7.) The genod solutionfe

(

U*{Z
tb=f

z+@-P+zs ‘)

The solution oorrsspmcfing to the subwnfc lfne eourw fs

u++
U--R.P. 1~ —_

z~w”= SW-!J;+Z . . . . . .

while the dekl for the supszsonfo eourw fs given by

U+fz
u= -R.P. ]og = O@h-1r+,-

+ . ....”.

where m is the slope of the new axes relative to tho “old.
@Tob””ihat ii change of scale is admitted for convcnicnec.}
The geometry of the pressure field relative to tho line sourco
is not altered in any way by this rotation and the iaolxws
behave as though they were rigidly at~achwl to the ends of
the source. For a line source with onc end at the origin,
we have

x’.1l=sillh-1
7h/’)2+(O;” ““””

This field is illustrated in figure 2 for the plane z= 0. &
m+ cu tie z and y axes interchange and there is obtained

for a line source along y.
The vertical velocity w near z= 0, which determines the

shape. of the boundary,- may be found by integrating u with
respect” to z and then dif%mmtiat.ing the result.ing vgloci~y
potential with rwpect to z,

(7)

Evaluation of this integral for the overlapping fields from
two ends of a line source gives

w=kz. Y - (8)

-. -.. .

over the area of the w plane behind the line source,
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FIGCEE2.—Pressure field due to one end of ublfque Mm source.

The figure formed by the streamlines crossing a line source
is thus a wedge+haped body having an pblique leading edge
anc[ extending indefinitely clovcostrea.rq It is evident from
equation (4) that the infinitely wide wedge cannot be treated
in subsotic flow, since it creates an irdlnite pressure disturb-
ance at all points.

The slope of the wedge surface a-way from the chord plane
is given by

dz_w
G–T (9)

With this relation and equation (8) the pressure coef6cient
near the plane z=O may be expressed in terms of the s~ope

where Iv’I indicates the absolute magnitude of y’. I?ollowing
the thin-airfoil theory, the pressure over the chord plane
(z+O) is taken as the pr-ure over the actuaI airfoil surface.

AIRFOILS BOUNDED BY PLANE SURFACES

It was seen that the effect of a Iine source in the pressure
field is to cause a deflection of the streamlines crossing the
source. The deflection thus produced is .equal and opposite
at points above and beIow the chord pIane, so that the
source spreads ha streamlines apart. If the source is
folIowed by a sink of equaI strength, an equal opposite deflec-
tion of the streamline will occur as they cross ovu the sink.
The figure formed by the. strearnlims near the pIane .z=O
will thus be a plate of uniform thickness with a be-reled
leading edge? (See @. 3.)

: Aemrdlng to the thkdrfofl theory the thklmees of the figure ends abruptly at the ende
Oftie MUIR UUE?., A more CZM%UIns.kkatiou would he expected to show mrne roonding
at the ttpe of the wedge ae fndkatei In fkure $. .
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The pressure distribution over such a beveled edge may
be obtained very simply by superimposing the. pressures laid
off on radial isobars originating from the four corners of the
beve.i. Figure 3 illustrates this process for a bevel having a
square plan form. Only isobars from one tip are shown
because of the symmetry of Lhe figure.

In figure 3, the line source and the line sink are parallel
to tbe y axis, hence

(11)

It can be seen that if the aspect ratio of the figure is increased
to a large value the ends of the line sources will be separated
by a great distance and the isobars in intermediate regions
will approach parallel straight lines, hence. the flow field
approaches a cylindrical or twe-dimensional form. At the
same time the arguments y+l/lz+ll in equation (11) be-
come y + q/x+1 and q takes on ~ery large values so that

and equation (11) is found to approach the Legendre func-
tion QO, that is

(12)

(See reference 3, p. 110.)
This expression when combined wi~h equation (8) agrees

with the twodimensiond potential function for the wedge,
that is,

– (U–iw) =4 Q,(z) +2+ P,(r) (13)

(see fig. 4.)
The isobars at right angles to. the axis of the line source are

lines of zero pressure, hence the rays originating at the tip
of a rectangular wing contribute nothing to the pressure
distribution at this tip. The whole pressure distribution
at cme tip is thus obtained by considering only those isobam
radiating from the opposite tip. It is evident that in “the
case of a long narrow rectangular wing the pressures at
either tip will be approximately one-half the pressures over
the middle portion of the wing.

In case the wing is oblique the tip sections will no longer
beat right angles ta the axes of tie source linw and the rays
originating from the adjacent ends of the sourca linw will
contribute to the pressure over the tip, It can be shown
that this component of the tip press”um distribution is
similar in form to tho Ackeret typo of distribution, that is,
the pressure at any point of the surface is proportional to
the slope of the surface at that point,

Consider first the sloping surface formed by a pair of
oblique source-sink lima. The. tip section lies along the
Lines of constant pressure of magni~ude proportional to
sinh-l I/m. Between the source and sink the pressures are
additive, so that

(14)

Ahead of or beh-ind this section the pressures cancel.
1~’&e”of a curved airfoil surface the chord can bo divi{ied

into elements composed of source-sink pui~s, the strengths of
which are proportional to the slope of the surface at the point
in question. Each pair then contributes a pressure propor-
tional to the local slope and contributes no pressure at other
pointg: Hence, equation (14) applies when dz/dx is varialda
along,. t.l~echord,

I

I

I
BiConvex Secfion

U-isua 0, (m)fi$P, (*)

FIGURE4.-Tw0-cUurens[or.IalveIocltY fuoctions for wedge sad blamms sections.

,
The foregoing argumen@ of course ripply only at- [ho tip

section of the oblique wing. At some dist+mco from Lho tip
section the overlapping isobars radiating from the tip agfiin
produce a quasi-cylindrical pressure fielci as in the case of
the rectangular wing. Thus the resultant pressure (distribu-
tion at either tip of a long oblique wing consjgts of Lwo Comp-
onents, one given by equation (14) and of the ~~ckrret Lype
whiIe the other component is equal to one-lmif the normai
twodimensiond pressure distribution associated wi[h the
airfoil mction.

Figur~.5 shows the pressures over a bcvclwl-edge profilo
having 45° sweepback. The pmssurc ciistributiou over tho
root section is given by

.— —
[

(J)(z)–Edl-’ + l%(z)
1

(15)
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at a great distance from either root or tip by

Ap_–4 m dz

!l n- ,i~ z Qo(z)

and at the tip by

Ap –2 m dz

[
Qo(i +ainh-’ : Po(x} 1~=~>-Z
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(16)

(17)

FIOCP.E5.–Pr&aurE dlstrihut[on over beveled edge w-tthW sweqlmck,

To take account of the effect of compressibility we make
use of the Prandtl trmsformation, increasing both the x

1

dimensions and the pressure coticients by the factQr ~~ —

Replacing m by ~~~ cot A, where A is the angle of sweep-
bacli, equation (16) reduc~ to

Thus, at a great distance from either root or tip, the pressures
follow a variation indicated by the normal component of
velocity V cos A.

At the root section, a component representing the Ackeret
type of pressure distribution is added to equation (18). This
component is

4 dz -

; ~/l— (i cos A)z d(~ co~ A)

sinh-l(~JP&c) (19)

—

The factor aid-l
414 cot A

shows a logarithmic in-

finity at 34=1.0. Hence the pr=ure on the root section__
increases more rapidly with Mach number than do the pres-

s&s at other sections of the swepbbaok wing. Further-

more, the shape o! the pressure distribution ovw -the r’~~’–

section approachw the Ackeret shape more closely w the ““

Mach number approaches 1.0. As shown in reference 1, the “

pressure distribution on the root section is exactly this shape ““-

at supersonic speeds, that is,

Ap 4 1 dz
q COS’ A–; >1’~~og A)z d(X COS A)

cosh-l ( J& cot ‘ ~o(’)

--

——

(20)

Site sinh-14coah-L for large values of the argument, -the
swept-back airfoil shows no discontinuity in the type of
pressure distribution on pass&u through the speed of sound.
It will be evident that similar reasoning can be applied to
the tip section9.

.-

AT.RFOILOF BICONYEX SECTION .,. .

The use of a finite number of sQuces and-sinks res~ts in
airfoil sections composed of straight segmenti~ Such- see- ..
tions are undesirable, since they show infinite pressure peaks ‘-
at the benda in the surface. - Surfaces having continuous
curvature require continuous distribution of sources and SW” -.. ..—
alined with the generators of the surface. The simplest of
th=e is the biconvex profile in which the upper and- lower- -” ‘-
surfaces are parabolic arcs and have constant curvature.
Such a profile requires line sources of finite strength to form
the dmired angles of intersection of the arcs at $e leadihg .,.
and trailing edges together with a uniform diat.rnbutioi-’ of---—
sinks along the chord plane between “the two sources.

The pressure field for a uniform sheet of line sources is. .
obtained by integrating the field of a single line sotile in- .,:.
the z direction: This integral is

(21)

The integration for a source sheet is actually somewhat.
simpler if the interference of a bilaterally symmetrical ar~
rangement of sources ia cotiidered simultaneously. The in-
fluence of the symmetrical, or conjugate, arrangement” is
obtained by substituting —m for m in equation (21) .- I%-
noting x—my by ~ and y+mx by ~ we have

; (U+?i) = J(SiIth-’ &+sinh-’&-) dz

To obtain a complete swept-back wing it is necessary-to
add a number of component pressure fields as explained “in
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reference 1. I?or an infinite swept-back wing with leading
and trailing edges at # =+m and –m, respectively, on one
side, and at ~= +m and –m, respectively, on the other side,
thaw is obtained

—.

()twhere –c ~~~is the thiclmess-chord ratio of the biconvex

()
profile. The terms @ ~ represent the pressure distribut-

ion on the biconvex airfoil in twodimensional flow. The
appearance of tiese terms is the result of the assumption
that the tips are removed to a great distance.

At the root section @= O) equation (23) reduces to

l?i@re 6 sho~ti pressure dist;butions at various stations
aIong the span for a biconvex wing with 60° sweepback.
The curves assume the two-dimensional form at a relatively

short distance (y> ~) from the root section, and similar

,=-
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FIGURE 6.—Prmnre dlsfrlbrmkmat variousspsuwlseWatfouson svwt-hsck wing, A-@,
al-o.

-.
behavior is to be expected near the tips. Henco he assun~p-
tion d infinite aspe@ ratio should apply very nearly at Rny
section situated more than one-half chord length from either
root or tip.

li’@re.7 shows the effect of Mach number on ~ho pressures
over the. root section and iUust.ra tes the progressive change
to the supersonic type aa the Mach numlyr apyroachw 1.0.
1~c@lnbe. seen that an increase in Mach number will not only
increase the distortion of the pressuro distribution but wiI1
increase the extent of the distortion along the span,
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FIGum7.-Effectof Mach number ou rmemrm dktribut[on owx mot aectlon of sw?nt-back
wing,A=@”, biconvex seetlon

h interesting point to be noted is that not all sections of
the swept-back wing ~five zero pre9suro drag. A positivo
drag appears on the root sections and a negative drag on tho
tip sections. Hence the sptmwise drtig distribution is
qualitatively similar to that at supmsonic speeds though, of
course, the net subsonic preasuro cirag is zero.

-..

AMES AERONAUT:C~ LABORATORY, _..
N~TIONtiADVISORYCOMMITTEEFOR AERONAUTICS,
MOFFETT FIELD,CAL~F.,May 1947,
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SYXIBOLS

flightvelocity
Mach rmmber
coordinates
point on x axis
point on y axis
clisturbsnce-veIocity potential
disturbance-velocity components
Iocd pressure

()
dynamic pressure ~ PV2

air density ‘
Legendre functions
differential operator (d/dz)
thicknw of wing

c chord of wing (measured along x)
‘m slope of line source (absolute value)
x’ X+?ny

g; y–mx
z x— my

Y y+mz
R. P. Real part
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