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ANALYTICAL DETERMINATION OF COUPLED BENDING-TORSION VIBRATIONS
OF CANTILEVER BEAMS BY MEANS OF STATION FUNCTIONS!®

By ALexaNpER MENDELSON and SELwyN GENDLER

SUMMARY

A method based on the concept of Station Functions is pre-
sented for calculating the modes and the frequencies of mon-
uniform cantilerer begms vibrating in forsion, bending, and
coupled bending-torsion motion. The method combines some
of the advantages of the Rayleigh-Ritz and Stodola methods, in
that & continuous loading function for the beam s used, with
the adrantages of the influence-coefficient method, in that the
continuous loading function is obtained in terms of the dis-
placements at @ finite number of stations along the beam.

The Station Functions were derived for a number of stations
ranging from one to eight. The deflections were oblained in
terms of the physical properties of the beam and Station Num-
bers, which are general in nature and which have been tabulated
_for easy reference. Examples were worked out in detail; com-
parisons were made with exact theoretical results. For @ uni-
form cantilever beam with n stations, the first n modes and
frequencies were in good agreement with the theoretically exact
values. The effect of coupling between bending and torsion
was shown to reduce the first natural frequency to a value below
that which it would have if there were no coupling.

INTRODUCTION

The failure of turbine and compressor blades due to vibra-
tions has led to an inereased interest in the study of the
vibrations of these blades and in the determination of the
natural modes and frequencies. In such theoretical studies,
it is usually assumed that the compressor or turbine blade
acts as a cantilever beam. The calculation of the uncoupled
modes of arbitrarily shaped cantilever beams has been ex-
tensively investigated (references 1 to 4), but little work has
as yet been done on calculating the coupled modes of such
beams. If the geometry of the beam is such that coupling
exists, the coupled modes are the actusl vibrational modes
that must be calculated.

Four general methods are currently in use for calculating
uncoupled modes and frequencies of nonuniform beams.
These methods are the Rayleigh-Ritz or energy method
(reference 1), the Stodola method (references 5 and 6), the
influence-coefficient method (references 4 and 7}, and the
integral-equation method (references 8 and 9). For each of
these methods, computational work can usually be carried out
in several ways. For example, by the use of influence co-
efficients the modes and frequencies can be determined by

Mykelstad’s iteration procedure (reference 7) or by matrix
methods (reference 4).

Any one of these methods can be extended to the calcula-
tion of coupled bending-torsion modes. The Rayleigh-Ritz
method usually requires that the uncoupled modes be deter-
mined before the coupled modes can be computed. In apply-
ing either the Rayleigh-Ritz or the Stodola method, great
difficulty is encountered in accurately determining the higher
modes, because the lower modes must first be “swept out”
by the use of exact orthogonality conditions (reference 10);
the process will otherwise always converge back to the
lowest mode. The same difficulties are encountered in the
integral-equation method.

The influence-coefficient method reduces the problem to
one having a finite number of degrees of freedom. The beam
is divided into n infervals and a concentrated loading is as-
sumed at the center of gravity of each interval. The solution
of the resultant determinental equation gives the first n
modes. The accuracy of the higher modes is, however, very
poor; only the first third of the modes and the first half of the
frequencies are obtained within the usuel engineering aceu-
racy. Carrying along so many useless modes greatly in-
creases the labor involved. )

A straightforward accurate method for determining the
coupled bending-torsion modes and the freqtiencies of non-
uniform cantilever beams, together with applications of this
method, was developed at the NACA Lewis laboratory dur-
ing 1949 and is presented herein. This method is based on
the use of Station Functions as first discussed in refer-
ence 11. Incorporated in the method are the advantages of
the continuous-function deflections of the Rayleigh-Ritz
and Stodola methods together with the advantages of the
finite number of degrees of freedom of the influence-coefficient
method. Yhen the method is applied to & uniform beam,
the first n roots of the resultant determinantal equation are
amply accurate for engineering purposes.

The final determinantel equation is solved herein by
matrix-iteration methods (reference 4). Any other con-
venient method may, however, be used and no knowledge
of matrix algebra is needed to carry out the calculations by
the matrix method. The work can be done by an inexperi-
enced computer, as the only operations necessary for determ-
ining each mode are cumulative multiplication and division.
In addition, for the case in which the coupling coefficient
remains constant along the beam, a simple quadratic

1 Supersedes NACA TYX 2185, “Analytical Determination of Couplel Bending-Torsion Vibrations of Cantilever Beams by Means of Statlon Functions™ by Alexander Mendelson and

Selwyn Gendler, 1950.
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formula and a series of curves are presented for determining
the first coupled mode in terms of the uncoupled modes.
Examples are developed in detail and comparisons with
exact theoretical results are included.

THEORY

In the usual influence-coefficient methods for solving
dynamical problems, a continuous body having an infinite
number of degrees of freedom is replaced by a body having a
finite number of degrees of freedom. Two principal assump-
tions are then made that introduce inaccuracies into the
solutions, particularly in the higher modes: (1) The resultant
of the inertia loads of all the infinitesimal masses in a finite
interval passes through the center of gravity of that interval;
and (2) a concentrated load that is the resultant of a dis-
tributed load produces the same deflection as the distributed
load. An attempt has been made to reduce the error due to
the second of these assumptions by the use of weighting
matrices (reference 12). Although the accuracy is thereby
increased, the effect of the first assumption is still great
enough to introduce serious errors (reference 11).

In order to eliminate these assumptions, Rauscher (ref-
erence 11) introduced the concept of Station Functions.
Instead of assuming the inertia loads to be concentrated at
the centers of gravity of the intervals, the inertia loads
and, consequently, the deflections are assumed to be con-
tinuous functions along the beam. The values of these
continuous deflection functions at the reference stations must
equal the deflections of the reference stations. The loading
on the beam is therefore a continuous function of the de-
flections of the reference stations. Inasmuch as the deflec-
tions of the reference stations can be computed from the
loading on the beam, which in turn is available from the
deflections, the deflections are therefore obtained as functions
of themselves. This procedure gives # homogeneous equa-
tions in the n deflections of the reference stations. The
resultant determinantal equetion has n roots for the fre-
quency; it will be shown that for a uniform beam all these
roots are sufficiently accurate for engineering purposes if
the deflection functions are properly chosen. (For coupled
bending-torsion vibrations, 2n homogeneous equations and
2n roots are obtained for n stations.)

The deflection functions used must satisfy the boundary
conditions of the problem and also the condition that, at
any reference station, the value of the function must equal
the deflection of the reference station. Although it is always
possible to find directly a single function that will satisfy
these conditions, it is more convenient to obtain different
component functions at each station and to add all these
component functions together to give the complete deflec-
tion function. Rauscher (reference 11) calls these compon-
ent deflection functions Station Functions. For example,
the complete torsioneal deflection function for the beam will
have the following form:

o)=3) 720
where

2 dimensionless distance along beam
6(z) torsional deflection at distance z from root

6, torsional deflection at j* station
fi(z) Station Function in torsion associated with 7% station
(All symbols are defined in appendix A.)

Each Station Function must satisfy the boundary condi-
tions of the problem and the following additional conditions:
(1) At the reference station with which it is associated, the
Station Function equals the deflection of that reference sta-
tion; and (2) at all other reference stations, the Station
Function equals zero. The sum of all these Station Func-
tions will then give the complete deflection function for the
beam. The Station Functions and corresponding loading
functions are derived in appendix B for torsional vibrations,
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F1aeRE 1.—Cantllever beam with 1 statlons.

bending vibrations, and coupled bending-torsion vibrations of
an arbitrary cantilever beam.

Torsional vibrations.—It is shown in appendix B that the
torsional deflections of the reference stations for a beam
divided into n intervals of length &, as shown in figure 1,
are given by the following system of equations:

Ip & .
0¢=w’52 - 2 : a;,ﬁ, (1)
Cof=
where

1 n
(x“EE Oi'k[IkNjk_(k—l)Ikﬂfﬂ'Fr-%-l Ierr:I (2)

tand j=1,2,...n

w frequency of vibration

& length of interval

Iy mass moment of inertia per unit length about elastic
axis at root section

I ratio of average mass moment of inertia per unit length
of £* interval to mass moment of inertia per unit length
at root section

0, torsional stiffness of root section

C, ratio of average torsional stiffness of £ interval to tor-
gional stifiness at root section

The Station Numbers Ny, and A4y are functions only of the
integers k, §, and n and are defined as

k
NjkE L_lz_f_{ (Z) dz

i (3)
MuEL_lf: (2)dz

where f;(2) represents the Station Functions derived in
appendix B and is given by

f! (2)=a1;z+a2;z“+ . +a(a+l)13(“+1) (4)

The coefficients a, are determined in appendix B by
satisfying the conditions on the Station Functions. The
integrals in equations (3) are thus seen to be integrals of
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gimple polynomials and the limits of integration are integers.
The Station Numbers N, and M are therefore rational
numbers, functions only of the integers n, k, and 5. These
numbers have been evaluated and are listed in tables I to
VIIIL.

If the physical properties of the beam under consideration
are known for each of the n intervals, €. and I, will be
known. The Station Numbers N and Ay can be obtained
from tables I to VIII. From equation (2), ai can then be
easily calculated.

Equation (1) actually represents n homogeneous equations
in the n unknown deflections §;. With %Kg’zsk, these equa-

tions can be written as follows:
(an—)\)ﬂl-[-auﬂ,—[-amﬂs-l- ... +alnau=0
052131‘[‘(0!22—7\)92'5'%5:‘1‘ e oo T aafy=0
amal‘l‘aszﬁz‘[‘(an‘—)\)ea'!‘ e +Otsn9==0 (5)

C!nlal‘l‘(!nzgz'i‘anagz'l‘ .. +(au—7\)5u=0

For a nontrivial solution, the determinant of the coefficients
must vanish and the charscteristic equation becomes

an—M\ ajg (3¢ e« s g

alay am—7\ (2273 . o o Ofgpn

31 Qg3 Qgz— ) Clgn =0 (6)
Olg1 Oy Cixg Cun—A
or
N —[a}|=0 (62)

where I is the identity matrix, and [ey] is the dynamical
matrix.

Equation (6) can be solved for the n values of X by any
method available. The method used herein was to obtain
the values of \ as the latent roots of the matrix [a,], which
is actually the dynamical matrix for the problem. The mode
shapes are obtained at the same time.

Bending vibrations.—The bending deflections for the beam
shown in figure 1 are given by the following system of equa-
tions (appendix B):

Yi=a’8* %—: !_il Bisys )
where
£ 1 . , 2 . 1 ,
BHEE —E; (mk('!P,Jk_Q ﬂ‘)+r§-‘!_1 mr {(’L—'k +§ N Jr+
B—GFk—-1® (2k—1)n ,
[B=toir_@E-ni] 0, ) ®)

tand j=1,2,... n
mo mess per unit length of beam at root section
m; ratio of average mass per unit length of £* interval to
mass per unit length at root section
B, bending stiffness at root section
B, ratio of average bending stiffness of £ interval to bend-
ing stiffness at root section

The Station Numbers 1/’ N'x, P'a, and @'y are func-
tions only of the integers k, 7, and n and are defined by

N N TS L 2 7
Prasm [ [Z—G—1z+] -1 | g1z

k 3
Ou= [ [5—5 G—1re+5 617 | giterd
i - o
ﬂI’;kEﬁ_l g_f(Z)dZ

E
N’-kaf zgfz)dz
k-1 J

The Station Functions g,(z) are derived in appendix B and
are given by

g/(2)=bg22+ byt hyzt*+ . . . FDhain2®t (10)

The integrals in equations (9) are thus seen to be integrals
of simple polynomials. The Station Numbers d'p, Ny,
P’s, and @, are rational numbers, functions only of the
integers 7, k, and n. These numbers have been evaluated
and are listed in tables I to VIII.

If the physical properties of the beam are known for each
of the n intervals, m; and B; will be known. The Station
Numbers M’ ;z, N’ i, P/ g, and @’ are obtained from tables I
to VIII; 84 can then easily be caleulated by equation (8).

The determinantal equation is:

Bu—X\ B B v oo Bin
Bar Baz—X\ B e o Box
Bar Bz Bas—X. .. Bz =0 an
ﬂﬂl ﬁuz ﬁus ﬁun—'x
or
A —[Bis]|=0 (11a)
where
a=De L
_moa‘*w”

The dynamical matrix is [8].

Coupled bending-torsion vibration.—The torsionsl and
bending deflections due to coupled bending-torsion vibra-
tions of a cantilever beam are given by (appendix B):

m n
0, =c? -B—: 5 E (I'augrl' elyiy %:

o y (12)
Y oo Y1
oot 20 5 35 (it 80 L)
where
I
E—T‘og
rel LB
=52 00 My

ro ebsolute magnitude of projection of distance from elastic
axis to center of gravity on perpendicular to bending
direction for root section

re radius of gyration about elastic axis at root section
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The quantities o and By are defined by equations (2)
and (8). The quantities v:; and &, are given by

-

i1 LiJ
Yis= Ea [SkN’ﬂ:_ (k—1)S M'ﬂc‘i'r_%l SfM’,,:I

5:152%)& (Sk('ipjk—ij) +r§1 S,{(i—k+—;—)N,,+ g (138)

[ks—(lg-— 1)3_(21;;1)1:]%’})

where

N L 1 2
Pa= [ [5—G—Dz+} (—17 | 501

Qam [ [5—5 G123 k17| sie)dz

and S, is the ratio of the average static mass unbalance of
the k* interval to the static mass unbalance at the root
section.

The Station Numbers Py, and @ are listed in tables I to
VIII with the other Station Numbers. The determinantal
equation becomes

Taj—\ Tayg . I‘al.u elyu v . €Dy
Tagyg Tage—X...Tagnm €lya; €lvyos . €loyap
Ta, Toau v . Tasn—Nelyn1 €Tyna . . . €['Ynn 0
b1 1 e o Oip Bu—x Bz ... B
3 Go2 < .. Oy Bz Baa—N ... Be
651 61!2 51!1: .Bn.l lsni ﬁavm._X
(14)
or
[N —[74]|=0 (14a)

where [7:4] is the dynamical matrix and I is the identity
matrix.

The first n roots of equation (14) will give the first »
coupled frequencies.

APPLICATIONS AND RESULTS

In applying the previously discussed method, it is necessary
to determine for a given beam the elements ey, B4, ¥4, and
84 of the dynamical matrices. These quantities will depend
on the physical properties of the beam and on the number of
stations chosen. If the physical properties of the beam are
known, the quantities ayy;, 8y, vy, and 8§ can be directly cal-
culated from equations (2), (8), and (13). The numbers
M, Ny Py, Quey M 35, N' i, P' 3, and @'y appearing in theso
equations depend on the number of stations n that are used
and can be read directly from tables I to VIII for any given
number of stations up to eight. Once these quantities have
been calculated, equations (6), (11), or (14) can be solved
for the frequencies by any method desired. The matrix-

iteration method used herein is simple and rapid and re-
quires no particular computing skill. As will be indicated,
however, the accuracy of equations (6), (11), and (14) is
such that relatively few stations need be used, in which
case it may be convenient to expand the determinants and
to solve the resultant low-order algebraic equation.

In order to illustrate the accuracy, this method was applied
to torsional vibrations, bending vibrations, and coupled vi-
brations of a uniform cantilever beam. The exact theoretical
values for torsional vibrations and bending vibrations of
uniform cantilevers are well known. The exact theoretical
values for the coupled bending-torsion vibration of a uniform
beam were calculated (appendix D). A comparison was
then made between the values obtained by the method
presented and the exact theoretical values. The number of
stations used was 1, 2, and 3 (n=1, n=2, and n=3). The
comparisons are summarized in table IX.

Torsional vibration.—For the case of a uniform beam,
Ciy=I,=1 and equation (2) becomes

a”=é [N,,,—(k— 1) Mﬂt% M,,] 15)

The values of Ny and My, are given in tables I to VIIL
The table to be used depends on the choice of the number
of stations.

Let n=1;
Soan=Ny

From table I, N;;=5/12, _

e O‘!n=5/12
and

_%n _{9 2

61—'1—2' l Co W 61

or

The exact theoretical value for the first torsional frequency

18
. / s
w=1.571 _Iolz

The percentage error is —1.4 when only one station is used.

The mode shape obtained by the method of Station Fune-
tions agrees well with the theoretical mode shape, as is shown
in figure 2 (a).

Let n=2; then by equation (15) and table IT,

a11=Nu+ﬂIu=ng+-15—2=g—g

ctg= N+ M”=—;T10+Z_g=% _
o= Nys+ Ng=e =1 i}
an=Na1+Nzg=-——2§4l—o+-§%g-=%
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Let n=3; then by equation (15) and teble III,

au=Aru+Mu+M13= 0.945833
au—M1+BIn+ﬂf,3=0 958333
agl—Nu+Nu+2ﬂfl3= 1 .033333
C!gz=N21+N22+2M%= 1.883333
(123=.Z\T31+N32+2J'{33=1 .01 1113
(I31=Nu +NH+N13= 1.012500
=Ny + Na+Nu=2.025000
agz=Ny+Nyp+Nyu=1.387501

The determinantal equation is

The determinantel equation then becomes

ﬂ_)\ 57
60 120
=0
16 13
5 I
which gives
M=1.6214
X=0.1953
Therefore

w@=1. 571—\/-—{;

62—4 526 1%:

The exact theoretical values are

= 1.571—\/%

'Co
I
The precentage errors of the first two modes, for only two
stations, are found to be 0 and —4.

The mode shapes are shown in figures 2 (b) and 2 (c).
Agreement of the first mode with the exact theoretical shape
is excellent; the second mode agrees fairly well.

0.945833 —

1.033333
1.012500

The solutions are

Therefore

A 0.958333 0.520834
1.883333—M 1.011113 |=0
2.025000 1.387501—A\l

N=3.6474
A,=0.4083
A3=0.1599

I ol’

G
@=4.6894/ 7

wy="T. 502,/10"2

w=1. 571-\

81
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The exact theoretical values are

w1=1.571 /%;

wy=4.712 G

w;=7.854‘[1.£°2

The percentage errors of the first three modes, calculated
by use of three stations, are found to be 0, —0.5, and —4.5,
respectively.

The mode shapes are shown in figures 2 (d) to 2 (f). The
first two modes agree very well with the theoretical shapes;
agreement of the third mode is fair.

This procedure can be carried out as shown for any number
of stations desired.

Bending vibrations.—For a uniform beam, By=m;=1 and
equation (8) becomes

Bu={ Pt 3 [(%—k +3) V't

(k3—<k—1)3_<2’f"1) 1;) Mf]}

3 7 (16)

Let n=1;
CBu=Pu—@n

and from table I

8 71 31 59
17630 1008 720

Therefore, from equation (7),

[B
w=23.493 nT:F

The exact theoretical value is

w=3.516 m_:l‘

The precentage error for just one station is found to be

—0.66.
The mode shape is shown in figure 3 (a) and is scen to

agree very well with the theoretically exact shape.
Let n=2; then by equation (16) and table II,

1 1
1311=P’11—'Q'11+'2'N'13—'6Af12=0-422745
Bu=P'n— Qo+ 3 N'u—g M'n=0.205925

321=2P’11+2P’u—‘ Q’u— Q’12+%N’u—'§-ﬂf'u= 1.145167

Ba= 2Pl21+2P'22—‘ Q'21~Q'2z+’g‘N'22—%ﬂf'zz=0-9055 30
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The characteristic equation is

!0.422745—?\ 0.295925 | _o
11.145167 0.905530—x
‘The roots are
A=1.2943
A=0.0339

coo=3. 516-\/T°
w=21. 71\/?°

"The exact theoretical values are

The percentage errors for two stations are therefore found
to be 0 for the first mode and —1.5 for the second mode.
The mode shapes are plotted in figures 3 (b) and 3 (). The
first mode agrees excellently with the theoretically exact
shape; the second mode agrees fairly well.

Let n=3; then by equation (16) and table III,

j . 1 i 1
511=P'11—Q'11+§Z\' '12+§N'13—'6 ﬂf’u—g M'13=0-270604=

B1a=PF's— Q’m'l"};.z\"n'i‘éN'zs—% M'n—% M’p=1.009943

B1s=P'y— Q’31+%AT’32+:§‘N’&—% ﬂf’ss—% M 3=0.487441

B2=2P'1;+ 2P — @ u— Q12+
gi\”u+ 2 "m—éﬂq,—g A17;=0.648170

Baa=2P'3+2P 5— @s— ' nt+
3 Nuh 2Ny —2 M M/y=3.266250

1323=2P'31+ 2P’33_Q,31_Q,33+

%.‘ersg"l' 21\7133—‘%‘ .‘1{’32—% :.‘.[,33= 1 .689‘89 1

ﬁ31=3P'11+3P’12 T 3P’ Ia_Qlu—Q Iﬂ_‘Q’m'['

.\7,12—;‘ 4;.\7,13—6' JI'H—TJI’13=0.985135

1ol o

Ba=3P 3+ 3P 5+ 3P 33— Q's1— Q' 0s— Qs 1

B Nt AN ok MYy M'y=5.822852
ﬁas=3P'31+3P'sz+3P'as— Q'sr— Q'az_ Q’:H‘

8 Nt AN M=) M’ =3.204301

The characteristic equation is

0.270604—x 1.009943 0.487441
0.648170 3.266250—X 1.689891 =0
0.985135 5.822852 3.204301—-&' _
The roots are
A=6.5521 )
A=10.1667
2;=0.0223 —

Therefore

w;=3.516 \/ B"
we=22.04 \/ B,

B,
wy=60. 201/m0l4

The exact values are

B,
w;=3.516 -\/_0;
N Sk

w;=061.70 »\/:4

The percentage errors for three stations are found to be 0,

0, and —2.4, respectively. The modes are plotted in figures

3 (d) to 3 (f). The first two modes are seen fo agree very
well with the theoretical mode shape; agreement of the _ _
third mode is fair.

Coupled bending-torsion vibrations.—A uniform beam
with the following constants was chosen:

o
7=43=38.56

e=0.8
,n2
=933
nz
T=%415

The values of a;; and §,; are obtained as previously and are
the same as given before for n=1, n=2, and n=3. Also,
because Si=Bi= Ci=m,=1;=1, equations (13) become

{ n
=3 [N’n—(k—- DALt 33 M

ai!=té-1{iPn—ij+r-$l-1|: ‘Z-—[c-[—%) N_,,.—[—

(kS—(Isc—l)“ 2k2—1 1:) A, }
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Let n=1; then the determinant is

Pap—X  elyy 0.002156—X\ 0.001196 —o
dus Bu—x Jo.111111 0.081944—X\]
The roots are .
A=0.0837
22=0.0005
B,
w1=3'.4:6 ﬁ_ ----- -

—_— B‘]

The procedure for calculating the exact theoretical values is
derived in appendix D. The exact values are

w1=3.49“/m‘i£4

OJ3=49.1 “, m'Bj‘

The percentage error for the first mode, calculated by use of
one station, is —0.9.

Let n=2; then the determinant is

Tan—XA Tos el'yn el'va

Ty Tagp—XA elyg €Iy
o b Bu—N  Bu |
o1 822 Ba Baa—A\

Substituting the known values and solving for X give for the
first two roots

M=1.3197
he=0.0412

and the frequencies become

w1=3.48‘/1:;:l4-

w2=19.7»\/%

The percentage errors for two stations are —0.3 for the first
mode and —4.4 for the second mode.

This procedure can be carried out for any number of sta-
tions desired. For three stations, the frequencies obtained
are

B

w=3.48 mT%‘
— / B,
B

w3=48.2 mqj‘

The precentage errors are —0.3 for the first mode, 0 for the
second mode, and —1.8 for the third mode.

The results obtained by the method presented are seen
to agree very well with the exact theoretical values.

These results are summarized in table IX, where a com-
parison is made with the results obtained for uncoupled
bending and torsional vibrations by use of influence coeffi-
cients with weighted matrices (reference 12). The values
using weighted matrices were taken from table I of refer-
ence 12. It can be seen that for a given number of stations,
the results obtained by the method presented herein are con-
siderebly better than those obtained by using influence co-

- I
Uncoupled
frequency —
ratio, ¥
A 109
+o %; 36
e Ny T e B 1 /6
i < ¥ of—
'E 8 \ \’:\\\\"\ 4
o \ ‘\ [——
< — ——— 3
§ 6 \\ 2
g ~—= ~
L‘Z \\\ !
o ETacf Ifheoreﬁclzol
4 |
0 N4 4 6 8 Lo

Coupl;'ng coef;;icienf, €

F16URE 4.—Variation of frequency ratfo @ with coupling coeflictent ¢ for saveral values of
uneoupled frequeney ratio 7.

efficients with weighted matrices. In general, it is indicated
that for a uniform cantilever beam using n stations along
the beam, the first n—1 frequencies and modes are in ex-
cellent agreement with exact theoretical values and cven
the n* mode is given within the accuracy with which the
physical properties of the material are known. For a tapered
beam, more stations may be required, depending on the
amount of taper. The number of stations required to give
satisfactory accuracy is listed in table X. A comparison is
made by using weighted influence coefficients; the values
are taken from table II of reference 12.

The first vibrational frequency is given approximately by
equation (C2) (appendix C) when coupling exists between
bending and torsion; it is plotted in figure 4. In orderto
check these curves, the exact solution was obtained (appen-
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dix D) for the ratio (o, fw;)* equeal to 4 and was plotted on
the same figure. The values given by equation (C2) are
seen to be in excellent agreement with the theoretically
exact velues.

The effect of the coupling between bending and torsion
is to reduce the first natural frequency below that which
would exist if there were no coupling. This effect is shown
in figure 4, wherein the value of 2 is always less than 1.
This decrease in the first natural frequency due to coupling
is, however, relatively unimportant in the practical range of
(wefws)? >4 and <0.75.

SUMMARY OF RESULTS

A method based on the use of Station Functions is pre-
sented for calculating uncoupled and coupled bending-torsion
modes and frequencies of arbitrary continuous cantilever
beams. The results of calculations made by this method

indicated that by the use of Station Funections derived herein,
n modes and frequencies can be obtained with sufficient ac-
curacy by using just n stations along the beam if the beam is
uniform. For a tapered beam, more stations may be re-
quired, depending on the emount of taper. The amount of
computational labor is markedly less than for other methods.
The use of Station Numbers tabulated herein further re-
duces the amount of ealculation necessary. The effect of
coupling between bending and torsion is shown to reduce the
first natural frequency to a value below that which it would
have if there were no coupling.

Liewis FricaT ProPULSION LLABORATORTY,
NaTioNAL ApvisorRY COMMITTEE FOE AERONATUTICS,
CreveLAND, OmI0, October 18, 19485.



APPENDIX A

SYMBOLS
The following symbols are used in this report: @&(2)
@1y coefficient in equation for Station Function | ¢:(2)
in torsion r
B bending stiffness of beam, function of 2
B, bending stiffness at root section of beam
B, ratio of average bending stiffness of k*® | Te
interval to bending stiffness of root
section 7q
by coefficient in equation for Station Function
in bending
c torsional stifiness of beam, function of 2
G, torsional stiffness of root section of beam S
Ce ratio of average torsional stiffness of k™ | Sp
interval to torsiobal stiffness at root | S
section
€1, €3, C constants defined in appendix B
fi(2) Station Function in torsion for j*® station | 2z
(defined in text)
g:(2) Station Funection in bending for j** station | ¥
(defined in text) Vi
I mass moment of inertia per unit length of | 2
beam about elastic axis, function of 2, | e, By, Yis
except where otherwise defined ey My
I mass moment of inertia per unit length of | p
beam about elastic axis at root section
I ratio of average mass moment of Inertia ¥
per unit length of A" interval to mass | & -
moment of inertie per unit length at root
section €
,.k,n station indices 6
ik summation indices 8;
l length of beam A
My, Ng, Pp, Station Numbers (defined in text); function
Qﬂ, M’,‘k, .N'ﬂ:, of indices j, k, and n Y
P, Q' n @
m mass per unit length of beam, function of 2 | w,
Mg mass per unit length of beam at root section
my ratio of average mass per unit length of | w.

86

k¥ interval to mass per unit length at
root section
number of stations along beam

bending loading function on beam

torsional loading function on beam

absolute magnitude of projection of distance
from elastic axis o center of gravity on
perpendicular to bending direction

radius of gyration about elastic axis at
root section

absolute magnitude of projection of distance
from elastic axis to center of gravily on
perpendicular to bending direction for
root section

static mass unbalance, function of 2, mr

static mass unbalance at root section, myr,

ratio of average of static mass unbalance at
k*® section to static mass unbalance
at root section

distance from root of beam, except where
otherwise defined

bending deflection, function of 2

bending deflection at ¢** station

dimensionless distance along beam, x/§

elements of dynamical matrix defined in texs

11, By

& Ou Mo

uncoupled frequency ratio, (w;/wp)?

length of interval along beam between
two stations

coupling coefficient, (#o/rep)?

torstonal deflection, function of 2z

torsional deflection at ¢*® station

root of frequency equation or characteristic
root of dynamical matrix

frequency ratio, (w/w,)®

frequency of vibration

frequency of uncoupled fundamental bend-
ing mode

frequency of uncoupled fundamental tor-
sional mode

second derivative of dellection with respect
to time



APPENDIX B

STATION FUNCTIONS AND DETERMINANTAL EQUATIONS

TORSIONAL VIBRATIONS

A schematic diagram of a cantilever beam divided into »
intervals of length & is shown in figure 1. The Station
Functions for the torsional vibrations of such a beam must
satisfy the following conditions:

At
z=0 f,(0)=0 (B1)
z=n [ (n)=0 (B2)
z=1 fi(i)=1 (B3)
z=j [f()=0 j=i (B4)

where f'(2) denotes the derivative with respect to 2.
Equations (B1) and (B2) represent the boundary condi-
tions that must be satisfied by a cantilever beam vibrating
in torsion; equations (B3) and (B4) represent the further
conditions imposed upon the Station Functions. These

conditions will be satisfied by a function of the type
Si@)=aztaett . ..

+ @iy 2T

(B5)

where the coefficients a;; must satisfy the following simul-
taneous equetions obtained from conditions (B2), (B3),
and (B4):

O=ayu+2nax+3n%ay+ ... ++1)n"C iy (B28)
1=iay+ian+idant . . - i Vaein: (B3a)
. 1@,y F41 (Bda)

The coefficients a., can be obtained by solving equations
(B2a) to (B4a) and the functions f;(z) determined for each
station. Equation (B5), however, can also be written in
the following form:

0=jau+j*az+7ast .

I[(.—,—j)z(z—c,)
&)= 11(1, G—cy

(B5a)

where ;H: represents the product for all values of j except
o

j=1. The function in equation (B5a) obviously satisfies
conditions (B1), (B3), and (B4) because it has zeros at all
points specified by equation (B4), it equals 1 at the point
specified by equation (B3), and it equals zero at the point
specified by equation (B1). In order to satisfy condition
(B2), the constant ¢, is determined by substitution of equa-
tion (B5a) into equation (B2).

¢;=n for i>%n

e1=n (1 +—1—) for i=n
1
TR i

Equation (B5) can be obtained from equation (B5a) by
carrying out the indicated multiplications. The complete
deflection function is then given by

0(2)=11(2)6:+f(2) 0+ -
=53 5a)0y

. +fx(2)6n
(B6)

The continuous loading function ¢, (£} can now be written
as .

q;(m)=zwfe<z>=1w=§;f,<z)a, (BT)

A continuous loading function, which is a function of the
deflections at the reference stations, has thus been obtained.

BENDING VIBRATIONS

The Station Functions for the bending vibrations of the
beam shown in figure 1 must satis{y the following conditions:

at
z=0  g.(0)=0 (B8)
z=0  g'(0)=0 (B9)
z=n g’ n)=0 (B10)
z=n g im)=0 B1i1)
z2=1 gi{t)=1 (B12)
z=j  g=0  j#*1i B13)

where ¢’ (2), ¢’ (2}, and g’*’ (2) denote the first, second, and
third derivatives, respectively, of ¢ () with respect to z.
Equations (BS) to (B1l) represent the boundary condi-
tions that must be satisfied by a cantilever beam vibrating
in bending and equations (B12) and (B13) represent the
additional conditions imposed upon the Station Funetions.
These conditions will be satisfied by functions of the type

gi(2)=0az?+ 0323+ . . .+ nigy 2D (B14

where the coefficients b;; must satisfy the following equa-
tions obtained from conditions (B10) to (B13):

0=2byx+6nby+... +1+-3)NFDnEH b ), (B10a)
0=6b5+24nb,+...+®+3)n+2Xn+ L)1 b nin: (Bila)
1= i2bg byt - . BB u ey B12a)
0=7ba+ b+ .. . F7" P biayn: JH1 (B13a)

The coefficients can therefore be obtained from equations
(B102) to (B13a) and the functions g; (2} determined for
87
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each station i. Equation (Bi4) can, however, be written
in the following form:

!E‘(z —nz¥z?+cz+cy)

94(2) T G— 0 e o) (Bl4a)

where IT represents the product for all values of § except
Jrel
j=1. The function in equation (Bl4a) obviously satisfies

conditions (B8), (B9), (B12), and (B13), because it has
zeros at all points specified by conditions (B8), (B9), and
(B13) and equals 1 at the point specified by equation (B12).
In order to satisfy conditions (B10} and (B11), the constants
¢ and ¢; are determined by substitution of equation (Bl4s)
into equations (B10) and (B11). The general forms for ¢,
and e; are, however, complicated and it is easier to obtain
the numerical values of these constants for each specific
cagse. Equation (B14) can then be obtained from equation
(B14a) by carrying out the indicated multiplications. The
complete deflection function is then given by

n
v&)=229,2)y; (B15)
The continuous bending loading function ¢,(z) can now be
written as

qo(z>=mw2y<z)=mwﬂgg,(z)yj (B16)

COUFPLED BENDING-TORSION VIBRATIONS

The Station Functions for the coupled bending-torsion
vibrations are the same as previously given for the bending
vibrations and the torsion vibrations. The loading func-
tions, however, are given as follows (reference 7):

q:(2)=I%(2)+S?y(z)

=w2;’f_31 (Lf(2)6,+8g5(2) ] ®B17)
and
gx(2) =8 0?0(2) + mw® y(2)
=w2§;‘ [S7,(2)85+mgy(2) vl (B18)

DETERMINANTAL EQUATIONS AND DYNAMICAL MATRICES

Once the Station Functions and the corresponding loading
functions have been determined, the deflections at the
reference stations can be obtained in terms of the loading
function. A homogeneous equation in the reference-station
deflections for each station is thereby obtained. The
determinant of the coefficients of the resultant set of homo-
geneous equations can be set equal to zero; the determinantal
frequency equation is thus derived. The deflections at the
reference stations are obtained by the well-known equations
for obtaining influence coefficients.

Torsion.—The deflection at the station 4 due to the
continuous loading ¢,(2) on the beam is given by

=5 fg,(z)f z‘dz+5”f q,(z)f 22 3:  (B19)

If C'is assumed to have a constant value for each interval,
these integrals may be written as the sum of integrals over
each section. Equation (B19) then becomes

=g 2 sl sa@det [ a—budet [o@a]
B20)
By substituting the relation

gi(zy=o1 éf: (2)6,

and by assuming a constant value for I for each interval and
changing the sumimation order,

B;=w’b‘2[°2§k_l Ck[rk f 2f /@) de—(e—1) I, f Fde+

0 J=1
-=k+1If f,(Z) dz:l} 8; (B?I)
Let,
f:_l 2fi(2)dz=Np
& (B22)
[ tierdz=m,
Then
By= —é—" 3 a0 (B23)
¢ J=l
where

i 1 n
=3 [IkN,,,—(k—-l) LMyt 33 IM, | (29

If C:=1I,=1 (constant cross section), then

i n
au=§1 [Njg—(k— 1) th_l_r:?—l—l Mjr] (B25)
Let
__G
A= T8 (B26)
Then
7\6¢=1_2Ia;, 0, (B23a)
and the characteristic equation is
[[en]] =N |= (B27)

where I is the identity matrix.
Bending.—The deflection at the station ¢ due to the con-
tinuous loading ¢,(2) on the beam will be given by

t 2 (o y o
'.llt=54j; Q_'b(Z)J; ('z—m‘)B@—zl)dzldz-J;-

n 1y ) —
5’fi q»(Z)J; le—z)i—z) z,)B(a. 21 12, dz (B28)
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If B is assumed to have a constant value for each interval,
these integrels may be written as the sum of integrals over
each interval. Equation (B28) then becomes

s, 1(.* 2% 1 A z
22 UM E S CE R I PIOUS

f F (2 L iyt l r—iy | goedz+
=116 2 2 3 piz)az

i ﬁ " [z - (21:-1)] o(2)dz+

7 8 (I — 1\3
J; [% (21'—1)2—-R—(I§—1)] Qa(z')dz} (B29)
By substituting the relation
gs(z)=w’m ;91(‘»)% (B30)

and by assuming a constant average value for m in each in-
terval and changing the summation order,

?lt=w-g: ;é‘f By (B3 1)

where

Bu= g Pt 3 me[ (i-k4+3) ¥,

(l:a_(é;_1)s (2k2—1) 1.) J[’,,]} B32)
Pry= f [——(A—1>z+ L (k—1)? | g,(2) dz
Un= f —1)zs k=10 | g(2) d2
&CB33)

E
N'nEf zgz) dz
k-1

E
M= gie) dz )

For a uniform beam, m;=B;=1 and equation (B32) be-
comes

Bu=§_,‘_l (?:P’ﬂe— Q'n'l‘rfv:‘:{_l {(-‘i—k -{—-‘(12—) N pte

(Bt G070 )) g
Let '
E-w,ﬁ‘;n - (B34)
then the characteristic equation becomes
[[B1—MI[=0 (B35)

21868T—53——T

where 7 is the identity matrix and 8., is the dynamical ma-
trix. In expanded form, equation (B35) becomes

Bu—N Bz ... P
Bai  Bam—XN ... Ba
Bnl ﬁni . - . B;;—R

where X is a latent root of the matrix [8,].

Coupled bending-forsion vibrations.—The deflections at
station 4 are given as before by equations (B19) and (B28).
The loading funections ¢; and ¢, are changed as follows:

2:(2)=w[I 6(z)}+S y(z)]}
2:(2)=*[S 8(z) +m y(2)]

If these two equations are substituted into equations (B19)
and (B28) and the integrations are performed as previously,
the following reletion is obtained:

(B38)

=2 mo#;<ra”5:+ EI"Yt:
5 (B37)
LI mo 2(3:; 9;‘[‘511—)

To

where ay; and By; are given in equations (B24) and (B32) and

Tgo

~ 1 1B,
52 Oomo

£ 1 Tr 7 L R r
.,,,Eéa[su =G DS nt 32 S M ,,]

=g 2 Sl Pa— @l 33 5[ (i—k43) Nt

B—Ek—1P® 2k—1 .\ .
( 3 5 1)ﬁfj,}

T'=—-

(B38)

where

Pp= fk "_1 l:%z——(k—l)z—l-—;— &—1 | f(2)dz
Q= [5—5G—1+3 17| £ 2

the determinantal equation therefore is

IRI—[“M”:O

where [7;,] is the dynamical matrix, the elements of which
are as indicated in equation (B37). The matrix[4,,] isseen to
be a 2n X 2n matrix.



APPENDIX C

QUADRATIC FORMULA FOR FIRST COUPLED MODE

If only the first vibrational mode is desired, it is possible
to obtain this mode approximately by coupling together the
fundamental uncoupled bending mode with the fundemental
uncoupled torsional mode to obtain a simple quadratic
equation for the first coupled frequency. This equation is
valid when the coupling coefficient ¢ is constant along the
beam. The differential equations obtained by coupling the
fundamental uncoupled torsional mode with the funda-
mental uncoupled bending mode are:

I mass moment of inertia about elastic axis, function of ¢
ap frequency of uncoupled fundamental bending mode

@, frequency of uncoupled fundamental torsional mode

.. denotes differentiation twice with respect to time

These equations lead to a quadratic equation in the fre-
quency ratio @, whose solution for the lowest frequency,
provided e is constant along the beam, is

_(02) _

_ _g_ _ 40— e):l
_ e=tmmog [V A
mi—+Se+may=0 ©1) where
Si+I6+Tw26=0 Q@ {frequency ratio, (w/w,)?
v uncoupled frequency ratio, (w/wy)?
where ¢ coupling coefficient, (r/ry)?

m mess per unit length of beam, function of 2 This quadratic has been plotted in figure 4 for values of ¢
S static mass unbalance, function of z ranging from 0 to 1 and values of ¥ = (w¢/w;)® from 1 to 100.
APPENDIX D
EXACT SOLUTION FOR COUPLED BENDING-TORSION VIBRATIONS OF UNIFORM CANTILEVER. BEAM

The differential equations for the equilibrium of an ele- | Wwhere
ment of a beam vibrating in coupled bending-tersion vibra- 2=(wfwy)?
tions can be put in the following dimensionless form: 2
oy = (s )
4
d I:I_ml w2Y1+ o Yz Let ; .
dz* B B 1) _d_fI_l_Y
a2y, Ir Ie dz = °°
=—€_M2Y1'—‘—"'OJ Yg
dz? C o]
dY, v
where dz L4
Yi=y/r - i
}rgE d$‘= Yﬂ
__distance from root dY. [ (D3)
r= l ._._2-.—_— Yﬁ
- dz
en
e=(riry? dYs
Now d C.;Q(Yl-‘[— Yg)
i dY Q
=2
ml _dz_5_=_c_s_ (Y14 Yﬂ)
2g O
=0 Equation (D3) can be written as the single matrix equation
where 6=12.36 palien 0 1 0 0 O)[¥F
cs=2.467 Y, 0 0 0 0 0 1 Y,
Equations (D1) become d Yy 0 0 0 1 00 Yy
| =] o 0o 0 0 1 ofl|x| @
azi Y, 1Y) dx 4 s
(D2) Irg 649 049 0 0 0 0 }’5
d Y CEQ C5Q —_ Q —_ n
=—€ — Yl Yg 17 _ﬂ_ Cs 0 O r
dz? y RGN > ) 0_ _} 3
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or
dY

Tr ——=dAY

(D4a)

where ¥ and A are the matrices indicated.
The solution to the matrix equation (D4) is given by

F=etY, (D5)
where 17 is a column of arbitrary constants.
From the boundary conditions
Ti=Y,=Y=0
=Y,=TY,=0

0
0

0
Y(0)
¥'5(0)
¥4(0)

If then 2,5 is an element of the matrizant e*, the boundary
conditions give

at =0

r=1

To=Y(0)=

Q Qs 4
Q5 Q55 Qe | =0 (Ds)
Qos Qo Qes

Equation (D6) is the frequency equation. It has an infinite
number of roots for w.

In order to determine the elements 2,;, ¢* must be evalu-
ated. Use will be made of Sylvester’s theorem (refer-
ence 13).

v+°‘9 6.0\ IR 7\=*+"‘Q ALy 05% 2
Y
ey 2 - N—g, O\ —e e —eB2y — S M—c,0
Y Y Y Y

2 ¢

GJZV-[-(I —_ 5)0405 % 6497\2 XS'I‘CEQ X.i-[‘cs‘ﬂ Rz AS_[_ 59 C.iQR
FQ)=—

2 2 Q csQ
QN (L — et % A e\ AN (1 — g S x‘+c“ MDA o

2 .Qz Cs ¢ ﬂ
c;Q}\“+(1—e)c4c5% AT N cONH(1—9 E N cantt(1—9 %5 2 M e

2
_50_59 At ﬂ)\‘—l—(l—-e)ﬂ- 659 A3 _eciﬂ; X —e@)\ A—c O
[ 7 Y ¥ s i

91
The A\ matrix of A is

[ = 0 1 0 0 0
0 —X 0 0 0 1
0 0 —X 1 0 0
0 0 0 —X 1 0

LAY ¢ 0 0 —X 0

__@E 62 0 0 0 —X

7 Y -

The characteristic equation A(A) =0 is
¢582

kﬁ—[-— R"—C Q}\z_(l—E)C4C5 p =0 (D7)

Equation (D7) is & cubic equation in A2 Let the roots be

X1; _ x11 )"21 _xﬂr Rh - )‘3

Then by the confluent form of Sylvester's theorem,

1 d% [ AFQ)

e‘=§ f(al__. 1) dA%i-1 (R_M)ak]x-)‘i (DS)

E
wi

where F(A) is the adjoint matrix, r is the number of distinet
roots, and o is the multiplicity of the i** root.
If the roots are all distinet, this relation becomes

fFO\t)—G iF(_ t)
ef= 2 N (=R )0 F )

where the adjoint matrix F(\) is given by

D9

(D10)
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From equations (D9) and (D10), the elements ©,, are seen

to be given by
. A _i_c;Q
Q“=—§1 j———-gi ) cosh A,

3 Rt4+cﬁﬂ

_.Z; —_—-—HH (Mz—)\, sinh N
sl

C4ﬂk¢

inh A
- NI NI (E—N ) SR

3 Ciﬂkgz'{‘c‘cuﬂ (1—6)

Qg = — inh A
== TRE AN SRk
St

Das= Dy

3 CLQ);
955—" 2 l—I (R{ __}\12) cosh A:

o )\‘
Q“——'; H O\{ —Rj sinh A¢
_ 605 g R;
cosh X,

2 RO oy

3 )\;4'—649

Qﬂﬁ= — E j——E‘ (Riz—x"z) GOSh x{

~

- (D11)

o

The value of the determinant in equation (D6) must be plot-
ted against the frequency; the value of the frequency for
which this determinant becomes zero is thereby obtained.
This procedure involves first solving the cubic equation (D7)

TABLE I—STATION NUMBERS

n=1

k

(oS
[ory

Z 8 o v 2 R
IS E LTSS L P PO
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R
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for each assumed value of frequency parameter and then
calculating the elements of the determinant from equations

(D11).

10.

11,

12.

13.

. Den Hartog, J. P.: Mechanical Vibrations.

. Mykelstad, N. O.: Vibration Analysis,

The process is evidently long and laborious.
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n=2
" -
] 1

1 5

M L 2 2

N 8 R

15 i5
P 0.183333 0. 025000
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M’ . 536364 . 827273
N* . 867100 . 851048
P’ . 137033 . 057058
¢ . 036616 . 069733

13 2%

M 2 —;—1' 24;89

N 24 350
P —0.087500 | 0.143750
13 —. 0081 181448
4 . 448874
N’ . 034875 758085
ik —. 011262 . 118462
Q' —. 002014 | 150415
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TABLE VII—STATION NUMBERS

n=T
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N 67340 .430802 | 063889 L031600 |  —. 026481 .033105 | —.042100
P 8415 ozs82 | — 003060 soolzllc| - 1000025 | —.000383
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TABLE VIII—STATION NUMBERS

’
SRR [NV S —

n=§

1 2 3 4 5 8 7 8
ar 1 1.312102 0.364019 | —0.0520 0.000460 | —0.003545 0.009081 | —0.003981 0.005089 |
N . 695399 .$62703 —. 052653 022453 —. 015853 . 016958 —. 02521 . 037691
P . 225453 . 021401 —. 002485 . 000380 —. 000409 000464 —.000822 000884
Q 05448 025255 —. 00547 . 002604 —. 002103 002422 —. 003869 . 004020
ar T3 444367 - 015242 —. 006898 . 007082 —.00% 005334
N 467152 . 57362 —. 104816 . 052799 —. 038088 038033 - . 062492
P 168111 030533 —. 0051190 . 002003 —. 001220 . 001045 —. 001245 001228
Q" . 043271 036245 —_ 011204 006433 —. 005146 . 005456 — 007 . 008863
M 2 —1. 600360 0. 955003 0.498100 | —0.045057 0.020351 [ —0.01818% 0.010610 | —0.024337
N —. 682210 L 507948 . —. 155335 091123 - 127790 —. 182002
P —. 183160 . 188781 020123 —. 005550 . —. 002412 003052 —. 003280
Q —. 037524 . 235068 063696 —. 017807 . Q11838 —. 012583 . 010183 —. 023706
Arr —. 415708 .TOT175 468735 —. 06077 028715 — 021414 021627 -

N7 —. 221089 289999 1.082551 —. 2007 . 128550 —. 117680 . 140656 —. 174580
P —. 067164 . 170868 . 034087 —. 007611 . 0038538 —. 003129 . 003272 —. 003421
Q —. 015018 . 214410 074858 — 016664 —. 016330 . 020358 —. 024694
ar : 2.337500 | —0.630528 0. 780389 0.491625 | —0.062648 0.054514 | —0.060500 0.071477
N . 967 —. 623581 2 (36155 1631308 —. 368856 . 200530 —. 804067 L5340
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N . 240602 —. 5107 1, 804105 L 702145 —. 408100 .310711 - 7 406216
pr 072148 —. 056240 160534 0400690 —.012016 008120 —.007 007011
4 015838 —. 068533 . 302854 127877 —. 0506817 042380 —. 045918 057107
M 4 —2. 630070 0.503581 | —0.313718 0. 687195 0.558819 | —0.143453 0.132430 | —0.143016
N —1. 075644 . 861856 —. 796202 2. 424356 2. 424358 —.7 (861858 | —L.075644
P -2 . 074709 —. 045518 152881 046081 —.02007 020253 —.018162
Q —. 055049 . % —.101253 498324 . 197214 —. 104712 126011 -

M —. 188630 . —. 25803 . 650770 . 501588 —. 185711 . —. 100163
N —. 240468 . 487558 —. 646305 2. 367821 2 436346 —. 743106 681473 —. TSRS
p —. 071501 045534 —. 038818 . 150602 047159 —. 018614 015419 —.014572
[+4 —. 015627 . 055337 - 491881 . 197950 —. 097075 . 096084 —. 105178
M 5 2.192005 | —0.45{018 0.201514 | —0.175180 0.584107 0.633380 | —0.257005 0.215082
N . 890689 —. 65677 . g —. 614026 2. TIS8E7 8.303502 | —1.539801 1.613222
P . 230544 —. 055975 027753 —. 02 41097 058226 — 0347 028953
Q 045912 —. 067648 081577 —. 087480 601511 . 302606 - T . 203600
ar . 380428 —. 253524 . 165704 —. 170613 . M1124 614188 —. 101506 . 155413
il . 190636 —. 373346 . 412448 —. 500857 2. 750801 3.287041 | —L241724 1. 164103
P . 055201 —. 034316 . 023783 —. (26822 L 149374 . 054060 —. 0027 022340
1 4 012882 —. 041657 052749 —. 0BB4T7 606015 283874 —. 168026 161236
M [ —1.350288 0265550  —0.108064 0078152 | —0.102878 0. 520374 0.709714 | —0.274341 |
N —. 546005 . 883370 —. 2017 21337 - 952258 4523905 | —2.046830
P ! —. 1408685 032367 —. 04611 011568 —. 016607 . 131595 070024 —.0343 |
Q | —.027983 030083 —. 082351 037251 —. 071468 . 002634 434540 —. 242035 |
ALY —. 263382 163432 —. 098083 . 084195 —. 118917 543778 . 662638 —. 230609
N' —. 134575 240192 —. 243600 L2007 —. 525024 3.081687 £.216400 | —L 728005
P —. 039810 . 021885 —. 013810 . 012658 —.019020 . 135367 . 062213 —. (032195
¢ —. 008646 026552 —. 030611 040765 —. 080305 _T12T4 . 385004 —. 282314
M 7 0.654484 | —0.124305 0.048081 | —0.031858 0.024801 | —0.068329 0. 484484 0.662747
N . 7 —. 170348 118705 ~. 111252 15710 —. 370670 3. 239551 4867795
P 067014 —. 015082 —. 004626 005472 —. 011670 . 126311 . 035345
Q .013488 —. 018172 014232 —. 014583 023114 —. 060517 . TOL745 . 308381
i 130845 —. 07905 . 045388 —. 026054 041862 —. 0777 . 500211 . T23627
N 066733 —. 11805 . 112606 ~. 126105 - 196085 —. 431248 3.341811 5.337321
P 019727 —.010524 006381 —. 005328 006503 —. 013324 . 128640 072134
[ 4 . —.012763 014029 —. 017155 027348 —. 068630 . 806281 . 510815
M 8 —0.202414 0.037821 | —0.014268 0.000104 | —0.003307 0.015388 | —0.045167 0.487926
N —. 081470 054494 - 3 031774 —. (41082 . 0BBISL —. 208574 8. 754721
P —. 020047 . 004560 —. 001868 001312 —. 001443 . 002573 —. 008204 . 129520
Q —. 004150 . 008504 —. 004201 . 004221 —. 000063 013452 —.051711 Q41457
2. —. 033107 019722 —. 011008 . 008527 —. 0093268 015058 —. 0397 - A12006
N —. 016869 028037 —. 027TH0T 0296800 —. 042083 . 083310 — 260903 3. 108326
P —. 004079 . 002618 —.001541 001252 —. 001450 002493 —. 007173 . 113558
4 —. 001080 008174 —. 003414 . - 018034 —. 047 825790
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TABLE IX—COMPARISON OF RESULTS

Torslon Bending Coupled
Nug;ber
stations g T I m m m
. /2 0y 1 o @, malt 7N ot w,,‘ matt @, mott wy molt o3 mot
Co Co Cy By By By By By By
Station-Funetion method
- I U I, 3.408 - . 3.4¢
2 1. 57% 4528 |eeae 3. 516 b3 W o A P, 8,48 jE T S R —
8 1571 4,089 7. 502 8,516 22,04 60,20 3.48 20.6 48,2
Weighted influence coefficients
2 L 875 [ 3%::* E P, 3.5 BT 2 R RN fesemvememmmen|e———————————
4 1.5671 478 oo ———— 8.52 22,80 cmmemmemaccceo|ascmsammammmee|esmemeeneeanne|mmm———————————
Ezxact theoretical value
1.571 4.712 7.854 3.518 22,04 6L.70 3.48 2.6 49,1

TABLE X—STATIONS REQUIRED FOR SATISFACTORY ACCURACY
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3 L4 1 2 3
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