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A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES'!®

By MaxteL StEIN and J. MAYERS

SUMMARY

A small-deflection theory that takes into account deformations
due to transverse shear is presenied for the elastic-behavior
analysis of orthotropic plates of constant cylindrical currature
with considerations of buckling included. The theory is
applicable primarily to sandwich construction.

INTRODUCTION

The usual sandwich plate as used in sireraft construection
consists of & light-weight, low-stiffness core material bonded
or riveted between two high-stiffiness cover sheets. The
elastic behavior of such plates under loading cannot be
analyzed by conventionsal plate and shell theories in general
since these theories neglect deformations due to transverse
shear, an effect which may be of great importance in sand-
wich construction.

Many authors have considered transverse shear deflections
in analyzing the elastic behavior of flat sandwich plates by
means of small-deflection theories (see, for example,
references 1 to 4). Mlost of this work has been concerned
with sandwich plates of the isotropic type (for example,
Metalite, cellular-cellulose-acetate core}. In reference 3,
however, sandwich plates of the orthotropic type are also
considered (for example, corrugated core).

The treatment of curved sandwich plates in the
literature has not been as general as that accorded flat
sandwich plates, although several specific studies of the
curved isotropic sandwich plate have been published. These
studies have covered (a) simply supported, slightly curved
isotropic sandwich plates under compressive end loading
(reference 1), (b) axially symmetric buckling of 2 simply
supported isotropic sandwich cylinder in compression
(reference 1), and (¢) a nonbuckling small-deflection theory
for isotropic sandwich shells which takes into account not
only deflections due to shear but also the effects of core
compression normal to the faces (reference 5).

The need for a general theory for curved sandwich plates
which is applieable to orthotropic as well as isotropie types
and which includes both nonbuckling and buekling effects has
led to the development of the theory presented in this report.
This theory, which takes into account deflections due to

transverse shear, covers those types of sandwich plates
having constant eylindrical curvature, similar properties on
the average above and below the middle surface, and
essentially constant core thickness.

SYMBOLS
D, flexural stiffness of isotropic sandwich plate,
Et.h2

inch-pounds (2 G

D flexural stiffness of ordinary plate, inch-pounds

Es

(1 2(1—p%

D,, D, flexural stiffnesses of orthotropic plate in axial
and circumferential directions, inch-pounds

D., twisting stiffness of orthotropic plate in
zy-plane, inch-pounds

Dq_, Do, transverse shear stiffnesses of orthotropic
plate in axial and circumferential directions,
pounds per inch

D, transverse shear stiffness of isotropic sandwich
plate, pounds per inch

E Young's modulus for ordinary plate, pounds
per square inch

E, TYoung’s modulus for faces of isotropic sand-
wich plate, pounds per square inch

E.E, extensional stiffness of orthotropic plate in
axial and circumferential directions, pounds
per inch

Gy shear stiffness of orthotropie plate in zy-plane,

pounds per inch
Lg, Lg™2, Lp, V3, V4,V mathematical operators defined
in section entitled “Theoretical Derivations”
bending moments on plate cross sections
perpendicular to z- and y-axes, respectively,
inch-pounds per inch
AL, twisting moments on cross sections perpendic-
ular to z- and y-axes, inch-pounds per inch

M, M,

NN, resultant normal forces in z- and y-directions,
pounds per inch

Ny resultant shearing force in zy-plane, pounds
per inch

q lateral loading, pounds per square inch

1 Supersedes NACA TN 2017, “A Small-Deflection Theory for Curved Sandwich Plates” by Manuel Steln and J. Mayera, 19050,
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Q. 9 resultant shearing forces in yz-plane and
zz-plane, respectively, pounds per inch

h depth of isotropic sandwich plate measured
between middle surfaces of faces, inches

r constant radius of curvature of plate, inches

t thickness of ordinary plate, inches

t thickness of face of isotropic sandwich plate,
inches

%, v, W displacements in z-, y-, z-directions, respec-
tively, of a point in middle surface of
plate, inches

z,Y,2 rectangular coordinates

Yiy shear strain in zy-plane

€, €y normal strains in axial and circumferential
directions

B Poisson’s ratio for ordinary plate

By By Poisson’s ratios for orthotropic plate, defined
in terms of curvatures

e ny Poisson’s ratios for orthotropic plate, defined

in terms of normal strains

THEORETICAL DERIVATIONS
GENERAL THEORY

In developing the equations of equilibrium for the ortho-
tropic curved plate element, shown in figure 1, the basic
assumptions made are that the materials are elastic, that the
deflections are small compared with the plate thickness,
and that the thickness is small compared with the radius of
curvature. The last assumption implies that the shear
forces Ny and N,. are equal and that the twisting moments
M., and M, are equal.

Eleven basic equations.—As in ordinary curved-plate
theory, 11 equations exist for orthotropic curved plates
(considering deflections due to shear) from which the dis-
placements acting in the plate can be determined. The 11
equations consist of 5 equilibrium equations, 3 equations

r
F16URE 1.—Forces and moments acting on curved plate element.

relating resultant forces to strains, and 3 equations relating
resultant moments with curvatures and twist.

The first five equations, expressing force equilibrium in
the z- and y-directions, moment equilibrium about the z-
and y-axes, and force equilibrium in the z-direction, are

o, DN” (18)
a;;"ﬁév (1b)
o212 1)
o aaf‘jw?’;‘i ad

2,
Ot Gt N G N, (G50 2N i F =0 (10
Tt should be noted that in these equations, higher-order
terms have been neglected in accordance with considerations
similar to those of reference 6.

For the orthotropic curved plate, the relations between
the resultant middle-surface forces and the middle-surface
strains are (see appendix)

Ne= ; £y < %)] (2)

B, (ov
1_'”' z#y ay r

No=G,y (bx+ay) 20)

From reference 3, the corresponding relations between
resultant moments and curvatures and twist are

N~ AW (21)

B 2
(39)
AM,—— D, [Pw__ 1 bQ,_l_ (b’w 1 064\
1 —papy | OY° ox? Dq dr
(3b)
M,w=% D,, (2 % —31;; %%‘ Dlo abg, (3c)

Equations (1), (2), and (3} are the 11 basic equations neces-
sary for determining the forces, moments, and deflections
acting in the plate. The number of equations can be reduced
to five, however, by substituting equations (2) and (3) into
equations (1). In this manner, five differential equations are
obtained for determining the resultant transverse shear
forces §. and @, and the displacements %, », and w.
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The 11 basic equations presented are not restricted to de-
flection problems alone but may be applied to buckling prob-
lems as well by considering the changes that occur during
buckling and modifying equations (1) accordingly. For
equilibrium of the curved plate element after buckling,
equations (1) can be written with Ni, Ny, Ny, @, @, AL,
M., M, and w replaced by N, +N,1, N,,O—I-N,,l, sey
wo—l-w,, respectwely, where the subscnpt 0 refers to values
prior to buckling and the subseript 1 refers to changes in
these values that occur during buckling. For equilibrium
of the curved plate element prior to buckling the following
equations apply:

or by
a;\;,o_l_ai\;%:O
Q,o—°§j"°+%f:ﬂ=
s o, 2, (B4 50) 42, S b0 =0

Subtracting the previous equations from equations (1)
(as modified) gives the following equilibrium equations which
apply to buckling problems:

ON. 0N,
"‘+—""_0 (48)
ON;, , ONa,
M, | dM,,
Q"_Tz——‘-_w: (4c)
M, au,,l
44
Q— o7 + (4d)
aQ: 0@y, , ., Ow D(wotwy) dtw
s T 5y TN aI,I+N=1 o TNn gt
1 b('w+fw . OHwetwy)
Nv;[; o 1):|+2 o 5 by+ \,,l———a;ay
(4e)
Fw. ., d*w,
In equation (4¢) the terms N, 31—,‘.- Ny, Z;:;‘, and Ny, St ay

may be neglected since they will be small compared with

2 2, 2
Ny St Ny gt 04 Moy "‘g‘y Also, if the deflection
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prior to buckling is zero or constant as occurs for many
problems (for example, exial compression, hydrostatic pres-
sure), all derivatives of w, vanish. For this type of problem
equation (4e) becomes

bQ,1 2Q, o,

o’w d%w
oy TN, Ozt 5zt T dy l

l
2I+ l+2"- ¥g al‘ ay=0
(4e)

The six equations relating changes in middle-surface re-
sultant forces with buckling strains and changes in moment
with buckling distortions are identical with equations (2)
and (3) with the subscript 1 added to N, N4, N, Q: @
M,, M,,, 3, u, v, and w.

The 11 equations, given by equations (4) and equations
(2) and (3) (with subseript 1), apply to buckling problems
in general (with equation (4e) or (4e’) as required) and can
be used to obtein the eritical values of the loads acting on
the plate. As is shown in the next section, however, for the
case in which the deflection prior to buck is zero or con-
stant, the 11 equations can be suitably combined to yield 3
equations in 1, @, and Q,,, 2 form convenient for applica-
tion to plates of sandwich construction.

Reduction to three equations for buckling problems in
which the deflection prior to buckling is zero or constant.—
The reduction of the 11 equations to 3 equetions in wy, ¢:,,
and @, is achieved in several steps as follows:

By dlﬂ’erentlatmg equation (4¢) with respect to z, equa-
tion (4d) with respect to ¢, and adding the results to obtam
the relationship

0@, : E)Q,l_b’M,l
oz ' dy oz?

+

O, | OM,
dz0y T oy

equation (4e”) may be rewritten as

MU, M, M, N, . O
5t 2agdy T T T
o? wh 02 W

ﬂo a z+ Nqﬂ ara 0 (4&”)

Next, equations (2) and (3) (with subscript 1) are substituted
into the equilibrium equations (4a) to (4d) and (4e”) to give

B’ul a’vl y.', % w b"ul b’vl
3 TEY Sroy 7 oz LT HEY B o tarey)
a’r; 1 au’ ’ a DI a!ul. )_
a—y? r ay +#zax ay+(1 :# v) aIz aray =0
(6)

D._(dn_1 %%, o D’Q,I)
Q‘I+1 — gy \ 022 Dq: T Ty Oz Oy? qu dr dy +

1 w; _1_ Q1 00y

2 Da\25:54 D, o Do oxoy) 0 D
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¥ E)sfwl___l__ azQﬂl aswl ___H_z_ azQ-ﬂl)
Ot i (5~ o T oy B o)+

1 dw, 1 ¢, 1 D”Qul)

3 Dn\2 50y Do, a0y Do, 022 )" ©®
Ey 927_1_— ’ ) ( bw1
prl_r(l—p "ol ) Fwe dx Ney 552 bx2

oty dw, ) D, ¢y
N, oyt 57 T 2N or by DQ 1—pepy 02°

=Dy D) gk |-
1 —u:#y oz 0y?

1 [ D, ¥, ) 2]
- =0 (9
Do LT 2 (L D) 37 =0 ®

+

where L is the linear differential operator defined by

D,

. .ur.
LD_I_‘#:F# bx4+<1_’#: v+ +1 — sz .“v axza,yz'i'
1 — pepy OY*

At this point, six equations have been eliminated and, there-
fore, five equations remain—equations (5), (6), (7), (8), and
(9) in Uy 01y Wi, Q-'tn and Qvl‘

A further reduction in the number of equations and un-
knowns is effected by first solving equations (5) and (6) to
obtain relations from which %, and », can be determined
and then substituting for u4; and »; in equation (9). The
expressions obtained by solving equations (5) and (6), in
accordance with the rules governing the multiplication of
linear operators, are

Gzy bs’wl &y bawl
rlgw=n'y 7 5 E. 520y (10)
and
_ .t Qﬂl D”wl ny D”wl
”L””l—(l Y5 ) oty TR, oF (1)
where Lg is the linear differential operator defined by
_ G, 0 y Gy O G, O
Li=F % 4+<1 We F“‘ vE, ) 3op T E o

The relationships given by equations (10} and (11) may
be written in a form more suitable for substitution into
equation (9) by differentiating equation (10) with respect
to z, equation (11) with respect to ¥, and then, symbolically

solving the equations for %"i and aby’ respectively, to give

g (e Ga DGy D0
oz =Ly r E, 0zt rE,0x%y? (12)
1o, G
I'L=L 1 ¥ E, E)"wl +G_W a4’w1 (13)
Xy r 02’0y ' rE, oyt

where Ly~! is defined by Lg~Y(Lgw,)=Lg(Ly'w)=w;. The
inverse operator Ly~' is similar to the inverse operator v+

defined in reference 7, and, as is shown subsequently, Lg~!
reduces to v~* for the special case of theisotropic plate.

Substituting the expressions for %‘ and %—;‘ from equations
(12) and (18) into equation (9) and replacing %i-‘ by

Lg™? (Lgy;—l) results in the following equation:

ot o? % o
LD’UJI'{"%LE_I b::il_<Nzg a;;‘;l_*_Nﬂo 1+2NWU axz;ly -
A[_D. 2, ( gDy %]_
Do | 1—p.n, 02 1—pepy 7/ 3z 0y
1 D, b:;Qul er —0 (14)

o Byl
Do | 1—papy 0Y° +<1—#=#y+ )az’by

At this stage, the original 11 equations have been reduced
to the 3 equations (14), (7), and (8), in the 3 unknowns

W, QSI, and Qv,_.

For most problems, equations (14), (7), and (8), together
with proper boundary conditions, can determine the elastic
stability criteria for an orthotropic curved plate subjected to
middle-surface loadings. It should be noted, however, that
the three equations are not sufficient if boundary conditions
are specified on the displacements «; and »;. For boundary
conditions on #; and #;, as well as w,, equations (10) and
(11) must also be employed. When boundary conditions
are not specified on %, and o, (the case when only cquations
(14), (7), and (8) are used), certain boundary conditions are
implied, nevertheless, by equations (10) and (11), consistent
with the expression for w;. A discussion of similar implied
boundary conditions on u; and 7, is included in reference 7

SPECIAL CASES OF BUCKLING EQUATIONS

Isotropic curved sandwich plate with non-direct-stress-
carrying core.—For the isotropic sandwich plate with non-
direct-stresg-carrying core, the physical constants bear the
following relationships to those of the orthotropic plate:

Dqo,=Dq,=Dq
pre=py=ple=ply=p
D/=D,=D,(1—u?

Dy=D(1—p)
E~—E,=2E{4,

.Egt;
1+u

These relationships permit equation (14) to be simplified as
follows:

G.=

E,__»0* o o? *w
:V‘wl"l’ vt a::.l <N=0 a:;l'{"NtIo au;l T ZN'W“DI a;/ -
0Q., 0
Da Q‘+ Q”‘ (15)
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where

“ort T op

o o
x‘+ 5zt oyt | o

and V~*is defined by V*(Viw)y=V*(V'w)=w,.

In this case, however, equations (1) and (8) are not needed

Qvl

to obtain the quantlty b ——, since this quanfity can

be found more conveniently from equation (4e). From
equation (4e¢"), therefore,

20, N,
) Q”‘——( ", 20, Lo, 2 )

Oz? oyt oz oy
Q-f-[ Qlll
Substituting for Sz + oy in equation (15) gives
2t E, . Ow_ D, _li}_l _
Dentwnt V- ox* Do r
2 o? o*
(1— v‘)(l\ao ab“l‘-!-N,o a;:I'l‘?N%a "g‘ =0 (16)
The term — N, /r, which appears in equation (14) for the
G‘“ —1 a* 2t‘Eg —4 b w;
orthotropic plate as —= e Lg > 2, reduces to V- gy

for the case of the isotropic plate. If this result is used in
equation (16), the equation of equilibrium for the isotropic
curved sandwich plate with non-direct-stress-carrying core
becomes

D, 2t E, __, O'w
D w1+(1 vz)[ y-s ba:“l

(A’o abw;'i'N Yo 2 WI

azwI
Nayy oz d )]—

If the radius is taken infinite, equation (17) becomes
equivalent to equation (71) of reference 4.

Isatropic curved plaete, deflections due to shear neg-
lected.—The present theory can be reduced to a known
theory for ordinary curved plates by appropriate substitu-
tions for the physical constants. For an ordinary plate, the
physical constants become

Do, =Dq,= {no shear deflections)
pr=pmy=p"r=py=u

D;=Dy=D (1—p?

Doy=D(1—p)

E.=E,=E!

it

Upon substitution of these constants into equation (14),
the resulting equation becomes independent of equations
(7) and (8) and the equilibrium equation of the ordinary
curved plate, therefore, is given by

Ei__,dow o%w o*w o*w
R A (‘oa;"‘\"ua;“‘\“oara;) 0

(18)

Equation (i8) is equivalent to the modified equilibrium
equation for ordinary curved plates presented in reference 7.

CONCLUDING REMARKS

A theory has been developed for analyzing the elastic
behavior of orthotropic curved plates, that takes into account
the effect of deflections due to shear and requires the use of
12 physical constants to characterize the plate. Seven of
the physical constants appearing in the equations of equi-
librium sare directly associated with the fat-orthotropic-
plate theory presented in NACA Rep. 899. The remaining
five physical constants are included in the present theory
to account for the siretching under loading of the middle
surface of the curved plate.

For each type of orthotropic plate, the 12 physical con-
stants may be evaluated either from the geometry of the
cross sections and the properties of the materials used or
by direct tests conducted on sample specimens. Because
two reciprocal relationships exist (see &ppendix), only 10
of the constants need be determined independently.

The theory presented in this report does not take into
account the compressibility of the sandwich plate in a direc-
tion normal to the faces. Such an effect does not enter into
flat-sandwich-plate theory but might be of importance in
certain types of curved sandwich plates where the elastic
constants of the core material are small compared with
those of the face material.

For practical sandwiches of the end-grain-balsa or
corrugated-core types, order-of-magnitude considerationslead
to the conclusion that the effect of core compressibility will
be negligible as regards both buckling loads and deflections.
For sandwiches with less stiff cores—for example, cellular
cellulose acetate—the effect of core compressibility will be
more important. Kven for such cores, however, in the case
of all the numerical examples given in NACA TN 1832, the
effect of core compressibility is negligible in comparison with
the effect of transverse shear deformations for sandwich-type
circular cylindrical shells. The present theory, in which the
core is assumed to be incompressible in a direction normal to
the faces, appears, therefore, to be applicable to most prac-
tical sandwich plates.

LaxGgLEY AERONAUTICAL LABORATORY,
Narronan Apvisory COMMITTEE FOR AERONATTICS,
Laxcrey Frero, V., November 82, 1949.



APPENDIX
DERIVATION OF MIDDLE-SURFACE FORCE-DISTORTION RELATIONSHIPS

The orthotropic curved plate (effects of transverse shear
being considered) is characterized by 12 physical constants,
7 of which are associated with flat plates, as presented in
reference 3. The remaining five constants enter the present
theory because of the additional stretching strain developed
under loading in the middle surface of the curved plate. In
this appendix the five additional constants are defined, and
expressions for the resultant forces, involving these con-
stants, are derived.

Physical constants.—The seven flat-plate constants are the
flexural stiffnesses D, and D,, the fiexural Poisson ratios g,
and u,, the twisting stiffness D,,, and the transverse shear
stifinesses Dy, and Dq,. As derived in reference 3, the first

four of these constants are related by

pr=#y~Dz

The five additional constants appearing in the curved-plate
theory are the extensional stiffnesses E;, and E,, the
extensional Poisson ratios p’; and 4, and the shearing
stiffness G The first four constants are found by a
procedure similar to that used in reference 3 to be related by
#'mEy=#'yEz

As a result of these two reciprocal relationships, only 10 of
the 12 physical constants need be determinedindependently.’

The five additional physical constants are defined in the
same manner as the flat-plate constants of reference 3—
that is, by considering the effect of imposing particular
loading conditions on the element shown in figure 1. To
obtain E., for example, only the middle-surface forces N,
are assumed to be acting on the element. As a result of
this loading, the strain e, is induced in the middle surface.
The stiffness E, is then defined by the relation E —]—:T—
when only N, is acting. :

The Poisson effect of the forces N, acting on the element
is to introduce a strain ¢, negative with respect to e,, in the
middle surface. The constant p’. is then defined by the

relation p',=—? when only N, is acting.
'z
In a similar manner, E,, u',, and @, are defined as
E,=]% when only N, is acting, p.',=—? when only N, is
12 v

acting, and GH=&'-’ .
. Yy

Resultant forces.—The relations between the -elastic
middle-surface strains and forces, satisfying the foregoing
definitions, can be written as

_Ne Ny
“F, ”Ej
e,—%—u’,% > (A1)
Y= 77 . J

The three strain equations can be solved for
Nz in terms of the strains to give

E,

7x Ny, and

N_ — / <52+F’- veﬂ)
N— r (Ep']"ﬂ .rﬁz) (A2)
Nzy:qu’Yﬂ

Substituting the expressions for the middle-surface strains
of a cylindrical section in terms of middle-surface displace-
ments

_Qu
“=2z
L
Ty r

ou, v
711 ay+ax

into equation (A2) gives

___E, ou, , (O A
Nemr—yi 3ot (555

E, oy w
— ¥ _f==_ = .
Ny 1—“2#” ay +#=ax) - (.1!’3)
Ney= Gy <ax+ay) J

These equations are used in the derivation of the equilib-
rium equations.
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