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STRESS ANALYSIS OF BEAMS WITH SHEAR DEFORMATION OF THE FLANGES
By Pauvn Kuan

SUMMARY

The fundamental action of shear deformation of the
flanges is discussed on the basis of simplifying assumptions.
The theory 1is developed to the point of giving analytical
solutions for simple cases of beams and of skin-stringer
panels under axial load. ~ Strain-gage tests on a fension
panel and on a beam corresponding fo these simple cases
are described and the results are compared with analytical
results. For wing beams, an approzimafe method of
applying the theory 1is given. .As an alfernafive, the
construction of a mechanical analyzer is advocated.

INTRODUCTION

The so-called “‘semimonocoque’ type of construction,
which has been favored by aircraft designers for some
time, presents serious difficulties in stress analysis.
Static tests have proved that the bending action of such
a structure is not always described with sufficient
accuracy by the standard engineering formulas based
on the assumption that plane cross sections remain
plane. It will be necessary, therefors, to devise new
working theories for the action of semimonocoque beams
under bending loads.

In order to arrive at reasonably rapid methods of
stress analysis, it is necessary to make rather sweeping
assumptions. It is obvious that the range of applica-
bility of any such method is Limited. The present
paper concerns itself with beams typical in general
form of one class of beams used in airplane construction,
that is, with fairly shallow, wide beams, having flat covers,
symmetrical about the center line, with two shear webs and
with bulkheads that offer no appreciable resistance to
deformation out of their planes.

Briefly, the action of such 2 beam under loads applied
at the shear webs is as follows: The transverse shear is
taken up by the shear webs. The flanges attached to
these shear webs furnish part of the longitudinal stresses
required to balance the external bending moment.
The strains set up by these stresses induce shear stresses
in the skin which, in turn, cause longitudinal stresses in
the intermediate stringers attached to the skin until
sufficient longitudinal stresses exist at any section to
balance the external bending moment.

If the skin between stringers did not deform under
the action of the shear stresses, the standard beam
formulas would apply. The thin sheet, however, has

very little shear stiffness and suffers large deformations
under load. As a result, the first intermediate stringer
next to a shear web carries a smaller stress than the
flange of the shear web, the next intermediate stringer
carries less stress than the first one, and so on to the
center stringer, which carries the smallest stress. This
phenomenon of the interdependence between stringer
stresses and shear deformations forms the subject of
the present paper.

Apparently Dr. Younger was the first person in this
country to give serious attention to this subject. In
reference 1 he gives a formula for the efficiency of a box
beam with walls of uniform thickness, which may be
considered as the limiting case of very many extremely
small stringers. Nothing more on the subject was
published until two experimental studies appeared in
1936. Reference 2, dealing with the case of a skin-
stringer panel in edge compression, includes a theoretical
solution for a particular case. Reference 3 deals with a
box beam in pure bending, & problem identical with the
one treated in reference 2. In both studies the stringer
stresses experimentally obtained were used to compute
efficiency factors for the shear stiffness of the sheet.

The most important practical problem is the inverse
of the problem dealt with in references 2 and 3; namely,
given the shear stiffness, to calculate the stringer
stresses. The problem is difficult and complex. In
order to arrive at any solution, it has been necessary to
use a very much simplified concept of the action of the
structure, as suggested in references 1 and 2. On the
basis of this simplified concept, the analytical solutions
for a few very simple cases of axially loaded panels and

| of beams are derived in this paper. For other cases,

it will be shown that a trial-and-error method of solution
is feasible.

The analytical solutions as well as the trial-and-error
method apply only to very elementary cases, namely,
to three-stringer panels under axial load and to beams
with a single longitudinal sfringer attached at the
center line of the cover sheet. It has been considered
worth while to devote considerable space to the dis-
cussion of these elementary cases for the following
reasons:

1. The study of these simple cases greatly facilitates
the understanding of the fundamental principles. (It
is very strongly urged that anyone desiring to use the
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proposed method of analysis work, by the trial-and-
error method, at least one example each of a panel under
axial load and of a beam.)

2. The simple cases afford a very convenient way of
experimentally checking the validity of the assumptions
made. Strain-gage tests made for this purpose on a
tension panel and on a beam are described in this paper.

3. The solutions obtained for beams with a single
longitudinal can be used as checks on the degree of
approximation attainable with the ‘‘constant-stress
method’ proposed later for analyzing actual wing beams.

An additional reason for the lengthy discussion will
only be mentioned in passing. Under certain condi-
tions, a beam with a single longitudinal stringer may
give useful approximations of the stresses in & beam
with many stringers. Such a simplified substitute beam
makes it possible to obtain some rough ideas on the
influence of bulkheads, an influence that was neglected
in the present discussion.

Two methods are proposed for winglike structures.
One method is the construction of a mechanical ana-
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(a) Axially loaded panel subjected to shear deformation.
(b) Mechanical model,

F1GURE 1.—Three-stringer panel.

lyzer permitting & solution that is “exact’” within the
assumptions made. The other method is based on the
assumption that the structure is so dimensioned as to
approach the ideal design of constant flange stress along
the span. For this ideal case, the analytical solution
can be obtained. The actual case will have deviations
from the ideal case, which are termed “faults.” These
faults are minimized as much as possible by applying
corrections, and the stresses caused by the corrections
are superposed on the stresses of the ideal case.

SYMMETRICAL THREE-STRINGER PANEL UNDER AXTAL
LOAD

FUNDAMENTAL CONSIDERATIONS

The simplest possible structure in which shear
deformation must be taken into account is shown in
figure 1 (a). Two stringers, A and A’, of equal section,
are connected to an intermediate stringer B by means
of a thin sheet C. The upper edge of this sheet is
reinforced by bars D. The stringers and the sheet are
attached to s foundation F.
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The important phases of the elastic action of this
structure may be visualized with the help of the
mechanical model sketched in figure 1 (b). This
model represents one-half the structure, which is per-
missible because the structure is symmetrical. Helical
springs represent the stringers 4 and B and their
elastic resistance to longitudinal deformation. Coil
springs represent the elastic resistance of the sheet to
shear deformation. It is assumed that the stringers
carry only longitudinal stresses and that the sheet
carries only shear stresses. For the mechanical model
it is assumed that guides prevent any deflection of the
springs other than that for which they are designed.

The stresses resulting from the load P are shown
qualitatively in figure 2. At the top of stringer A the
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Fiqure 2—Notation for axially leaded panels.

stress is 0,=P/[A,, at the top of stringer B it is ep=0.
The shear stresses = acting on the sheet gradually take
the load out of stringer .A and transfer it to stringer
B. If the panel has sufficient length and if the sheet
has sufficient shear stiffness, the stresses ¢, and op will
be very nearly equal at the root.
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EQUATIONS OF THE PROBLEM
The equations governing the problem under the
gimplifying assumptions can be very easily set up.
Figure 3 shows a strip of length dz cut from the panel

F+dEy Fp+dFy
t
L Vi
/
JE A )
b
F, Fp

FI1GURE 3.—Element of panel.

and separated into its component parts. The equation
of equilibrium gives

dFA-——ng:—dFB

(See list of symbols, appendix A.)

It should be noted that these equations are written
for the structure as shown in figures 1 (b), 2, and 3,
which is one-half the original structure in figure 1 (a) s
g0 that Ay is one-half the area of stringer B as shown in
figure 1 (a). The sign convention used throughout this
paper is that tensile forces and stresses are positive and
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- that shear forces and stresses in the sheet are positive
when caused by positive stresses in the loaded stringer
A (or in the flange F in the case of beams).

The elastic deformation of the structure is shown in
figure 4. Two corresponding points 1 and 2 are dis-
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F1GURE 4.—Elastic deformatfon of panel.

placed to new positions 1’ and 2’. The total displace-

ments are given by

u4=f:%,‘d:c and u3=f:%da:
The shear strain is given by

Uy—Up
Y=
and since
r

’Y=E1"

[

where @, is the effective shear modulus, these relations
may be combined into

N
[] 0 0

The last equation may be written

dr=52 (01— oa) e @)
Equations (1) and (2) may be combined into a differ-
ential equation (see appendix B) which, together with
the boundary conditions, defines the problem com-
pletely. If there are more stringers, a system of
simultaneous differential equations results.

SOLUTION OF THE EQUATIONS

For the fundamental case of a symmetrical three-
stringer panel of constant cross section, the analytical
solutions are given in appendix B for two cases: The
panel attached to a rigid foundation and loaded at the
free end, and the panel free in space strained by displac-
ing the ends of the stringers a known amount. Com-
bining the two solutions makes it possible to calculate
londed panels attached to an elastically yielding
foundation.

For the analysis of three-stringer panels in which the
stringer areas and the shear stiffness of the sheet vary
along the axis, a trial-and-error method has been found
feasible.

38548—38——44
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The recommended procedure for the trial-and-error
method is as follows:

Divide the length Z of the specimen into a suitable
number of bays. Tabulate the average values of ¢, 4,
and Az for each bay.

Assume values for the increment of shear ASc in
each bay. According to equation (1)

AFA.:_AFB:ASG

‘With the assumed values of AF, and AFy and the
known values F,=P and Fz=0 at the end of the panel,
calculate for all stations along the length of the panel
the forces in the stringers and then the stresses in the
stringers. From these values calculate the shear stresses
and the shear forces in the sheet. The method of tabu-
lation is shown in table I. In this example, the values
of A4, As, and ¢ are constant and need not be tabulated.

The calculated values of AS, will not, in general, agree
with the originally assumed values. Change the assumed
values and repeat the entire process until a satisfactory
agreement is reached between the assumed values of
ASy and the calculated ones.

In the choice of the first set of values for AS,, the
analyst must be guided by previous experience. The
only condition known at the outset is

P A4p
Sodt4,

because this is the maximum possible force that would
be transmitted to stringer B only if the shear deforma-
tion were reduced to zero.

The most difficult step, and the one upon which the
success of the method hinges, is to compare the cal-
culated AS; curve with the assumed one and, on the
basis of this comparison, to derive & new curve modified
in such a way that the repetition of the entire calculation
will yield a calculated AS; curve that agrees with the
assumed one. No general rule can be given concerning
the method beyond stating that decreasing the assumed
ASy values at any point will raise the calculated ones and
vice versa. Some practice is necessary to develop the
gkill required for this step. Tive trials should be suffi-
cient, in general, to obtain an agreement to 1 or 2 per-
cent for five or six bays unless the variations of areas are
extreme.

It should be emphasized that the method is a trial-
and-error one and not a method of successive approxi-
mation, i. e., the calculated AS; curve cannot be used
as the assumed curve for the next cycle.

EFFECTIVE SHEAR STIFFNESS AND EFFECTIVE STRINGER AREAS

Two quantities must be determined before an analysis
can be started—the effective shear stiffnesses and the
effective stringer areas.

The shear stiffness of a flat sheet is equal to the shear
modulus @ of the material. If the sheet buckles into a
diagonal-tension field and the edge members are rigid,
the shear stiffness is the theoretical shear stiffness of a
diagonal-tension field @,=%@ (for duralumin or steel).
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The condition of a pure diagonal-tension field is not
reached, however, until the buckling shear stress has
been considerably ex-
ceeded. Consequently,
values intermediate be-
tween @ and %4 will
occur at stresses not
too greatly in excess of
the buckling stress (i. e.,
3 to 5 times), provided
that the edge members
are sufficlently stiff. If
the edge members are
| not sufficiently stiff or
well braced to take the
transverse component of
the diagonal tension and
particularly if the sheet
) carries edge compression
h "y steel in addition to shear, the

plate jig  shear stiffness may drop

to very low values.

Values as low as G,=
0.1G have been reported
(reference 3); although
the numerical accuracy
of this particular anal-
ysis has been questioned, it serves at least as a useful indi-
cation of what may be expected, remembering that this
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A
Section A-A
F1GURE 5.—Test panel.
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von Kérmén’s formule for effective width was used

in the form
Qw= 1.9\[5 t
o

where w is the effective width (on one side of the
stringer) and ¢ the stress in the stringer. This formula
is probably always conservative in the range in
question.

COMPARISON BETWEEN TEST AND CALCULATED RESULTS

In order to check the validity of the method thus far
developed, & test specimen was built to represent a
structure corresponding to figure 1 (a). A sketch of the
actual test specimen is shown in figure 5. Pin-end steel
bars (not shown in the figure) spaced 3 inches apart
were used to separate the edge stringers from the cen-
tral stringer and to take up the transverse component
of the diagonal-tension field that developed under load.
In each bay between these bars, the strains in the
stringers were measured with 2-inch Tuckerman strain
gages on both sides of the specimen. This precaution
proved necessary because the stresses on the two sides
differed so much at some stations that readings on only
one side would have been almost useless.

The load was increased from zero to the maximum
of 4,800 pounds in five steps. With a very few minor
exceptions, the points for any one gage fell on straight
lines. For each station, the results obtained on the
front and the back of the specimen were averaged and
the average values are plotted in figure 6.

test was stopped long before
reaching the ultimate load.
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It is clear that the sheet will
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not only act as a shear memberin 5 10
accordance with the theory but

will also assist in carrying longi-
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FIGURE 6.—Comparisons between caleulated and experimental results for tension test panel.

tudinal stresses. The following 10,009
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assumptions have been used:
1. For a sheet carrying ten-
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sion in addition to shear, it was
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assumed that the sheet is fully
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effective in tension; i. e., the
sheet up to a line halfway be-
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tween the stringers is added to
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the stringer proper when com-

puting the cross-sectional area
of the stringer. This assump-

Stress, Ib.

;

tion is obviously somewhat un-

safe and should be modified when

P=2,0001b.
]

the stringer stresses are high.
2. For a sheet carrying com-
pression in addition to the shear,
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Distorice from top, percert

30 70 80

FIGURE 7.—Comparison between calcnlated and experimental results for compression test panel. (Data from reference 2.)
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The calculations were made for the two different
assumptions of the shear stiffness indicated on the fig-
ure. The second assumption of G,=¥%(@ in the top part
was based on the experimentally observed fact that one
well-developed diagonal-tension fold showed in the top
of the panel on each side, in agreement with the cal-
culation showing that at the maximum load the shear
stress in this region was about six times the buckling
stress.

The second assumption gives perfect agreement be-
tween calculated and test results for the stress in the
central stringer. The agreement is not quite so good
on the edge stringer, the discrepancy occurring chiefly
at the root. Several explanations of the discrepancy
may be offered. An error of several percent may be
caused by an error in the value of E assumed to convert
strain rendings to stress readings. The simple theory
used may break down to some extent near the root and,
finally, jig deflection may cause errors. The steel
triangle used on the lower end is not a rigid foundation,
and a slight elastic deformation of this steel triangle
under the edge stringers would relieve the edge stringers
of some load and throw it into the sheet and possibly
into the central stringer. A deformation of about
0.0003 inch would be sufficient to make the calculated
stringer stresses equal at the jig end. Undoubtedly the
assumptions of effective areas, effective shear stiffness,
and jig deflection could be varied within their possible
limits to give a much better agreement with the experi-
mental points.

A similar analysis was made for the panel tested in
compression as described in reference 2. The results
are shown in figure 7. It will be noted that fair agree-
ment with the experimental points is obtained by assum-
ing that the effective shear stiffness is only 0.2 the shear
modulus, in marked contrast to the tension panel. The
curves calculated with &,=@ are also given to show
the extent to which possible variations in @, affect the
stringer stresses.

BEAMS WITH ONE LONGITUDINAL
BEAM OF CONSTANT DEPTH

The simplest case of a beam subjected to shear defor-
mation of the flange is shown in figure 8. For simplicity
of the sketch the flange material on the side not under
consideration is assumed to be concentrated at the shear
web. This assumption does not influence the analysis
when the cover is flat.

For convenience of discussion, the material concen-
trated at the top of the shear web will be referred to as
the “flange” throughout this paper, while the stringer
attached to the cover sheet will be referred to as the
‘“longitudinal.”

It 18 again assumed that the longitudinal is cut along
the line of symmetry (fig. 8 (b)). The force acting on
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this halved longitudinal is denoted by F, the force on
the (tension) flange by Fr. The shear force in the web

()

FI1GURE 8.—Beam with flat cover and one Iongitudinal.

is denoted by Sy; the shear force in the cover sheet,
by Sc.
The governing equations are

dx

de=Sw'ﬁ'—dSc (3&)
—dF,—=dS, (3b)
dr— —%;)(a,— o) da (3¢)

with the auxiliary equations

ap=%; n=%,- Sy=P; dS,=rtds

The solution of the resulting differential equation is
given in appendix B, Case 3 (a).
COMPARISON BETWEEN TEST AND CALCULATED RESULTS

The test panel that had been used in the previously
described tension. test was sdlightly modified and
attached to two duralumin I-beams to form an open
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(a) Olosed side.

(b) Open side.
FIGURE 9.—View of test beam, showing strain gages.
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F1GURE 10.—Set-up for tasting beams.
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box beam. Figure 9 shows photographs of the beam
with the strain gages in place for a test run; figure 10
shows the test set-up. The cross section of this beam
is shown in figure 11.

It should be noted that the cover sheet and the longi-
tudinal were not attached to the bulkheads except at
the root. The flange material of the I-beams (includ-
ing the cover strips riveted to them and the sheet
material effective in tension) was replaced, for the pur-
pose of analysis, by equivalent concentrated flanges
with a centroidal distance of 2.80 inches (effective depth
h of beam, fig. 8 (a)). The calculated stresses are
therefore valid for the flange centroids. For compari-
son with the measured stresses, the calculated flange
stresses were corrected to the outside fiber stresses

¥ x1% dural sirip ~0.0/6 dural shee
K & ok & ol

3"-2.02'Ib.
ourol I-beom
F1GURE 11.—Cross section of test beam.

under the assumption that plane cross sections remain
plane for the I-beams with cover strips.

Figure 12 shows the experimental points, the curves
caleulated for three different assumptions of the shear
stiffness, and the stresses calculated by the ordinary
bending theory. It can be seen that the experimental
points group fairly well about the curve for ¢,=% G,
particularly when this curve is corrected for an esti-
mated jig deflection by the formula in appendix B,
case 2. Close to the root, however, discrepancies are
again observed as in the case of the tension panel.
The high flange stress at the station nearest the root
may perhaps be explained by nonlinear stress distri-
bution in the I-beams caused by the method of attaching
them to the jig, which was not designed for this test.
The reduction in shear stiffness of the sheet as compared
with the stiffness developed by the same sheet in the
tension panel can be ascribed to numerous initial
buckles present in the beam but not in the tension
panel.

Inspection of figure 12 shows that very large varia-
tions of shear stiffness have only & relatively small
influence on the bending stresses. This result is due
to the fact that, even when the shear stiffness increases
to infinity, the bending stresses never exceed s finite
limiting value. In many actual structures, the shear
stiffness provided is sufficiently large to permit the
limiting stress to be approached within & few percent.
Practically speaking, this fact means that the shear
stiffness need not be very accurately known to obtain
the necessary accuracy in the bending stresses.
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BEAM OF VARIABLE DEFTH

In a beam with variable depth, the only change in the
equations is introduced by the fact that the vertical
components of the flange forces balance part of the
applied shear, so tbat the shear in the web now becomes

(5)

where § and v are the angles of inclination of the
tension flange and of the compression flange.

The analytical solution for a special case of a beam
with variable depth is given in appendix B as Case 3 (b).
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F1GURE 12—Comparison between calculated and experimental results for test beam,
CONSTANT-STRESS SOLUTION FOR BEAMS WITH ONE
LONGITUDINAL

The analytical solutions presented thus far, together
with the trial-and-error method, are reasonably ade-
quate for dealing with beams having one longitudinal.
There appears to be but slight possibility, however, of
extending these solutions to the practical cases of beams
with & number of longitudinals. An approximate
method will now be developed that can be extended to
such beams. The method will first be developed for a
beam with a single longitudinal beeause comparisons can
be made with the exact solution to gain some idea of the
reliability of the approximate method.
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The approximate method is based on the following
reasoning. It is the aim of the designer to dimension
the structure so that the stress in it is uniform for the
given loading. For several reasons this ideal is never
reached, but there is usually an effort made to taper the
dimensions so as to approach the dimensions of the ideal
design. Now the solution for constant stress along the
span can be very easily obtained. It is possible, there-
fore, to consider the actual condition as a super-
position upon the ideal case, which can be calculated
exactly, of some additional disturbing cases or “faults.”
These faults can be calculated only approximately, but
if they are of minor importance compared with the ideal
case, the resulting error of the total solution will be
small.

The fundamental equation

dr={(ve— 1)z 6)

can be integrated once, if ¢r and ¢, are constant as
assumed, to give

_ (op— UL)J" . (O'F_UL):E@::

=gy ), C=T @

where G is the shear stiffness averaged over the

distance z = 0 to 2 = z, and the z origin is taken at the

root, Integrated again to give the total shear force in
the cover sheet

Se= j;‘t'-r,tda:=K1 (or—oz) (8)

For example, if @, and ¢ are constant along the span,

B=3m

Equation (8) furnishes one relation between ¢ and or.
One more relation is needed to complete the solution.
There are infinitely many conditions from which to
choose this relation. At any station along the span, the
internal bending moment should equal the external
bending moment. The root section has been chosen
because in a number of trials it always proved, by far, to
be the best choice. Equating the internal and external
moment (applied at the root) gives the relation

(G-FAFO-’_ ULALo)hd):Mao
Now remembering that
So= ag; LALO

equations (8) and (9) can be solved for the bending
stresses

9)

B MK,
= T AT K Gyt Ary)] (102)
My(Azy+ ) 10n)

7 RolAryArg T Ki (Ary +4zy)]
Substituting equations (10a) and (10b) into equation
(7) gives

The detailed development of the method is as follows:
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Equations (10a), (10b), and (10c¢) constitute the “pure
constant-stress solution’” for & beam with a single
longitudinal.

The internal bending moment at any station along
the span can now be calculated

Mau= (G'FAF‘I" O‘LAL)h

and, in general, this internal moment will not be equal
to the applied moment A,. This difference constitutes
the first fault of the constant-stress solution and will
be called the “moment fault.”

In order to remove this fault, additional (corrective)
bending moments must be added, which are at any
station

(10c)

M/=M,— M,

the prime denoting corrective moments. The stresses
caused by these corrective moments must be computed
and added to the stresses of the pure constant-stress
solution.

The method of computing the stresses caused by the
corrective moments will be approximate and arbitrary
as thus far no exact solutions of this problem have been
found. The following method was chosen because the
underlying assumption is the most obvious one and
because the method is very convenient, eliminating the
necessity of computing the internal moments, the cor-
rective moments, and the corrective stresses separately. .

From equations (10a2) and (10b) it follows that the

ratio

The assumption is now made that this ratio remains con-
stant (r=r,) along the span and that it holds not only
for the stresses caused by the “ideal” moments but also
for the stresses caused by the corrective moments.
Under this assumption, the directstresses at any station
are given by

Gp=———M—aA_L' (12a)
has( 1+
M, .
"L=—l—ﬂp_ (12b)
h1457)

From these stresses the shear stresses are obtained by
using the fundamental relation (2) and integrating from
the root toward the tip

1'=J: -%%(o'p—— op)dz

The moment fault has now been removed; that is, the
internal moments equal the applied moments when the
stresses as given by equations (12a) and (12b) exist in

(12¢)
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the flange and in the longitudinal. But equation (12¢)
follows directly from equations (12a) and (12b) and the
stresses given by (122) and (12¢) will not, in general,
fulfill the fundamental equation (3a) of equilibrium of
the flange element. Equation (3a) requires that, for

6
//

_—

4 =

G
2
1/

o 2 4 .5 .8 1.0 1.2 14

Ar/4,

Fiaure 13.—Correction factor, Ci.

equilibrium of the flange element, the increment of
shear force in the cover should be

Svp,an,

where the additional subscript S denotes the increment
required for static equilibrium. The inerement of shear
force actually developed is

AScr=r1tAz (14)

where the subcript E refers to the fact that this incre-
ment is provided by the elastic deformations of the
flange and the longitudinel. Failure of the shear-force
increments given by equations (13) and (14) to be
identical constitutes the second fault of the constant-
stress solution, the so-called ‘‘shear fault.”

Static equilibrium for the flange elements would be
restored if corrective shear-force increments were in-
troduced equal to the differences of these two sets of
shear-force increments

ASy =AScs— AScz 15)

where the prime again denotes a correction. The cor-
rective shear force S¢’ at any station is obtained by
integrating from the tip to the desired station, the force
being zero at the tip. The corrections to be added to
the stresses would then be given by

r_Sc’

—_— oL

O'F=AF

AScs= (13)

I=—‘Sc, ,__ASC'
Ay T =Az

(Care must be taken in determining the signs of the
corrective stresses. The safest method is to compare
their direction with the direction of the stresses given
by the pure constant-stress solution.)

Introducing these corrective stresses would restore
static equilibrium but would again upset the basic
elastic relation given by equation (6). A compromise
must therefore be made by using only a fraction C;
of the correction
7 , SC’,

’ c
op =012; o —— *Z;

ASY
g
7=0rz,

(16)
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These siress corrections are added to the stresses
obtained from equations (12a), (12b), and (12¢) to
obtain the final corrected stresses os,,, oz, and
Teorre  +

Values of €, may be established by comparing a
number of exact solutions with the corresponding
constant-stress solutions; an averaged curve is shown
in figure 13.

In order to gain some idea of the range of applicability
of the constant-stress solution, a series of related beams
was calculated. The characteristics of three of these
beams are givenin tableII. The first set of calculations
was made by using the analytical solutions given in
appendix B for beam A4 and by using the trial-and-

-arror method for beams B and C. The second set of

caleculations was made by using the constant-stress
solution as described. The results of the calculations
are shown in figures 14 to 16.

For beam B, the stresses given by the pure constant-
stress solution are also shown. Beam B is a constant-
stress beam when analyzed by the ordinary bending
theory and has. zero moment fault. The complete
analysis for this beam is given as an example in
appendix C.

It is to be expected that, in general, there will be
smaller differences between the constant-stress solu-
tion and the exact solution for beams with small moment
fault than for beams with large moment fault. This
expectation is bornme out by the results. Beam B,

o 7
40,000 T T S S 8,000
Exact solution (by formulo)
A — — Constaont-stress solution
3 \ G
30,000} 6,000
g | \ , S
o g
9 NA L ——T7
N R :
< | |- ~
20,00 4,000

N/
/

& &
10,000/ & 2,000
/ / A\
| AN
]
0 ~ ~ N 9
floot & Stations z e

FI1GURE 14.—8tresses in beam 4.

which comes close to the ideal case, shows smaller
differences than beam A, which is further from the
ideal case because the areas .Ar and .4; are constant
along the span. Beam (), which corresponds to an
actual case, as far as variation of Ar, 4;, ¢, and 1 along
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the span is concerned, shows also good agreement for
the bending stresses. The agreement is not quite so
good for the shear stresses.

Considering all the factors involved, it seems safe to
assume that the constant-stress solution will give
satisfactory results in practical cases for the maximum
stresses, provided that the correction introduced by the
shear fault is not larger than about 20 percent of the
stress given by the pure constant-stress solution.

BEAMS WITH MANY LONGITUDINALS

YOUNGER’S SOLUTION

Actual wing structures are built as box beams with
many longitudinals, and the depth of the beam as well
a8 all cross-sectional areas varies along the span.

The first attempt at obtaining a solution for a multi-
stringer beam was made by Younger (reference 4). He
considered the limiting case of infinitely many longi-
tudinals (i. e., a plate cover as shown in fig. 17) and

assumed the box to be of constant section; for the dis-
tribution of the bending moments he assumed a cosine

law.

Younger’s solution and its extension to arbitrary
moment curves are given in appendix B. It should be
noted that this solution does not fulfill the equation of
equilibrium for the flange element (the differential

g8T
50,000
[ E‘xacf; 30;“’,1%7 I ,
riot and error
f—— or{sfanf -sfress solution / /
—-—Pure constant-siress /’
solution /
—--—0rdinary bendi
40,000 fheoryy | ,I
[/
e L2 1]
i / /
3 gy ond ¢
30,000 [/
£ N il
¢ == - o
< % \
: /!
20,000 \
a 7 \ ]
JQ:: // \
5 A/ \\
L
10,000 %/ g X\‘
7 \
prd
Roof 6 4 2 Tip
Stations

FIGURE 15.—Btresses in beam B,

equation does not hold along the flange) so that a shear-
fault correction is necessary, as discussed in connection
with the constant-stress solution for the beam with 2
single longitudinal.

679

CONSTANT-STRESS SOLUTION

The usefulness of Younger’s solution is so limited by
the assumption of constant cross section along the

o
50.000 T

T
Exoct solufion | £5000
by frial and error) 1

onstan’-siress solufion

40,000
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:
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FIGURE 16.—Btresses in beam C.

span that a more general method appeared desirable.
The constant-stress solution was developed to fill this
need of practical stress analysis.

The principles of the constant-stress solution have
been discussed in detail for beams with a single longi-
tudinal. The extension of the solution to beams with
many longitudinals is given in appendix B. The
practical procedure of applying it is essentially identical
with the procedure outlined for beams with a single
longitudinal. The constant K is computed and used
to compute the constant K; for the root section, using
equation (B—27). The stresses at a number of stations
along the span are then obtained by the formula

M cosh K,y
h(AF cosh Kb +E5 sinh K,b)

an

where y varies from y=0 for the center line of the beam
to y==>b for the flange. The shear stress in the cover
sheet next to the flange is obtained by integrating from
the root outward the expression

( = 8., tanh Kb (18)
where o is obtained from equation (17) by setting
y=>b. Equation (18) is obtained from equations (B—20)
and (B-25).
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The increments of corrective shear force are obtained
by using equations (13), (14), and (15). After the
integration of (15) in from the tip to obtain the correc-
tive shear force Sy’, the correction to the flange stress
is calculated by the first expression of (16); the correc-

F1GURE 17.—Notation used for beams with orthotropic cover plates.

tion to the shear stress is calculated by the last ex-
pression of (16). ’

The calculation of the correction to the stress oy is
somewhat more complicated because it varies along
the chord. The total force on all longitudinals, using
equation (17), is given by

P j ’ A"dy— A nh K (19)
where oo, denotes the stress at the center line of the
beam obtained from equation (17) by setting y=0.
In accordance with (16), only a part of the corrective
shear force is applied so that the corrected total force
on the longitudinals is

FLwn—:FL— Glsc, (20)
Assume now that the corrected stresses in the longi-

tudinals are distributed chordwise according to the law

eorr=0CLgopy COSH YU 21)
The unknown Y can be found from the equation
tanh Yo Fre,
Yb ALO' Feorr (22)

which is based on the premise that
OLcorr™ 9Fcorr

for y=>b. After Y has been found, the corrected stress
at the center line is found from

OCLeprr™= OF cors 50CH Yo

and equation (21) can then be used to calculate the
stresses at intermediate values of y. The right-hand
side of equation (22) is the ratio of the average stress
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in the longitudinals to the stress in the flange. In
general, this ratio will be less than unity; however,
figure 16 shows that for a beam with a single longi-
tudinal the stress in the longitudinal may be larger
than the stress in the flange over a part of the span, and
similarly the right-hand side of equation (22) some-
times may exceed unity. In such a case, equations (21)
and (22) may be replaced by

O corr== 0L pp, (2—cC08h YY) (21a)

(2— > FLcarr

22
{(2—cosh Yb) ALO'FW" (220)

After Y has been found, the corrected stress at the
center line is found from

OFcorr
TeLeorr—3—cosh ¥b)
and equation (21a) can then be used to calculate the
stresses at intermediate values of .

The solution of equations (22) and (22a) can be
offected by inspection of tables. For practical pur-
poses it should be sufficient to use the curve given on
figure 18.

As examples, beams 4 and B were analyzed under
the assumption that longitudinals with the total cross-
sectional ares Az are distributed uniformly along the
chord. The results are shown in figures 19 and 20.
It will be seen that the stress at the center line of the
beam is very low. If all longitudinals are of the same
cross section, they must be designed to the stress in the
first longitudinal adjacent to the flange. Consequently,

/O \ I I | LOh
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\
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FIGURE 18.—Graph for anxiliary parameter Y.

the longitudinals near the center line are very in-
effectively used. In this connection, attention might
be called to the fact that the longitudinals need not be
of the same cross-sectional area along the chord. The



STRESS ANALYSIS OF BEAMS WITH SHEAR DEFORMATION OF THE FLANGES

assumption of Ay being uniformly distributed may be
fulfilled, for instance, by using longitudinals of large
cross-sectional area but widely spaced near the flange
and longitudinals of small cross-sectional area but
closely spaced near the center line. Although such an
arrangement would not increase the over-all structural
efficiency, it might under certain conditions offer
manufacturing advantages.

MECHANICAL ANALYZER

The constent-stress solution is always approximate.
When the moment and shear corrections are large,
doubts may arise as to whether the solution is suffi-
ciently accurate. It might be advantageous to con-
struct a mechanical analyzer to deal with such cases.
One possibility for such an analyzer would be actually
to build units representing the mechanical model
sketched in figure 1 (b). The springs might be canti-
lever springs, so that their stiffnesses could be varied by
changing their lengths. Each unit would represent
one bay of the trial-and-error method of solution and
would have one spring to represent the stringer stiffness
and one spring to represent the shear stiffness of the
sheet attached to one side of the stiffener.

The chief difficulty in the design of such an analyzer
would probably be in reducing the friction between the
units and the guides necessary to aline them. A fairly
large number of units would be necessary to represent
a wing cover, which would mean a fairly expensive

instrument. This disadvantage is counterbalanced by
a T
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FI10URE 19,—Stresses in beam A with Ay, uniformly distribated along chord.

the possibility that the instrument would offer in a
comparatively short time quite an exact analysis,
including the effects of bulkheads and of yielding
supports. The main errors in this solution would be
those caused by the finite length of bays.

681
CONCLUSION

The art of stress-analyzing shell structures is of recent
origin, and any methods of analysis proposed must go
through a process of trial and development.

Development of the method of shear-deformation
analysis is desirable in several directions; e. g., exact

g&T
60,000¢
£
o~
L /
g A
0,000 ——
a o /
@ /
5 7
£0,000
\ o /
\\ A
/
Lo \
o
Root 6 4 2 Tip
Stations

FIGURE 20.—Stresses In beam B with A, uniformly distributed along chord.

solutions should be found to replace the constant-stress
solution and methods should be devised to calculate
the influence of bulkheads.

Rough approximate calculations on bulkhead effect
can be made by assuming that all the longitudinals
are relocated at the center line of the beam. For
beams with a single longitudinal, the effect of bulk-
heads can be calculated. A series of systematic com-
parisons between the extended solution of Younger and
Case 3 (a) of appendix B indicates that for a certain
range the single-longitudinal assumption may yield
acceptable approximations when used in conjunction
with suitable correction factors. The comparisons
are not given, however, because they might be mis-
leading in view of the shear fault of Younger’s solution.
Calculations made thus far indicate that in practical
cases the effect of the bulkheads is very small.

It should be emphasized that analyzing shell struc-
tures is an art rather than a science. The arithmetic
of analyzing highly redundant structures can be re-
duced to manageable proportions only by making
assumptions that will be valid only within a certain
range. This fact leads to the unforfunate, but inevi-
table, conclusion that the analysis of such structures
cannot be made entirely by handbook and formula but
must be guided by engineering judgment.

LANGLEY MEMORIAL ABRONAUTICAL JLABORATORY,
NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lancerey Frewp, Va., June 3, 1937.



LIST OF SYMBOLS

A, cross-sectionsal area (sq. in.).
E, Young’s modulus (lb. per sq. in.).
F, internal force (ib.).
G, shear modulus @b. per gq. in.).
K, constant.
L, length of panel or beam (in.).
Af, bending moment (in.-1b.).
P, external load (Ib.).
S, shear force (1b.).
b, spacing of stringers (in.). (See figs. 3 and 4.)
b, half width of beam (in.). (See fig. 8.)
¢, camber of cover (in.).
4, depth of beam (in.).
t, thickness of cover sheet (in.).
u, displacement of point (in.). (See fig. 4.)
w, running load (ib. per in.).
v, shear strain.
o, direct (normal) stress (Ib. per sq. in.).
T, shear stress (Ib. per sq. in.).
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APPENDIX A

Subscripts have the following significance:

A, loaded stringer A shown in figures 1, 2, 21, and 22.
B, unloaded stringer B shown in figures 1, 2, 21, and 22,
C, cover sheet.

F, flange of beam.

L, longitudinal of beam.

W, shear web.

a, applied shears and bending moments.

s, effective.

0, root section.

¢, compression.

t, tension.

ini, internal.

corr, corrected.

S, static equilibrium.

E, elastic equilibrium.

CL, center line.



APPENDIX B

SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SYMMETRICAL STRUCTURES OF CONSTANT
CROSS SECTION

SIGN CONVENTIONS

Forces and stresses in stringers are positive when
tensile. Shear forces and stresses in the sheet are posi-
tive when caused by positive stresses and strains in the

loaded stringer A in the case of axially loaded panels’

or in the flange F in the case of beams.

CASE 1—-THREE-STRINGER PANEL ON RIGID FOUNDATION WITH
AXIAL LOAD

The two possible cases shown in figures 21(a) and
21(b) can be mathematically treated by teking one-
half the panel, as shown in figure 21(c), which also

LIS 8 VY 2
X
L
A B
L
k— b —
Y Y Y Py
(a) (b) (c)

FIGURE 21.—Axially loaded panels.

gives the notation to be used. The derivation of the
fundamental equations is given in the main body of

this paper. Slightly modified for the purpose of deriv-
ing the basic differential equation, these equations are
t , ¢
UAI::AT_A and op =—-‘2—B (B-1)
"=ﬂ(¢74—0'8) B-2)
T b

where the primes denote differentiation with respect to z.
Differentiating equation (B-2) again and substituting
into the result from equation (B-1),

Gi/ 1 1
T”—'TE(—A:—FZB'):O (B—3)
The boundary conditions are
ab z=0, r=0
(B-4)
at =L, UA=:4P— and gp=0
A
The result is
_P 6 sinhE:
T4, EbK cosh KL
___P /. cosh Kz
8 (A?FAB)\l_cosh KT, (B-5)
_ P A
04 —E —A_AO' B

where

) e

In reference 2 the formula

_ 2P[ cosh pz—tanh pL sinh pz

. 25 G
T2 ALE

is given for the special case where the area of the edge
stiffener is twice the area of the central stiffener. Tak-
ing account of the differences in notation and coordinate
systems used, this result agrees with the general formula
given under (B-5). *

Tt should be noted that the final formulas (B—5) be-
come invalid when either ¢ or @, approaches zero be-
cause in these cases the equation (B-3) becomes invalid.
The solution for such cases is obtained by using the
fundamental equations (B-1) and (B-2) directly.

An analogous procedure must be used for Cases 2
and 3.

CASE 2—THREE-STRINGER PANEL STRAINED BY MOTION OF
SUPPORTS

The differential equation for the case of figure 22 is
A

| A | 'Jt | ‘A
j JT_,

where P

Tx

The boundary conditions are

{e) (b} {c)
FIGURE 22.—Panels strained by motion of supports.

the same as for Case 1.

now:
at =0, 0,=0 and o5=0
B-7
at I=L 3 T=% Ga=TD
The result is
__cosh Kz
T=Tocosh KL
t sinh Kz
4= "TRT cosh KL (B-8)
_ t sinh Kz
-IB=TOR A, cosh KL

where K has the same meaning as in (B-6).
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CASE 3—CANTILEVER BEAM WITH ONE STRINGER
(a) Uniform depth, concentrated load at tip.
(b) Depth decreasing lineally to zero, uniformly dis-
tributed load.
Figure 8 shows the notation used for both cases.
(Note that the z origin is at the tip.) The funda-
mental equations are for Case 3 (a)

P
O'F,AF-_—E—Tt
O’L’AL=Tt (B"g)
7= Eb(O'P oL)
which gives the differential equation
» G
SLR . +AL +‘_sz 0 (B-10)
The boundary conditions are
et 2=0, 0z=0, and ¢,=0
(B-11)
at =L, =0
The result is
cosh Kz )
th(l +Ap \ “cosh KL
_ (z_sinh Kz B-12)
TR (———AL—}-AF) X cosh KL
1 /M,
)

where K has again the same meaning as in (B—6) mth
Ay and Ay, substituted for 4, and A45.

In Case 3 (b), wL/2 is substituted for P; A in this
case is the depth at the root.

F1GURE 23.—Cantllever beam with concentrated load not at tip.

The case of a beam loaded by a concentrated load
not ‘at the tip is a simple problem in indeterminate
structures. The beam is cut just outboard of the load
(fig. 23) and the stresses in the cantilever part are cal-
culated (Case 3 (a@)). From these stressss, the distortion
of the beam section at the cut; i. e., the relative dis-

REPORT No. 608—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

placement of the tips of the flange F' and the longi-
tudinal L, can be calculated. A system of forces X
is then applied to equalize the distortion of the can-
tilever tip and of the inboard end of the “overhang,”’
utilizing the formulas of Case 2.

CASE 4—CANTILEVER BEAM WITH ORTHOTROPIC COVER PLATE

Younger’s solution for a beam of constant section,—
The beam and the coordinate system used are shown in
figure 17. It should be noted that the x direction is
opposite to that used in Cases 3 and 4.

Under the assumptions that the transverse stresses
and strains are negligible (Poisson’s ratio equal to zero),
and that @, is independent of E, the differential equa-
tion of the cover is

’vu Edu_
where u is the djsplaoement of any point on the cover in

the z direction.
The boundary conditions are

at z=0, =0 and %=0

ou
z=L, 2z (B-14)

ou
=0, . =0
Yy dy

This equation was established by Younger (reference
4, pp. 36—47). TFor the solution he assumed that the
external bending moment (on the whole beam) is
given by

M=»M, cos 2-1- (B-15)
and obtained for the longitudinal stress in the cover
X
o M, cosh % cos 5
2h<Ap cosh E-‘-AL 2KL —sginh %
and for the shear stress }(B—IG)
. T . T
M4 sinh 3R S™ 3
" 2Kay oo thwéL ' wLmnthL
where K is defined by
_& (B-17)

Extension of Younger’s solution.—Younger’s solution
can be somewhat extended. The external bpnding
moment can be represented by & superposition of
several terms:

5
M=2M, cos ﬂL-l—Ma cos 32—7rL—x+Mscos E%x

4+ .. +Mncos (B-18)

Ef

where the m’s are odd integers.
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The values M, . . M, are chosen so that the sum of
the terms equals the given external bending moment at
m points other than the tip, where it is assumed that
M=0. In order to make comparisons with Case 3, the
bending moment caused by a tip load was expressed by

3wz
oL

(B-19)

The stresses corresponding to the mth term are given
by

M=PL (0 821 cos L—I—O 101 cos

+0.045 Ccos '2—L‘+0.O33 cos —ﬂ:)

M, cosh % cos —7%1—

o' _
m 5 A 2KL
2h(A,, cosh %4- z

_Mn
="k

mmb
Sl]lh m
Mnrr
G sinh 577} sin 5
yo mnb . AARL
(2KA,. cosh 20 4 AL

(B-
16a)

mwb
sinh 57T
The assumptions of Poisson’s ratio being zero and G
being independent of E are, strictly speaking, incom-
patible. The physical picture conforming to these
assumptions is not a plate but a system of stringers
carrying only longitudinal stresses tied together by a
gheet carrying only shear stresses. This picture is
realized very nearly in practice by a skin-stringer cover,
the only difference being that the total cross-sectional
area of the stringers is not necessarily equal to the area
of the sheet, as in the case of the plain cover sheet. All
the equations written for the plain cover sheet apply,
therefore, to the skin-stringer cover if only (B-17) is
replaced by a

R*=R= (B-17a)
where R is the ratio of sheet area to area of longi-
tudinals.

Constant-stress solution.—The coordinate system is
that shown in figure 17. Under the assumption that
o=constant for each longitudinal, the fundamental

relation
d‘r G.Ac

& EAy

®B-20)
can be integrated once to give
__zhAo @
EAyf Gelo=773, G-

where @, is the shear stiffness averaged over the distance

(B-21)

z=0 to z=2. Integrating again
S [ttom (72 850,0
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In any given case this integration can be performed
and the result is

SC=K2§_;

fo_
_ ("4
Sc—ﬁ C’Tdy

dSe__ Az

dy b

(B-22)

where
Now

(éee fig. 24) or
(B-23)

a-—==
/
1
/
/
Q

A

<
FIGURE 24.—Free-body diagram of cover plate.

Differentiating (B~22) and equating to (B—23)

dgﬂ' A[, 0
& K,

assuming that K; is independent of ¥.
The boundary conditions are

(1) at y=0, v=0 for any z.

Bc

(B-24)

Therefore Z—a= 0
Y

(2) at any desired reference ststion R, the internal
moment equals the external moment Ma.
The solution is

My, cosh Ky (B-25)
" (Ar cosh Kb+ {5 sinh b )
= w%’K,x tanh Ky (B—26)
where K is defined by

A
3 =
e b | L%@,tdz
(1]

It may be noted that if G, and ¢ are not varied along
the span, the constant K; is identical with the corre-
sponding constant of Younger’s solution except for a
10 percent difference in the numerical factor, namely,

V2 against =/2.



APPENDIX C

ANALYSIS OF BEAM B

The dimensions and the loading of the beam are
shown in table I1.

ORDINARY BENDING THEORY

M 2,800,000
PO =S T AT 24(1. 875—I—1 875)
31,100 Ib. per sq. in. -

CONSTANT-STRESS SOLUTION

Since @, is assumed constant along the span, G.=@,
and, from equation (7),

1= (op—o1) fﬁ%
From equation (8)

Sc=ﬁL(UF—UL) Ebto(l E)dx

=(0’F—O'L) f a:(l——

0.2>X0.040 (%0
=(0’F—O'L) X (1 280)(1(3

=4.35(0’F—O'L)
K;=4.35
From equation (10a)
2,800,000X4.35

LT o4[1.875 X 1. 875+4.35(1.8751-1.875)]
=25,550 1b. per sq. in.

From equation (10b)

2,800,000(1.875+4.35)
24[1.875X1.875+4.35(1.875+1.875)]
=36,500 1b. per sq. in.
686

OF

Substituting in equation (7) for the shear stress at
the tip

280X0 2

naz=(36,500—25,550) =—~Z=95 560 1b. per sq. in.

The calculation of the shear correction is shown in
table TT1.

TRIAL-AND-ERROR SOLUTION
Take Az=40 in.

SwAr _wrLAr wL

Swhz_ _wL, _714X280X40

2X24
AFp=16,670—ASy
0. 2)(40

=16,670 1b.

_G.Ar
AT_ Eb

A typical cycle of the calculation is shown in table IV.
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TABLE I.—ANALYSIS OF TENSION PANEL WITH SHEAR DEFORMATION

L=36
Aq=0.403 - Fp=ZASe G.AT
A;"O. 220 Ie:-:l 6400-EAS¢: a'a——Fn— Fs Af"-ﬁ(ou—d’a)ﬂu. 52 (vu—on)
1=0,016 4 Fa Az 0.290 TmZAT
b=4.60 L S pra W G fE=(.4 AScm1tAT=0.006 T
By trial-and-error method By formula !
Statlon
ASo Fa 7 Fp oB gA—0B Ar T AS g4 o T
{b.) Gb.) | (bsq.in.) | (b.) | (b./sq.In.) | (b.fsq.in.) | (b./sq.in.) | Q@b./sq.in.) (le (Ib.fsq. in.) | (b.sq.in.) | (b.fsq. in.)
0 400 960 0 0 5, 860 0 5,230
378 x 5 8,857 373
1 56 2,024 5,020 376 1,708 3,312 1,730 516 I 5,022 1,717 2,885
2, 1,814 4, 500 538 2,662 1,88 960 4,502 2,670 1,584
112 1,307 |7 106
3 % 1,702 4, 224 668 3,170 1,054 550 5 i 4,220 3,186 856
4 % 1,642 4,075 758 3,444 631 329 3 % 4,070 3,461 442
5. 5 1,613 4,005 787 3, 575 430 234 o 5 3,996 3,595 187
6. 1,604 3,030 700 3,618 362 189 : 3,088 3,630 0

! Appendix B, Cass 1.
TABLE II.—CHARACTERISTICS OF BEAMS
‘The beams are assumed to be half beams as shown in fig. § (a).

All bears:
h=24 in. at root. b=24 In,
h=0at tip L=280 in.
. of. W=T1.41bJin
Ar=AL t
(3q. in.) (in.)
Beam c
Root Tip Root Tip
P VR L1875 1.875 0. 040 0.040 | O
P - J— L8756 0 . 040 000 | Q
Ceee e 1.880 .470 .040 010 | o

TABLE III.—CALCULATION OF SHEAR-FAULT CORRECTION FOR BEAM B

Ar=d0 = op'=0.552 o,  =255504ar!
Fpeor Ar=38,5004r 726,007 e Ry
AScs=Sw—AF AScpmrids a'=—0bg e
h AS¢ =AScs—ASonr o =36, 500 Ll ; Teerr=rH1’
oY
z 4 ’ op oL r T
from | Ar=AL| & t Ar{ Fp | AR | aScs ’ ASce | ASc' | S¢ ¢ oL o coer o
siaon | GaiaS| o | ahy | ST F| b | 665 | 6P| oplso | WY | 665 | % [aife | offse | 0B | | e | e
(1)
2607701341717 6. 00285 [ 16, 660 |2 T 215,800 | 6,800 | 23,740 | 2,720 | 4,120 18,100 | 41,840
1 268 9,809 L1400 | ST T[4, 20 17,810
220 402 | 514 .00857 | 16,660 [.______. 9,800 | 6,860 | 20,080 [ 6,880 | —20 —30 | 20,050
2 1538 18, 600 41207 | 773840 | 3,840 | 40,310 | 21,720
1807 .e60 |TE88 | I0133 [ 18,860 |-, _.|"5,800°| 6,860 | 16,440 | 5,400 |—2, 510 ) 3% 14,20
3 B04 25,100 1,580 986 |80 | 37,480 | 24,580
10| los7 |"1200°| I0200 [716,880 |oe...... 9,500 | 6,360 | 12,780 | 10,220 |—3,860 Z5,100 | 10, 630
4 1072 9, 200 170 |80 80 | 35,0670 | 20,300
1007 1205 | 1542 | U627 | 16,600 9,800 | 6,860 | 6,130 | 8,200 |—2, 540 |- oo feeeoo_. Z1,%30 | 7,900
A 1,310 16, 660 3,820 (23,8107 71,610 | 734,800 |27, 170
6| 1473|188 | 0814|1868 | 8,800 [ 6,860 | 5,480 | 6,880 [ —20 T ]
8. L603 &8, 800 4,330 | —1,350 | 1,350 | 35,150 | 25010
20| L740 | ZB | 037 |16,660 |- 0,800 | 6,860 | 1,826 | 2,710 | 4,150 1,100 | 3,26
7 1875 88, 600 Zi0 |8 50 | 33,450 | 25610
TABLE IV—TRIAL-AND-ERROR SOLUTION FOR BEAM B
z {rom Ap=ArL A8 Fr or AFp Fp or ar—oyr Ar T ASc
Btatlon { o5tin) | (sq. lny | A% @b. @) labsqiny{ @by @) | ab.fsq.in.) | ab.jeq.1a.) | abssq.in) | abyeq.in) | (b
L 280 0 (i - 0 0 0
250 01112 3,730 12,810 32,896 3,755
| I 240 3,730 18,820 |ocee . 12,316 18,280 31,3580 11,453
220 3178 7,440 8,230 31,4483 7,330
D 200 11,170 780 | TR 4,36 19,880 8,553
180 BT 8,680 7,89 14,500 8,500
Breennn 160 15,850 24,700 |t 30, 160 87,560 12,300 1,267
4 1% i 5 670 5,000 & 35, 800 8,880 2,003 19,63 5150
........ 520 80 | i
100 108 8,070 % = 8,600 i 7,630 7,810
T I ] 38,590 27,800 | 18,780 34,280 7,880 2,827
@ 17255 6,360 16,310 5,103 8,400
A 40 42,050 P R 57,070 35,470 & 770 2,923
2 1,485 3,136 18,540 27180 3,240
A 0 18,080 25,560 |ocomroes 70, 610 37,840 13,080 1,350




