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A METHOD FOR THE CALCULATION OF EXTERNAL LIFT, MOMENT, AND PRESSURE DRAG
OF SLENDER OPEN-NOSE BODIES OF REVOLUTION AT SUPERSONIC SPEEDS

By CLINTONE, BROWNand HERMOKM. PAEKER

SUMMARY

An approximate method is pre8ented for the cultwlafion of

the ezternal lift, moment, and prewwre drag of 8Lmder open-no8e

bodies of recohdion at superwnic 8peed8. lh? [ifi, moment,

and pressure drag of a typ”cal rmn-jet body 8hupe are calculated

at Mach numbers of 1..@7, i .60, 1.76, and 3J10; and the lijl

and moment result$ are compared w“th aiwiiirble experimental

data. me agreement of the cakulded lift and moment data

m“th the ezpei+mental data is excel[ent. The pre8wre-drag

comparison uw not pre8ented because of the uncertainty of

the amount of 8En-fi-ietion drag present in the experimental

re8ult8. It win found that the lift coe$a”ent dq?nitely in-

crea8ed unlh incream”ng Mach number, ?.cherea8 the moment

cvej%ient taken about the midpoint of the body and the drag

coejln”ent deereused with increasing iJIach number. The

manner in which the method -may be applied to 8knder bodie8

of rerohd’ion w“th annu[ar air inht8 i8 8houm. T7ie excellent

agreement of the calculated lift and moment results with experi-

mental data indicate~ that the approximate method may be

re[iably u~ed for obtaining the aerodynamic characteristics qf

81ender bodies that are required for efieient supersonic jlight.

INTRODUCTION

Current proposaIs for the design of aircraft capable of
sustained flight at supersonic speeds and utilizing the ram jet
as B method of propulsion have established the importance
of knowiug the aerodymunic characteristics of slender open-
nose bodies of re-rolution at. speeds greater than the speed of
sound. The lack of theoretical treatments and experimental
data emphasizes the need for theoretical investigation of this
problem to serve as a guide for future work tid as a check on
the reasonabIenew of current and future experimental results.

The smalI-perturbation approximation was used in refer-
ence 1 to deduce the wave drag and in reference 2 to obtain
the lift and moment of slender pointed-nose bodies of revolu-
tion No fundamental analysis is known to have been made,
however, of the characteristics of a slender open-nose body
shape, such as that required by ram-jet propelled craft. The
peculiarity of the problem, from general considerations of
simiIari@, is that the flow pattern is two dimensiomd at the
Iip of the nose and approaches the three-dimensional pattern
farther aIong the body. The present work extends the

method of references 1 and 2 to apply to these slender open-
nose bodies of revolution with supersonic flow into the nose.
The result is a faidy aimpIe method of numericaI integration
of the differential equation of the flow. As an illustration,
the pressure distribution, wave drag, Iift, and moment are
calculated at Mach numbers of 1.45, 1.60, 1.75, and 3.00 for
a typictd ram-jet airplane bocly ahape; arid the lift and
moment results are compared with the experimental data.
It should be pointed out that- the accuracy of the method,
which assumes potentiaI supersonic flow throughout the field
and also assumes and disturbances, depends on the surface
F@es of the body and the Mach number. The error in-
creases mith either increasing Mach number or increasing
surface angles.

SYMBOLS

cylindrical coordinates
distance aIong r-axis measured from nose of

body
length of body
I’adiUS of body

Mach angle
(tin-’+)

perturbation poterdiaI
perturbation potential for axial flow
perturbation potentiaI for cross flow

()
tllj

axial veIocity increment ~x

()
*radial velocity increment ~r

veIocity in undisturbed stream
velocity of sound in undisturbed stream
Mach number in undist urbed stream (~rla)
density in undisturbed stream
incremental surface pressure due to angIe of

attack
Iocal pressure
pressure in undisturbed stream
ratio of specfic heats of air (1.4)

angle of attack, radians (except where other-
wise noted)

angle between surface of body and x-axis
49
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liftcOefficien’@’/:v2TR~2)
dragcOefEcient(Drag/~V2m&2)

c. (/2)moment coeEicient Moment ~V2TRN21

u variable of integration
~=x–Br cosh u
ji=x*—BB<

-+
Tin=:– i

n
A,=y(t),

SUSSCMPTS AND SUPERSCRIPTS

iv refers to nose
n refers to nth integration station, su~mation

variable
i refers to ith integration station, summation

variable
deg in degrees

MATHEMATICAL ANALYSIS

POINTED BODIES OF REVOLUTION

The linearized equation of motion of a nonviscous com-
pressible fluid may be written for a cylindrical coordinate
system :

(1)

where + is the potential function assumed to repreeent the
effect of a small disturbance set up by the slender bodies
being considered. The problem is to find a solution’ of
equation (1) that will satisfy the known boundary condi-
tions at the surface of the body. A genernl solution of the
differential equation (l), when 34>1, for diveq$ng waves
has been found by Lamb (reference 3) to be, with a slight
change in notation,

8

where

)Q,=(& :Qo

()
P,= & ‘P.

and
P-

(2)

QO=jo j(x–Br cosh u)du

JPO= ‘g(x–Br cosh u)du”
o

where
B=~~

The part of Lamb’s general solution corresponding to con-
verging -waves does not apply h the present problem because
all disturbances originate on the body and diverge into the

flow field investigated. Von IHrrnfin and 3[ooro htivo
investigated the problem of the resistance of proj cct ilcs and
cones (reference 1) and have found a solution for the case
of axial symmetry

#=– J ‘j(z.+ ‘0s11 Zt)du
o

(3)

that can be seen to be a special case of the general aohition
with s= O. In their analysis the body, in this case a sharp-
nose projectile, was represented by a distribution of sources
along the z-axis starting at z= O, the nos.u of the body. By
a numerical method of integration, ik bceamc possible to
write the equations for the velocity increments r~ and o=,

oza=~A,[cosh-’(T,’)-cosh-’(T,+”)] (5)

where

~“=%?
and

jt=zi –BR,

with the boundary conditions

v,VTz=: (6)

These three equations in three unknowns (A,, v,=, r.,) were

solved at each station on the body for or and ox. Tl~P prca-
sures were then found from the Bernoulli cquat.ion in the
form:

:=[1+=+2’+’+W’ ‘7)
Ferrari (reference 4) and Tsien (rcfcrencc 2) bavo indc-

pendent]y found soIutions for tho csso of pointed bodies of
revolution at and angles of attack. Their soIutions showed
that the potential could be expressed in two terms: the first,
from equation (3),

is the solution for the pure axial flow already Ascrilmd; rmd
the sec?nd

J
h= –B cos 6 ~“j,(x+ cosh U) COShU du (8)

represents the cross-flow potential of an ‘arbitrary dist ribu-
tion of doublets along the axis of the body starting at tho
nose of the cone or projectile. The form of cquat ion (8) is
that the cross flow is from t-he direction 19=0, as shown in
figure 1.
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By neglecting the smrdI effect of the axial flovi on the lifting pressures,
of arbitrary shape the equations:
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Tsien obtained for the pointed projectile

(9)

,

(11)

The values Ki in theseequatioM me ~um~ to be constantsfor each interd of the step-by-step process. The moment
coefficient of equation (10) is resumed positive for nosing-up moments, these moments being taken about the nose.

OPEWXOSEBODIZS

The flow conditions over an open-nose body ditTer from
those of pointed bodies in that., for finite angles of the nose
lip, the flow is two dimensional at the lip. This problem
VWLSnot- considered in references 1, 2, and 4 and the general
solution should therefore be examined to determine its
applicability to this special case. Lamb has shown (refer-
ence 3) that a sufficient requirement for the existence of the
general solution to the differential equation of motion
(reference 1) is thatj(x-l?r cosh u) be zero for all values of
the argument less than some arbitrary limiting vahe. The
determination of ~(z–l?r cosh u) such that the boundary
conditions at the open-nose body are satislied assures the
fulfdbnent of this general requirement. For the usual case
of supersonic flow into the nose, the boundmy condition re-
quires the surface of the body to be a continuation of a
cylindrical stream surface of radius RN in the undisturbed
flow ahead of the body as shown in @ure 2. The perturba-
tion potentiak, equations (3) and (8), therefore must be zero
at the cylindrical stream surface ahead of the body. Sub-
stituting &=x—Br cosh u in equations (3) and (8) gives

and

(12)

(13)

It is obvious that the boundary conditions axe satisfied by
letting ~, (.$)=fz(.$)=O for aII values of ~<zr131?o, where

P

~GUBE 1.—Coordtnate-m

the point (ra, l?J is at the I@ of the open-nose body. It
then remains to determine j,(g) and ~~(t) for t>rO—BRO so
that the body surface is a continuation of this stream surface.
From physical considerations, J(t) and .I!2($) may be w
garded as an axial distributiori of sources and doublets,
respectively, where E is measured aIong the z-axis. Because
the effect of a source or doublet CSR be felt onIy aIong or
behind its Mach cone, the source distribution must begin a
distance BRO ahead of the nose. This point is chosen for
the origin of the coordinate system. (See fig. I.) It must _,
be emphasized that the source and doublet distribution
determined by satisfying the boundary conditions at the
stream and body surfaces ehown in figure 2 does not represent
correctly the flow inside that stream surface. This result
corresponds to the physical fact that the actual supersonic

flow into the nose does not aHect the flow external to the
body. The basic assumptions of potential flow and small
disturbances are valid provided the sIope of the body surface
is small. ActuaUy, for fite angks of the ncse Iip, a non-
conical shock wave is formed that causes a 10ss in totaI
pressure and produces rotation in the field.

ATumericaI integration of equation (12), with constant

dues of J’(f) wm.med over the integration intervaIs,
redts in the same expressions for rrn and ~~ as those ob-
tained by Von K&rm6n and Moore (equations (4) and (5))
These constant values of jl’(~) are determined by satis@qg
the boundary condition:

Vl+k=tan 8’ (14)

where tan 6. is the slope of surface of the body at the nth
interval of integration.

[
I I I I I
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&
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FIGURE L—Loc8tloII offnkgatfon 9t&LfoR9and fd6fvd9 ons tYPkd EIm-Jet hdY.
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By following the method of reference 2, the lift and moment coefficients for smalI angka of attack based on the arua of
the nose may be written x l+BRN ~

~.=– 4
NXRN2VB o BRH

~COS 8 G%R dx (15)

“~’+KKH’ )
–;–BRH @ COS 6 d8R dx (16)

whom 1 is the length of the body, 1?. is the nose radius, and the moments are taken about the midpoint of the body.
By substituting the expression for b&/Z)x in equations (15) and (16), C. and C. become

The distribution function jJ~) must be determined by the boundary condition; thus,

W2()Va Cos 6= & ,=’ (19)

for which the radial velocity ia assumed to be normal to the surface. --A more rigorous bounchwy condition taking ink
account the slope of the body was given by Ferrari (reference 4). For small surface angles, however, cqu at.ion (19) is
within the accuracy of the small-perturbation assumptions. The exprtwsion

iip,() CQS6 J‘-~Rf,’(f)(X–g)’dg5F,.,=w IJ ~(x–f)2–lFR2 -
is integrated numerically for constant values of fa’ (t) =Ki over the ith interval of integration to obt tiin the sum

a#)*.() IPcoson Fe—

“iii ,nR ~ -
Ki[cosh-l(T,_,’) –cosh-](T,”) + (T,_,n) ~(T,.ln)’– l–l’in~~l]

-1

(20)

(21)

Substituting this equation in equation (19) gives

l=~g:[ cosh-’ (Ti_ln)‘COSh -1 (Tin)+ (TJI) I/(TM’’)2- 1– Tin~(TtA)’–1] (22)

i=l
lFK,

With the values of ~ determined, equations (17) and (18) become

ln equations (23) and (24) the pressure used for a giveu
integration interwd is the average of .&e pressures at the
beginning and at the end of the intervaI. This scheme of
using average lifting prwsure is paptic.ularly necessary in
regions where the pressure is rapidly changing. The method
does not give the pressure at the beginning of the first
integration interval, that is, at the point n= O. It can be
shown that, as the &t interval approaches zero, the pressure
at the lip (n =0) is obtained by letting the expression in
equations (23) and (24)

m-l

have the vahm 0.5 when n=l.

METHOD OF CALCULATION

If calculations are to be made for an ~pen-nose body, the
total number of integration stations chosen is a compromise
between the amount of Iabor involved and the accuracy
desired, due consideration being given to the limitation on
the accuracy imposed by the basic assumptions of smaII

(24)

disturbances and potential flow. In gcncmd, wlwro tho
pressures are changing most rapidly tho intqyalion stalions
should be the most dense.

The integration stations must first be chosen. (Sue fig. 3.)
r

v
●

Body axis z

Frauim 3.–Dhgr.arnmatic sketch to Illustrate Intmat[onproccsaforIMYWcWJ
lorcalcultilona.
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The calculation for the Iift and moment then proceeds as
fouows:

The boundary condition, equation (22), is appIiecl to t.lw
point n= 1, the summation reducing to a single term, where

T“=%%
and

q-o
Tp,a= ~R7

Equation (22) then givea a value of IFKJ2T”a. Next,
equation (22) is appIied to point 2, n=2, containing now two
terms. Substitution of the expressions

T~=z@

Tof=%ti
BR,

and use of the value obtained for lPh’1/2T’a perm”ts the
calculation of the vahe of B2KJ2J”a.

By continuing the proc~, at each successive station one
more term occurs in equation (22) involving one nevi &
which is then determined. With the values of F-h”J2T”a
determined, equations (23) and (24) are used to evaluate
the lift and moment coefficients. lt will be noticed that,
vrhen equations (23) and (24) are evaluated for n= 1, the
ss~pression occurring after the last summation symboI is
unobtainable. For reasons previously stated, the mpre=ion
must be given the value 0.5.

The procedure for calculating the drag pressures is similar
to but somewhat simpIer than that for the lift. and moment.
Equations (4) and (5) are evaluated at the point n= 1, the
sums reducing to one term. By applying the bounda~
conditions (equation (6) ) and using the known slope of the
body dr/dz, the constantAl occurringin equations (4) and (5)
is determined. Substitution of ~, back into equations (4)
and (5) gives the increment velocities at n =1. BernonIli’s
expression (equation (7) ) then gives the pressure ratio at
n= 1. It is to be noted, since ~“=~l~a, that actuaIIy values
of ilJa, r,,/a, and uzlfa are determined. Proceeding to the
point n=2, one new ~ is irmolved in equations (4) and (5)
that is determined by the boundary condition in equation (6).
In the same way, the velocities and the pressure ratio
are calculated at n= 2. The process is continued at success-
ive integration stations over the whoIe body. The calcu-
lated values of the pressure ratio allow a pressuredistribution
curve to be drawn and the drag coet3kient to be evaluated in
the usual manner.

DISCUSSION OF RESULTS
RZSL_LTSOF CALCULATIONS

C%Iculations were made in order to obtain the preesure
drag, Iift-, and moment of a typical open-nose body. ~
sketch showing the dimensions, the integration stations,
and intervals is gi-rcn in figure 2. Calculated pressure dis-
tributions at zero angle of attack for the llach numbers
1.45, 1.60, 1.75, and 3.00 are presented in @re 4. The
pressure rise at, the nose Iip is approximately that which

wouId be obtained over a twodimensional w@ge of the
same angje. ~ckeret’s theory for smaII disturbances (refer-

ence 5) gives for the pmsaure rise of a 3° viedge ~ = 1.147 at

31= 1.45, whereas the pressure ratio on the Iip of the open-
nose body is about 1.140. This agreement is considered a
reasonable check inasmuch as the pressure on the Iip must
be an extrapo~ation of the pressure distribution from the
first point of the integration process, which must be a tilte
distance back of the lip edge. It can be shown that, as the
size of the first intervaI approaches zero, the pressure at the
Iip becomes that given by the two-dimensional theory. The
effect over the nose section of the size of integration inter-
vals is iIIustratecI by figure 5. The 17-point method was
chosen because a greater number of points resuIted in onIy
a small increase in accuracy and a large increase in the labor
in~oI-red. & would be expected, for the case of the straight
conical nose, the pressure fds off from the leading edge and
approaches the pressure of a cone of the same surface angIe
(reference 1). At. the corne~ of the body, the pressure falIs
approsimat ely in accordance with the PrancI tl-~leyer
reIation (reference 6) for supersonic flow around a tvro-
dimenaional corner. On the center and taiI sections there are
positive pressure gradients that for actual flight conditions
would tend to cause separation. The source-distribution
functions corresponding to the pressure distributions of
figure 4 have been pIotted in figure 6.

The incremental surface pressures giving rise to the lift
and moment are shown in figure 7 for the Mach numbers
1.60 and 3.00. At the higher Mach numbers the pressures
decrease less rapidIy over the nose section. The doublet-
distribution functions at the four Mach numbe~ are pre-
sented in Iigure 8. The curves of figure 9 show the theoretical
variation of lift-curve slope, moment-curve elope, and drag
coefEeient with Mach number. The rather interesting result
obtained is that the Iift coe.flicient increases -with Mach
number. fiperiment al rewdts presented in reference 7
show an increasing lift-curve slope with Mach number for a
pointed projectile. The, fact that the doubIet- distribution
for the open-nose body is sindar to that of a typical projectile
(reference 2) Ieads to the expectation that the Mach numbw
characteristics of the two shapes viould be simiIar. The
cent er of pressure at the lower Mach numbers is ahead of
the nose and moves back with increasing Mach number.
The drag coefficient can be. seen to decrease with Mach

1number but to a lesser degree than the —

Co>fp-oy ~Tm ~=ER1,::– 1 ‘aw ‘f t~vo-

dimen9ionaI wing profiks.

, . .

~ comparison of the calculated lift and moment coefficients
with some experimental data obtained in the Lan#ey 9-iuch
supemonic tunnel is presented in @urea 10(a), 10(’b), and
lo(c). The contribution to the lift of the internal air can
be shown to be:

A(7==2ci

This increment vdl appear at the nose and wilI therefore
give rise to a moment:

ACa=a



54 REPO~ NO. 80 8—NATIONAL ADVISORYCOMMI’ITEE l?ORAERONAUTICS

J

FIGURE4.—CalauMed preaeure distrIbntIone for ..0”

FrouRE 6.–Etl&ofnumberof lntwation pofnta on’premure dhtribution orer the now of
the bdy

04 8 12 f6 20 24 28
flm

FIGUItE6.-Eource4lstrlbution functions for u =OO.

FICWEE7.-DfstrfbutIon ofhrcrcmentslsurheo prasurea omrtho bodyrd two Mach numlwra

w%
FIGURE8.—Doub1et4MfbutIon funetlona.

FIaUEE 9.-TbeoretfceJ vdethn of Uft, moment, and droc medlelcnta with Mach number.
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————-

(s) M=L45.
(b) M=Lm.
(c) i4f-L76.

FIGL!EBIo.-coxnparfxm OfCalculwd lLftand moment nmcients withexperfmmtddata.
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These increments have been added to the calculated results
for comparison with the experimental dattt that include the
effect of the internal air. The experimental lift and moment
results did not go through the origin because of deviations in
the stream flow and perhaps small, unaccounted for, tare
forces. It” is obvious that for bodies of revolution the data
should give symmetrical curves about the origin. The
experimental results were therefore nmde to go through the

origin by subtracting from each point the value of the lift
coefficient or moment ccm%cient at zero angle of attack.
All coefficients are based on the nose area.

For 34= 1.45 two calculated curves corresponding to two
body shap- tested are shown. The two shapes, which are
dcsigmted for convenience regular tail and ferrule tail,
differ onIy in that a stabilizer-supporting ferrule was placed
over part of the tail section. The two configurations are
shown in figure 10(a). h-o clifference can be observed in
the experimental results for the two shapc9, whereas the
calculations show a small difference. A possible conclu-
sion is that thickening of the boundary layer ahead of the
shock at the trailing edge tends to make the effective shape
of the regular body more nearly like that of the body with
the tail ferrule. The better agreement of the ferrule-tail
calculation is further evidence that this thickming of the
boundary layer actually occurs. In any case, the calcu-
lated results are in excellent agreement with the experi-
mental data. At M= 1.60 and M= 1.75, only the regular
shape was calculated, and, although the agreqnent with
the experimental data is good, ferrule-tail calculations
would probabIy havo given even better agreement. The
discrepancy at 34= 1.75 between the theoretical and experi-
mental points near + 3° is probably due to separation
phenomena. The agreement is good at small angles of
attuck. Because of the uncertain value of the sliin:friction
drag present in tlm experimental datu, a drag comparison
is not presented.

ANOTHERAPPLICATION

The success of the method. when it is applied to open-nose
bodies suggests its use in the calculation of external lift,
moment, and pressure drag of bodiw of revolution having
annular air inlets (fig. 11). The characteristics of a body
of this type would be calculated as follows: The source. and
doublet distribution from O to B would be numerically

v
b ●

o ------/-l— --

FIGLXE 11.- Sketehof a tyr Icd body with annular Ink4 to fflustratothemethod of cakulatfon.
.

determined by the methods of rcfcrence$ 1 nnd 2, which
would aIlow the calculation of l,ho lift, monwnt, and drag
contributions of the portion of the lwdy from O to C’. Ill
order to calculate the lift, moment, and drag of the rcmttiw
ing externtd shell, the source rtnd doublet distribution from
O to A.~*ould be retained and a new sourco and doutdrt dis-
tribution beginning at A and satisfying the boumlnry con-
dition at the outer shell would be dctcrmitwd. In this wax,
the influence of tic forwnrd portion of 1.lwbody on lhv ihnv
along the outer shun would bo fully Mmn into nccoun[..
The flow at the annulrw inlet COUM bc fully dctwmirm.1
from the original source and doublet distribution from 0 to
E, which would aUow the d{~twminotion of the lift due to
the internal flow. The moment would be closely approxi-
mated by assumiI~g this incremental liflto act at Lhc lipof
the inlet.

CONCLUS1ONS

An approximate method wtts preacmhxl for the rrdrulatioll
of the external lift, momrnt, ttnd prwsum drag of slcmiw
open-nose bodies of revolution at supclwnic SWW.IS. The
pressure-drag comparison” was not present eil bemuse of lhc

uncertainty of the amount “of skin-friction [1rag prmcmt in
experimental results. The ralculatcd lift and motncnt
results at Mach numbers of 1.45, 1.00, 1.75, ftnd 3.00 showrd
excelkmt ttgreement with the avttilnblo cxpvrimrnlul dtil~L.
The ewd..lent agreemcut of the culcuIaM lift find moment
results with experimenhd datu indicated LhnL the approxi-
mate method may be reliaMy used for obtuining the two-
dynamic characteristics of slender bodies. t lN~Laro required
for efficient supersonic flight.

ILAIW2LEY XIEMORIAL AERo~AuT1cAL lJAnORATORV,
NATIONALADVISORYCOMMITTEEFOR AERONAUTICS,

L&GLEY FIELD, VA., December 29, 19@.
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