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GENERAL EQUATIONS FOR THE STRESS ANALYSIS OF RINGS
By EUGENE E. LUNDQUIST and WALTER F. BURKE

SUMMARY

In this report it is shown that the shear, axial force,
and moment at one point in a simple ring subjected to
any loading condition can be given by three independent
equations involving certain integrals that must be eval-
uated regardless of the method of analysis used. It 18
also shown how symmeiry of the ring alone or of the ring
and the loading about 1 or 2 axes makes it possible to
simplify the three equations and greatly to reduce the
number of indegrals that must be evaluated.

Application of the general equations presented in this
report to practical problems in the stress analysis of rings
makes it possible to shorten, simplify, and systematize
the ealeulations for both simple and braced rings. Three
llustrative problems are included to demonstrate the
application of the general eguations to a simple ring
with different loadings.

INTRODUCTION
During the past three years several papers on the

stress analysis of rings for monocoque fuselages have -

appeared in American aeronautical literature (refer-
ences 1 to 4). In these references consideration has
been given to the special case of either a circular or
an elliptic ring of constant cross section. Using the
method of least work, the authors have derived for-
mulas and charts that give the shear, axial force, and
moment at one or more points in the ring for a number
of simple loading conditions into which the majority
of complicated loading conditions on the main rings
of a monocoque fuselage may be resolved. As the
greater number of monocoque fuselages actually con-
structed are probably not mathematically circular or
elliptic in shape with rings of constant cross section,
the equations and charts for shear, axial force, and
moment given in the above-mentioned references are
not generally applicable.

In the present report, prepared in cooperation with
the Bureau of Aeronautics, Navy Department, equa-

tions applicable to the general case are developed. In |

the presentation of the general solution no considera-

tion is given to the many short cuts that can often be |-

made by a judicious choice of a method of analysis.

Such considerations would only be digressions from
the general case and would result in a discussion of
applications to special cases.

Three problems are given in the appendix to demon-
strate the simplicity and ease with which the general
solution can be applied to the stress analysis of a
particular ring. .

SYMBOLS
Throughout the present report, the following sym-
bols are used: ‘
M,, bending moment at any point in the
determinate structure.
M, bending moment at any point in the
complete structure.
Xnj, bending moment at the jth cuf.
X,y axial force at the jth cut.

X,;, shearing force at the jth cut.

aaéuj=Mm,, bending moment at any point due to a

. unit bending moment at the jth cut.

W=M”” bending moment at any point due to a
# unit axial force at the jth cut.

%l—j= 4, bending moment at any point due to a
) unit shearing force at the jth cut.
P,, axial force at any point in the determinate
structure.
P, axial force at any point in the complete
structure.
oP )

ax =L axial force at any point due to a unit
a;’ bending moment at the jth cut.

-a—X—=P,,,, axial force at any point due to a unit
i axial force at the jth cut.

il =P,;, axial force at any point due to a unit
40X, ; » .
shearing force at the jth cut.
V., shearing force at any point in the de-
terminate structure.
V, shearing force at any point in the com-
plete structure.
av )

= Vs 'sheuing force at any point due to a unit
(ﬂ;j bending moment at the jth cut.

3 =V,,, shearing force at any point due to a unit
" axial force at the jth qut.
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%7—’= »j, Shearing force at any point due to a unit

shearing force at the jth cut.

U, total strain energy.

ds, element of length along the neutral axis
of member.

E, tension-compression modulus of elasticity.

@, shear modulus of elasticity.

k, factor depending upon the shape of the
cross section.

R, radius of curvature of axis through the
centroid of the cross section of a
curved member.

¢, distance between the centroid and the
neutral axis of the cross section of any
curved member.

A, cross-sectional area of member.

¢, number of members.
7, number of cuts.
m, number of unknowns.

GENERAL LEAST-WORK ANALYSIS

The method of analysis.—The approach to a least-
work analysis of a statically indeterminate structure
consists of imagining the structure to be cut at 2 num-
ber of points with unknown values of shear, axial force,
and moment acting at the cut sections. The number
of cuts is just sufficient to make the structure stati-
cally determinate. An expression is then set up for
the work of distortion or, what amounts to the same
thing, for the internal strain energy, and this expres-
gion is differentiated partially with -respect to each
of the unknowns. As the principle of least work
states that the internal forces and moments adjust
themselves so that the energy stored in the structure
is & minimum consistent with the conditions of equi-
librium, each partial derivative is set equal to zero.
Thus, if there are m unknown forces and moments m
equations involving the unknowns are obtained. The
values of the m unknowns are found by solving the m
simultaneous equations. With the unknown forces
and moments evaluated, the forces and moments at
any other point in the structure may be obtained by
statics.

Expression for strain energy.—The total strain
energy stored in a length I of a curved member may
be expressed as follows:

{

v~ || simnt amtean g O
integrated over the length I (reference 5). When the
depth of the curved member is small in comparison
to the radius of curvature of the centroidal axis, the
distribution of the bending stress over the cross sec-
tion approaches a linear one and the expression for
the internal strain energy may be taken as equal to
that for a straight member. This assumption is
usually made in the analysis of rings encountered in

aircraft design and the following expression is there-

fore used:
M2 P? k
U= f s A 2AV6’1]‘18 @

When the ratio de;iﬁl ugfoi::sl;;vast;ft?on is greater
than 4, the assumption that the member is straight
gives the stresses in the ring within 10 percent for
cross sections commonly used in aireraft structures.
If in a small portion of the ring this ratio is less than
4, the approximation does mot seriously affect the
least-work analysis, hence the stresses calculated in
the other parts of the ring. When the ratio is greater
than 10, the calculated stresses will be accurate within
3 to 4 percent. These values should be considered
as indicative of the approximate range of accuracy
rather than as fixed limits of accuracy.

Since bending moment M, axial force P, and shear-
ing force V usually vary throughout the entire struc-
ture, general equations must be obtained for them.
By the principle of superposition,! these equations are

M=M0+§Mm}ij+EuMp}ij+§Mﬂij

P= Po"l";z P,,;X.,rl-% PﬂiXPJ+§ P’IX'! (3)
V= %—I—;Z VmJXMJ'l'% Vp}XpJ'l'Eu VPIX o

the significance of the summation signs being that the
indicated operations should be performed for the
total n cuts and summed up. Theinternal energy
may then be written in the form

STz, PP, kVE :
U= f [2EI+2AE’+2AG ds @)

where the integralindicates the energyin anyindividual
member, the summation sign indicating that the work
in all the members (¢ in number) must be summed up.

Partial differentiation of the expression for strain
energy—Partial differentiation of U as given by
equation (4) with respect to the unknowns contained
in M, P, and V and setting the resulting equations
equal to zero gives

U S (1M P kV _
aij‘—' q I:J {'E[Mml+EPm!+EVmJ]ds =0

%=?[f(%Mﬂ + fE’PM +% ij] ds =0} (b)

R NI LA e 14 v, Jas |0

In the general case, with » cuts, there will be n
equations of each of the foregoing types. It should
be remembered, however, that these equations are ap-
plicable only when the cross-sectional dimensions of
the members are small in comparison to their radii of
curvature. ’

1 8trictly speaking, the principle of superposition does not apply when the sccond-

ary effects of deflection are considered, but thess effects are usually negleoted in s
least-work analysis.
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APPLICATION OF GENERAL LEAST-WORK ANALYSIS
TO RINGS

The general equations for a least-work analysis pre-
sented in the preceding section will now be applied to
the analysis of closed rings. Where a ring is heavily
loaded it is sometimes desirable to brace it with a strut
or stay. In the following analyses both simple and
braced rings will be considered. (See fig. 1.)

) 96

@
(a) Simple ring

(b) Braced rings
F16GURE 1.—Types of rings.

F1auRE 2,—8imple ring cut at one point with unknown values of shear, axial forcs,
and moment acting at the section cut.

Simple ring: general case, ring of any shape.—For
the simple closed ring both ¢ and n of the general

analysis become unity. Equations (5) therefore be-

come

O {1 S A JA T

%gf‘ (G114, + 45 Pt agVslio=0 | ©

o[ [Er 4 apP a7 =0

For a thin ring such as considered in this report, a
very close approximation may be obtained by neglect-
ing the work due to axial forces and to shearing forces.
Thus, omitting the last two terms in each of the
preceding equations, equations (6) become

awu_ (M Al
—aXn—fEMmds_O
au_ (M _

_aXp_fEMpds_O (7)

U _ (M, .
R—fﬁﬂff.ds—OJ

Substitution of the general expression for M in the
preceding equations gives

M'I;I —=r—ds=

A

fM“M“ds

fM =1, +Xf d+Xf—E'9T41ds=
fMoﬂ!fp

X, [Meeogoy x, f M’M’ds+X f M7 =

Equations (8) are general and independent of the
coordinate system used. In order that these equa-
tions may be applied to the analysis of specific prob-
lems it has been found convenient to use the following

system: The origin of coordinates is assumed to be at

L (®)

-4
x 3¢
Yz Ya
X
xr,
Leff. _Right
part “part
y

F16URE 3.—Coordinate system used in the general solution for simple rings.,

the top of the ring, where the cut is imagined to be.
(See figs. 2 and 3.) The z axis is assumed to be hori-
zontal and the ¢ axis to be perpendicular to the x axis.
By this choice of coordinates the ring is considered to
be divided by the y axis into a left and a right part,
each of which is treated separately in the evaluation
of the integrals. The positive direction of x is to the
left for the left part and to the right for the right part.
The positive direction of y is downward for both the
left and the right parts.

At any point in the ring the values of the shear,
axial force, and moment are assumed to be positive
when they have the directions indicated by the arrows
in figure 2, as viewed by an observer standing on the
inside of the ring, facing outward, and looking down
on the part of the ring concerned. The moments
M, and Mp, in the left and right parts, respectively,
may then be written as follows:

ML=I"IOL+MMLXm+MpLXp+McLXv } (9)

MR=MOR+MRBXn+Mp P+RI°BX'
where
MmL=MmR=1 (10)
MPL=MPR=y (11)
M, =z and M,,=— (12)
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Substitution of these values in equations (8) therefore gives

=] JGar). oo+ [ Gar)ose o 2 (), oo+ | (), ae Jo e[ () o= [ (i), o)
LS Gap), o+ J (), ] |

] J(h). oo+ [ () o x| [ (), oo [ G, e e () 2o [ (), ]
L/ Cat), e

ol [ )o@ e [ @), - [ (), o b [ (.ot [ (F), oo ]-
LS G, 2 J (), ]

(13)

(D), ]

where the subscripts L and R indicate that the integrations are to be performed over the left and right portions,

respectively.
In order to simplify the notation let

el [ [
[ S
wel [ (B
el [(B) ()
sl (B [()
a=[[(E)o [(B)
e () (250
e [ (1) 304 (4 0]
o) - [ ) o]

If these values are substituted in equations (13) the
following system of simultaneous equations is obtained:

AIXn+A2Xp+A\?Xu= —Dl
Ao X ot By X+ B X,=—D,
ASXm+ BZXp+ 01X1.= _D3

The values of X,,, X,, and X, having been obtained
by solving the preceding equations simultaneously, the
shear, axial force, and moment at all other stations
around the ring may be calculated by statics, as stated
previously. The stresses at each station may then be
calculated by the standard beam formulas, as in the
examples of reference 4.

Simple ring: ring symmetrical about one axis.—In
aircraft structures it is customary to build floats, hulls,

(14)

(15)

and fuselages symmetrical about their central vertical
plane, even though the loading is not always sym-
metrical. In view of this fact, it is possible greatly
to simplify equations (15) as applied to the rings or
frames of these structures. Thus, if the y axis of the
coordinate system is made to coincide with the axis
of symmetry of the rings or frames,

A3=0
e OJ (16)
and equations (15) become
A1X.+A2Xp= _Dl
Ay Xnt B X,=—D, (17)
01X1=_D3
from which
Pre =A,D,—B1D1= _Dit-4:X,
g AIBI‘—‘A32 Al
_AD—AD,  D+4,X,
=g By~ 4 (18)
X,=—Ds

Simple ring: ring and loading symmetrical about
one axis.—In the special case where the loads as well
as the ring are symmetrical about the y axis, D; is
also zero. Thus, in equations (17) and (18)

X,=0 (19)

In all other respects the equations of the preceding
paragraph apply. In the evaluation of the integrals,
however, it should be noted that, since both the ring
and loading are symmetrical about the ¥ axis of coor-
dinates, each integral is equal to twice the value for
one-half of the ring.
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Simple ring: ring and loading symmetrical about
two mutually perpendicular axes.—QOccasionally there
are aircraft structures built in which the hull or fuse-
lage shape is symmetrical about two axes. Airship
hulls formed by regular polygons with an even number
of sides and fuselages of circular, elliptic, and rec-
tangular cross sections are examples of this type.

If both the ring and the loading are symmetrical
about two axes, the labor required to evaluate X, X,
and X, may be greatly reduced over that required when
there is symmetry about only one axis. From the dis-
cussion of the preceding section where both the ring
and loading are symmetrical about one axis, it follows
that, for symmetry of the ring and loading about two
axes, the shear in the ring is zero at each end of the
two axes of symmetry. By a separate consideration
of the equilibrium of the right and left parts of the ring,
it is possible to write for this case

z components of all forces or loads on

In the evaluation of X, by the summation process

_indicated by equation (20), the components of force

that act in the positive direction of z (away from the y
axis) are considered as positive and those that act in

- the negative direction (foward the ¥ axis) as negative.

With the value of X, determined, the value of X,, may
be obtained from the first equation of (18).

Rings with struts or stays.—Cases are encountered
of rings that contain one or more struts, or stays, for
strengthening and stiffening. In such rings it is neces-
gary to imagine the ring cut at more than one point.
Hence ¢ and » in the general solution are both greater
than unity. Although this problem seems complicated
because more than three unknowns are involved, it
may be reduced to a simple systematic solution.
From inspection of equations (8) it is possible to write
the form of solution for the case of n unknowns instead
of repeating the analysis and deriving it as a separate
case. Suppose there are m unknowns. Then, if the
integral sign indicates integration over the entire

X”=%2 the right or the left part of the ring (20) structure, the m simultaneous equations are:
x (M o, [Malleaot. .. 4x [Mllast. . x [Uellegom— [Melleq,
fMMbds+Xb MY ot +x, [MMhgsy . 4x, fM oMy go fM°M°d
X, [Medigoy x, (MM gor 1%, (M dsv. . 4, fM Mfds=—fM°M o
X, [MaMangyy x, (MoMngey . .+X,f—E%ds+. . .+X,,fﬁ — (Mg,

In the preceding system of simultaneous equations a
definite “pattern’’ exists. The terms in the major di-
agonal row running from upper left to lower right con-
tain only integrals with A/ squared. All other inte-
grals in the pattern consist of products of A; on any
diagonal row running from the lower left to the upper
right the integrals symmetrically located with respect
to the major diagonal are identical. A short study of
the form of the pattern will enable the reader to memo-
rize it and thus eliminate the tedious work of deriving
the equations each time that a least-work analyais is
made. The pattern is a result of Maxwell’s law of
reciprocal deflections and always has the same form
regardless of how the energy is stored in the structure.

In order to llustrate the application of the preceding
general equations to a ring with a strut, or stay, the
problem shown in figure 4 will be considered. Since

the strut has been assumed to be horizontal it is con-
venient to cut the ring at the two points shown. Two
cuts having been made, there are six unknowns: X,

mi,

Right part
FI1GURE 4.—Braced rings with one horizontal strut.

Xy Xopy Xmgy Xy, and X, The general equations
involving the unknowns are therefore six in number.
From the characteristic pattern for the equations of
least work, it is possible to write directly
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m -ﬂ m m m m
X, [Mt o x, Mot a0 x, [Mimaey x., (Mo macs x,, [Hopmas x, [opr=tae-
B fMoM,,, is
M, M, Mo 1,
Xy f ”ds+X,,l f ds—l—X — g7 48+ Xong f ’M"‘ds+X f s+X f %AI lg=
.Jfﬂiﬁkéud
—JET ¢
m M 1 k
,,lf——d”" s+X,,lfM"ﬂ’ 148+ X, f —E—ds+me—%l—“ds+Xm f MM"der+Xf AL
-5
2 "M, Mo, m
Xy ﬂ—l—]j—:z}f[ﬂ'ds+X,,l ﬂ%{[ﬂds+qu—%l’ds+Xu,fT?ds+XJ WMgd +Xf "Mzd8=
lhﬂﬂbfm,d
—JEr %
i M, M,
f Lf’“éid +X, MM"’d +X., f EI”’ds+X,,f i ”ds+anE—”}ds+X»a f —Zﬂ—z}lﬂdw
ﬂdul
. M, Mg
X M”"M"ds+X f e Moy, +X., f——E—’ds+Xm,f M”ds+Xm —éﬂfl—"dHme—E*}’;dm
- 5

(22)

Inspection of these equations shows that there is
always some path, section of the ring, or stay along
which the value of each integral is zero. For example,
M, is zero from B to C. Hence, any integral involv-
ing M,, is also zero from B to C. Since My, is zero
from A to C any integral involving A, is also zero
from A to C and any integral involving the product of
M,, and M,, is zero over both AC and BC. The
fourth integral in the second equation

Moy My, |
—E %
need therefore be evaluated only from CtoD. Ina
gimilar manner the paths for which each of the other

integrals in equations (22) need to be evaluated have
been determined and are listed in the following table:

EVALUATION OF EQUATIONS (22) FOR FIGURE 4

In not involving loads, left-
wﬂlﬁsd glde equations (22) involvin,
t-han
side equations (22)
First 3 terms Second 3 terms
First 3 equations.._ ACand CD [¢))] ACand CD
Second 3 equations. cD BCand CD BCand CD

The integrals in equations (22) having been evalu-
ated for the paths indicated, the values of Xn, X,
Xoyy Xngy Xy and X, are obtained by solving the
simultaneous equations. The shear, axial force, and

moment at all stations around the ring may then be
calculated by statics and the stresses by the standard

beam formulas.
DISCUSSION

Simple rings.—The application of the general solu-
tion to problems in the stress analysis of rings and
frames makes it possible to simplify and systematize
the calculations for X, X,, and X, in a way that is
not possible when starting from fundamental considera-
tions each time a ring or frame is stress-analyzed.
The procedure is first to locate the coordinate axes in
the most judicious manner considering conditions of
symmetry, and then to evaluate the integrals that
appear in the general equations. If the evaluation of
the integrals analyticallyis difficult, standard numerical
or graphical methods may be used.

An examination of the integrals that must be evalu-
ated in order to determine X, X,, and X, shows them
to be of two general types. One type involves only
the stiffness ET and the dimensions of the ring. The
other type involves the loads in addition to the stifiness
and dimensions. The following table giving the
number of integrations that must be made on the two
types of integrals for the various cases considered in
this report is presented to show in an approximate
manner the degree to which the labor is reduced by
conditions of symmetry. The evaluation of any
integral for one part of the ring is considered as one
integration.
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THE NUMBER OF INTEGRATIONS NECESSARY FOR
DIFFERENT CASES

Integrals
Ini
t in-
Caso involving [ 29° 0
loads 14
loads

QGeneral case, ring with any variation In loading, material,
and dimensions,

Ring symmetrical about one axis

Ring and load!ng symmetrical about one axis ___________.

Ring and loading symmetrical about two axes.._________.

—
NI D

ROD

After a particular problem has been classified by the
conditions of symmetry, all of the integrals involved in
that case must be evaluated regardless of what method
of analysis is used, unless perhaps the shape of the
ring is such as to lend itself to some short-cut method.
If o stress analysis of a given ring is desired for 2 series
of loading conditions, it should be noted that only
those integrals involving the loads (integrals including
M,) must again be evaluated for the different loading
conditions. Thus the labor required to obtain X,
X,, and X, is reduced to a minimum by application of
the general equations herein developed.

In certain cases where rings of identical size or of
the same relative shape may be encountered frequently,
it is advantageous to resolve all complicated loading
conditions into a few simple ones. (See references 1 to
4.) The shear, axial force, and moment for the simple
loading conditions may be calculated either by stand-
ard methods or as outlined in this report and the
appropriate values added algebraically to obtain the
shear, axial force, and moment for any complicated
loading condition.

It is not probable that rings and frames of identical
gize or of the same relative dimensions will be encoun-
tered frequently. The resolution of the complicated
loading conditions into a few simple ones does therefore
not, always result in the same advantage. Forrings
of oval and other odd shapes, it is probable that the
integrals involved in the general solution would have
to be evaluated by standard numerical or graphical

methods. If such be the case, it is just as easy to
consider the complicated loading condition as it exists.
With the work properly planned for this method, it is a
simple matter to obtain the moment, axial force, and
shear at a number of stations around the ring after the
values of X, X,, and X, have been found.

Braced rings.—The application of the general equa-
tions to the analysis of braced rings has been carried
only to the extent of indicating a possible systematic
solution. For each particular case the designer will
be able to minimize the labor involved by a judicious
choice of axes, rather than by the use of a standard set
of axes such as would be necessary to carry the general
solution to more detailed conclusions. In the present
paper a series of braced rings with different conditions
of symmetry could have been assumed and the most
convenient axes chosen. The general solution could
then have been completed and discussed in a manner
similar to that adopted for the simple, or unbraced,
ring. As the bracing used is of such a variety of forms,
however, it was not thought worth while to attempt a
classification of each type and present its solution.

CONCLUSIONS

1. The shear, axial force, and moment at one point
in a simple ring subjected to any loading condition can
be given by three independent equations involving
certain integrals that must be evaluated regardless of
the method of analysis used. Symmetry of the ring
alone or of the ring and loading about 1 or 2 axes makes
it possible to simplify the three equations and greatly
toreduce the number of integrals that must be evaluated.

2. Application of the general equations presented
in this report to practical problems in the stress analysis
of rings makes it possible to shorten, simplify, and
systematize the calculations for both simple and
braced rings.

LaneLey MEMORIAL AERONAUTICAL LABORATORY,

Narronar ApvisorY COMMITTEE FOR AERONATUTICS,

LanereY Fierp, Va., August 10, 1984.



APPENDIX

In order to demonstrate the application of the gen-
eral equation to a specific example, the values of
Xa, Xp, and X, will be calculated for a circular ring
with different loading conditions. The problems were
made simple so that the reader would not lose the
perspective of the general solution presented in the
report proper. Because the problems are simple, it
may be that a shorter solution can be obtained by
some method other than the general method here used.
In the majority of problems, however, it will doubtless
be found advantageous to use the general solution.

PROBLEM A

A circular ring of constant cross section is loaded
as shown in figure 5. The y axis of coordinates is

x Y x
W 114

—[—g.

Ir

y

FIGURE 5.—Problem A.
made to coincide with the diameter about which the
loads are symmetrical. By this choice of axes both
the ring and the loading are symmetrical about the y
axis. Consequently, X,=0 and the equations for X,
and X, are (see equation (18)).

_ 4D —A,D;
Xo="AB— 47

X DAL,
1

Evaluation of the integrals.—If being assumed that
the material and cross section are constant at all sta-
tions around the ring, EI may be canceled from all
integrals in the numerator and denominator of the
preceding equations for X, and X,,. Thus, the eval-
uation of the integrals is

A1=fd8=2ffrda=2rfrda=|:2ra r=2-;rr
A2=fyd8=fr(l—cos a) ds=rfds—r f cos « ds

76

=rd;—2r% f rcos ada

=7'A1_ 27'2 Sin a:[

=272
Bl=fy’ds=fr’(l—cos a)lds

=r2fds-—2r"fcos a ds—i—r’fcos’ ads

=r2A1—0—l—21‘3f cos? a da
[}

=r2A1+21“|:éa+i sin 2al

=27+ ar?
=37

D1=fMods=2f; Wr (cos B—cos o) rda

=2Wr”|:a cos B—sin a];
=2Wr*[(=—B) cos B-+sin f]

D= f Myds= f Myr(1—cos @)ds
=rfMods— rfMo cos ads
=1~D1—27-Lr Wr(cos B—cos a) cos arda !
=7-D1—217Vr3ﬁ’r (cos acos B— cos? a)da

=rD1—2Wr3|:sin « cOo8 B——;— a— %sin 2a:l;
=2Wr3[(x— B)cos 8+sin f]
—2Wr3|:—sin B cos ﬂ—% (w—ﬁ)—l—%—sin g cos ﬁ:l

=2Wr3|:(a——ﬁ)cos B+sin ﬁ+%sin B cos B+% (r— ﬁ):l
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Evaluation of X, and X,.—Before the substitution
of the integrals in the equations for X, and X, it is
convenient to summarize them as follows:

A1=21T1'
.Ag=2ﬂ'7'2
B1=37Tr3
Dy,=2WrF
D,=2Wr(F+@)
where F'=[(x— 8)cos -+sin 8]

and  G=1[(r—f)+sin p cos f]
Substituting the values of the integrals in the equations
for X, and X, gives

x.= @) QW F) — @ar) 2Wr(F+-G)]
a 2nr) (37) — (277%)?

2Wa

T

= —Zl(x—p)+sin B cos ]

W) + @t —22E

2ar .

Wr
=——(@2G—F)

=¥(l—cos B) (w—p—sin B)
PROBLEM B

In order to demonstrate further the application of
the general equations to a specific example and to
show how several of the integrals evaluated for prob-
lem A may be used in other problems, the values of
X;, X, and X, will be caleulated for & circular ring of
constant cross section loaded as shown in figure 6.

y
x x
e
§7 W
Ir
w Bl W
y

F1GURE 6.—Problem B.

In this problem the ¥ axis will be made to coincide with
the vertical diameter, one of the two diameters about
which the ring and loads are symmetrical. By this
choice of axes

X,=0
X,=W cos 8 (See equation (20).)
__ Dit4AX,
K==
Since the ring has not changed from that considered
in problem A, the integrals 4, and A; have not changed.

The integral D; must again be evaluated because the
loading has changed.

D= f Mods=z,fﬂ  Wr[l—cos(a— B)Jrda
+2J:ﬂWr [1—cos(a—7+B)rde

=—2Wr I:a—SiIl(a_ 13)];
-|-2Wr’I:oz—sin(a—7r +ﬁ):|:_,s

=—2Wr*(x— f—sin ) +2Wr*(8—sin B)
=2Wri(2—m)

Substituting the values of the integrals and X, in the
equation for X, gives

Xm=Wr(1—??B—cos 8)

PROBLEM C

In this problem a circular ring of constant cross
section is loaded as shown in figure 7. } Both the ring
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FIGURE 7.—Prohlem C.

and loading are symmetrical about two axes so, if the
y axis is made to coincide with the vertical diameter
as shown,

X,=0

X,=—Wsin 8
D+ 4.X,

Xp= v

The integrals 4, and A, are still the same as for
problem A. The integral D; is dependent upon the
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loading condition and must be evaluated for the
particular problem.

— f Myds=2 L "Wr sin (a—B) rda
) f " TWrsin (a—n+p) rde
*—B

=—2[Wr’z cos (a—ﬁ)I—2[Wf2 cos (a—w+5) :l:—p

=4Wr
Substituting the values of the integrals and X, in
the equation for X, gives

. 27-
Xo=TH sin =

It should be noted in problems B and C that the
integral D; was evaluated by taking the sum of two
integrals, each of which considered the separate mo-
ments caused by the two forces on one part of the ring.
It was found that this method of evaluating the inte-
gral involved fewer terms than would have been
involved had the moment caused by the first force
been integrated between the limits 8 and «—8 and then
the combined moment caused by the two forces inte-
grated between the limits »—8 and =. This method
of evaluating the D integrals as a sum of the integrals
for the separate loads is often advantageous in problems
where the loadings are likely to change.
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