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A RECURRENCE MATRIX SOLUTION FOR THE DYNAMIC RESPONSE OF AIRCRAFT IN GUSTS!

By Jorx C. HotsoLr

SUMMARY

1 systematic procedure iz developed for the calculation of the
structural response of aircraft flying through a gust by use of
difference equations and matriz notation. The use of differ-
ence equations in the solution of dynamic problems is first
lusirated by means of a simple-damped-oseillator ezample.
A detailed analysis is then giren which leads to a recurrence
matrix equation for the determination of the response of an
airplane in a gust. The method takes info account wing
bending and twisting deformations, fuselage deflection, rertical
and pitching motion of the airplane, and some tail forces. The
method is based on aerodynamic sirip theory, but compressi-
bility and three-dimensional aerodynamic effects can be taken
into account approzimately by means of over-all corrections.
Either a sharp-edge gust or a gust of arbitrary shape in the
spanwise or flight directions may be treated. In order to aid in
the application of the method to any specific case, a suggested
computational procedure is included.

The possibilities of applying the method to a variety of tran-
sient aireraft problems, such as landing, are brought out. A
brief review of matriz algebra, covering the extent to which it is
used in the analysis, 13 also included.

INTRODUCTION

In the problem of an airplane fiying through gusts, accurate
predictions of stresses are not always obtained if the inter-
action between aerodynamic loads and structural deforma-
tions is not considered. The present report gives a method
for determining the dynamic response of eircraft in gusts in
which this interaction is considered. An epproach is em-
ployed which is & departure from the usual modal type of
solution. The time derivatives in the integrodifferential
equations of motion of the airplane are replaced by appro-
priate difference expressions and use is made of matrix nota-
tion to express conveniently the conditions of equilibrium at
& number of points along the wing span. The result is a
systematic procedure which is complete and general in form.
The airplane is assumed to be free to translate and pitch.
Wing bending, wing twist, and fuselage flexibility are all in-
cluded. Tail forces due to vertical motion, angle of attack,
and gust penetration are elso included in the anelysis.

With the method, & gust with any gradient in the direction
of flight or along the span may be treated. The method is

based on aerodynamic strip theory, but over-all compressi-
bility and aspect-ratio corrections may be included with-
out difficulty, if desired. One such over-all correction is
indicated.

In the first part of the report the method of using difference
equations in the solution of dynamic problems is illustrated
by an example in which the transient response of a simple
oscillator is determined. The analysis for the determination
of the response of an airplane in a gust is then given. In the
following section & computational procedure is suggested.
This section is not intended to describe or add to the under-
standing of the analysis, but by following the directions indi-
caied, the response of any airplane may be found without
following through the complete details of the analysis.

Supplementary definitions and derivations are presented in
appendixes. Appendix A summarizes the various matrix
coefficients and matrices that are used in the analysis,
appendix B gives a derivation of the difference equations,
appendix C gives & derivation of the flexibility matrices,
appendix D gives a derivation of a recurrence equation for
evaluating the form of Duhamel’s integral which involves an
exponential kernel, and appendix E presents a review of the
fundamentals of matrix algebra. It is suggested that those
not familiar with matrix algebra read appendix E before
reading the analysis.

SYMBOLS

a distance between leading edge of wing and elastic
axis

a, coefficient used in unsteady lift function for sudden
change in angle of attack

4 aspect ratio of wing

4, aspect ratio of horizontal tail

b semispan of wing

¢ chord of wing

€0 chord at wing midspan

€o, midspan chord of tail

¢ mean aerodynamic chord of tail

e distance between mass center of wing cross section
and elastic axis of wing, positive when elastic
axis lies forward of mass center

E Young’s modulus of elasticity

I Bupersedes NACA TN 2060, “A Recurrence Matrix Solution for the Dynamie Response of Afreraft in Gusts™ by John C. Houbolt, 1850,
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suddenly applied force

shear modulus of elasticity

integers 0, 1, 2, 3, 4, and 5 used to designate sta-
tions (for most part used as parenthetical num-
bers, that is, w(3)} is deflection at station 3)

bending moment of inertia

torsional stiffness constant

radius of gyration of wing mass about elastic axis
or elastic spring constant

length of section associated with a spanwise station

serodynamic lift over interval [ on wing

shear force transmitted to wing by fusclage

serodynamic lift over interval { on wing due to gust

one-half aerodynamic lift on tail due to gust

one-half total aerodynamic lift on tail

part of aerodynamic lift over interval [ on wing (see
equation (16))

part of aerodynamic lift over interval  on wing (see
equation (17})

mass of beam included in interval [ or concentrated
mass in spring oscillator

mass 7 including apparent mass effect (m-l—“ le? )

assumed over-all compressibility and aspect-ratio

A
2+A\/1—M2)

assumed over-all compressibility and aspect-ratio

correction for horizontal tail (ﬁ—_ﬂﬁ)

mass moment me including apparent mass effect

(e 22 (1-2)

mass of fuselage per unit length

correction for wing (

mass polar moment of inertia mlczincluding appar-

rplet
) LSTTY 128
Mach number or a.erodynamlc moment over inter-
val I about elastic axis of wing
moment transmitted to wing by fusclage
integers 0, 1, 2, 3, and so forth to designate num-
ber of time intervals passed
normal load acting at a station
fuselage inertia loading per unit length
torsional load acting at a station

distance traveled by wing in half-chords (——-t
where m_ldspa,n chord ¢, is used as reference
chord)

ent mass effects (mk’ Tp fet

distance interval in half-chords (—iif e)

horizontal-tail area

time, zero at beginning of gust penetration
forward velocity of flight

vertical velocity of gust

w deflection of elastic axis of wing, positive upward,
or deflection of mass oscillator

wy deflection of fuselage, positive upward

f fuselage modal function, zero at wing elastic axis

and unity at tail one-quartier-chord location

x distance along fuselage measured from wing elastic
axis, positive in rearward direetion

Ta distance from. foremost part of nose to elastic axis

T, distance from elastic axis to one-quarter-chord loca-
tion on tail

Y distance along wing measured from center of air-
plane

F] ratio of dynamic deflection to static deflection

a; angle of attack of horizontal tail, positive in the
stalling direction

B forward-speed and aspect-ratio factor for wing
(mampU) or coefficient of damping for spring
oscillator

8: {orward-speed and aspect-ratio factor for tail
(% m,."lrp S; U)

¥ exponential coeficient in ® function associated with

. ( 2U
time ¢ y=
Co

) coefficient of fuselage modal funetion

€ time interval

A exponential coefficient in & function associated
with variable s

A dimensionless interval between i—1 and £ stations
(Mb is actual length)

P mass density of air

@ angle of twist of wing, positive in stalling direction

v function which denotes growth of lift on rigid air-
foil entering sharp-edge gust (used without sub-
script to indicate function for wing and with
subscript ¢ used to indicate function for tail)

wy natural frequency associated with 17, radians per
second

I unit-step function

1—®  function which denotes growth of lLift on airfoil
following sudden change in angle of attack (used
without subseript to indicate function for wing and
with subscript ¢ used to indicate function for
tail)

[ 1] square matrix

[ rectangular matrix

I column matrix

L] row matrix

Subsecripts:

t tail

01,23, . n number of time intervals passed

0,1,2,3,4,50r1 station (however, station is usually

given as parenthetical number, such
as w(3) for deflection at station 3);
% is also used as general subseript in
appendix A
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All the terms, coefficients, and matrices not defined in this
section are defined in appendix A.
Dots are used to indicate derivatives with respect to time;

dw . Oow .
for example, = =W or 5=
ANALYSIS

TRANSIENT RESPONSE OF A SIMPLE DAMPED OSCILLATOR

In order to illustrate the use of difference equations and
to test the accuracy of the procedure that is to be used in
the solution of the more complicated gust problems, the
solution of a simple problem having & known analytical
solution is first presented. The problem is to compute the
response of the damped oscillator shown in figure 1 to a
suddenly applied force. The differential equation of motion
of this system due to the suddenly applied force is

mip+Bb-kw=F1(f) 8))

By use of difference equations this differential equation may
be transformed into an equation which involves deflection
ordinates at several successive values of time. Probably
the most commonly used difference equations are the follow-
ing (see appendix B for derivation):

. w — Wy -
iy =2t Pt @)

"ii’;'—w.-l-l_ 2:‘;: +"wu—l (3)

which give the derivatives at the intermediate of three
successive ordinates. Although these equations are quite
adequate for the oscillator problem of the present report,
they cannot be used in the gust analysis which follows.
Rather, for reasons which are brought out in a subsequent
part of the analysis, equations that give the derivatives at
the end ordinate of several successive ordinates must be
used. If only three successive ordinates are used, the deriv-
atives so found are not accurate enough to be useful. If
a fourth ordinate is added, however, derivatives may be
taken at the end ordinate with accuracies which are com-
parable to those given by equations (2) and (3). Such
derivatives are derived also in appendix B and are given
by the equations:

b, 11-w,—18w,_1+9w,_2—2w,,_, (4)
Be

e 20, — Wy 14Uy _s—Wn_

o= it AV~ Dat (5)

€

Although either equations (2} and (3) or equations (4) and
(5) may be used in the solution of this oscillator problem,
only equations (4) and (5) will be used, since only these
equations can be used in the gust-problem solution presented
in this report.

If the derivatives in equation (1) are replaced by the

F

I

difference equations (4) and (5), the following equation is

F1rrRE 1.—Damped oscillator and suddenly applied force.

obtained:
(245 Eer k) u (542 Y (44 g ) waet

(1 +%)'wu—s+§? (6)

This equation may be said to be the difference equation of
motion. If the more genersl case of a variable applied foree
were being considered, the factor F in this equation would
be replaced by F,, the value of the force present at the
time {=ne.

If a specific case is now considered, in which £=400,

£ o9, = - ion z—2_ (rati
2-m_2’ ¢=0.01, F=1, and the notation =T (ratio of

dynamic deflection to static deflection) is used, equation (6)
becomes

2,=0.018927+2.422722, ;—1.92114z2, ,+0.479492,_; (V)

This equation may be regarded as a recurrence formula; the
value z, may be interpreted as the deflection to come and
may be found easily from the three preceding deflections
Zai1, Zn_2, 80d 2, 3. Then with the newly found value z
and with 2z, , and 2., the next deflection can be found,
and so on. This process thus gives & step-by-step deriva-
tion of the time history of deflection and may be carried
out as far as is desired. Of course the process must start
with known initial values of z. These values can be found
with the aid of the initial conditions of the problem by
means of the following approach.

The difference equations for the first and second deriva-
tives at the third ordinate of four successive ordinates are
(see appendix B)

u}n ='61_e(2wn+1+ 3wy —6 wn—1+wl—2)

1
Wk =? (wu+l—2wn+wn—l)

If these equations are taken to apply at t=0 (n=0), they
become

.1 ,
=g (2w, +3wy—6w_ T w-_9) (8)

il.Jo:;li(wl—g'WQ'l‘w-[) (9)



148 REPORT 1010—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

For the problem under consideration the primary initial
conditions are that, at =0, the displacement and velocity
are zero. By use of equation (1) or by reasoning from
Newton’s second law, a secondary initial condition can be
established—that is, the acceleration immediately following
the application of the unit force must be I/m. In equation
form these conditions are

'WQ=O
‘u-)o=0

il
" m

By substitution of these values into equations (8) and (9)

and by use of the notation Z=F£/lc’ the following relations

can be found to exist between the ordinates:

Zo=0
2_g=0.24'—821 (10)
z_1=0.04—21

Substitution of these values into equation (7), with n set
equal to 1, gives an equation from which 2z, the deflection
at {=¢, may be evaluated. Three successive deflections
can now be established: the deflection at f=¢, the zero
deflection at =0, and a fictitious deflection for t=—¢ given
by equation (10). In the real problem no deflection exists
for ¢ less than zero; the assumption that a deflection does
exist before ¢ is zero is simply a means for allowing the recur-
rence formula, equation (7), to apply at the origin as well
as at later values of time. Furthermore, no violation is
made of the conditions under consideration because, mathe-
matically, the response after =0 is not influenced by the
response that may exist before {=0, so long as the initial
conditions are satisfied. The process just described for
treating the initial conditions is actually not different from
the procedure commonly employed in difference-equation
approaches, in which exterior points near a region under
consideration are written in terms of the interior points by
means of the boundary conditions.

With the initial values of deflection thus established the

-

Exact solution '
Difference solution:

L O Cubic end-ordinate derivatives

& Poraobolic end-ordinare derivatives

1 ] [ i 1 1 Il 1 L t 1 ] 1 1 1

a .05 NI ) 20
t, sec
FiGune 2,—Comparison of exaot and difference-equation solutions for response of damped
oscillator,

step-by-step evaluation of succeeding deflections proceeds in
a straight-forward manner—that is, equation (7) is now
evaluated for =2, then for n=3, and so on. The response
of the oscillator for the physical constants listed previously
is given in figure 2. The comparison between the difference
solution shown in this figure and the exact solution of
equation (1) is seen to be good. As a maiter of interest,
the solution is also shown in this figure that is obtained by
the use of the parabolic end-ordinate derivative which
involves only three successive ordinates. The agreement in
this case is seen to be quite bad. If equations (2) and (3)
had been used, on the other hand, the difference solution
(in this case for w,y;) would correspond to that given for
the cubic end-ordinate derivative.

RECURRENCE MATRIX EQUATION FOR RESPONSE OF AN AIRPLANE

IN A GUST

In order to help the reader to obtain a perspective of what
is to be covered in this section, the following basic phases of
the analysis are given:

(1) The assumptions are stated.

(2) The coordinate system and displacements are defined.

(3) The aerodynamic lift and moment are defined.

(4) The normal and torsional dynamic loadings (inertia
forces, aerodynamic forces, and fuselage forces) on the wing
are derived.

(5) The equations of elastic deformation—wing vertical
motion, wing rotation, and fuselage hending—are given.

(6) The dynamic loadings on the wing are transformed
into difference equations.

(7) The equations of elastic deformation and the difference
equations for loading are combined to give the recurrence
matrix equation for response.

In succeeding sections the initial response is determined,
the method for evaluating the gust forces is shown, and the
method for computing the loads and stresses is indicated.

Assumptions.—In this analysis an attempt is made to
obtain the simplest and most direct solution to the problem
with & minimum of simplifying assumptions. The case
treated is that of an airplane having an essentially straight
wing and penetrating a gust of known structure. The tail
is considered to penetrate subsequently the same gust as
does the wing. The assumptions made are as follows:

Assumptions pertaining to elasticity and airplane motion:

(1) The usual assumptions of engineering beam theory are
made.

(2) The fuselage is free to pitch and move vertically. 'The
portion of the fuselage in front of the elastic axis of the wing
is assumed for convenience to be rigid. The portion of the
fuselage rearward of the elastic axis is assumed fiexible, and
the elastic deflection is assumed to be given by a single
modal function.

(3) The tail is assumed rigid.

Assumptions pertaining to aerodynamic forces:

(1) Aerodynamic strip theory applies. Three-dimensional
effects, however, may be taken into account approximatcly
by means of over-all corrections. Some such corrections are
indicated.

(2) The gust force and forces due to vertical and pitching
motion are the only tail forces considered. Other forces of
known character may be included, however, if desired.
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(3) Aerodynamic forces on the fuselage are neglected.

Coordinate system and displacements.—Position on the
airplane is denoted by an orthogonsal system of axes. The
origin is at the intersection of the wing elastic axis with the
plane of symmetry of the airplane: the w-axis runs positive
upward, the z-axis runs along the fuselage positive in the
rearward direction, and the y-exis runs spanwise. The wing
semispan iIs considered to be divided into six, not necessarily
equal, sections, with a station point at the middle of each
gection. (See fig. 3.) More or fewer stations could be
chosen, but it is believed that six is a fair compromise be-
tween the amount of labor involved in setting up & solution
and the accuracy desired. The interval between stations is
designated by the number of the station at the outboard end
of the interval. Station 0 is located near the wing root and
generally may be located where the fuselage intersects the
wing. In this way the concentrated forces of the fuselage
are allowed to act through station 0. The other five stations
are then located in any convenient manner so as to fall at
concentrated mass locations or at points which represent the
average of distributed masses, station 5 being nearest the tip.
The total mass within a section is assumed fo be concen-
trated at the station point, and the average of the section
geometry (chord, elastic axis position, and so on) is assumed
to apply. In this way the wing is assumed to be a beam
subject to six load concentrations and as such will have &
linear moment variation between each station. The further

assumption is made that the EL'I variation is linear between

each station. With these assumptions for the ET variation
and concentrated load locations, equations for deflection at
each station point msy be derived (appendix C) by direct
analytical treatment.

The displacements of the cross section at each station of
the wing are given as the deflection of and rotation about the
wing elastic axis as shown in figure 4. The fuselage dis-
placements are shown in figure 5 and are given by the
equations:

wr=w(0)—¢(0)x (11)
for the forward section and

for the rearward section. The function ¥ is taken as the
fundamental mode of vibration of the fuselage and tail
assembly, when the fuselage is considered to be clamped as a
cantilever beam at the elastic-axis loeation of the wing, and

is given in terms of a unit deflection at the %-chord position

on the tail. With this function to represent the elastic
deformation of the fuselage the deflection and angle of
attack of the tail are found with the aid of equation (12) to be

wz) =w(0)—e(0)z, 1§ (13)

A
b= dz ]z-:g

- =p(0)— 56, (14)

where

DYNAMIC RESPONSE OF AIRCRAFT IN GUSTS
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Firaure 5.—Coordinate system for fuselsge displacement.
Aerodynamic lift and moment—Before going into the

details of the analysis it is felt worthwhile to define and
deseribe the nature of the aerodynamic forces to which the

wing is subjected. These forces originate from two sources:

they arise directly from the gust encountered, and they arise

from the ensuing sirplane motion. The equations for the

serodynamic lift and moment that develop are herein set up
in a convenient form on the basis of work given in references
1t6 4. In these investigations various methods for separat-
ing the lift forces have been used, but the particular method
for separating these forces is not important so long es they
are taken into account properly. '

In the present report the serodynamic lift and moment
are considered to be composed of two parts: one part, desig-
nated as the lift or moment due to eirculation, which includes
all lift forces or moments exclusive of aerodynamic inertia
effects and the other part, which is due solely to these inertia
effects. These lift forces and moments can be resolved into
the force systems acting on the airfoil as shown in sketch 1
(forces due to circulation} and sketch 2 (inertia force and
moment).

Lg
¥y 2 Lo
Lg
-2 _.| My
I g \[
SkZIcHE 1. SKEICH 2.
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The force L, is the lift force developed by the gust and
corresponds to the gust force that would develop on the
airfoil considered rigid and restrained against vertical motion.
All the other forces occur as a result of motion of the airfoil.
These forces, as well as the gust force, are given for an
interval ! of the span by the equations: For the forces due
to eirculation,

(0
Ly=marpelU L 2 Yt~ (15)
d T . 3 a\..
Li=mypell | [ Up—ivte (Z_E ¢ |1—®t—n]ds
(16)
- myuwple® .,
Ly=—7—U¢ (17)
and for the inertia force and moment,
lc? . o
L="55 —is+(§-a) 4] 18
__mplet ..

where

m4 factor which can be used tointroduce over-all com-
pressibility and aspect-ratio corrections; in this
report the factor is assumed to be given by

A
2+ A1—M? -

1—&  lift function which denotes the growth of lift on
an airfoil following a sudden change in angle of
attack

¥ lift, function which denotes the growth of lift on a

rigid airfoil entering a sharp-edge gust

The functions 1—& and ¥ and the correction m, are
established as follows. Ip reference 5, approximate equa-
tions are derived which give the lift-coefficient form of the
growth of lift on a finite wing following a sudden changeé in
angle of attack or due to the penetration of a sharp-edge
gust. The equations may conveniently be considered as the
product of a factor, which may be regarded as a lift-curve
slope, and an unsteady lift-function, designated by 1—& for
the function due to the angle-of-attack change and by ¢
for the function due to the sharp-edge gust. These unsteady
lift functions are shown in figures 6 and 7 and are given by
the following equations: For the 1—® functions

(1—®)yug=1—0.283¢~0-540 (20a)
(1—8) 4ug=1—0.361¢0:38 (20b)
(1—®) 4o o=1—0.1656"006:_0,385¢703%0¢  (20¢)
and for the ¢ functions
Ying=1—0.679¢70-588__( 2270 .20t (21a)
Vag=1—0.448¢0.805_(,272¢ 0.7 _(),193¢~5-0%  (21b)
Vameo=1—0.236¢"0-08_( 513¢~0-8041_( 17124 (21c)

Vimw=1—0.500¢01%¢ 0 500¢~* (22)

Lo

(I': $)
O

1 ] 1 i ! ] | |
&8

o ] 12 &
8, half chords

FIGURE 6.—~Lift functions for sudden change In angle of attack, (See equations (20).)
/.0'—— —_————
—_—— -

J_g._-_-g—_"’—————— v
(ReFerence 3;..‘&

L [ ) | ! | 4 |

Q P4 8 /2 I
8, holf chords
FIGURE 7.—Lift funetions for wings enterlng & sharp-edge gust. (Sce equations (21)
and (22).)

Equations (21) are based on equations of reference 5; whereas
equation (22) is the ¥ function that is suggested for wings of
infinite aspect ratio in reference 3. Inspection of equations
(20) shows that the ® function for aspect ratios 3 and 6 is
given by a single exponential term. It is probable that the
® function for higher aspect ratios, say 10 and even 20,
may also be given to a sufficient approximation by a single
exponential term. Therefore, the assumption is made that
in general ® may be represented by an equation of the form

b=qg,e™™ (23)

Interpolation, for example, of the curves in figure 6 shows
that the ® function for aspeet ratio 10 might be approximated
by the equation:

B41p=0.41¢~08 (24)

The analysis does not necessarily limit ® to a single ex-

. ponential term. Other terms could be added with some

increase in labor, but the degree of refinement obtained
is not expected to add much to the over-all accuracy of the
solution.

Although the functions given by equations (20) to (22)
are known to approximate the true functions quite well over

a large range in & (s:ggt) the ¢ functions given by
[}
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equations (21) do not vanish, as they should, when {=0. ‘Yhen
used in the computational procedures given hereinafter, these
functions, therefore, are to be taken as zero when {=0.
Another point to note is that the variable & is given in terms
of a reference chord ¢,; thus this variable as applied to the
wing Is different, in general, from the variable as applied
to the tail.

Examination of the values of lift-curve slope, which were
stated to be present In the equations taken from reference 5,
reveals that they may be approximated with good accuracy
by the product of 2x and the often-used aspect-ratio cor-

rection ——— for steady incompressible flow. In the present

A+"
report it is assumed that compressibility and aspect-ratio
corrections can be made by replacing this aspect-ratio
correction by a compressible aspect-ratio correction defined

by Afi-[-z’ where A’=A+/1—Af% and by multiplying this
correction by the Glauert-Prandtl Mach number correction

to give the product m.. The procedure then for

1
JI—AL
taking into account three-dimensional and compressibility
effects in the present analysis is to determine m, from the
forward speed and aspect ratio of the wing and to use the
1—® and ¢ functions, equations (20) to (24), for the aspect
ratio which is nearest that of the wing.

Some word of explanation of equation (16) might be
worthwhile at this point. The &(#—7) function is associated
with the lift forces which are due to the wake. Without this
term the equation would yield the steady lift eorrespending
to the instantaneous values of angle of attack and vertical
velocity. If equation (16) is integrated by parts and the
conditions are stipulated that w, 1, ¢, and ¢ are all zero at
t=0, the following equation may be found:

%) ‘i’o:I‘P'{‘

Li=Beldar—(1—&p)Beli+ ﬁczr.-'[1 —2—f (2
(1—29pel(3—2 ) p+8el | wbe—rdr—

ﬂclUf ed(t—7)dr—Bel ———)f oBE—7)dr (25)
where 8 has been introduced as a forward-speed and aspect-
ratio parameter defined by the equation

B=maxpl’ (26)

With reference to equation (23), ®, and &, in equation (25)
would have the values

p=a,

oFT
¢Q= —'c—i’ Aa;

The form of L; given by equation. (25) is presented because

this form is more convenient to use in the present analysis.
For this analysis the total lift and moment acting at the

elastic-axis location are desired. For the present, the total

lift L and moment Af of the foreces due to circulation are

found; the inertia force and moment are to be freated

151
separately. Summation of all the lift forces due to circula-
tion and summation of the moments of these forces about
the elastic axis gives the desired equations for the aero-
dynamic lift and moment acting on the airfoil over an
interval [ as follows:

L=L1+L1+Lg

s=(a—) L~ -a) Lt (a—5) L.

The loading on the wing.—The normal and torsionsl

dynamic loads that are held in equilibrium by the elastic

restoring forces of the wing may be found by considering all

the aerodynamic and inertia forces that act on the wing.

The mass situated at any station (see fig. 4) can be shown to
have an inertia normal force equal to

27}

(28)

—mib+mey
and an inertia torsional moment about the elastic axis equal
to

meid—mks
If the aerodynamic forces and moments (see equations (18},
(19), (27), and (28)) are added to these inertia loadings, the

total normal and torsional loadings on the wing at each _

station are found to be given, respectively, by the equations:

p=—mib+mep+L+ Ly
g=meib— ml’@—[—l[——(———a)L-{—ﬂL

The terms L; and Af; ordinarily would appear with the aero-

dynamic lift and moment values but are treated separately
so that they can be combined with the structural mass
terms. If use is made of equations (18) and (19), the load-
ing equations become

p=—mmip+mep+ L (29)
g=men—mk B+ (30)
where
m -—(m+1p[c

me{ mer 75 (5]

—2 i1 2 le*
i (L2 1

The terms appearing with the structural mass quantities in
the definitions of T, e, and Tk  are the terms which are
commonly associeted with apparent mass effects.

The value of the shear forces L, and the moment ., trans-
mitted to the wing by the fuselege can be found in the
following manner. From equations (11) and (12) the values
of the inertia loading on the forward and rearward sections
of the fuselage can be shown to be given, respectively, by
the equations:

pr=—m, [(0) —§(0)z] (31)
pr=—m, [(0)—$(0)z+ F W 32)
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Integration of these inertia loadings over the length of the
fuselage and addition of the aerodynamic tail load 2L, give
the value of the total load transmitted to the wing; one-half
of this load is designated by L, and is assumed to act at
station 0, the other half being considered to act through the
corresponding station on the other half of the wing. Inte-
gration of the moment of the inertia loading about the
elastic-axis location and addition of the moment —2x,L, of
the tail forces give the total moment due to the fuselage;
one-half of the moment is designated M, and acts at sta-
tion 0. The values of L, and M, thus found can be given
by the equations:

L,= —Ml'ib(o) +M2§5(0)—Ms.5. +Ll (33)
MJ=M2’5EJ(O)_M4§5(O)+M5.¢§":th (34)

where the Ms are considered to be generalized masses
defined as follows:

¥
M,=% ‘m,da:

AJZy

MF% f “ oz dz
105
M=} L m,W,dz
" > (35)
M’.,=%r£ ! meaide

MF% J; *maW,dz

1 (% 2
M5=§ o Tan;[ dz

/

The generalized mass constant M, although not appearing
in equations (33) or (34), is included in this group because
it occurs in a subsequent part of the analysis. In the
derivation of equation (34), the acrodynamic moment of

the tail about the tail %—chord position is neglected since

it is considered to be small in comparison with the value
z,L,. The lift on the tail L, can be found by application
of equation (27) to the tail surface. In this case the @
function appropriate to the tail should be chosen and the
values of displacement w and ¢ should be replaced by
w,(r,) and o, the values of deflection and angle of attack

at the tail i-chord position. These values are given by

equations (13) and (14).

Matrix equation of equilibrium.—The problem of comput-
ing the response may be considered to be one of the deter-
mination of the deflection and rotation of a beam which is
subjected to normal and torque loadings. In differential

form, the bending and rotational displacements are related
to the normal and torque loadings by the well-known
expressions:

o2 ?
52 1 ﬁf= (36)
el Op .

where in this instance p and g are the loadings per unit
length of beam. In addition to these two equations which
are considered to apply to the wing, an equation for com-
puting the elastic deformations of the fuselage may be found;
this equation may be found in the following manner. The
rearward part of the fuselage is considered to be a cantilever
beam subjected to the inertia loading given by equation
(32) and the tail force 2L, If equation (36) is applied
to the fuselage and use is made of equations (12) and (32),
the following equation for fuselage bending results:

a!
e

o*W,

St =—ms [0 —p(0)z+3 W] +2L, (38)

EI,
in which L, must be treated properly as a concentrated load
and I, is the bending moment of inertia of the fusclage.
Since W, represents & vibration modal function, the following
relation exists:

where w; is the frequency of vibration associated with 17,
Equation (38) may therefore be written

sm oWy = — m, [i5(0)— $(0)z + S W] +-2.L,

Maultiplication of this equation through by 1 and integration
between 0 and 2; results in the following equation for fuselage
bending

wfMb=—Myib(0) - Mp(0)— My& + L, (39)

where M, M;, and M; are defined by equations (35).

Equations (36), (37), and (39), when the loadings given by
equations (29) and (30) are considered, are seen to be rather
involved  integrodifferential equations but describe com-
pletely the motion of the airplane. The problem is to find
functions w, ¢, and & which satisfy these equations and which
satisfy both the boundary conditions and the initial conditions.

The problem of finding the w and ¢ functions may be
simplified considerably by reducing the rather complicated
equations of motion to & simplified and systematic algebraic
form. The first step (see appendix C) is to replace the dif-
ferential equations (36) and (37) for wing deflection and wing
rotation by the following simple matrix equations:

[4] |w]=]p|
[Blle|=lgl

(40)
(41)
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The matrices in these equations are defined in appendix C
(see equations (C22) and (C23) and equations (C29) and
(C30), respectively) and have been derived on the basis that
the displacements along the semispan are given at six stations.

Equations (40) and (41) and the fuselage deflection coeffi-
cient § are now combined in a single matrix equation of the
form indicated as follows:

0 0 o7& to!
0 [d o0 |[lw]=]|lp 42)
0 0 [Blldllell Il

This form is chosen hecause it will be useful subsequently.
With the notation given in appendix A, equation (42) may be
abbreviated to the form:

i 5!
(e =IP] 43)

ol

This equation may be regarded as the loading matrix equa-
tion of equilibrium; it relates the loadings to the displace-
ments by lineer simultaneous equations. The boundary con-
ditions are automatically satisfied when this equation is used
because they had to be taken into account when the sub-
matrices [] and [B] were derived. Only the initial conditions
remain to be satisfied and these are treated separately in a
subsequent section.

Transformation of the loading equations into difference
form.—The loading equations are now simplified by replacing
the time derivatives by difference equations. If equation
(3) is used io replace the derivative in equations (29) and
(30), the values of the loading at the nth time interval are
found to be

2),,:—-—}:'2l (‘2-w,.—5w,_1+4w5_s—wx-s)+in§ (2§5n_5§°n—1+
4€9u—2—9’u—3)+Lz (44)
me mE.

qn =? (2wu_5wn—l+4u’n—2—wn—3)— P (2¢n_5‘ﬂn—l+
4‘Fn—2_¢ﬂ—3)+-1-{n (45)

The values L, and 11, are found by determining the expres-
sions for L, L;, and L, at f=ne (see equations (27) and (28)).
Of these L, is the most complicated, since it (see equation
(25)) involves three unsteady lift integrals of the Duhamel
type. Fortunately, however, a rather simple recurrence
relation ean be developed which allows the caleulation of the
value of these integrals at 2 given time interval directly from
the value at the previous time interval— This derivation is
presented in appendix D and is made possible because the
& function is of an exponential form. (Where the & function
is given by more than one exponential term, a recurrence
213637—58——11

relation for each term may be written.) From the derivation
in appendix D, therefore, the value of the three integrals at
the nth time interval may be given as follows:

I I . 3 a
F, +% 5@.——% I:l- dote (I—E) 50] @n (46)
where
F;=e_7!Fn—1+gwl—l+g’¢l—l

in which g and g’ are defined by equations (A5) in appendix
A. With this expression to replace the value of the integrals
in equation (25), the value of L;, may be written

Ly, =Bel { $ot5 & ) wa—(1—20) Belibu +
ﬁ(.‘l [LT(I —@0)—'6—;:— éo—(‘i%-l-%“ﬁo)c %_%)] Px +
3 . -
(1 _¢0) ﬁczl Z—%) @n +FB (4‘)

With the use of difference equation (4), this equation may
be transformed finally into the form:

L1,=down +d1’w»-1+dzwu—z+dawn—:+dol¢n+
d1’¢n—1+da'¢n-a+ds’<ﬂn—s+ F. (48)

where the d’s are defined in appendix A. Likewise, from
equations (4), (17), and (26), L, may be written

Lo =5 (1100 —180n_1+90s_1—20n_0)
2, 24¢ Pn Onr—1 Cn—12 Pr—

If L,, L, , and the value L, of the gust force at f=ne
are introduced into equation (44), the value of p at the ath
time interval can be shown to be given by the equation:

Da=1qWe T 11Wa-1t 1eWa_2+ 1aWa—3+ 10" 0u +
T on—1t 1 eust 5" on st Fat-Ly, (49)
where the #’s are coefficients which are given by equations

(A3) in appendix A. In a similar manner, the equation for
¢ (equation (45)) can be reduced to the form:

Qe =woWn T+ 1Wa_1 T 7aWe_2+vsWas v on v os— 1+

wonstwonst(a—5) Ft(e—5) L, 6O

where the #'s are given by equations (A4) in appendix A.
The value of aerodynamiec lift acting at the tail %—chord L,

is found most conveniently by applying equation (49) to
one-half of the tail surface. This epplication is made by
modifying the % coefficients as follows: The mass value m

is set equal to zero, % is taken as —i—; ¢ is replaced by ¢, and
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Bel is replaced by B, defined as the forward-speed and
aspect-ratio parameter of the tail by the equation:

Bi=g mapUS, SNV

In addition, w and ¢ are replaced by the deflection and
rotation of the tail given by equations (13) and (14). With
these substitutions the value of L, is found to be

Ly, = fq(0)n+F110(0)n 1+ f20(0)n s+ f120(0)u—s+ Fo'0(0)n +
FY' (014 12 0(0)n—2+ s’ 0(O)n—s+ Fobu+ F1da -1+
Fobu-o2tFebastFo, + L, (52)

where
F, =e«F, _ +iw0)a1+5eOn-1+70-1  (53)

L, " is one-half the tail gust force at t=ne and the f's and j’s
are defined by equations (A7) snd (All), respectively, in
appendix A,

With equation (52) and difference equation (5), equations
(33) and (34) for L, and M, and equation (39) for fuselage
bending may be reduced readily to the following form:

Lf,,=‘Yo’w (O} F+711w(0)n— 14 ¥2% (O}n— 2+ s (O)u—zF¥d € (0)u -+
Y1 o(0)n— 172 0(0)n— 273 ©(0)n— gV +710n—1+
725n—2+’-Y-35n—s+Ft,,+Lg,n (54)

an=l-'~o’w (0)2 + 11w(0) s — 1t 2w (0) — g+ p15® (0)n— 5+ 0" 0(0)n +

£1'<P(0)n— 1+ #2'¢(0)n-a+ﬂs'¢(0)n—a +-l-706n +E16n— 1+
#253—2+T’:85n—s‘—xtFtﬂ""thz,u (55)

0 =T0w(0)n + rlw(O)n— 1 +7'3w(0)n—2 +7'sw(0)n —3+7'0’€9(0)n +
7 0@ n—1+7" o(0)n— a7’ 2(0)n —s+T708p + 71821+
anu—z‘l"Fsan—a‘!‘Fz,,‘l‘Lz,n (56)

where the v's, p’s, and #’s are given by equations (A8) to (A10)
in appendix A.

The complete set of loading equations as well as the
fuselage bending equations are now available in difference
form. Equations (49) and (50) apply at each spanwise
station and in addition the values of L, and M, must be
introduced at station 0. The coefficients 7, », v, and so
forth are seen to involve only the physical properties of the
airplane structure, the forward-speed and aspect-ratio
parameters given by equations (26) and (51), certain con-
stants derived from the unsteady lift function, and the time
interval. The time interval e that is chosen should be
fairly small in comparison with the natural period of the
fundamental mode in bending of the wing. To serve as a
guide an interval chosen near 1/30 of the estimated period
of vibration of the fundamental mode appears to be quite
satisfactory. Of course, some caution should be observed

in the choice of this interval if the airplane is near a eritical
condition where some mode other than the fundamental
may predominate. For example, if the airplane is flying
near the flutter speed, the characteristic frequency of the
response may be near the natural torsional frequency of the
wing. The time interval should be modified accordingly.

Recurrence matrix equation for response.—Equations (49},
(50), (54), and (55) for loading, equation (56) for fuselage
bending, and the equilibrium equation (43} may now be
combined to give the recurrence matrix equation for re-
sponse. In order to simplify the process of combining these
equations, only the abbreviated or symbolic form of the
matrices which occur are used. The definitions of these
matrices are given, unless otherwise stated, in a complele
group in appendix A.

Application of equations (49) and (50) to each of the span-
wise stations and of equations (54) and (55) to station 0 leads
to a set of loading equations which may be put in the matrix
form given by the following equations:

| 2|0 =170l 8n 171181 72| 8 -2t 7a| 8n—a - [nol ]~ +
[ndd[w]s— 14 [nel|wla—st[ns] [ w]a—s+n01] el 4
(1Yot [0 olns lnd lpla-ao| IFI+ | +
[1(Fi+Ly,), (57)
|gla=/{%0|8n & [E1] 8- 2+ a| 8n -2+ | 3| 8 —s - [} J 0] +
[il]eo)a -1+ Dal|w]a—s+ 25l [0]a -+ 0] ] n -

e o e P L
|| +lod (Fert L), (58)

where
|F|a=e~7F a1t [g][wla-11[g]¢)n-1 (59)
(Fn=e"7(F a1 iw(0)n_1+35'0 (O)u-1+.:lr5u—1 (60)

Equations (57) and (58) and equation (56) may now be
combined to form the following matrix equation:

[rol [rd]T | 8 BT LYEER:
[wl|| + 7l [l 0] [lwl]  +
[Ed (o] [9]d Helle-z

Ts lral Irg]7 |8
+| %l [nd [9d7] Jwi| -+

0 - 7o
|2l =[ % [nd [nd]
lglla  Llzel [#d [21d [l ]le
ERRCIIRE

[7e| [na] [n27] [fwl

_|-Izz| [va] [wd] [‘P|s—2 “Ial (v [vs].] “P|s-s
1 0 F,+ L,
1] ] |F) | Lel

i (61)

i [o-4]



A RECURRENCE MATRIX SOLUTION FOR THE DYNAMIC RESPONSE OF ATRCRAFT IN GUSTS

For simplicity, this equation may be abbreviated to the
form:

é 8 é [
|Pla=[Sd|w| +[Sd|w| +[Sdfw| +[SHw| +
@ ix Fla-1 ¢ in-2 Pln-3
[RJII'F[+II.I . (62)
where
8
[Fla=[e]|Fla—s+[W]|w (63)

@ln-1

and the matrix |fg|,l is defined in the section entitled *“Der-

ivation of Gust Forces.”
Substitution of equation (62) in equation (43) gives

a é a & é
(Cllw| =Bdlw| +1Sdjw| +6Sdlwl +Sdlw| +
©ln (11 @in—1 [ AT ] @ln-2
rRIFI+T, 9
VWith the use of the notations
D1 101184 | (65)
and -
| & & é
|Q@=|Sdw| +ISd|w| +ISdjw| +[RIF+IL
@ln—l Plin-2 Pln-3 n
(66)
equation (64) may be written simply
d
(D] wi =1Ql 67)
@la

Multiplying through by the reciprocal of [D] gives finally
the equation
§

w| =[D]7{¢x

Pin

(68)

This equation gives the displacements that apply at time n
in termos of the displacements that occurred at several pre-
ceding values of time (see equations (63) and (66) for the
definitions of [F|, and |@].).
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From equation (68) the complete response of the airplane
can be computed once the character of the gust is known.
The matrix of gust-force values |LJ, can be determined by
the procedure given in the section entitled “Derivation of
Gust Forces.” The initial conditions (treated in the follow-
ing section) are used to obtain three successive initial sets of
the displacements. WWith these sets of displacements the
next set may be obtained by application of equation (68).
With the newly found set and the preceding sets of displace-
ments, the next set may then be found, and so forth, until a
sufficient time history of the displacements is found from
which maximum loading conditions may be determined.

The reason for using the difference form of the derivatives
as given by equations (4) and (5) might now be given.
Equation (64) may be considered a differential equation,

since the matrix [('] contains the spanwise derivative matrices

4] and [B] and may be likened to the differential equation
which relates the load to the deflection for a2 beam. The
unknowns are the deflections at time n. The right-hand
terms correspond to the loading, the first term being the only
one which is not known since it contains the unknown de-
flection. The subsequent inversion of the matrix [D] leads
to, in effect, the solution to this differential equation and, in
the beam analogy, corresponds to the integration of the
loading to obtain the deflection. When numerical methods
are used, the deflection may be computed with good gccuracy
by integration of the loading. On the other hand, if the
difference equations which apply at an interior ordinate
had been used, the matrix [C] would have appeared as an
operator on one of the known deflections on the right-hand
side of the equation. Effectively, its operation would be to
differentiate a known deflection, and in the beam analogy
this operation corresponds to the attempt to obtain the load
which caused & given deflection. This process, however,
cannot be done with accuracy when numerical methods are
used because of the difficulty encountered in the form of
small differences of large numbers. The difference equations
which apply at an outer ordinate and, consequently, lead
to an integration process, therefore, have to be used.

DERIVATION OF THE INITIAL RESPONSE

As has been mentioned, some initial values of deflection
are needed before equation (68) can be used. This section
shows how these values are obtained. The airplane, just
before gust penetration, is considered to be in level flight,
and all displacements which follow are given relative to this
level-flight condition. The initial econditions are that the
vertical displacements, vertical velocity, wing rotation, and
angular velocity are all zero. The gust force ean be shown to
start from zero and, therefore, by Newton’s second law the
additional initial condition can be established that the
acceleration must be zero at the start of the response. These
conditions can be satisfied, and the beginning of the response
can be found by means of the analysis which follows.
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The initial response is assumed to be given in terms of
four successive ordinates, denoted by w_;, w_;, w,, 2nd w, ; the
w, ordinate is considered, as in the case of the damped oscil-
lator, to locate the origin of time. The first and second
derivatives at the w, ordinate are given by equations (8)
and (9), respectively. By virtue of the initial conditions
(the vanishing of the deflection, velocity, and accelerations
at t=0), the ordinste w, and the derivatives given by equa-
tions (8) and (9) must be zero; therefore, the ordinates w_,
and w—, are found to berelated to the ordinate w, by thefollow-
ing relations:

w_og=—=8w, (69)

wW_1=—w1 (70)

These relations are general and must apply for deflection
and rotation at each of the spanwise stations and for the
fuselage deflection as well; that is, the displacements at
= —2¢ must be minus eight times the displacements at t=e,
and the displacements at {= -« must be the negative of those
at f=e. Substituting these conditions in equation (64),
taking n as equal to 1, and using the condition that the dis-
placements are zero at ¢{=0 give the following matrix
equation in terms of the displacement at {=e alone:

&
[ID1+1S:+8(Sd] | w| =IRBI|Z:

[ B4

(71)

The term |Fi; is zero and therefore does not appear in this
equation. Solution of thisequation gives the valuesof the dis-
placements that eccur at t=e (n=1).

The three sets of initial displacements required to proceed
with equation (88) are thus known: the set of deflections
found at ¢=¢, the zero set a2t =0, and the set at {=—e¢ given
by equation (70), or simply the negative of the displacements
which were found at =e. In the actual case no displace-
ments are present at {=—e¢, but these displacements may be
regarded as being of a fctitious nature the only purpose of
which is to allow the step-by-step evaluation of the dis-
placements to be started easily.

DERIVATION OF GUST FORCES

The matrix lf,ln which appears in the response equation
(68) is derived as follows. From equation (15) and the
notation of equation (26), the total gust force acting over a
station section at the nth time interval may be given by the
equation

L, =8¢l f ¥ Yne—r)dr (72)
1] T
The integral in this expression is also of the Duhamel type
and since the ¥ function is expressed by exponential terms
(see equations (21) ), the integral may be evaluated quickly
by a method similar to that developed in appendix D. The
procedure of computing the gust force by this equation
and then the response is not recommended, however, since
8 complete response evalustion would have to be made for
each gust considered. Instead the procedure recommended
is to compute the response due to a sharp-edge gust; then

with this response the response to any gust may be found
directly by superposition.

Thus for the case of a sharp-edge gust, equation (72)
reduces simply to

Ly =Bclvy, (73)

where ¢, is the value of the ¢ function at ¢=ne. This
equation when applied to each of the spanwise stations leads
directly to the matrix equation for gust force:

eoloto
Clll'b’j
ILg!rI:ﬁ ‘32[5'”2 Y
Csla?)s
edavs
csls0s

(74)

If the gust is uniform in the spanwise direction, the »'s in
this equation will all be equal.

In a similar manner, onc-half the gust force acting on the
tail due to a sharp-edge gust may be shown to be

L:,n=ﬁtﬂo!bt,, (75)
where the gust gradient is assumed to be the same as for
station 0 and ¢, is the value of the ¢ function for the tail.
This equation and equation (74) may now be combined to
give the desired matrix |Z,l. as follows:

800 0 [[%
0 5colouo ¢ A
I 0 Belor
1Ll = IL‘I =| 0 Bedwvs (76)
' o 0 Beslaws *
0 Bedv,
0 Beslsvs

In the application of this equation it should be kept in mind
that L, does not begin to act until the tail starts to penetrate
the gust. The time interval at which penetration starts

may be taken as the interval nearest to the quantity -e-%

COMPUTATION OF LOADS AND STRESSES

Once the time history of the displacements has been found
from equation (68), the normal or torque loading on the
wing cen be found with little additional work. If the nota-
tion of equation (66) is used, equation (62) may be wrilten

é
lPin=[SO] w +[Qlu

@ln

(77)

This equation shows that the loading matrix [P may be found
by adding an easily computed matrix to the matrix |@}, the
value of which will have already been determined in the
response calculation. The loading matrix |P| is remembered
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to be defined in terms of the normal and torque loadings, and
either of these loadings mey be found independently of the
other.

The loadings thus found are considered to be applied
statically, and the stresses are then found by ordinary static
means. Since the loadings can be computed for any value
of time, the complete stress history of any point in the
structure may be computed. Ingeneral, the maximum stress
at different points in the structure is expected to occur at
different times. Some guide as to the probable time of
occurrence of the most severe stress may be had, however,
if the computed wing deflection is observed. It is likely
that maximum stress occurs in the range where wing bending
appears to be most pronounced.

The acceleration of any point in the structure may be
found, if desired, with the aid of equation (5).

COMPUTATIONAL PROCEDURE

The principal results of the apalysis presented in the
previous sections are summarized herein in a step-by-step
form. Only those steps are listed which actually have to be
performed when a determination of structural response for
any airplane is being made. In order to conform with
standard aireraft practice the use of inch-pound-second
units throughout is recommended.

The steps are as follows:

Preliminary steps:

(1) The wing semispan is divided into six sections and a
station is located at the middle of each section (see fig. 3).
The sections are proportioned in any convenient manner so
thet certain stations will fall at concentrated mass locations,
such as engines or fuel tanks. Station 0 is located near
where the fuselage intersects the wmg and station 5 is located
near the tip. The properties ET, GJ, m, me, and mk? are then
computed at each station.

(2} From the EI, GJ, and X\ values determine the [A] and
[B] matrices by the method given in appendix C.

(3) Compute the gust-force values at the successive time
intervals for both the wing and the tail. (See section
entitied “Derivation of Gust Forces.””) The ¢ functions
used are taken from equations (21) or (22) for the aspect
ratios which are nearest to those of the wing and tail, respec-
tively. A time interval that appears satisfactory is one in
the neighborhood of 1/30 of the estimated natural period
of the fundamental bending mode of the wing.

The recurrence equation:

(4) With the quantities determined in steps (1) and (2),
determine the matrix elements given by equations (A3) to
(A5) at each of the spanwise stations.

(5) Compute the fuselage and tail coefficients given by
equations (A8) to (All). (See definitions of 1, 1f;, Af;,
M, A, and 1f; given by equations (35).)

(6) TWith the use of the coefficients determined in steps (4)
and (5), set up the following matrices: [D], [Sd, [S], [S5],
[R], [e], and [W]. These matrices are defined in appendix A
and for the most part are found from simple diegonal
matrices of the coefficients determined in steps (4) and (5).
The form, for example, of the [S] matrices is fllustrated in
table 1 with randomly chosen numbers. All elements which

TABLE 1L.—ILLUSTRATION OF THE [S] MATRICES

F 2 3 4 1
]
1) 10 i1 6
1 1
I 9 ! 5
! 8 { 1
I I
1 4 I 3
I 2 I 3
1 1
1 1t 1
L e
3 4 : 5 :
1 I
3 I 4 I
1 1
3 N 3 n
9 1 1
2 1 3 !
2 1 ) i
I I
11 11
R |

are not shown are zero. It may be of interest to explain
briefly the significance of the various terms that appear in
the matrix. In order to facilitate the explanation the
mafrix has been partitioned into several submatrices. The
terms in the upper left-hand hox are associated with wing
bending and the airplane vertical moticn; whereas the terms
in the lower right-hand box are associated with wing torsion
and airplane pitching. The terms along the two subdiagonsals
serve to couple together the bending and twisting action.
The terms in the first row and first column are assocw.t,ed _
with fuselage bending. The omission of certain terms in the
matrix will lead to the matrix which applies to the more
simple type of aircraft motion. For example, for the case in
which only wing bending and vertical motion are to be
considered, computation of only the terms which make up
the upper left-hand box is sufficient.
(7) Determine the reciprocal of the [D] matrix and set up

the following matrix equation: '

8
w| =[D]7"|Qia (78)
where o
8 ] &
Ql=|[S1}w| +[Sd|w| +ISdjw, +[RI|FI+|L
l @ la-1 @ lx-2 @ln-2 »
in which
5
[Fl.=[el| Fla-s4-[ W]
@ln-1

In these equations the matrices containing &, w, and ¢ are
displacement matrices and are defined in a.ppend.lx A. The
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matrix [7| takes into account the forces which develop due
to the “wake effect,” and [I,| is the gust-force matrix which
is derived in step (3). Equation (78) is seen to give the dis-
placements that occur at time 7 in terms of the displacements
which occurred at the times n—1, n—2; and n—3.

The initial response:

(8) By use of the matrices given in step (6) and the gust

forces which apply at n=1, set up the following matrix
equation;
d

(D] +[84+8[SH] {w] =IRI| L, (79)
@)1

The term |F|, does not appear in this equation because it is
zero.

(9) Solve equation (79) for the displacements. Any con-
venient method, such as the Crout method (see reference 6),
may be used. The displacements found will be the value
of displacements that apply at t=e or n=1.

The response:

(10) The response may now be found by successive appli-
cation of equation (78). The response at n=1 has been
found in step (9); the response at n=2 is next to be deter-
mined. The values of the displacements in the n—2 term
of the response equation are all taken to be zero (initial
condition), and the values in the n—3 term are taken as the
negative of those found in step (9). The gust forces to use
are those which apply at n=2. The deflections that apply
at n=2 are then found by matrix algebra. For convenience
the column matrix |Q| is evaluated first, and then multiplica-
iion of this column matrix by the reciprocal of the [D] matrix
gives the deflections at n=2. With the newly found deflec-
tions at n=2 and the deflections at n=1 and n=0, the
deflections at =3 can be found, and so forth. This process
is continued until the wing bending appears to be the most
pronounced.

Wing loading:

(11) With the deflections known, the value of wing loading
in bending or in torsion can be computed directly from
equation (77). The stresses at any point can then be com-
puted from the wing loading by ordinary static means.
Since the loading may be computed at any value of time,
the complete stress history of any point on the structure
mey be computed.

EXAMPLE

As an Hlustration of the method of analysis given in the
present report, the response of a typical two-engine airplane
due to a sharp-edge gust is determined. For brevity the
fuselage is assumed rigid and only vertical displacement
and wing bending are considered. The weight variation
over the wing semispan and the equivalent-weight concen-
trations are shown in figure 8. In this figure are shown also
the station locations and the interval covered by each station
section. The solution is made for a forward velocity of
flight of about. 210 miles per hour and a gust velocity of 10
feet per second. In tables 2, 3, and 4 are listed, respectively,
the various physical characteristics and the factors which

9
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Fraure 8,—Welght distribution and equivalent concentrations for example two-engine
aireraft.

TABLE 2.—PHYSICAL CHARACTERISTICS AND UNSTEADY
LIFT FACTORS FOR EXAMPLE AIRPLANE

TABLE 38—y ORDINATES AND GUST-FORCE MATRIX TOR
EXAMPLE AIRPLANE

14 ¥
n (E(}uﬂtlon " (E?zt;atlon
22)) )}

0 10 | 0.72820
i 22105 11 . 74505
2 36744 12 762156
3 40716 13 7707
4 53741 14 70080
5 58388 15 . 8037
[} . 62830 16 .B1574
7 . 66680 17 8289
8 . 83504 18 83748
9 . 70840

17. 8404

15, 7582

12 1811

| Lgi=120 ¥a
10. 52056
8.77465
7.01004

come from the unsteady lift function, the valucs of the y
function and the gust-force matrix, and the matrix elements
that are required for the solution (steps (1) to (6)). The @
function for an aspect ratio of 6 was chosen (see equation
(20b)); and the ¥ function for an aspect ratio of infinity
(equation (22)) was used.
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The [A} matrix as computed from the values of A and T
listed in table 4 is shown in table 5 (a). In the computation
of the 5 values shown in table 4 for station 0, the fuselage
was treated as a concentrated wing mass. This treatment
is allowable since the fuselage is assumed rigid and further
saves the work of computing the v values (see equations
(A8)). The [[A]—[Sd] or [D] matrix, which in this case
applies only to bending and vertical displacement, is shown
in table 5 (b). The equation which is formed from equation
(78) (step (7)) and which involves the reciprocal of [D)]
and the [S{] and [R] matrices is shown in table 6. The
equation for computing the initial response (step (8)) is
shown in table 7.
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The solution to these equations is shown in figure 9 in
which deflection in inches is plotted against spanwise station
points for various intervals of time. For clarity the deflec-
tions for the odd intervals have been left off. From these
curves the consequent wing bending and the msanner in
which the airplane is swept upward by the gust can be seen.
The time histories of the loads (equation (77)) that occur
at each of the spanwise stations ere shown in figure 10.
These curves indicate the presence of some second-mode
excitation in the response. The stresses that oceur at stations
0, 1, and 2 are shown in figure 11. The presence of second-
mode excitation is not readily discernible from the stress
curves.

TABLE 4—MATRIX ELEMENTS FOR EXAMPLE AIRPLANE

H L] =
i Statfon | X | I ! c 1 l % w1 L | 73 £
§

! 0 | oo 2100 154 100 —56. 016712104 13984200 X10¢ —11. 77100 X104 ’ 27.93800 X10¢ 179752
| 1 .18 1570 136 10L —3L 504082 78. 802027 —62. 051014 | 1573350 152657

2 17 1100 ug 90 —7. 570015 18.783512 —14. 956756 8.735046 12.2731
| 3 .18 520 102 %0 —2. 100675 5.151851 —4.060925 | 1.012428 10.6091
| 4 a6 L 25 85 %0 —L 150062 2773208 —2.168104 ' . 530600 8.84083
; 5 6 | 675 | 68 20 —. 698450 L 654568 —1.201283 | .320082 7. 07268
1

TABLE 5—THE [A] AND [D] MATRICES FOR EXAMPLE AIRPLANE
(a) The [A] matrix

82.102.75 —133,410.07 61, 040.726 —12, 560. 08 2, 004. 4210 —237.6081 |
—133, 410. 07 258, 200. 66 —172, 806. 94 86, 197. 447 —4, 839. 8380 1, 059. 7383
61,950.73 —172,806. 04 104,219.405  —108,709. 511 28, 579,472 —3, 242 2385
—12, 509. 080 56,107.447  —108, 708,511 102,663.971  —47,410.326 8, 567. 4968
2, 094. 4210 —9, 338.8380 28, 539. 412 —47, 410.328 38, 607, 4681 —10, 53L 1687

L —o37.6m1 1,050.7383 —8, 242, 2365 ,867.4088  —10, 5L 107 4,353, 50451_

(b) The [D] matrix

[~ 542, 380,82 —183, 410.07 6L, 959. 728 —12, 520. 080 2,004 4210 —237.6081 |
—133, 410. 07 574230980  —I172,806.04 56, 197. 447 ——, 330. 8380 1,050. 7388
6.950.726  —I72,806.94 268,010.640  —I08, 700, 511 28, 570. 452 —3, 242. 2365
—12, 599, 080 56,107,447 —I108,709. 511 125,050.721  —47,420.8%6 8, 567, 4088
2,094 4210 —9,330. 8330 28, 579. 472 —47, 410,828 48,108.0880  —10, RAL 1T

| —237.6081 1,050, 7353 —3,242 2365 8,567.4988  —I0,53L.107 11,368. 3945

TABLE 6.—RECURRENCE EQUATION FOR RESPONSE OF EXAMPLE AIRPLANE

") 0. 016448152 0.003274436  —0.002535013 —0.002352327  —0.000B201844 0-0003284241” | | |
(L) 0. 003274435 0.022344322  0.01467594 0.002077166  —0.002039533  —0.002117350 ||
w(2) 1 | —0.002535013 0. 01467304 0.060348456  0.06240802 0. 02103752 —0.009089%48 |} QI
liwts)| 10,0000 —g. 002852327 0.002077166  0-062468620 (. 100407 0. 15523588 001762344 i )
@) —0.00320184¢  —0.002030533  0.02108702 0. 15523558 0. 40588417 0. 26526111 |
L (5) [ 0.0003284241 —0.002117350 —0.000080948  0.0IT6234% 0. 26526111 1. 10968865 i
where
i 1T 139. 84200 he (0 —111. 77100 s(0); 27, 938000 Iw(n)}
i 78. 802027 |u:(1) —62. 951014 |m(l) 15733550 w1y
- 18.783512 w(2) —14.956756 (@) 3.735046 w(2) 1 PIiTell ]
Q| =10.000 5.151831 |w(3) —4. 060925 !u-(z) 1.012428 w(3} *+15,000 IWFIH Els:
2.773208 | (4} —2.168104 w4) 0. 539690 wis)
P L w(5}in—1 —L201 |0(5)| n—2 0. 2. (5} {n—3
in which
17,9752 Lar(0)
15. 2607 |0
. 12,2731 (2
=(.832703| F|.
1 £ =0.832003| Flp 2% 10.6091 w(3)
8.34085 w(4)
7. 072681 [ (5)im—~1
TABLE 7.—EQUATION FOR INITIAL RESPONSE OF EXAMPLE AIRPLANE
1759720 —18.84101 6. 105073 ~—1. 2566908 0.2094421  —0. 02876061 | [w(0) 17. 8404
—13.34101 120. 3415 —17. 28060 5619745  —0.9339835 0.1089738 | [w() 15. 7552
6105073  —17.28060 41.622778 —10.87085 285047 —0.82237 | |w(®| o omos) |12 181
10,000 > 120(0. 22105)
—1.258908 5.010745  —10.87065 16.54857  —4 741083 0.8567490 | [w0(3) 10. 5205
0.2094421  —0.6339838 2.857047 —4. 741033 6060225  —1.083120 w4 8.77455
—0.02376081 01050738  —0.3242287 0.8567499 —L.053120 2413172 {w@B: 7. 01964
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FioURE 9.—Response of example airplane due to 10-foot-per-second sharp-edge gust.
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F1GuRr 11.—Bending stress developed in example airplane due to 10-foot-per-second

sharp-edge gust.

DISCUSSION

A method for computing the stresses and structural action
of an airplene flying through a gust has been given. The
method is based on aeredynamic strip theory, but over-all
corrections for compressibility and three-dimensional effects
can be made as is indicated by a suggested correction pro-
cedure. Some tail forces are included in the analysis and
others might equally well be included if their character is
known.

The analysis as given is general enough to include the wing
bending and twisting flexibilities and the fuselage flexibility,
In a good many cases that may be considered, however, tle
last two of the flexibilities may prove to be of negligible im-
portance. Some investigators have indicated (see reference
1) that, unless the forward speed of the airplane approaches
the flutter or divergence speed of the wing, the torsional defor-
mations do not have to be included. Likewise, in cases in
which the fuselage is rather stiff, the effect of fusclage fexi-
bility on the response may be rather small. In such cascs
in which either or both of these flexibilities may be ignored,
the analysis is, of course, simplified and shortencd. The
example presented in the previous seetion illustrates this
point. In the present state of understanding of gust-
response analysis, enough information is not available to
indicate definitely when and when not to include the various
flexibilities of the aireraft structure. The analysis in the
present report may provide a useful means to assess their
importance. The extent, for example, to which coupling
exists between wing bending and wing torsion in any par-
ticular case may be seen by comparing the displacements
obtained from the coupling terms with the displacements
obtained from the noncoupling terms.

Both the symmetrical and antisymmetrical types of gusis
can be bandled by the analysis given in the present report.
In general, the symmetricel gust is expected to produce the
most severe stress condition, and therefore only the matrices
which apply for a symmetrical case have been given. These
matrices were derived by using the boundary conditions for
the symmetrical deformation of & free-free beam. The case
of an antisymmetrical gust can be treated by replacing these
matrices by the ones which apply for the antisymmetrical
deformation of a free-free beam. The case of a general un-
symmetrical gust can be handled by first breaking the gust
into two parts—a symmetrical part and an antisymmetrical
part—and then treating each part independently.

It might be of interest at this point to compare briefly the
matrix method to a modal-function solution. One of the
chief disadvantages of the modal-function solution is that the
modes and frequencies of natural vibration of the structure
have to be computed in advance. Then, a large number of
integrals which involve these modes have to be determined in
order to set up the problem. In the present analysis the
physical properties of the airplane are used directly in the
setting-up of the problem. Further, in order to make the
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modal solution practical the higher modes must be dropped
and only the basic or fundamental modes can be used.
Hence, the success of the analysis depends to a large degree
on how well single modal functions, one mode each for behd-
ing and torsion, can represent the airplane distortion. In
the analysis of the present report the distortions are found for
all practical purposes as the correct values at a number of
spanwise stations, at least to within the aceuracy to which the
aerodynamic and structural parameters are known. Also, in
this analysis, probably the most difficult operation is the
inversion of the matrix [D], which is actually not a very
involved operation, especially when done by the quick and
systematic procedure afforded by the Crout method (refer-
ence 6).

The present report indicates the methods for determining
the response for both a sharp-edge gust and a gust of arbitrary
shape. Probably the best approach, however, is to compute
only the response for a sharp-edge gust, since the response for
any arbitrary gust may thereafter be computed by means of
Duhamel’s integral. To follow such a procedure would also
save a great amount of work in the evaluation of the gust
forces.

One of the important features of the method of analysis
presented is that it is not restricted to the gust problem.
The approach used may be used to treat other problems of a
similar nature. The landing problem can be handled by
simply replacing the distributed gust force by the con-
centrated landing forces. In the landing problem salso, the
problem is set up much more easily since the aerodynamic
terms do not ordinarily have to be included. However, the

213637—653——12

landing problem in which aerodynamic forces are included
mey be solved by this method if desired. The epproach used
herein may also be used to solve the problem of the release of
heavy objects such as bombs. This problem could be consid-
ered the inverse of the gust problem; a load is released rather
than encountered. Some maneuvering problems, such as the
sudden deflection of the ailerons, and a number of other
transient problems might also be treated by an approach
similar to that given in the present report.

CONCLUDING REMARKS

A method for computing the stresses and structural response
of an aireraft fiying through a gust has been presented. The
method is based on aerodynemie strip theory, but compres-
sibility and three-dimensional effects can be taken into
account approximately by means of over-all corrections. The
method tak?®s into account wing bending and twisting
deformations, fuselage deflection, vertical and pitching
motion of the airplane, and some tail forces. A sharp-edge
gust or a gust of arbitrary shape in the spanwise or flight
directions may be treated. A suggested computational pro-
cedure is given to aid in the application of the method to any
specific case. .

The possibilities of applying the method to a variety of
transient aircraft problems, such as landing, are brought out.

LiangreEY AERONAUTICAL LLABORATORY,
NatroNan ApvisorY COMMITTEE FOR AERONATTICS,
LiaxereY Fiewp, Va., January 18, 1950.



For convenience in presentation, most of the matrices and
matrix elements that are used in the analysis are defined in
this appendix. The matrices are presented without deriva-
tions, but their origin should become evident by a study of

the analysis.

Matrices.—The various matrices that are used in the
analysis are defined as follows for the case in which the wing
semispan is divided into six sections (the elements which
are used in the matrices being defined in the subsequent

section) :
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|wj=
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jp| =

lg) =

w(0)
w(l)
w(2)
w(8)
w(4)
w(5)

e(1)
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¢(4)
e(5)

»(6)

APPENDIX A

DEFINITIONS OF MATRICES USED IN ANALYSIS

0
\Pl= Il
gl

A
:B;} See appendix C for definitions.
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0 01[B]
[D1=[1C1—184 |
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Matrix elements.—The matrix elements which appear in
the matrices defined in the previous section are expressed
for convenience in terms of the following common factors:

B=mumpU dy=a,
2U \ Sy= — e, (A1)
EI;o:’Yga-l

in which the last four are associated with the & function for
the wing. (See equation (23).) With these factors the ele-
ments that must be computed at each spanwise station are
as follows:

dy=—1= (1—8q) fol+8el (ci>0+% Exioe)

d1=: (1—&) Bel
3
dy=—7_ (1—2;) fel

da=l (1—%,) Bel

11

do'=6 (1—&y) o'l —-—)+aez[U<1 80—  (A2)
i~ @oUE (‘Po"‘ 2 q’o e) - —")]
ay=—2 -9 g1 (3-2)
dy =2 (1—) gt (3-2)
&y =—7- (1~ sl (3-2)
P
770=—'2é—1?+d0 ﬂo’—g¥+do +24 el W
ﬂ1=%?+d1 L ='—5—mﬁ+d1 e 5025
L (A3)
ﬂs——m'l'dz '=4ﬂ;e+dz + ﬁc’l
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ﬂs—e,-l-ds 7 =—"3 +d; P Be?l ]

2me c h
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W= 2mk2+d°< Z 24eﬁ ( )

" 5mk (a—— + {3’l ___)
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The coefficients which must be computed for the fuselage
and tail are expressed in part in terms of the following
common factors:

L ag)

7.2
l‘a'=ﬁ+ds (a—'“‘ +12e el
g=PBcldee

g'=RBclee™ e [— Udy—3ye (=

1 =
ﬂz=§ Ma,mp US: q"o"'alz
2U .
71—'? LY Dy = 781, (46)
¢
'5:0=‘nga1,

in which the last four are associated with the ® functions
appropriate to the tail. Also used are the generalized
masses given by equations (35) and the value 8, as given in
equation (14). With these factors the coefficients for the
tail and fuselage are as follows:

I . 1. \)
f0=—?e-(1—‘1’m)ﬁz+ﬁt (‘f’lo+§ Lpl"e)

f1=% (1 —‘Iﬁo)ﬁz
- (A72)

== (1=8,)8,

1
f8=3_€ (1 —q)to)ﬁz



A RECURRENCE MATRIX SOLUTION FOR THE DYNAMIC RESPONSE OF ATRCRAFT IN GUSTS

N

Jfd ~Be (1 ‘I’to) Tetg 01)5 +8: [U(l q’:u) 2@,0Ue (@;o'i‘—&:',o )(93:'[" 0:)]+ 9d¢ B:c:
h iy —-— (1—‘1’10) <$z+ Ct)ﬁz B:c:

'3 1 ’
fa =2—e(1—'¢xu) (r;+§ Ct) ﬁ:+-ﬂ B:c:

_f,,'=——31—e (1—a,) (z,+ c,)ﬁ. 752 Bios )

70=——(1 @,0)(1+ €y )Bi— B[U&l(l —&,)— 2§OUeGI (@,04- tI:,U)(l—}- c,G,)] Ty B,c,&;
=2 (1—2) (1+500) Bt Bty

7, =—2ie (1—,) (1 —l—%c,ﬂ; ﬁ,—%; Bicibs

'73=31_e (1 —‘ito) (1 %0:31) ‘3‘+1i2e Bic:6:

70=_23;[ “+fo
71=5§;[ 41

,
72=—422L+f=
7s=%‘+fs
o =Tt Y
71’=—5‘25’+f1'
ettty |
'Ya——-%-l-fa
Fom— 247, ]
7=2547,

.
73——41[3-!-]'2
'n——-l-fa ]

165

(ATDb)

(A7c)

(A8a)

(ASb)

(A8ec)



166

REPORT 1010—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

2M,
#o—T—l’:fo
F1=—%—$tf1
#2=%{"—$Jz
1,
#a—-—ﬂ?'—x:fs
2M,
po'=— "4"“-1'zfo
F1’=
4
pe' = ——2,4*—3?:]‘2
#a'=1‘7{4—l‘:fa'
ﬁo‘-‘zﬂfﬁ“‘xjo
- 5M -
1=
- 4M -
fo=
Fs='_%—$tfa

-

P

7‘0=—gﬂ—fs+fo

n=22 5,

(A%a) g
CLINNA

Pg=—

rs—M’ +,

7‘0’=2Z‘2[5+fo’

' Tl'=—%+f1
(ASDb) >
=22 gy

rs’=—%+.fs

o

Cdfl

(A9c)

Y

.7-=!3::1;L0€€_'”¢

J'=Bree™ ¢ [— Ud, —&, (a:,+% c,)]

TTI:BZ Ve [U‘i’:°91+&;to (1 +% 6291)]

(A10a)

(:& 1 01))

(A10¢)

(All)



APPENDIX B

DERIVATION OF DIFFERENCE EQUATIONS

In this appendix the parabolic and cubic difference
equations for the first and second derivatives of a function
are derived.

Parabolic equations.—Tor the parabolic difference equa-
tion, consider the function shown in figure 12(a). This
function is assumed to be replaced by the arc of a parabola
which passes through the three ordinates a, 5, and ¢. It
can be verified readily that such a curve can be given by
the equation

SN o
The first and second derivatives of this equation at y=e are
given by the equations

dw] _c—a
dy e 26

c_iizgl _e—2b+4a
dg L. pE3

These equations are the standard difference equetions for
the first and second derivatives of a function. The deriva~
tives are purposely taken at the middle of the three ordinates
because the resulting equations are suitable for use in the
simplification of many problems. If the derivative bhad
been taken at an outer ordinate, the approximation afforded
would not be securate enough to be useful.

Cubic equations.—The cubic difference equations may be
derived in a manner similar to that for the parabolic equa-
tions. In this case four successive ordinates are used. (See
fig. 12(b).) The function is replaced by a third-degree
curve which is given by the equation

et () () (-0) B E () (-9)-
HICDICORHCHICD

Because of the increase in sccuracy thet results from the
use of & higher-degree curve, the first and second derivatives
may be taken at an outer ordinate with an accuracy which
is about equivalent to that given by equations (B2) and

(B2)

(B3)

(B4)

(B3). The derivativesat y=3eare
dw] _11d—18¢4+9b—2a N
d—:‘/- r-3¢_ 6e (B5)

dw _ 2d—5e+4b—a
dy: -3e_ et

If taken at the third of the four ordinates, the derivatives are

dw _2d+3¢—6b+ta

dY bymse Be B
dw|  _d—2c+b
Wl ®

Equations (B5) and (B6) are used in the derivation of the
response equation for an airplane in a gust. Equations (B7)
and (B8) are useful in the derivation of the initial response.

w
e
a ] e
l z€ ¥
@)
w
—
/
a ] e d
€ 2e 3¢ ¥
®
(a) Parabolic.
(b} Cubfe.
FIGURE 12—Functional notation used In the derivation of parabolic and cuble difference
equaiions.
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APPENDIX C
DERIVATION OF MATRIX EQUATIONS OF EQUILIBRIUM

In this appendix the matrix equations
[A]jw|=]p|
[Blle|=|g]

for symmetrical bending and twisting of a free-free beam
under normal and torsional loads are derived.

Bending.—In accordance with the assumptions made in
this report the wing semispan is considered to be divided into
six sections with a station point at the center of each section
(see fig. 3). The inertia force of the mass and the aerody-
namiec force that develops over each section is in turn assumed
to be concentrated at the respective station points. The
wing is thus effectively a beam bending under six concen-
trated loads and, as such, will have a linearly varying mo-
ment between each station. The following general equation
for the moment between the 7 and i1 stations may therefore
be written:

€y
(C2)

M=a,+by (C3)

where

—[1+782 Jar— 5L i+

be= s (MG 1)— M)

in which y(7) is the abscissa to the ¢ station.

The wing is further assumed to have a linear 1/ET varia-
tion between stations with the correct value of 1/ET at each
station. This type of variation would lead to an EI curve
which follows very closely the true stiffness curve of the
wing and which of course has the correct values of ET at
each station. A general equation for 1/EI may therefore
also be written; thus,

E—I—c¢+d¢y (C4
where
_ y (3) y (3) 1
Ct—[l_l_b}\{q.,] EI(’L) bki.H_EI(‘b"E‘ 1)

d¢=

o b e ol
s LEIGH1) EIG

With equation (C3) and equation (C4) the well-known
expression relating deflection to moment for a beam may be
written

d*w

dy Ej—(a:+bfy)(c¢+dfy) (Cs)
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The deflection may be found most conveniently from this
equation by use of the engineering beam theorem which
states that the deflection of one point on a beam relative to
the tangent of the deflection curve at another point is equal
to the moment about the displaced point of the AL/ET
diagram between the two points. In this case symmetrical
loading is being considered and therefore the boundary con-
dition at the center line is that the slope must be zero; the
deflection of each station relative to this point therefore may
be readily computed. Fortunately, because of the conven-
ient analytical representation of M/EI, these deflections may
be found by exact integration. The deflection, for example,
at station 4 due to the M/ET variation between stations 4
and 7+ 1 may be given by the expression:

y(i+1)
f @by —vidy

Consideration of all the expressions of this sort leads Lo the
total deflection of each station relative to the wing center
line. From this deflection the more useful deflection relative
to station 0 can be readily determined. The values of the
deflection thus obtained are found to be expressible by the
following matrix equation:

ﬁ(l) Ca n ana 0 0 0] .ﬂ.‘[(O)
w(2) @3 Qe G O 0 || M)
2
E(3) =E?-(O) (31 (za (Aazg g4 0 31(2) (Cﬁ)
E(‘i) AQyy @qz Qa3 Qo Qup Ilf{ (3)
w() [ Gy G2 Gy G Gss || BL(4)

where the matrix elements are defined by the equations:

an=NM+A

@z =No(M1N2) FAEA4+HMAB)

an=No(\1 X+ X)) A EA (A4 20) By

=AM 1+ X2+ A F2) A2 A MR+ 9 By

@s1= M1 A+ AN A2 A M he N2 ) By
(C7a)

an=N2Ct

2=N2Ci-+MA D02 A4,

a=ACi+MAs N} D12 A NN By

@a=M?Ci- N2+ M) D+ 02 A+ Mo+ 20 B

G5=N Cr M0 NN AN Dy N2 As Mg+ -05) B
(C7b)



A RECURRENCE MATRIX SOLUTION FOR THE DYNAMIC RESPONSE

in which

Az =N2C%
3= Ca+ AN D224,
Ca=2>Ca 2+ M) Do 22 A5+ A0 B

53=N?Co+ XA+ Mt D+ 232 As+ XM 20) B

a3 =N2Cs

@u=n2Cs+ AN DN 32,

s =N2CsF AN+ M) DaH0 32 A M5 By

ags=Mx:2C,

ais=AEC AN D22 A }

_1 10 110
T1TG-1) 12 10)

_L 1o 110
T 3I0@E—1 "6 1I(1)

1 I0)
12 TG—1) 112 IG3)

1 I(0) 1 I0)

A

B,

C;

D,

-
1 I(0)

=6 TG=1 "3 I()

P

OF AIRCRAFT IN GUSTS

169

(C7e)

(C8)

The moment Af(5) does not appear in equation (C6) because the boundary condition is used so that the moment at station

5 1is zero.

Bl=gr s B 1]

For convenience equation (C6) may be given in the abbreviated form:

(C9)

From the five loads p(1), p(2), p(3), p(4), and p(5), the moment at each station may be found. The equations
relating the moments to the loads can be shown to be given by the matrix equation:

A£0) RV Ve S VRS P P S W S P VD VRS PE S VD Ve 5 P I E ¢!
(1) 0 As PPE W At Ag+ A MEAF A | 1 p(2)
M®@)|=b|0 0 As At AN | [ 2(3) (C10)
M@3) 0 0 0 A Nt | [ 2(4)
M(4) K 0 0 0 Al [ p(5)
which can be abbreviated simply results in the equation:
A=t o ELO) 1 (1411 = e €13

Substitution of equation (C11} into equation (C9) gives
— b3
10| = —

)
Multiplication through by the reciprocal of E‘?TO) H [HJ}

This equation thus gives the loads in terms of the deflection
of each station relative to station 0. In the case under
consideration, however, the wing is & free body capable of
motion through space and therefore to set up properly the
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equations of motion the deflection must be given relative
to a fixed datum line. This datum line is most conveniently
located as the position of the wing prior to action of the
disturbing loads. Consideration of sketch 3

SxErcH 8.

will show therefore that the following relation must exist:
w=w—w(0) (Ci14)

Substitution of this equation into equation (C13) gives

EIO) 1) (1) oo —wo(0)| =l

To aid in the derivation El;,(a())

(C15)

([H][H,]] ! is now written in

the general form:

by bie b by by
bis b Das bu by
(L H =] bis bss bsn bas bas
bie ba by by b
bis bas bs by

EI(0)
53

(C16)

b 55_|

Thus with this equation, equation (C15) may be trans-
formed to the form:

w(0)
—bm biu bz by bu by w(l) P(l) |
b b bm b by b w(2) p(2)
(C1D)
bos b1z bBas bas Du bas | (w(3)|=|P(3)
bos bu ba by by by w(4) p{4)
bos bis D by D bu_J w(5) p(5)
where .
b01= —(bu‘{'bls'l'bls‘i' bu+b15)
boe= "‘(bu‘l‘ bzz + b23+ 524+ bza)
bos=—(bls+bza+bas+baa+bas) L (018)

bo4= —(bu+ bs&‘l‘ bzrl' b44+ bu)
b05='—(b15+ bzs+ bau'l' bca+ bu)J

Equation (C17) is noted to express all the loads except
p(0) in terms of the six deflections. An additional equation
in which p(0) is expressed also in terms of the deflections
may be established by use of the condition that all the loads
acting on the wing semispan must add up lo equal zero;
that is,

p(0)+ p(1)+p(2)+ p(3) +p(4)+p(5)=0 C19)

This condition automatically satisfies the two boundary
conditions that the shear must be zero at the tip and center
line of the wing. Thus if the five equations represented by
equation (C17) are added, and use is mede of equations
(C18) and (C19), the following equation results:

boow(0) + boyt0(1) 4+ boxw(2) 4 boyw(3) 4 bosw(4) + bosw(5) =p(0)
(C20)
where

boo=_(bol+boa+boa+bo4+bos) (021)

This equation may now be combined with equation (C17)
to give finally

boe bor boe bus bu bes] |w(0)| |2(0)

by bu b b by by w(l) (1)

boe D1z ba b bu bu w(2)| |p(2)
= (C22)

bos bis bas bz bu b w(3) 2(3)

bos bu by bdu by b w(4)! |p(4)

|_bos bis b bas bus basJ w(5) 2(5)

| This equation is thus the desired matrix equation which

relates the normal loads to the deflection. If the square
matrix is denoted by [A), the equation may be abbreviated
conveniently to the form

(4] [w|=|p|

which is the form used in the text. (See equation (40).)

As an aid in computational work, a summary of the steps
involved in the determination of [A] is given to close this
section:

(1) From the I values at the respective stations, compute
the coefficients given by equations (C8). '

(2) With these coefficients determine the matrix elements
given by equations (C7). These elements form the matrix
[H,] which is defined by equations (C6) and (C9).

(3) Multiply the [H,] matrix by the [H;] matrix, which is
defined by equations (C10) and C11). The result should be
a symmetrical matrix; this property serves as a very usecful
computational check.

3
(4) Invert theE—?% [ [EL] [} ] matris. This matrix should

(C23)

also be symmetrical. (The Crout method (reference 6)
ser'ves as & rather quick and useful means for performing the
inversion.)
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(5) Add the columns of the inverted matrix and place the
negative of these sums at the top of their respective columns
such as to form a new row of matrix elements. Then add
these sums and place the negative of the sum as the first
matrix element of the newly formed row. A new column
headed by this value is thus in the making. Fill in the re-
mainder of the column with the respective elements of the
new row; that is, the appropriate values should be inserted to
make the matrix symmetrical. This final matrix is the de-
sired [A] matrix.

Torsion.—For the torsional case the torque loads ¢ are
assumed to be concentrated at the stations just as in the
case for the normal loads p. Consideration then of the fol-
lowing example torque diagram (sketch 4)

will show that the following equations must apply:
d@= —TQ) )
g)=T(1)—T2)
g@)=T)—T(@)

2 (C24)
7@)=T@)—T()
¢(4)=T(4)—T(5)
g(3)=T(5) J

where T'(i) represents the total torque present in the ; interval.
No torque exists between the wing center line and station 0.

To aid in the derivation, the assumiption is made that
1/@J ~varies linearly between stations. A typical T/GJ
diagram between, say, the i—1 and the 7 stations would
appear as in sketch 5:

6
Vi) GJf3)
wri —1} /
&1‘
-1 i
SEETCE §.

From the differential relation i"—’—=£; the fact may be ob-
dy GJ .

served that the change in angle of twist between two stations
is equal to the area of the T/GJ diagram between the two
stations; therefore,

W TG, TG)

If the notation
o= 2@ 1 .
TN 1 1
To—1 TTm (C26)

is employed, equation (C25) may be written
T@)=7jile(i)—e(i—1)]

Application of this equation to each of the spanwise stations
gives the following equations for T

T(1y=j:[e(1)—o(0) )
T(2)=72le(2)—e(1)]
TB)=1Js[e()—e(2)]
T4)=7:le(4)—e(3)]
T(5)=7s[¢(5)—e(4)] J

Substitution now of these equations into equations (C24)
gives the desired equations relating the torque loads to the
angle of twist. The equations thus found can be given in
the matrix form:

C27)

Y_

—_
(@]
)
0

N’

o —h 0 0 0 0 Tle@ |¢@

—ji Gtid —5 0 0 0 e gV

Y —ja (J2td) —7s 0 0 ¢(2) _ g

00— Gotid =3 0 ||e®)] |e®

0 0 0 —7s Gatd) —is | |e@| [¢@®

0 0 0 0 —7s Jslle®| i¢G)
(C29)

which can be abbreviated to

(Bl lel=lgl (C30)

the form used in the test. (See equation (41).) Thus all
that Is involved in the computation of the matrix [B] is the
evaluation of the matrix elements by means of equa-
tion (C26).



APPENDIX D
RECURRENCE EQUATION FOR THE EVALUATION OF DUHAMEL’S INTEGRAL INVOLVING AN EXPONENTIAL KERNEL

The derivation of a rather simple recurrence relation for
the step-by-step evaluation of the three unsteady lift inte-
grals appearing in equation (25) is presented. This deriva-
tion is made possible because the kernels of the integrals are
expressible in exponential form.

From equation (23) the first and second derivatives of the
@ function may be written

22U

A T°-‘=<I->08-7'

é= —'ZG—'U Xale_

(4

®1)

U

. 477 A,

= Mg G =P
02

L4

(D2)

where
2U

Co

=X
‘i’o='—‘70-1

‘.I;o=‘Y’¢ll

With these equations the three integrals of equation (25)
may be combined conveniently into the following single
integral denoted by 7;:

3_¢

,=ﬁt{<§°ﬁclw— doBell +3,8c% i C):I ¢}e—7(“f)dr
®3)

For convenience the notation
Y= {513oﬁclw— $oBelU +BoBe?l (%—%):I :p} (D4)
is introduced and thus equation (D3) becomes

[ verimrar
or t

Lme [ Yerds (D5)
Mathematically, the integral in this equation may be
interpreted to represent the area under the funection given
as a product of ¥ and ev". In accordance with numerical
evaluation processes, the interval 0 to ¢ may be divided into
a number of time stations of intervel e. The product of
Y and evm may then be found at each of the time stations
and from these products the area under the curve may be
determined in first approximation by the trapezoidal method
of determining areas. Thus, if the time station » corresponds
to time ¢, the expression for I; may be approximated as
follows:

I, zI,,=ee_7“|:Yle1"+ Yer®>t, . .+ Y,._le‘f"'“”'-‘—{—% Y,.e?"f]
(D6)
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where Y, does not appear since the initial conditions are
used that the deflection w and rotation ¢ are zero at {=0,
and therefore ¥, is zero. (See equation (D4).) More gc-
curate methods, such as Simpson’s method, could be used
for determining the area under the curve, but because of the
small interval chosen the consequent increase in accuracy is

negligible. If the notation
Fo=ceme[Yiev Yoot - .« - Y, 171 (D7)
is introduced, equation (D6) may be written simply
Iu = Fn +% Yn (DS)

If equation (D5) is expanded similarly, only for an upper
limit of {— ¢, the expanded result would be

In_l =eg—7(u—1)e [Y! e‘re_l_ Yzeﬂc.&_ e n + Yn—ﬂ e'r(!l—’)e_l_

% fl__1‘3'1(1:—1){] (Dg)
By analogy with equation (D7), however,
Fooi=eem"@ Ve[ Y e T4 -« 4T, ,e7®* %] (D10)
and therefore equation (D9) becomes
Licy=Faorts Yuuu (D11)

A study of equations (D7) and (D10) shows that the follow-
ing relation must exist:

Fo=e vFy_ +ee 7Y, (D12)

Now, if equation (D4) is used to rewrite ¥, and Y,_, in
equations (D8) and (D12), the value of I, may be given
finally by the equation:

I,=F, +%51303clew,-—-—;-3cleI:Uti>o—|—c(%—%)f'I30:| ¢. (D13)

where

Fo=e=v¢F,_ 48~ Bclt,_—

ﬂcleé’,_"[Uéo‘{'G %—'% ;f’o]‘ﬂn.-l (Dl4)
The value of the unsteady lift integrals is thus given by
equation (D13). As regards the analysis given in the
present report, w,_; and g,_, are the values of deflection and
rotation which have, say, just been determined from the
recurrence equation for response. The value F,_; was also
established and therefore F, can be determined as a definite
quantity. The value 7, is thus seen to be given in terms of
the known F, and in terms of w, and ¢, which are the next
values to be evaluated from the recurrence equation.



APPENDIX E

MATRIX ALGEBRA

This appendix is written for those not familiar with matrix notations or matrix methods. All the matrix algebra necessary

for the understanding of this report is deseribed hereinafter by way of examples. T
Matrix definition.—Some of the besic types of matrices are fllustrated by the following arbitrary matrices which are of

the third order:

The column matrix

\ ; '
1
o
P—1]
The row matrix
L 2 —3 1]
The square matrix
- 2 -3 17
1 2 —2
-1 -1 3
The diagonal matrix N
-4 0 07]
0 3 0
L o 0] —1] -
The identity matrix
-1 0 07
0 1 0
L0 0 1

Element definition.—Each of the terms that appear in a matrix is defined as an element. Its position is usually
denoted in a row by the number of terms from the left and in & column by the number of terms from the top.

Matrix addition.—The addition of two matrices produces & single matrix. Addition is performed by simply adding
together corresponding elements. For example,

2 -3 1 4 —1 0 6 —4 1
1 2 =240 3 21=}1 d 0
—1 -1 3 2 L | 1 -1 2

Multiplication of & matrix by & sealar number.—In the multiplication of a matrix by & scalar number every element in
the matrix is multiplied by the number. For example,

2 —3 1 4 —6 2
2 1 2 —2|=| 2 4 —4
—1 —1 3 —2 —2 6
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Multiplication of a column matrix by a row matrix.—The product of a column matrix and a row matrix is equal to the
sum of the products of the corresponding elements. For example,

(2 —3 1 2[=2X2)+(—3X)+[1X(—4)]=-38
1
—4

Multiplication of a column matrix by a square matrix.—The multiplication of a column matrix by a square matrix
produces a column matrix. Consider the following set of three simultaneous equations:

29,—3Y24 ys=a:)
Y1+ 2y, —2ys=a, | (E1)
— 11— Y+ 3ys=as)

The procedure adopted in matrix algebra is to write these equations in the matrix form

2 —3 1 Y1 ay
1 2 —2 Y| = | Q2 (E2)
-1 —1 3 Ys a3

where the multiplication of the |y| column matrix by each row in the square matrix produces the respective elements
in the la| column matrix. (See multiplication of a column matrix by a row matrix.)
In order to simplify the presentation of an analysis, the symbolic or abbreviated matrix form is used quite often.
The symbolic form of equation (E2) is simply
M] ly|=la| ®3)

The determination of |@| by the multiplication of [y] by [M] is illustrated with arbitrary values of ¥, say y,=4, #2=5,
and y;=6, by the following equation:

2 -3 1714 @XH+(=3X85+ (AX6)| |—1] |a
1 2 =2 5= (IX4+ @2X5+(—2X6)|=| 2|=|a: (E4)
—1 —1 34 (8] [(—1X4)+(—1X5)+ (3X6) 9| las

Multiplication of a square matrix by a square matrix.—The multiplication of two square matrices produces a square
matrix. Multiplication is performed by letting the multiplying matrix operate, as in the preceding section, on ecach
of the successive columns in the matrix being multiplied to produce corresponding successive columns in the product

matrix. For example,
l' 2 -3 1 ,' 1 -2 3 ,'—-2 —12 14
1 2 —2 1 3 —2 = 5 2 -5

l_—1—1 3|_—-1 1 2[_—5 2 5

Order of multiplication—In general the commutative multiplication law of ordinary algebra does not hold in
matrix methods; that is,
|A||B|#|B] 4]

(E5)

Therefore, whenever the product of several matrices is indicated, these matrices must be multiplied together without
changing their order.
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Matrix partitioning and submatrices.—A meatrix may be
partitioned or divided at will into smaller matrices For
example, the left-hand side of equation (E4) may be parti-
tioned as follows:

The matrices which are formed by the dividing lines are
called submatrices. These submatrices may be treated
as though they were elements when matrix operations are
performed. For example, with the notation

a=|—3 1]
1
b=
—1
-2 =2
- ]
[ —1 3
5
d=
6
the multiplication of the foregoing partitioned matrix is as
follows:
I: 2 : a] 4 8+ad
b ! el d B 4b+ed

The reciprocal of 2 matrix and the identity matrix.—By

ordinary algebraic methods the formal operation involved |

in the solution for r of the equation
mr=a

is the multiplication through by the reciprocal of m; thus,
z=mla

Thesame formal operation may be applied to matrixequations.
For example, the solution for |y| in equation (E3) is simply

y|=[M]"]a]
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where [3] is the reciprocsl, or the inverse, of [Af].
The reciprocal of a matrix is found as the matrix which
satisfies either of the equivalent equations

(A=t [M] =[]
[ [M]7=[1]

where [[] is the identity matrix. For equations {(E2) and
(E3), the reciprocal of [1f] is found as the matrix which
satisfies the equation

2 —3 1 b; Cr dl 1 ¢ 0
1 2 —2 62 €2 d: ={ 0 1 0
—1 —1 3 by ¢y d 0 0 1

If this equation is considered in relation to equations (E1},
(E2), and (E5), the values of b, b, and b; would simply be
values of ¥,, 15, and y; which satisfy equetion (E1) for
a;=1, a:=0, and a;=0; ¢, ¢;, and ¢; would be the values for
a;=0, a,=1, and a;=0; and d,, d;, and d; would be the
values for ¢,=0, a,=0, and a;=1. For this example, the
solutions are

1 2 1
b]_—'g C;‘—“g dl—g -
1 7 5
bi=—y5 a=13 d=73
1 5 7
bi=13 =13 d=13

The Crout method (reference 6) provides a very quick and
convenient method for determining these solutions.

The determination of y by the operation [Af]™! on || is
llustrated as follows for a;= —1, @,=2, and a;=9:

4 8 4 '—1i i4i

1 -

-1 78 2=I5' (E11)
T & 9! .6| :

The operation performed by this equation can be seen to be
the inverse operation of equation (E4).
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