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A RECURRENCE MATRIX SOLUTION FOR THE DYNAMIC RESPONSE OF AIRCRA.Fr IN GUSTS ‘

BYJOHNC. HOrBOLT

SUMMARY

A systematic procedure is derelopedfor the calmdationof the
8tructuralre$ponse of aircra~ flying through a gust by we of
di$erence equatians and matrix notation. The use of difer-
ence equations in the solution of dynamic problems is jht
illustrated by means of a simp[e-damped-ow”Uator example.
A detailed analyei~ is then p“ren which leads to a recurrence
matrix equation for the determination of the reqwwe of an
airplane in a gust. The method takes into account un”ng
bending and twisting deformations,fwelage de~ecttinl reti”cal
and pitching motion of the airplane, and some tailforces. 5%e
method is based on aerodynamic strip theory, but cornprewi-
bility and thra+dimensiond aerodynamic effects can be taken
into account approximately by nwzns of owr-all corrections.
Either a sharp-edge gust or a gust of arbitrary shape in the
spanwise orjlight directions may be treated. In order to aid in
the application of the method to any specijic case, a suggested
computational procedure I%included.

lle powibilities of applying the methodto a rariety of tran-
~ient aircraft problems, such as landing, are brought out. A
brief rernezoof matrix algebra, cocering the extent to whtih it is
uged in the analysis, is also included.

INTRODUCTION

In the problem of an airplaneflying though gusts, accurate
predictions of stresses are not always obtained if the inter-
action between aerodynamic loads and structud deforma-
tions is not considered. The present report gkes a method
for determining the dynamic response of aircraft in gusts in
~~~ this fiteraction is considered. An approach is em-
pIoyed which is a departure from the usual modal type of
solution. The time derivatives in the in&rodif7erentiaI
equations of motion of the airpkne are replaced by appro-
priate difference expressions arul use is made of matrix nota-
tion to express conmmiently the conditions of equilibrium at
a number of points along the wing span. The result is a
systematic procedure which is complete and gemd in form.
The airphme is assumed to be free to trtmslate and pitch.
WiiW bend~, wing twist, md fuselage flexibility are all in-
eluded. Tail forces due to vertical motion, angie of attack,
and gust penetration are aIso included in the ana.lysis.

‘T’ith the method, a gust with any gradient in the direction
of flight or along the span may be treated. The method is

based on ae.rodmc strip theorv, but over-alI compressi-
biIit.y and aspect-ratio corrections may be included with-
out difficulty, if desired. One such o-rer-all correction is
indicated. —

In the first part of the report the method of using difference
equations in the schtion of dynamic problems is illustrated
by an example in which the transient response of a simple
oscillator is determined. The analysis for the determination
of the response of an airpkme in a gust is then given. In the
following section a computational procedure is suggested.
This section ia not intended to describe or add to the under-
standing of the analysis, but by following the directions indi-
mted, the response of any airplane may be found without
following through the complete details of the anaIysis.

Supplementary definition and derivations are prwented in
appendixes. Appendix A summarizes the ~tious matrix
coefficients and matrices that are used in the analpis,
appendix B gives a derivation of the M%rence equations,
appendk C gives a derivation of the flexibility matrices,
appendix D gives a derivation of a recurrence equation for
e-raluating the form of Duhamel’s integral which involyes an
&ponentiaI kernel, and appendix E presents a retiew of the ~”~
fundamental of matrk algebra. It is suggested that those
not familiar with matrix aIgebra read appendix E before
reading the analysis.

SYMBOLS

a distance between leading edge of wing and elastic
asis

al co@&nt used in unsteady lift function for sudden
change in angIe of attack

A aspect ratio of wing
A, aspect ratio of horizontal tail
b Semispm of wing
c chord of wing
Co chord at wing midspa.n

cot midspan chord of td
c~ mem aerodynamic chord of tail
e distance between mass center of wing cross sec~ion

and ekstic axis of wing, positive when elaskic _
axis Iies forward of mass center

E Young’s modulus of elasticity
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suddenly applied force
shear moclulus of elasticity
integers 0, 1, 2, 3, 4, and 5 used to designate sta-

tions (for mosttpart used as parenthetical num-
bers, that is, w(3) is ddlection at station 3)

bending moment of inertia
torsional shifhes constant
radius of gyration of wing mass about elastic axis

or elastic spring constant
length of section associated witJ~a spanwisc station
aerodyzmmic lift over interval 1on wing
shear force tramnikted to wing by fuselage
acrod~mamiclift over interval 1on wing due to gust
one-half aerodynamic lift on tail due to gust
one-half Lotd aerod~amic lift on tail
part of aerodynamic lift over interval 1on wing (see

equation (16))
part of aerodynamic lift over interval 1on wing (see

equation (17))
mass of beam included in interval t or concentrated

mass in spring oscillator

( ‘T’)
maw m including apparent maes effect m+—

assumed over-all compressibility and aspect-ratio

( A
correction for wing

)2+A~~2
assumed over-all compressibility and aspect-ratio

( A;
correction for horizontal tail

2+ A*J1-M2 ). . . .
mass moment me including apparent mass effect

( ( ))
Tplca 1me+~ &

mass of fuselage per unit length

mass polar moment of inertia m.kzincluding appar-

(
ent mass effects mkz+

%%-:)’%)
Mach number or aerodynamic moment over inter-

val 1 about elastic axis of wing
moment transmitted to wing by fuselage
integers O, 1, 2, 3, and so forth to designate nmn-

ber of time intervals passed
normal load acting at a station
fuselage inertia loading per unit length
torsional load acting at a station

distance traveled by wing in half-chords
(

: t,

where midspan chord COis used as reference

chord
)

()
distance interval in half-chords >: e

horizontal-tail area
time, zero at beginning of gust penetration
forward veloci~y of flight
vertical velocity of gust

deflection of elastic axis of wing, positive upwtird,
or deflection of mass oscillator

deflection of fusekge, positive upward
fuselage modal function, zero at wing elastic axis

and unity at tail onequarter-chord location
distance along -fuselagemeasured from wing dastic

a.., positive in rearward clirec.tion
distance from foremost part of nose to dast ic axis
distance from elastic axis to one-quarter-chord locri-

tion on tad
distance along wing measured from center of air-

phme
ratio of dynamic deflection to static deflection
angle of attack of horizontal tail, positive in the

stalling direction
forward-speed and aspect-ratio factor for wing

(m.4TpU) or coefficient of damping for spring
oscillator

forward-speed and aspect-ratio factor for tail

(
1
Z? )

m..i’~p~lu

emonentird coefficient in @function associated with.

time t
(’=3)

coef%cient of fuselage modal function
time interval
expommtial coefficient in @ function assoc.iatwI

with variable s
dimensionless interval between i-1 and i sttit.ions

(M is actual length)
mass dcmsityof air
angle of twist of wing, positive in stalling direction
function which denotes growth of lift on rigid air-

foil entering sharp-edge gust (used withou~ sub-
script to indicate function for wing and with
subscript t used to indicate function for tail)

natural frequency associated with 11’1,radians per
second

unit-step function
function which denotes growth of lift on airfoi~

following sudden chango in angle of attack (used
without subscript to indicatefunction for wing tmd
with subscrip~ t used to indicake func~ion for
tail)

square matrix
rectangular matrk
column matrix
row matrix

Subscripts:
t tail

0,1,2,3, . ..n number of time intervals passed
0,1, 2,3,4, 50ri station (however, station is usually

given as parent.hetictdnumber, such
as w(3) for deflection tit station 3);
i is dao used as general subscript in
appcmdixA
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MI the terms, coeflkients, and matrices not defied in this
section are defined in appendk A.

Dots are used to indicate derivatives with respect to time;
aw

for example, ~ =w or ~=ti”

ANALYSIS

TBANSIEXT EE5PONSE OF A SIMPLE DAMPSIJ OSCILLATOR

In order to illustrate the use of difference equations and
to test the accuracy of the procedure that is to be used in
the solution of the more complicated gust problems, the
solution of a simple probkm having a known analytical
solution is first presented. The problem is to compute the
response of the damped osciUator shown in figure 1 to a
suddenly applied force. The ditTerentiaIequation of mot ion
of this system due to the suddenly applied force is

mib+f?ti+klo=l’l(t) (1)

B~ use of ditlerence equations this differential equation may
be transformed into an equation which in~olves deflection
ordinates at several successive values of time. Probably
the most commonly used difference equations are the follow-
ing (see appendi.xB for derivation):

W=+l—W*.l*n= ZE (2)

which give the derivatives at the intermediate of three
successive ordinates. Although these equations are quite
adequate for the oscillator problem of the present report,
they cannot be used in the gust, analysis which follows.
Rather, for reasons which are brought out in a subsequent
part of the analysis, equations that give the derivatives at
the end ordinate of severed successi~e ordinates must be
used. If only three successi~e ordinates are used, the deriv-
atives so found are not accurate enough to be useful lf
a fourth ordinate is added, however, derivatives may be
taken at the end ordinate with accuracies which are com-
parable to those given by equations (2) and (3). Such
derivatives are deri~ed aIso in appendix B and are given
by the equations:

~ =11 EK-18wn-1+9wX-2 -2wn_a
n 6e

(4)

(5)

Although either equations (2) and (3) or equations (4) and
(5] may be used in the solution of this oscilktor problem,
onIy equations (4) and (5) VW be used, since only these
equations can be used in the gust-problem solution presented
in this report.

If the derivatives in equation (1) are replaced by the

[F

pI,TP.E I.—IAUIIpedcsdlntor and suddenly appIted fm.

difference equations (4) and (5), the folIo~~ equation is
obtained:

(6)

This equation may be said to be the difference equation of
motion. If the more general case of a variable applied force
were being considered, the factor ~ in this equation would
be replaced by ~m, the v-alue of the force present at the
time t= n6

If a specXc case is now considered, in which ~=400,

&=2, G= O.01, F=l, and the notation S=s ratio ofFlk (
dynamic deflection to static deflection) is used, equation (6)
becomes

Zn=0.018927+2.42272 Zm_1—l.92114Z,–A+0.47949Zn-S (7) ...-

This equation may be regarded as a recurrence formula; the
value % may be interpreted as the deflection tO come ~d .
may be found easiIy from the three preceding deflections
a-1, =2, and Z.-W Then with the newly found value ZX ‘-
and with z-l and z~–~,the next deflection can be found~ .-–
and so on. This process thus gires a step-by-step cleriva-
tion of the time history of deflection and may be c~ied ._
out as far as is desired. Of course the process must stti
with known initial values of z. These values can be found
with the aid of the initiaI conditions of the problem by
means of the fo~owing approach.

The dfierence equations for the first and second deriva- .
tives at the third ordinate of fo~ sumessi~e ord~ates uc .—
(see appendix B)

u’. =&(2w. +l+3w, —6 w.-l+w._a)

.WX=+2(W,+1—2W. +WUJ

If these equations are taken to npply at t=O (n= O), they
become

tio=~ (2wL+3w0— 6u’-[+wJ (8) _

WO=+(W1—2WO+W-1) (9)
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For the probhn under consideration the primary initial
conditions are that, at t=O, the disphmement and veIocity
are zero. By use of equation (1) or by reasoning from
Newton’s second law, a secondary initial condition can be
established-that is, the acceleration immediately foIIowing
the application of the unit force must be l/m. In equation
form these conditions are

WQ=o

Go= ()

By substitution of these vaIues into equations (8) and (9)

and by use of the notation z =~~ the following relations
F/k

can be found to exist between the ordinates:

20=0

z_9=0.24—8z1 1 (lo)

Z.1=0.04— Z1

Substitution of these values into equation (7), with n set
equal to 1, gives an equation from which Zl, the deflection
at t= q may be evaluated. Three successive deflections
can now be established: the deflection at t= C, the zero
deflection at t=O, and a fictitious deflection for t= – e given
by equation (10). In the real problem no deflection exists
for t less than zero; the assumption that a deflection does
exist before t is zero is simply a means for allowing the recur-
rence formula, equation (7), to apply at the origin as well
as at later values of time. I?urtherrnore, no violation is
made of the conditions under consideration because, mathe-
matically, the response after t= O is not influenced by the
response that may exist before t=(),so long as the initial
conditions are satisfied. The process just described for
treating the initial conditions is actuaI1y not ditTerentfrom
the procedure cummordy employed in difference-equation
approaches, in which exterior points near a region under
consideration are written in terms of the interior points by
means of the boundary conditions.

With the initial values of deflection thus established the

/

A
— Exact sohtim ,

Difference solufim:

/
o Cubic end-ordimte derivatives
A Porobolic end-wdlm+e derivatives

1 , t 1 I I I , # I , , , ! t 1
0 I

.05 .10 .15 .20
t, sec

FIGUBE2.-Com@.wn of exmt and diffmnce—equfrtlon SOMIODSfor rwpmse of daq.wd
oscWrAor.

step-by-step evaluation of succeeding deflections proceeds in
a straight-forward manner-that is, ccluat.ion (7) is now
evahated for n= 2, then for n=3, and so on. The response
of the oscillator for the physical constants listed previously
is given in figure 2. The comparison betwcen the diffcrunce
solution shown i~ this figure and the exact solution of
equation (I) is seen to be good. As a matter of intcwmt,
the solution is also shown in this figure that is obtdned by
the use of the parabolic encladinat e derivativc which
involvw only three successive ordinatw. The agreement in
this case is seen to be quite bad. If equations (2) and (3)
had been used, on the other hancl, (he diffwwncc solution
(in this case for Wtil) would correspond to that given for
th~ cubic end-ordinate derivative.

IZECURRENCE MATRIX EQUATION FOR RESPONSE OF AN AIRPLANE
IN A GUST

In order to help the reader to obtain a perapectivc of what
is to be covered in this section, the following basic phtiws of
the analysis are given:

(1) The assumptions are stated.
(2) The coordinate system and displacements are dcfimvl.
(3) The aerodynamic lift and moment are defined.
(4) The normal and torsional dynamic loadings (incrlia

forces, aerodynamic forces, and fuselage forces) on the wing
are derived.

(5) The equations of dastic deformation—wing vcrtictd
motion, wing rotation, and fuselage bending-arc given.

(6) The dynamic loadings on the wing are transformwl
into difference equations.

(7) The equations of elastic deformation and tl~ediffcrcmcc
equations for loading are combined to give the rceurrcncc
matrix equation for response.

In succeeding sections the initial response is dctmmined,
the method for evaluating the gust forces is shown, and the
method for computing the loads and stresses is indicated.

Assumptions.—In this analysis an tittomptt is nmdo to
obtain the simplest and most direct solution to thu problwn
with a minimum of simplifying assumptions, The case
treated is that of an airplane having an essentitillystrtiight
wing and penetrating a gust of known structure. Tho ttd
is considered to penetrate subsequently the same gust M
does the wing. The assumptions made arc as follows:

Assumptions pertaining to elasticity and airplane motion:
(1) The usual assumptions of engineering beam theory ore

made.
(2) The fuselage is free to pitch and move verticdIy. ‘rho

portion of the fuselage in front of the elastic axis of the wing
is assumed for convenience to be rigid. The portion of the
fuselage rearward of the elastic axis is assumed flexible, and
the elastic deflection is assumed to be given by a single
modal function.

(3) The tail is assumed rigid.
Assumptions pertaining to aerodynamic forces:
(1) Aerodynamic strip theory applies. Three-dinwnsimml

effects, however, may be taken into account approximrdPly
by means of over-all corrections. Some such corrections tire
indicated.

(2) The gust force and forces duc to vertical and pitching
motion are the only tail forces considc.red. Other forces of
known character may be included, however, if desired.
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(3) Aerodynamic forces on the fuselage are negkcted.
Coordinate system and displacements.-Position on the

airplane is denoted by an orthogonal s@ern of axes. The
origin is at the intwsection of the V@ elastic axis viith the
phtne of symmetry of the airplane: the w-ti runs pcsiti~e
upward, the x-axis runs FJoug the fuselage positive in the
rearward direction, and the y-axis runs spanwise. The wing
sernisprmis considered to be divided into six, not necessarily
eqwd, sections, with a station point at the middle of each
section. (See fig. 3.) More or fewer stations could be
chosen, but it is believed that six is a fair compromise be-
tween the amount of labor iwrol-red in setting up a solution
and the accuracy desired. The interval between stations is
designated by the number of the station at the outboard end
of the interval. Station Ois Iocated near the wing root and
genertdIy may be located where the fuselage intersects the
wing. In this way the concentrated forces of the fusehige
are aUowed to act through station O. The other five stations
are then located in any convenient manner so as to falI at
concentrated mass Iocations or at points which represent the
average of distributed masses, statioD 5 being nearest the tip.
The total mass tithin a section is assumed to be concen-
trated at the station point, and the a-rerage of the section
geometry (chord, elastic axis position, and w on) is assumed
to apply. In this way the wing is assumed to be a beam
subject. to six load concentrations and as such mill have a
kear moment variation between each station. The further

assumption is made that the ~ variation is linear between
EI

each station. With these assumptions for the EI variation
and concentrated load locations, equations for deflection at
each station point may be derived (appendix C) by direct
analytica.1treatment.

The displacements of the crow section at each station of
the wing me given as the deflection of and rotation about the
wing elastic axis as shown in &ure 4. The fueehige dis-
placements are shown in figure 5 and are g+ren by the
equations:

Wf=w(o) —q(o)x (11)

for the forward section and

for the rear-ivardsection. The function WI is taken as the
fundamental mode of vibration of the fuselage and tail
assembly, when the fuselage is considered to be clamped as Q
cantilever beam at the elastic-axis location of the vzing, and

is given in terms of a unit deffection at the $-chord position

on the taiI. With this function to represent the elastic
deformation of the fuselage the deflection and angle of
attack of the td are found with the aid of equation (12) to be

w~zt)=w(o)—p(o) xt+d (13)

dw~
1

.—
at= dz r-z,

=ql(o) —MI

where
dW1

1
r9,=—

dz z-z,

(I 4)

I

FIQCEE S.-Dkfskmof W@ fnto sedions.

4 EquiUbrhm position -----
.—

—— —— —— —. ——- —

FIQUBE4.-DLspIacements of a whg cram sectfon.

Fnlum! 5.-Cmrdlnate system for fuselage displacement.

Aerodynamic Iift and moment,—Before going into the
detaik of the anal@s it is felt worthwhile to deiine and
describe the nature of the aerodynamic forces to which the ....
wing is subjected. These forces originate from two sources: _
they arise directly from the gust encountered, and they arise
from the ensuing airplane motion. The equations for the __
aerodynamic Iift and moment that develop are herein set up
in a convenient form on the basis of work given in references
I to 4. In these investigations various methods for sepmat- _
ing the lift forces have been used, but the particular method
for separating these forces is not important so low as they
are taken into account properly.

In the present report the aerod-ymamic lift ud moment
are considered to be composed of two parts: one part, desig-
nated as the lift or moment due to circulation, vihich includes
all lift forces or moments exch.ei~e of aerod.ym.mic inertia
dects and the other part, which is due solely to these inertia
effects. These lift forces and moments can be resolved into
the force systems acting on the airfoiI as shown in sketch I
(forces due to circulat~n)
moment).

/

Lg

& p2

and sketch 2 (inertia force and

+.

srRcE2.
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The force L, is the lift force developed by the gust ud
corresponds to the gust force tkt wouId deveIop on the
airfoil considered rigid and restrained against vertical motion.
All the other forces occur as a resilt of motion of the airfoil.
These forces, as well as the gust force, are given for an
interval 1 of the span by the equations: For the forces due
to circulation,

(15)Lg=m.rPclU
J

: ~ ~(t–r)dr

L,=m.uPclU
H (4 c)m-”’’-’”~’

‘ u@–w+c ~–:
o

(16)

and for the inertia force and moment,

where

mA

1–Q

*

The

‘$=+[-’+(i-a)’]

Upw ,.
M,=–m q

(17)

(18)

(19)

factor which can be used to introduca over-all com-
pressibility and aspect-ratio corrections; in this
report the factor is assumed to be given by

A
2+A~=5

lift function which denotes the growth of lift on
an airfoil following a sudden change in angle of
attack

lift function which denotes the growth of lift on a
rigid airfoiI entering a sharp-edge gust

functions I —O and # and the correction nz~ are
established as foIIows. In reference 5, approximate equa-
tions are derived which give the lift-coefficient form of the
~mwt.h of lift on a finite wing following a sudden changd i~
angIe of attack or due to the penetration of a sharp-edge
gust,. The equations may conveniently be considered as the
product of a factor, which may be regarded as a lift-curve
slope, and an unsteady Iift function, designated by 1—@ for
the function due to tho angle-of-attack chango and by #
for the function due h the sharp~dge gust. These unsteady
Iift functions are shown in figures 6 and 7 and are given by
the following equations: For the I —O functions

(1–@)A_,= 1–0.283e-O””W (20a)

(1–@)~-d=l–0.361 e-0381” (~()~)

(l–@)~.. =l–0.1t35e-0u’’–0 .330”3m”3m (20C)

and for the # functions

#A-8= 1–0.679e-0.5~–0 m227e-8.a’ (21a)

#~.a=l–0.448e-0.~N –().272e-0.T~-() .lg3e-a.0W (21b)

$A..=–—1—0.236e-o.*—0,513 e-0.aW—0.171e-a.4% (Zlc)’

#A. cs=1 —0.500e-0.1M’–0 .500e-’ (22)
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A=3
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g

L
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4 8 /2 16

8,hdf Cfwrds
Fmurm 6.–LUt funotkms for sudden change In rm@eof attock. (W octnntfons (20)J

[

Lo —————————— —-

A=3 -—~-——-
(Reference 3)- >;

P .5 –

I I I I I t I t I
o 4 8 /2 16-

S, hoff chords

FIGURE7.–Lift functioru?for Wingsenterlog a sharp~dge gust. (6ec oquatIons (Zl)
snd (22).)

;quations (21) are based on equations of reference 5; whereas
quation (22) is the Y function that is suggested for wings of
finite aspec~ratio in reference 3. Inspection of cquationss
20) shows thah the @ function for aspect ratios 3 and 6 is
iven by a single exponential term. It is probable thaLtbo
~function for higher aspect ratios, say 10 and even 20,
my also be given to a sufEc.ientapproximation by a single
xponential term. Therefore, the assumption is made ht
~general @ may be represented by an equation of t]]e form

@=ale-~ (23)

oterpolation, for example, of the curves in figure 6 shows
mt the @ function for aspect ratio 10 might bc apptoxinmtcd
y the equation:

@A”10=0.41e-O”W (24)

‘he analysls does not necessarily limit @ to a single cx-
mential term. Other terms could be added with somu
lcreme in labor, but the degree of refhwment ob [.uinod
not expected to add much to the over-all accuracy of the

dution.
AIthough the functions given by equations (20) to (22)

“eknown to approximate the truo functions quik well over

large r~me in s (.=2:,), the # functions given by
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equations (2?1)do not wmish as they shonl~ when t= O. When
used in the coraputa-tiomdprocedures given hereinafter, these
functions, therefore, are to be taken as zero when t=O.
Another point to note is that the variables is given in terms
of a reference chord co; thus this variable as appIied to the
wing is different, in general, from the wiriable as appkd
to the taiI.

E=minat ion of the -dues of lift-curve slope, which were
stated to be present in the equations taken horn reference 5,
reveals that they may- be approximated vnth good accuracy
by the product of 2r and the often-used aspect-ratio cor-

A
— for steady incompressible flo-iv. In the present‘ection .4+2

report it is assumed that compressibility and aspeot-ratio
corrections can be made by repIacing this aspeot~atio
correction by a compreasible aspect-ratio correction delined

A’
—~ where A’=A~~@, and by mnhipl.ying thisby A’-F2

correction by the G1auert-Pra.ndd Mach number correction
1

to give the product md. The procedure then for
~~1—W
talcing into account three-dimensional and compressibility
effects in the present ana&a is to determine ~A from the
forward speed and aspech ratio of the wing and to use the
1– @ and # functions, equations (20) to (24), for the aspect
ratio which is nearest that of the wing.

Some word of explanation of equation (16) might be
worthwhile at this point. The @(t–r) function is associated
with the Iift forces which are due to the wake. Without this
term the equation would yield the steady lift corresponding
to the instantaneous values of mgle of attack and vertical
~elocity. If equation (16) is integrated by parts and the
conditions are stipulated that -w,ti, P, and & are aII zero at
t=O, the following equation may be found:

[ -fF(:-3aOIP+L1=f9cMv.c-(1 –@u)~chb+f?elU 1–@.

(1 –@o)fIc’1( :–:)@+19clJ: d(t-r)dr –

/!lclcso‘@’f-T)d’-~e’’(:)I@I”)d””)d”’25’
where B has been introduced as a formrd=peed and aspect-
ratio parameter defined by the equation

fl=mdrp~” (26)

With reference to equation (23), % and&in equation (25)
would have the dues

@O=al

The form of ~1 given by equation (25) is presented because
this form is more convenient to use in the present analysis.

For this anal@s the total lift and moment acting at the
ehistic-axis Iocation are desired. For the present, the total
lift L and moment M of the forces due to cimdation are
found; the inertia force and moment are to be treated

separately. Summation of alI the lift forces due to circula-
tion and summation of the moments of these forces about
the elastic b gives the desired equations for the aero-
dynamic lift and moment acting on the airfoiI over an .._
interd 1 as follow:

L= L,+ L2+Lg (27}

‘=(a-3L’-(+)~+(a-:)L. “8)

The loading on the wing.-The normal and torsional
dynamic loads that are held in equilibrium by the eIastic
restoring forces of the wing may be found by considering all
the aerodynamic and inertia forces that act on the wing.
The mass situated at any station (see fig. 4) can be shown to _
have an inertia normal force equal to

—mw+nae~

and an inertia torsional moment about the elastic axis equaI
to

~~w—~py

If the aerodynamic forces and moments (see equations (18),
(19), (27), and (28)) are added to these inertia loadings, the
total normal and torsional loadings on the wing at each _
station are found to be given, respectively, by the equations:

p=–mw+meF+L+-L

q=7new-7nk’q+M–
()

&a &+M1

The terms Ls aztdMl ordinardy would appear with the aero-
dynamic lift and moment vaIues but are treated separately
so that they can be combined with the structural mass
terms. If use is made of equations (18) and (19), the load-
ing equationa become

p=–~w+=!!+-L (29) -

There
q=iiizw-%i~q+lf

‘=(”+%7

m=[.e++(i-g)]

(30)

The terms appearing with the structural mass quantities in
the definitions of 7Z, Z7?, and Z7r are the terms which are
commonIy associated tith apparent mass effects.

The -due of the shear forces Lf and the moment Mr tmns-
mittecl to the V@ by the fuselage can be found in the
folIoting manner. l’rom equations (11) and (12) the values
of the inertia loading on the forward and rearward sections
of the fnsdage can be sho~ to be giva, respectively, by

the equations:
pf= –?nf [We)+(OM (31)

pf= –mf [ib(0)-HO)r+ 511”1] (32) _
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Integration of these inertia loadinga over the length of the
fuselage and addition of the aerodyntic tail load 2~, give
the wdue of the total load transmitted to the wing; one-b.rdf
of this load is designated by ~r and is assumed to act at
station O, the other haIf being considered to act through the
corresponding station on the other half of the wing, Inte-
gration of the moment of the inertia loading about the
ekwtic-axis location and addition of the moment –2zJ, of
the tail forces give the total moment due to the fuselage;
one-half of the moment is designated IMr and ads at sta-
tion 0. The values of Lf and AfJ thus found can be given
by the equations:

~f= –kf,ti(o) +Mz?(o)-ikf,% +L, (33)

~,=~~ti(o)-~~~~(o)+~~t –z~Li (34)

where the hi’s me considered to be generalized masses
defined as follows:

?

J

1 xl
JM1=5 ZBmf dx

.

J

1 z,
M2=5 r ?TL/Xdx

n

J
Ma=; :( w@’, dz

J
M,=; ‘t m.,x’dx

d %

sM,=;)n/xW,dx

J

~ St
f?kfd= ~ mrW12dx

-fI1

(35)

The generalized mass constant kfdl although not appearing
in equations (33) or (34), is included in this group because
it occurs in a subsequent part of the analysis. In the
derivation of equation (34), the aerodynamic moment of

the tail about the tail $chord position is neglected since

it is considered to be small in comparison with the value
z,~,. The lift on the tail L, can be found by application
of equation (27) to the tail surface. In this case the @
function appropriate to the tail should bo chosen and the
values of displacement w and p should be replacecl by
WJ(XJ and a~, the values of deflection and angle of attack

at the tail }chord position. These values are given by

equations (13) and (14).
Matrix equation of equilibrium.-The problem of comput-

ing the response may be considered ta be one of the deter-
mination of the deflection and rotation of a beam which is
subjected to normal and torque loadings. In differential

form, the bending and rotational displacements are related
to the normal and torque loadings by th~ well-known
expressions:

$2 EI $=P (36)

(37)

where in this instance y and q are the loadings per unit
length of beam. In addition to thwe two equations which
are coneidercd to apply to the wing, an equation for conl-
puting the ehuhicdeformations of the fuselage maybe found;
this equation may be found in the fobving manner. The
rearwaxd part of the fuselage is considered to be a ctmtilever
beam subjected to the inertia loading given by equation
(32) and the tail force 2L,. If equation (36) is applied
ta the fuselage and use is made of equations (12) and (32),
the following equation for fuselage bending results:

?Yw,
8 ~2 EIf ~xs ———–m, [ti(0)-v(0)z +%WI] +2L, (38)

in which L~ must be treated properly as a concentrated load
and If is the bending moment of inertia of the fuselage.
Since WI represents a vibration modal function, the following
relation mists:

where UJis the frequency of vibration associated with l!”l.
Equation (38) may therefore be written

Multiplication of thisequation through by WI and inkgrat ion
between Oand z, results in the following equation for fusdago
bending

w;M6~= –i’k@(0) +ikf,?(0)-MO%+~, (39)

where MS, M6, and MS are ddned by equations (35).
Equations (36), (37), and (39), when the loadings given by

equations (29) and (30) are considered, are seen to be rather
involved integrodifferential equations but describe com-
pletely the motion of the nirplane. The probhun is to find
functions w, p, and 6which satisfy these equations and which
satisfy both theboundary conditions and the initialconditions.

The problem of iiuding the w and p functions may be
simplified considerably by reducing th~ rather complicatcd
equations of motion to a simplified and systenm~ic algebruic
form. The fit s~ep (see appendix C) is to rephumthe dif-
ferential equations (36) and (37) for wing deflection and wing
rotation by the following simple matrix equations:

(40)

[Blkl=lql (41)
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The matrices in these equations are defined in appendis C
(see equations (C22) and (C23) and equations (C29) and
(C!:YI],respectively) and have been derived on t-hebasis that
the displacements along the semispanare given at six stations.

Equations (40) and (41) and the fuselage deflection coeffi-
cient ~ are uow combined in a single matri~ equation of the
form indicated as folloms:

[1 ~

000 fi 0’0 [A]o ]Wl= ~pj (42)

o 0 [B] I@[ ~ql

This form is chosen becmwe it will be useful subsequently.
‘iYiththe notation given in appendix A, equation (42) maybe
abbreviated to the form:

18

[r]:w

Y

=!p] (43)

This equation may be regarded as the loacling matri~ equa-
tion of equilibrium; it relates the loaclings to the clisplace-
ments by linear simultaneous equations. The bounclary con-
ditions are automatically satisfied when this equation is used
fwmuse they had to be taken into account. when the sub-
matrices [A] and [B] were cleriwxl. Only the initial conclit.iong
remain to be satisfied and these are treatecl separatdy in a
subsequent section.

Transformation of the loading equations into difference
form.—The Iording equations are now simplified by replacing
the time deri~atives by diRerence equations. If equation
(5) is used (.o replace the derivative in equations (29) and
C30), the values of ~he Ioad@ at the nth time int,erd are
found to be

p== —~ r2-wx—5wn.l+4wm.s—v._a)+~ (2P. —5wm-1+

4y&2-q=_J+LE (44)

~n=7@w=_5w *_l+4wm_,-wm_3)-—$ (29=—5$0. -,+

4~._2–pn_*)+M” (45)

The -iaIuesL. and M, are found by determining the express-
ions for L1,~, and t~ at t= m (see equations (27) and (28)).
of these L, is the most complicated. since it (see equation
{25>\ in-ioIws three unsteady M integrals of the Dnhamel
t.yp~. Fortunately, however, a rather s-hnpIe recurrence
relation can be developed which allows the calcuIation of the
\-aIueof these integrds at a given time inter-raldirect.Iyfrom
the value at the previous time inkrml.— ‘H& derivation is
presented in appendix D and is made possibIe because the
@ function is of an exponential form. (’Where the @ function
is given by more than one e.xponentiaI term, a recurrence

213627—5-11

relation for each term may be written.) From the derivation
in appendix D, therefore, the vaIue of the three integrals at”
the nth time interval maybe gi-renas foIloms:

in which g and g’ are defined by equations (.X5) in appendix
A. With this expression to rephice the vtilueof the integrals
in equation (25), the ~alue of ~la may be written

(47)

With the use of difference equation (4), this equation may
be transformed finaIly into the form:

L1~= down+dlws_l +dzwR_z+d3wa_z + do’P. +

d{qm-1+d:pR_2+d;pR _8+ F. (48)

“wherethe d’s are defied in appenclix A. Likevrise, from
equations (4), (17), and (26), ~ may be written

lf L,m,L%, and the value L% of the gust force at t=n E __
are introduced into equation (M), the value of p at the nth
time interml can be shown to be given by the equation:

P.JL=?lown+TIWn-1+ 72wn-2+Tawn-3+T0’P,+

T1’vn-t+T2’Pn-2 +Ta’vn-3+Fa+~r. (49)

where the q’s are coefficients which tire giwn by equations
(A3) in appendi~ A. In a simihir manner, the equation for
Q (equation (45)) can be reduced to the form:

q,= ~o~. + W%-1+ v@.-2+vawlM+ vo’p.+vl’p=_l+

where the v’s are gi-ren by equations (A4) in appendk A.
.

The value of aerod~amic lift act~~ at the tail &hord L,

is founcl most conveniently by apply@ equation (49) to
one~alf of the tail surface. This application is made by
modif~ing the q coefficients as follows: The mass value m

is set equal to zero, ~ is taken as ~, c is replaced by c~,and
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@cl is replaced by d,, defined as the forward~peed and
aspect-ratio parameter of the tail by the equation:

In addition, w and P are replaced by the deflection and
rotation of the tail given by equahions (13) and (14). With
these substitutions the value of ~,n is found to be

L,fi=j@(0). +jIW(0)n.l+j2~(0) n-2+j8~(0)n-8+ji~ (0)m+

j,’~(0)a-,+j,’@(O) .-,+j~P(0).-8+706z+ 7,,+-,+

726n_2+7,8=.8+Ft* +L.,n (52)

where

F,x=e-7,eF ,=_l+jw(o)n-l+j’q(o). -l+;&_l (53)

L.,n is one-half the tail gust force at t=ne and the~s and j’s
are defined by equations (A7) md (Al 1), respectively, in
appendix A.

With equation (52) and difference equation (5), equations
(33) and (34) for L~ and Mf and equation (39) for fuselage
bending may be reduced rediIy to the following form:

L/n=Y,W(0)m+T,w(O)n-,+T,W (0). -z+mw (0)n-g+m’P (%+

?1’P(0)n-I+T2’W(0) n-2+78’P(0)n-8+ TOan+Tlkl+ ,
~28~_~+~86.-~+F,n+L~h (54)

~fn=~,W(0). +#lW(0)n-l+~2W(0) n-9+#8W (0)a-8+h’t@)n +

&1’~(0)n-1+~2’@ (0)n-2+#3’P(0)n -8+~0~n+Tlan-1+

;28, -e+T86. -3—x’F~R—x,LRta (55)

O=r,w(())a +r,w(0).-,+r,~(O) fl-,+~sw(0)fl-~ +~~@(0)fi +
TI’p(o)n-l +r2’p(o)n-2+r8’q( o)n-8+70an+Flaa-1+
~~6~-z+~s8.-s+F~n+L~h (56)

where the -y’s, P’S,and r’s aregiven by equations (A8) to (A1O)
in appendix A.

The complete set of loading equations as welI as the
fuselage bending equatious arc now avaiIable in di&rence
form. Equations (49) and (50) apply at each spanwise
station and in addition the values of L~ and J4f must be
introduced at station O. The coefficients ~, v, ~, and so
forth are seen to involve only the physical properties of the
airplane structure, the forward-speed and aspec~ratio
parameters given by equations (26) and (51), certain con-
stants derived from the unsteady Iift functiou, and the time
interval. The time interval e that is chosen should be
fairly small in comparison with the natural period of the
fundamental mode in bending of the wing. To serve as a
guide an intervaI chosen near 1/30 of the estimated period
of vibration of the fundamental mode appears to be quite
satisfactory. Of course, some caution should be observed

in the choice of this interval if the airphme is near a critical
condition where some mode other than the fundamental
may predominate. For example, if the airplane is flying
near the flutter speed, the characteristic frequency of tho
response may be near the natural torsional frecpwncy of the
wing. The time interval should be modified ticcordingly.

Recurrence matrix equation for responsei—Equations (49),
(50), (54), and (55) for loading, equation (56) for fuselage
bending, and the equilibrium equation (43) may now h
combined to give the recurrence matrix equation for re-
sponse. In order to simplify the process of combining these
equations, only the abbreviated or symbolic form of the
matrices which occur are used. The defiriitions of these
matrices are given, unIess otherwise stated, in a compl14.c
group in appendix A.

Application of equations (49) and (5o) to each of the sptm-
wiee stations and of equations (54) and (55) to station Oleads
to a set of loading equations which maybe put iu the matrix
form given by the following equations:

1p1m=1701a.+]711a.-l+\721~B-2+17S13n-8+[qdlWlm+

[nd[wln-l+[7211 wln-2+[~81]~ln-8 +[qJl/wlE+

[~l~l~[.-l+[~~l /91.-2+[~l[~]fif8+8+ F’l+kl ,+
lll(~t+L,)n (57)

lg\==\70\8~+l~118n-1+1~~18*-~+l~s16~-~+[vO]\w]~+
[v,]\w]n-l+[P~lw[m-, +[v3]]w]=_,+[PJ] lpln+

[ II[~{]lP]m-l+[~2qlqlm-2 +[p3~l~[m-8+ a–: IFI+

(58)ILJ ~+lz:l(Ft+Q
where

[F1.=e-~{]Fl,_, +~]lw\*_,+~~lqln_l (59)

(F,)m=e-’:’ (F&,+jw(0)~-l+j’w (0)~-1+~&-1 (60)

Equations
combined to

o

[

70

IPI = 1701

1!7[ a Fol

(57) and (58) and equation (56) may now be
form the following matrix equation:

[ro] [r{]-

[ml [m’]

[Kll [ h’l-

IxJ [a-~]
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For simplicity, this equation may be abbreviated to the

6

w + [Sal

P .-2

(62)

(63)

Iwln-1

and the matrix l~~lnia defined in the section entitled “Der-
ivation of Gust “Forces.”

Substitution of equation (62) in equation (43) gives

6 8 6 6

= [s0] ‘w +[s1]w +[s,] w +[5’,] w +

t P x v n-l P U-2 P .-a

rmllrl+lula (64)

‘With the use of the notations

[D1=FICI–[SO1l (65)

and

(66)
equation (64) may be written simply

6

[D] w‘ =[QI= (67)

lIultipl-ying through by the reciprocal of [D] gives fhmlIy
the equation

8

w =[D]-l]Q[= (6S)

This equation gives the dieplacements that apply at time n
in terms of the displacements that occurred at several pre-
ceding values of time [see equations (63) and (66) for the
definitions of (~]= and ~QIJ.

From equation (68) the complete response of the airphine
can be computed once the character of t,he gust is known.
The matrix of gnat-force values 1~~=can be determined by
the procedure given in the section entitled “Derivation of
Grist Forces.” The initial conditions (treated in the follow-
ing section) are used to obtain three successive initial sets of
the displacements. With these sets of displacements the
next set may be obtained by application of equation (68).
With the newly found set and the preceding sets of displace-
ments, the next set may then be found, and so forth, nntil a
sufEcient time history of the displacements is found ilom
-whichmasimum loading conditions may be determined.

The reason for using the difl-erenceform of the derivatives
as given by equations (4) and (5) might now be given.
Equation (64) may be considered a &t7erential equation,
since the matrix [CJcontains the spanwise derivative matrices
[A] and [B] and may be “likened to the differential equation
which relates the load to the deflection for a beam. The
unknowns are the deflections at time n. The right-hand
terms correspond to the Ioading, the fit term being the only
one mhich is not known since it contains the unknown de-
flection. The subsequent inversion of the matrix [D] leads
to, in effect, the solution to this differential equation and, in
the beam analogy, corresponds to the integration of the
loading to obtain the deflection. When numerical methods
are used, the deflection may be computed with good accuracy
by integration of the loading. On the other hand, if the
ditlwence equationa which apply at an interior ordinate
had been used, the matrix [CJ would have appeared as an
operator on one of the known deflections on the @ght-hand
side of the equation. Effectively, its operation vionld be to
differentiate a known deflection, and in the beam anaIogy
this operation corresponds to the attempt to obtuin the load
which caused a gi-ren deflection. This procees, however,
cannot be done with accuracy when numerical methods are
used because of the difficulty encountered in the form of
small differences of large numbers. The di&erence equations
which apply at an outer ordinate and, consequently, lead
to an integration process, therefore, have to be used.

D~ATIOX OFTHZmm~ EZSPO~SE

As has been mentioned, some initial values of deflection
are needed before equation (68) can be used. This section
shows how these -dues are obtained. The airplane, just
before gust penetration, is considered to be in level flight,
and all displacements which folIow are gken relative to this
level-flight condition. The initial conditions are that the
vertical displacements, vertictd velocity, wing rotation, and
angular velocity are fdIzero. The gust force can be show-nto
start from zero and, therefore, by JSew-ton’ssecond law the
additional initial condition can be established that the
acceleration must be zero at the start of the response. These
conditions can be satisfied, and the beginnbg of the response
can be found by means of the analysis which follows.
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The initial response is assumed to be given in terms of
four successive ordinates, denoted by w.Z, w-l, wO,and WI;the
W.ordinate is considered, as in the case of the damped oscil-
lator, to locate the origin of time. The first and second
derivatives at the WOordinate. are given by equationa (8)
and (9), respectively. By virtue of the initial conditions
(the vanishing of the deffectiou, velocity, and accelerations
at t= O), the ordinate W. and the derivatives given by equa-
tions (8) and (9) must be zero; therefore, the ordinates w_z
and w-1 arc found to be related to the ordinateWIby thefollow-
ing relations:

W.2=—8WI (69)

W-1=—WI (70)

These relations are general and must apply for deflection
and rotation at each of the spanwiae stations and for the
fusehgo deflection as weJl; that is, the displacements at
t= — 2Emust be minus eight times the displacements at t= e,

and the displacements at t= - emust be tho negative of those
at t=e. Substituting these conditions in equation (64),
taking n as equaI to 1, and using the condition that the dis-
placements are zero at J!=O give the following matrix

equation in terms of the clispIacement at t= c alone:

[[DI+[S21+8[S81] : =[Rll~gl~ (71)

P I

The term 1~~,is zero and therefore does not appear ii this
equation. Solution of thisequation gives the vahws of the dis-
placements that occur at t= e (n=l),

The t.hnwsets of initial displacements required to proceed
with equation (68) are thus known: the set of defections
found at t=c, the zero set at t=O, and the set at t= —e given
by equation (70), or simply tlmnegative of the displacements
which were found at t= e. In the actual ease no displace-
ments are present at t= —e,but these displacements may be
regarded as being of a fictitious nature the onIy purpose of
which is to allow the step-by-step evaluation of the dis-
placements to be started eady.

DERIVATION OF GUST FORCES

The matrix IZJ. which appears in the response equation
(68) is derived as foIlows. From equation (16) sad the
notation of equation (26), the total gust force acting over a
station section at the nth time interval may be given by the
eauation

(72)

The integral in this expression is also of the Duhamel type
and since the i function is expressed by exponential terms
(see equations (21) ), the integral maybe evaluated quickly
by a method similar to that developed in appendix D. The
procedure of computing the gust force by this equation
and then the response is not recommended, however, since
a complete response evahation would have to be made for
each gust considered. Instead tho procedure recommended
is to compute the response due to a sharp-edge gust; then

with this response the response to any gust may be found
directiy by superposition.

Thus for the case of n sharp-edge gust, equation (72)
reducw simply to

L~~=/3clv#n (73)

-ivhera 4. is the value of the + function at t=m. This
equation whrmapplied to each of the spanwise stations leads
directly to the matri.. equation for gust force:

Colouo

Clllul

(74)

C4LV4

cslhvs

If the gust is uniform in the spanwisc direction, the v’s in
this equation will all be equal.

In a similar manner, one-half the gust force acting on the
tail due to a sharp-edge gust may bc shown to bc

Lx,~=BrTo& (75)

where the gust gradient is assumed to bc the same m for
station Oand #t~ is the value of the # function for the ttiil.
This equation and equation (74} may now l.Mcombin~<l to
give the desired matrix 1~.inas follows:

1

Ploo o

0 f?cl)louo

o FCJIVI
lq== ,2 = o j3cJ2u9

n
o /9cJ@a

o flc414v4

o PCJ6VL

In the application of this equation it should be kept in mind
that L~ldoes not begin to act.until the ttiiIstarts to pcnctmto
the gust. The time interval at which pcnet.rution starts

may be taken as the interval nearest to the qwmt ity ‘.
d

COMPUTATIONOFLOADSAND STRESSES

Once the time history of the dieplacements has bwm found
from equation (68), the normal or torque loading on the
wing can be found with little additional work. If tho notu-
tion of equation (66) is used, equation (62) may bc written

(77)

This equation shows that the loading matrix j~ maybe found
by adding an easily computed matrix to the matrix 1~, tlw
vahe of which will have rdready been determined in the
response calculation. The loading matrix IFIis remembered
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to be defined in terms of the normal and torque Ioadhgs, ancI
either of these loadings may be found independently of the
other.

The loadings thus found are considered to be appIied
statically, and the stresses are then found by ordinary static
means. Since the loadings can be computed for any value
of time, the complete stress histoqr of any point in the
structure may be computed. In generil, the maximum stress
at difhrent points in the structure is expected to occur at
different times. Some guide as to the probable time of
occurrence of the most severe stress may be had, however,
if the computed ting deflection is observed. It is Ekely
that maximum stress occurs in the range where wing bending
appears to be most pronounced.

The accelerat,ion of any point in the structure may be
found, if desired, with the aid of equation (5).

C03fPU~~TIONW PROCEDURE

The principal results of the analysis presented in the
previous sections are summarized herein in a step-by%tep
form. Only those steps are listed which mt ually ha-re to be
performed when a determination of structural response for
any airphme is being made. In order to conform with
stm-darcl aircraft practice the use of inch-pound-econd
units throughout is recommended.

The steps are as follows:
Pr&minary steps:

(1) The wing semispan is divided into six sections and a
station is located at the middle of each section (see fig. 3).
The sections m-eproportioned in any convenient manner so
that certain stations vdI fall at concentrated mass locations,
such as engiuas or fuel tanks. Station O is located ne=
where the fuselage intersec~sthe wing and station 5 is located
near the tip. The properties EI, GJ, m, me, and %~2 are then

——

computed at each station.
(2) From the El, (Z7, and X, ~alues determine the [A] and

[B] matrices by the method gi-ren in appendix C.
~3) Compute the gust-force values at the succwsive time

inter~als for both the wing and the tail. (See section
entitled “Derivation of Gust, Forces.”) The # functions
used are taken from equations (21) or @2) for the aspect.
ratios which are nearest to those of the wing and tail, respec-
tively. A time interred that appears satisfactory is one in
the ne@borhood of 1/30 of the estimated natural period
of the fundamental bending mode of the wing.
The recurrence equation:

(4) With the quantities determined in steps (1) and (2),
determine the matrix elements gi~en by equations (A3] to
(.%5)at each of the spantie stations.

(.5) Compute the fuseIage and tail coefEcienta given by
equations (AS) to (Al 1). (See definitions of 311, .312,iifs,
314, .11,, and .31,given by equations (35).)

(6) with the use of the coefficients determined in steps (4)
and (5), set up the following matrices: [D], [S’J [i%], [&J,
fE?],[e], and [E”]. These matrices are ddned in appendix A
and for the most part me found from simple diagonal
matrices of the co~cients determined m steps (4) and (5).
The form, for example, of the [SJ matrices is dlustrated in
table I with randomly chosen numbers. All elments which

TABLE 1.—ILLUSTRATIOX OF THE [AT MATRICES

“2 3 4
----- —--- ---

1
1;10 16

I 9
1

1 I 5
I 6 I
I 1 4
i 4 1
1 1 3

2; 3
i
I 11 1
1 I----- ---— ----- ---—- -----

34 I
1

5 I
1

3 1
I

4
:

3 1 3 I
1 1
I

I
3 1

1
2 1 ~ I

1: d
I [----- ---- ---

Ue not &own are zero. It may be of interest to e.splain
briefly the signitlcance of the -rarious terms that appear in
the matrix. In order to facilitate the explanation the
matrix has been partitioned into se~eral submatrices. The
terms in the upper left-hand box are associated with wkg
bending and the airplane vertical moticn; whereas the terms
in the lower right-hand box are associated with wing torsion
and airplane pitching. The terms tdong the two subdiagomds
seine to couple together the bending and twisting action.
The terms in the first row and fist column are associated
with fuseIage bending. The omission of certain terms in the
matrix -wiUlead to the matrix which applies to the more
simple type of aircraft motion. For example, for Lhecase in
which ordy ring bending and vertical motion are to be
considered, computation of only the terms which make up
the upper left-hand box is sufhcient.

(7) Determine the reciprocal of the [D] matrix and set up
the fo~o~ malmi~equation:

6

w =[D]-l]Q;,

where

(78)

—
—

.-

8 3 8

[QL= [&lw +[811 ~ + [Sal ~ +M m+lLl

I
Y a-l P x -f! v .-a a

in which
6

l~l.=[ell~m-~+[ml w

P %-1

IU these equations the matrices, containing ~, w, and w are _
displacement matrices and are defined in appendix A. The
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matrix ~~1takes into account the forces which develop due
to the “wake effect,” and 1~~1is the gust-force matrix which
is derived in step (3). Equation (78) is seen to give the dis-
placements that occur at time n in terms of the displac.ements
which occurred at the times n– 1, n–2T and n–3,
The initial response:

(8) By use of the matrices given in step (6) and the gust
forces which apply at n= 1, set up the following matri..
equation:

8

[[D] +[SJ+8[S3]] w = [R~l~.1,

v 1

The term IFII does not appear in this equation
zero.

(79)

because it is

(9) Solve equation (79) for the clisplacements. Any con-
venient method, such as the Crout method (see reference 6),
may be used. The displacements found wiI.Ibe the value
of displacements that apply at t= Eor n= 1.

The response:
(10) The response may now be found by successive appli-

cation of equation (78). The response at n= 1 has been
found in step (9); tic response at n=2 is next to be deter-
mined. The values of the displacements in the n – 2 term
of the response equation are all taken to be zero (initial
condition), and the values in the n —3 term are taken aa the
negative of those found in step (9). The gust forces to use
are those which apply at n= 2. The deflections that apply
at n= 2 are then found by matrix algebra. For convenience
the column matrix IQIis evrduated first, and then multiplica-
tion of this cohmm matrix by the reciprocal of the [D] matrix
gives the deflections at n=2. With the newly found deflec-
tions at n= 2 and the deflections at n= 1 and n= O, the
deflections at N=3 can be found, and so forth. This process
is continued until the wing bending appcats to be the most
pronounced.
Wing loading:

(11) With the cleflectionsknown, the value of wing loading
in bending or in torsion can be computed directly from
equation (77). The stressesat any point can then be com-
puted from the wing loading by ordinary static means.
Since the loading may be cornputed at any vahle of timm,
the c.omplete stress hisiolT of any point on the st.ructure
may be computed.

EXAMPLE

As an ilhstration of the method of analysis given in the
present report, the response of a typical two-engine airplane
due to a sharp-edge gust is determined. For brevity the
fuselage is assumed rigid and only vertical displacement
and wing bending are considerecl. The weight variation
over the wing semispan and the equivalent-weight concen-
trations are shown in figure 8. In this figure are shown also
the station locations and the interval covered by each station
section. The solution is made for a forward velocity of
flight of about 210 miles per hour and a gust velocity of 10
feet per second. In tables 2, 3, and 4 are listed, respectively,
the various physictd characteristic and the factors which

$
la 769 6060 1433 382’ 20/ 118lb

~ J?b ~ J6b ~ J6b T. J6b
1 7- J

FIGURE8,—Weight dIstrilmtlon and equivalent mneentrut[ons for csamplc two.engine
ahWafL

TABLE 2.—PHYSICAL CHARACTERISTICS AXD LTA-STEADY
LIFT FACTORS FOR EXAMPLE AIRPL.IXE

),in,.. ...... . ........................ .......................................... 600
!.,in......... .................................................................. W

*> I~h . .............................. ......................................._ 166
,.

], lb/fi: . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0705

I~ mph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
‘ h./m....................... .............. ................................... a7co

),in./w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MI
!,H -------------------- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01
ti. hdf.titi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O.mt!iz
M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l).27G
4 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
n4---------------------------------------------------------------- A&41
). . ........... ........ ..... ......................................... ............ 0.001147
\.... ...... .. . ........ . ..................................... ......... .... 0.381
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ls..m6
F-w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.832XB
h=m .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a3m
h..................................................................................&ml2
i’L------- —----- .............................................................. In G?m

TABLE 3.-# ORDINATES AND GUST-FORCE M .$TRIX FOR
EXAMPLE AIRPL.4NE

I-I
.22105
.26744
.46716
. bs741
.688S8
.02824
. 66WI
.W04
. 70E40

r:“’i;p: ‘E&;iOn
10 0.Za20
11 . 745QS
12 .76216
13 .71707

. 7W30
;f .8c6i3
16 .81674
17 .82500
18 .mW8

ILgl-In

17.w

16.7652

l!l 1811

10.5296 ‘m

I
an4%

7.01964

come from the unsteady lift function, the values of the #
function and the gust-force matrix, and the mahh elements
that art)required for the solution (steps (1) to (6)). The @
function for an aspect ratio of 6 was chosen (SCCequation
(20b)); and the # function for an aspect. ratio of infinity
(equation (22)) was used.
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The [A] matrix as computed from the values of x and 1
Iisted in table 4 is shown in table 5 (a). In the computation
of the q values shown in table 4 for station O, the fusekge
was treated as a concentrated wing mass. This treatment
is allowable since the fuselage is assumed rigid and further
saves the work of computing the 7 values (see equations
(A8)j. The [[A]–[Sol] or [~] matrix, which in this case
applies only to bending and vertical displacement, is shown
in table 5 (b). The equation which is formed from equation
(78) (step (7)) and which involves the reciprocal of [D]
and the [St] and [l?l matrices is shown in table 6. The
equation for computing the initial response (step (8)) is
shown in table 7.

The solution to these equations is shown in figure 9 in

whichdeflection in inches is plotted against spanwise station
points for various intervals of time. For clarity the deflec-
tions for the odd intervak have been Ieft off. From these
curves the consequent wing bending and the mamner in __
which the airplane is swept upward by the gust can be seen.
The time histories of the Ioads (equation (77)) that occur
at each of the spanwise stations are shown in figure 10.
These curves indicate the presence of some second-mode
excitation in the response. The stressesthat occur at stations
O, 1, and 2 are shown in figure 11. The presence of second-
mode excitation is not readily discernible from the stress
curves.

TABLE 4.—MATRIX ELEMENTS FOR EXAMPLE AIRPLAXE

1 st8tInl A\I[c 1 I m m m m 1
I

~

i 0.. mo I

!! :.17.00 ; ! ❑E6ZxllY m%=Xlw –Ill. mw XW 27.m xlw 17.Di52
1%0 –62 emo14

—i.57M15 l&7s3m2
15.733569 m. m

–M. Q66i56
s .16 102 90 —2. 10S675

3.735446
&MIMI

12.2731

! 4 i 1:= .W:;: ] %5 I : n –LMIM62
‘=l==im Imml

5 –. 6W460 7.07269

where

In WIIM

TABLE 5.—THE [d] AND [D] MATRICES FOR EXAMPLE AIRPLANE

[

&Q ~Q. ~

–123.410.07
m.959.i26

–12,W9.WI
2oQ44210
–237.6X1

–121$410.07
6WZ%3.WI

–In X694
* IEi.447

-9. Ln9.MsJ
LCLS9.73SS

(a) The [.4]matrix
m,e4e.726 –@w. m

-l~m94 w 197.447
Iw m. 405 –l@ m. ml

–1~ m. 511 lq m en
2&m. 472 47, aa 326

–& 2422a65 &M7.4w

(b) TJM[Dl matrix

M.Q6Q.726 –Q Em.Ixo
–IZSCK94 5@19i.&-

26Q919.E-lo –IQ m. 611
–l@ m. 511 K5.05a7m

am. .m 47, 4to.8%3
–$ 24223a5 &567. 4$M

2,0M.42M
-%3s9.=90
w mu.4i2

-47, 41a 326
36?6K 46s1

–la am. 19i

gowwlo
–Q,339.mso
am. 47

–47,410.326
*Ire. maO

–Iq 521.197

-%7. WI
LOM.72W

–&242 M&s
&66i.4sea

-lQErLKJ7
4.36%S94m,

–%-7. ml
L05K73S3

-$2422305
am. 4w3

–l& Km.1S7
UW3945 ,

TABLE 6.—RECTJRREXCE EQC-ATIOX FOR RESPOXSE OF EXAMPLE AIRPLAXE

‘KIWI

‘+

o.01EM152 0.0m2M36 –o. W25W13 –o. mm –o. aM20M44
W(I)I o.W2W.3S o.02W4222 U 0H07SJ4 l10320YM6 -a W25WM3

1 ,

o-—-Ii-a002umo
K(2)h I -o. oo2633a13 o.01467ss4 o.@3aw456 !lW24cs62 o.0210m2 II–o.amsW4s ~,
,W(s)l 10, -~ ~ o.0020mea o.cfw6920 a Iwwm a 1~ o. 01m2344
,?r(4)~ -a W2MS44 -a wzmm aomam amszms a4XW4U awmm
,U(s):* ammsm -ammxl -acK&lmM o.oImn# 0.26526111 I.Icwaw ,=

[1

17.E52 ~do)
15.2607

EL%31 ~::
iF,=HO.M%031FI.-1+ Ia 6om

8.&m5 1::1
T.ozm [IC(5),.-I

TABLE 7.—EQUATION FOR INITIAL RESPOXSE OF EXAMPLE AIRPLANE

[

175.9720 -M. 34101 &MK3 -LIS9W 0.2034421 402K0W

1

u(o) 17.S404
–18.34W 120.3#5 –17.25Q60 6.m9x6 -o. W3JE3s II 10&x2S =0) 16.7sa2

10,ixlo &195M3 -17. 2alMa 4Lm –10.S7095 285WT 43?4ZW
–1.2599CS &619i46 –10S7095 I& 6436i -4 i#.033 o. SW#’a

‘@ =Im (u 22105) m *11
m(a) m6296

0.2094421 –o. Sa38ma 285iu47 4741M3 ii- –I. 0m120 W(4) a 774S5
-o. 02a7@61 0.105473S -o. 3242M7 o.sK#9 -L 0M120 L413172 :W(6)1 7.msw



160 REPORrr 10lbNATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

.5%ffbn

FIGURE9.—Respone8of emrnple eirphne due to ]0-foo&psr~d ~ge gust.
U= 210mile9 pcr hour.
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FIGmE10,–Time history of et~tlon lcade for exemple alrphne.
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FIGURE 11.—Bendfngstress developed in esample e.frpfarredue to lC-foot-per@cond
ehmp~dge gust.

DISCUSSION

A method for computing thtistrw.scstind structmwl action
of an airplane flying through a gust has been giwm. The
method is based on aerodynamic strip theory, but over-till
corrcctious for compressibility and tl~rce-dinlel~sio~~alcffcrts
can be made as is indicated by a suggested correction pr-
ocedure. Some tail forces are included in the analysis and
others might equally well be inch~ded if their chamctrr is
known.

The analysis as given is general enough to hdudc the wing
bending and twisting flexibiIities and the fuselage flexibility.
In a good many cases that may be considered, however, tho
last two of th~ flexibilitie-smay prove to be of negligible hn-
por~ance. Some invwtigatom have indicated (see reference
1) that, unless the forward speed of t-heairplfinc approaches
the flutt~. or divergence speed of the wing, the torsional dcfor-
mqtions ~do not have to be included. Likewise, in cases in
Which the fuselage is rather still, the e.fhwtof fuselage flexi-
bility on the response may be rather small. In such cases
in which either or both of these flexibilities may bc ignorwl,
the analysis is, of course, simplified and shortened. The
example presented in the previous section illustrates this
point. In the present state of understanding of gust-
response analysis, enough information is not available to
indicate definitdy when and when not to incduclcthe various
flexibilities of the aircraft structure. The analysis in the
present report may provide a usefuI means to assess their
importance. The extent, for example, to which coupling
exists between wing bending and wing torsion in any par-
ticular case may be seen by comparing the displnccments
obtained from the coupling terms with the displmcwnents
obtained from the noncoupling terms.

Both the symmetrical and antisymmetric.alt.yprs of gusts
can be handled by the. analysis given in the present report,
In general, the.symmetrical gust is expected to produce the
most severe stress condition, and therefore only the matrices
which apply for a symmetrical case have been given. Thwc
matrices were derived by using the boundary conditions for
the symmetrical deformation of a freo-free beam. The cnsc
of an antisymmetrical gust can be t.rmteclby repl~cing thwe
matrices by the ones which apply for the antisymmetricil
deformation of a,free-free beam. The case of u general un-
symmetrical gust can be hmdled by first breaking the gust
into two parts—a symmetrical part and an antisymmctriml
par&-and then treating each part indcpendent,ly.

It might be of intcrest at this point to comp~~r~briefly Iho
matri~ method to a modal-function solution, 011(!of th(!

chief disadvantages of the modal-function solution is that the
modes and frequencies of natural vibration of the structur{]
have to be computecl in adwnce. Then, a large number of
integrals which involve thesemoclcshave to be determinw] in
order to- set up the problem. ln the present analysis thu
physicaI properties of the airplane are used directly in the
setting-up of the problem. Further, in order to maku the



A RECCRREXCE 3L4= SOLUTIOX FOR THE DYNAMIC RESPONSE OF AIRCRLFT m- GUSTS 161

moclal solution practical the higher modes must be dropped
and ordy the basic or fundamental modes can be used.
Hence, the success of the ana&s depends to a large degree
on how well single modal functions, one mode each for bend-
ing and torsion, can represent the airpkme distortion. In
the analysis of the present report the distortions are found for
all practiral purposes as the correct dues at a number of
spwm-isestations, at least to within the accuracy to which the
aerodynamic and structural parameters are known. ALsoJin
this analysis, probably the most clitlicult operation is the
inversion of the matrix [D], which is actually not. a very
involved operation, especially when done by the quick and
s.ystematic procedure afforded by the Crout method (refer-
ence 6j.

The present report indicates the methods for determining
the response for both a sharp-edge gust and a gust of arbitrary
shape. Probably the best approach, however, is to compute
only the response for a sharp-edge gust, since the response for
any arbitrary gust may thereafter be computed by means of
Duhamel’s integral. To follow such a procedure would also
swre a great amount of work in the evaluation of the gust
forces.

One of the important features of the method of analysis
presented is that it is not restricted to the gust problem.
The approach used may be used to treat other problems of a
sindar nature. The landing problem can be handled by
simply replacing the distributed gust force by the con-
centrated landing forces. In the Ianding problem aIso, the
probIem is set up much more easily since the aerodmc
terms do not ordinarily have to be included. However, the

Ia.nding problem in vrhich aerodynamic forces are included
may be sol-redby this method if desired. The approach used
herein may also be used to solve the problem of the release of
hea~objects such as bombs. This problem couId be consid-
ered the inverse of the gust problem; a load is released rather
than encountered. Some maneurerhg problems, such as the
sudden deflection of the aiIerons, and a number of other
transient problems mi@t E&o be treated by an approach
simiku-to that gi~en in the present report.

CONCLUDINGREMARKS

A method for comput ing the stressesand structural response
of an aircraft flying through a gust has been presented. The
method is based on aerodynamic strip theory, but compres-
sibility and three-dimensiomd effects can be taken into
account zppro.ximately by means of over-all corrections. The
method tak?s into account wing bending and twisting
deformations, fusekige deflection, vertical and pitching
motion of the airplane, and some tail forces. A sharp-edge
gust or a gust of arbitrary shape in the spanwise or flight
directions may be treated. A suggested computatiomd pro-
cedure is given to aid in the application of the method to any
specitk case.

The possibilities of applying the method to a variety of-
transient aircraft problems, such as landing, are brought out.
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APPENDIX A

DEFINITIONSOF MATRICESUSEDIN ANALYSIS

For convenience in presentation, most of the matrices and
matrix ekments that me used in the anaIysis are defined in
this appendix. The matrices are presented without deriva-
tions, but their origin should become evident by a study of
the analysis.

Matrioes.-The various matrices that are used in the
analysis are defined as follows for the case in which the wing
semispan is divided into six sections (the elements which
are used in the matrices being defined in the- subsequent
section):

Iw(o)l
w(1)

M=

p(l)

$?(2)

P(3)

Q(4)

p(5)

P(6)

M=

1!?1=

p(o)
p(l)

p(2)

p(3)

p(4)

P(5)

g(o)

g(l)

q(2)

q(3)

q(4)

g(5)

IPI= 1;[

IQl

[A]

I
~Seeappendix C for definitions.

[B]
—.

[1
000

[Cl= O [A] O

Oo[q

[a=[[cl–[sol]

[d= !
‘qm)

qi(3)

ni(4)

m(5:

m’(q+m’
-

qi’(v

7N’C-4

71i’(3)

[V,’]

1 T1’(4)

T{’(5).

[1
Jq(o)+#f

vi(l)

[v,] =
V{(2)

Yi(3)

VJ4)

vi(5)

‘Pi’(o)+ /.4/

v{’(l)

vf’(2)

vi’(d)

vi’(4)

vff(5;
162
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7t

o

0

0

0

0

0

0

Lr,J=Lr,000001

Lr,’J=Lri’ 0000 0]

[1

Ff LrtJLrf’j

[s,]= 17{1[nil [~f’1

!Zl [n] [U’]

11

–x,

o

0

0

0

0

1

1

1

1

SOLUTION FOB THE )YN.4?41C RESPOA-SE OF uRCRAF17 IN GUSTS 163 _.

[t?]=

1
() c

a—z~

() c

a–z*

() c

a—z~

(=-34 I

[1
10

,RJ= I 1[ m

btl [a-$j

II
g(o)

g(l)

M=
g(2)

g(3)

g(4)

g(5)

[!
g’(o)

g’(l)

k’]=
g’(2)

g’(3)

g’(4)

<(9

[R-J= [1?M w
o k] k’]
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Matrix elements. —The matrix elements which appear in

the matricw defined in the previous section are exprewed

for convenience in terms of the folIowing common factors:

in which the last four are associated with the @ function for
the wing. (See equation (23).) With these factors the ele-
ments that must be computed at each spanwise station are

(A2)

(A3)

(A4)

(A5) :

The coefficients which must be computed for the fuselage
and tailare expressed in part in terms of the following

in which the last four are

appropriate to the tail.

&b=—ytalt I (A6)

&o=7c2mt

associated with the @ functions
Also used are the generalized

masses given by equations (35) and the vaIue 61as given in
eauation (14). With these factors the coefficients for the

(A7a)



M*
‘r8’=——~ +fa’

J

(A8it)

(A8b)

(A%)
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5Mkpit= ——xJ1’g

4M4——— x,$’P2’= g

M,
Pa’=~—xJ3’

(A9a)

(A9b)

.

(Al OiL)

(Alol))

(.411)



APPENDIX B

DERIVATION OF DIFFERENCE EQUATIONS

In this appendix the parabolic and cubic ditlerence

equationa for the fit and second deriwd i~es of a function

are derived.

ParaboLic equations.—For the parabolic difference equa-

tion, consider the function show-n in figure 12(a). This
function is assumed to be replaced by the arc of a parabola
which passes through the three ordinatea a, b, and c. It
can be verfied reaclily that such a curve can be given by
the equation

Th~ first and second deri~atives of this equation at y=e are
given by the equations

d~w–1 c—21)+a
dy’ .,= e’ (B3)

These equations are the standard difference equations for
the first and second derivatives of a function. The deriva-
tives are purposely taken at the middle of the three ordinates
because the resulting equations are suitable for use in the
simp1i6cation of many probkns. If the deri~at-ive had
been taken at an outer ordinate, the appro.xirnationafforded
would not be accurate enough to be useful.

Cubic equations.-The cubic difference equations may be
derived in a manner similar to that for the paraboLic equa-
tions. In this case four successi~e ordinates are used. (See
fig. 12(bj.) The function ia replaced by a thirddegree
curve which ia given by the equation

Because of the increase in accuracy that results km the
use of a higherdegree curve, the fit and second deri~atives
may be taken at an outer ordinate with an accuracy which
is about equivalent to that given by equations (B?) and
(B3). The derivatives at y=3~ are

dw
1

=lld—18c+9b —2a
G ,.3, 6E (m)

(B6)

If taken at the third of the four ordiuates, the derivatives are

dw
1

2d+3c–6b+a
G .ti= 6e

(B7)

(B8)

Equations (B5) and (B6) are used in the derivation of the
response equation for an airplane in a gust. Equations @7)
and (B8) are useful in the clerivation of the initial response.
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APPENDIX C

DERIVATION OF MATRIX EQUATIONS OF EQUILIBRIUM

In this appendix the matrix equations

[A]lwl=lp[ (cl)

PIM=I!Z[ (C2)

for symmetrical bending and twisting of a free-free beam
under normaI and torsional loads are derived.

Bending.-In accordance with the assumptions made in
this report the wing semispan is considered to be divided into
six sections with a station point at the center of each section
(see fig. 3). The inertia force of the mass and the aerody-
namic force that develops over each section is in turn assumed
to be concentrated at the respective station points. The
wing is thus effectively a beam bending under six concen-
trated loads and, aa such, will have a Iinearly varying mo-
ment between each station. The following general equation

for the moment between the i and i+ 1 stations may therefore

be written:
M=a, +biy

where

“=[l+&lM(i’-*

(C3)

M(i+l)

bf=~1 [34(;+ I)–M(i)]

in which y(i) is the abscissa to the i station.
The wing is further assumed to have a linear l/EI varia-

tiou between stations with the correct value of l/EI at each
station. This type of variation would lead to an El curve
which foIIows very closely the true stiffness curve of the
wing and which of course has the correct values of EI at
each statiom A general equation for l/EI may therefore

(C4)

With equation (C3) and equation (C4) the well-knowm
expression relating deflection to moment for a beam may be
written

~=~=(a,+b,y)(c, +d,y) (C5)

The deflection may be found most conveniently from this
equation by use of the engineering beam theorem which
states that the deflection of one point on a beam relative to
the tangent of the deflection curve at another point is equal
to the moment about the displaced point of the M/El
diagram between the two points. In this case symmetriwd
loading is being considered and therefore the boundary con-
dition at the center line is that the slope must bc zero; the
deflection of each station relative to this point therefore may
be readily computed. Fortunately, bccausc of the conven-
ient analytical representation of M/EI, these cleffcctionsmay
be found by exact integration, The deflection, for cxarnplc,
at station 4 due to the M/EI variation between statious i

and i+ 1 may be given by the exprewion:

J

U(i+l)

(a,+ b,y)(c,+diy)[y(4) –yldv
Y(t)

Consideration of all the expressions of this sort leads 10 the
totsl deflection of each station relative to the wing centm
line. From this deflection the more useful deflection rcltitivc
to station O can be readily deterrniued. The vrducs of the
deflection thus obtained are founcl to be expressible by the
following matrix equation:

(C6)

where the matrix elements are defined by the equat.ions:

16s
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in which

(CiC)

(C7CI)

(C7e)

(C8)

The moment M(5) does not appear in equation (C6) because the boundary condition is used so that the moment at statiou
5 is zero. For convenience equation (C6) raay be given in the abbreviated form:

(C9)

From the fire loa& p(l), P(2), p(3), P(4), and p(5), the moment at each station may be found. The equations
relating the moments to the loads can be shown to be given by the matrk equation:

M(o)

[

L h,+k~ ~,+~,+k~ h,+k,+k,+h~ h,+hz+k~+kd+~,l

M(l) o AZ L2+ AS

LV(2) =b o 0 ha

M(3) 00 0

M(4) 00 0

whichcan be abbreviated simply

lM~=b[H,] ]pl (CH)

Substitution of equation (Cl 1) into equation (G9) gives

l@l=E&Wll [al Id (C12)

Multiplication through by the reciprocal of —J;o) [~11t@?l

p(l)

p(2)

p(3) (Clo)

p(4)

p(5)

~~m[~,][HJ]-’\ml=lPl~[ (C13)

This equation thus gives the loads in terms of the deflection
of each station relative to station O. h the case under
consideration, ho-ivever, the wing is a free body capable of
motion through space and therefore to set up properly the
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equations of motion the deffection must be given relative
to a fixed datum line. This datum line is most conveniently
located as the position of the wing prior to action of the
disturbing loads. Consideration of sketch 3

Sromxi&

will show therefore that the foIIowing relation must exist:

Z=w—’w(o) (C14)

Substitution of this equation into equation (Cl 3) gives

‘a H ] [E72]]-’1W-W(0)I=IPIb8 [[ 1 (C15)

‘1(0) [[HJ [HJ’1 is now written inTO ~d ~ the derivation b~

the general form:

‘+ [[HI][Ml] (C16)

Thus with th~ equation, equation (C15) may be trans-
formed to the form:

W)(o)

w(l) p(l)

W(2) p(2)

W(3) = p(3)

W(4) p(4)

W(5) P(s)

where
bol=–(b,l+bla+bla+bl,+bis)

bm=–(blz+b,~+bza+b,,+bn)

bm=–(bla+baa+ba+ ba,+bd

be,=-(b,,+b,,+ba,+bti+b,s)

bu=–(bl~+bah+ ba~+b46+b~

(C17)

(C18)

Equation (C17) is noted to express till the loads except
p(0) in terms of the six deflections. h additiomd equation

in which P(O) is expressed ako in tcrrns of the deflections

may be established by use of the condition tlmt all the loads

acting on the wing semispan must add up to equal zrro;

that is,

p(0) +p(l)+Z@)+P(q)+f l(A)+ P(@=O (c L9)

This condition autonmtictilly satisfies the two boundary
conditions that the shear must be zero at the tip and center
line of the wing. Thus if the five equations represented by
equation (C17) are added, and usc is made of cquatious
(C18) and (C19), the following equation resuIts:

brew(0)+ b,,w(l)+ boaw(2)+ bosw(3)+ bo,~(4)+ bcuw(5)=p(0)

where

bm=–(b,,+boa+bw+ bw+bd

This equation may now be combined with equ8tiOIl

tO give finely

“bm fi~l boa bm bo, bos

1

‘w(o) P(o)

bO1 b,, blz b*8 b,+ b,~ w(1) p(1)

bw bln ba~ bn b*, bm w(2) p(2)

This equation is thus the desired matrix eauation

(Cq

(C21)

(C17)

(C22)

which
relates the normal loads to the deflection. if the square
matrix is denoted by [A], the equation may be abbreviated
conveniently to the form

[A] Iwl=]pl (C23)

which is the form used in the text. (See equation (40).)
As an aid in computational work, a summary of the steps

involved in the determination of [A] is given to close this
section:

(1) ,From tbe 1 values at the respective stations, oomputo
the coefficients given by equations (C8).

(2) Wi~h these coefficients determine t.hcmatrix clcmc.nts
given by equations (C7). The9e elements form the matrix
[Hl] which is defined by equations (C6) and (CO),

(3) Muhiply the [H,] matrix by the [11,]matrk, which is
defined by equations (C1O) and Cll ). The result should be
a symmetrical matrix; this property serves as a very uacful
computational check.

(4) invert the & [[H,] [HJ] matrix. This matrix should

also be symmetricrd. (The Crout method (refcrencc 6)
ties as a rather quick and useful met-mefor performing thti
inversion.)



-4 RECURRENCE MATRLY SOLUTION FOR THE DYNAMIC RESPONSE OF AIRCRAFT IX GUSTS 171

(5) Add the cohmns of the inwrkd matrix and pIace the
mgative of these sums at the top of their respecti~e cohmms
such as to form a new row of matrix elements. Then add
these sums and phwe the negative of the sum as the &t
matrir e]ement of the newly formed row. A new column
headed by this due is thus in the making. FilI in the re-
mainder of the cohmm with the respective ehunents of the
new row; that is, the appropriate values should be inwrted to
make the Inatrk s-yrnmetrical. This fired matrix is the de-
sired [A] matrix.

Torsion.-For the torsional case the torque loads q are
assumed to be concentrated at the stations just as in the
case for the normal loads ?. Consideration then of the fol-
lowing exampIe torque dk-~am (sketch 4

&

~KETCE 4.

wilI show that the following equations must apply:

q(o)= –T(1)

g(l)= T(l)– T(2)

*(q= T(~)_7y3)

q(3)= T(3)–T(4)

q(4)= T(4)– T(5)

CZ(5)=T(5)

where T(i) represents the total torque present in the i interd.
No torque exists between the wing center line and station O.

To aid in the derivation, the assumption is made that.
l/GJ Taries linearIy between stations. A t3Tical T/GJ
diagram between, say, the i – 1 and the i stations would
appear as in sketch 5:

n-a

i-l i
sKlmcEs.

‘p T he fact may be ob-From the differential relation ~== t

served that the change in angle of twist between two stations
is equal to the area of the T/GJ diagram between the two
stations; therefore,

[

T(i) T(i)~(i)–~(~– 1)=% GJ(i– 1) ‘QJ(iI
1

(CM)

If the ,notation
2G 1

~’=K, 1 ~ 1
J(i– 1) J(i) (C26)

is employed, equation (C25j may be written

T(i) =~,[W(i) –q(i – 1)] (c~7)

~ppIication of this equation to each of the smmwise stations

gives the following <uations for T

T(l)=jl [q(l)–@(o)]

T(2)=j2 [p(z) –w(l)]

T(3)=j3 [q(3)–p(2)]

T(4)=j, [q(4)–q(3)]

T(5)=j, [q(5)–q(4)]

Substitution now of these equations into equations (C2~)
gives the desired equations relating the torque loads to the
angle of twist. The equations thus found can be gi~en in
the matrix form:

jl —i o 0

–i tiI+h) –j2 O

0 —j2 (j2+ jgl —ja

00 –j3 (ja+fl

o 0“

o 0

0 0

—i% o

00 0 –i ti4+j5) —j5

,0 0 0 0 –i5 J-6.

which can be abbreviated to

[Bl 1PI=I!71

p(o) q(o)’

p(l) do

V(2) q(~]
.

$0(3) m

$0(4) g(4)

m ,q(5)

(C30)

the form used in the test. (See equation (41).) Thus all

that is involwd in the computation of the matrk [1?] is the

emduation of the matrix elements by means of equa-
tion (C26).

.—



APPENDIX D

ItECUEItENCE EQUATION FOR THE EVALUATION OF DUHAMEL’S INTEGRAL INVOLVING AN EXPONENTIAL KERNEL

The derivation of a rather simple recurrence relation for

the step-by-step evaluation of the three unsteady lift inte-

grals appearing in equation (25) is presented. This deriva-

tion is made possible because the kernels of the integraIs are

expressible in exponentird form.

From equation (23) the fit and second derivatives of the

@ function maybe written

(D 1)

(D2)

where

With these equationa the three integrals of equation (25)

may be combined conveniently into the following single

integral denoted by 1;:

1,=1{6’’c’w-F’~’2u+i”~c’’(%-:)l~}’-’(7)d)d’
(D3)

For convenience the notation

‘={*’’c’w-Fo’czu+&o”c2’(:-:)l’} “)

is introduced and thus equation (D3) becomes

or

Mathematically, the integral in this equation may be
interpreted to represent the area under the function given

as a product of Y and e77. ln accordance with numerical

evaluation processes, the interval O to tmay be divided into
a number of time stations of intervrd e. The product of
Y and w may then be found at each of the time stations
and from these products the area under the curve may be
determined in fwst approximation by the trapezoidal method
of detemniningareas. Thus, if the time station n corresponds
to time t, the expre&9ionfor 1’ may be approximated as
follows:

where YO does not appear since the initial conditions arc
used that the deflection w and rotation P are zero at t=O,

and therefore Y. is zero. (See equation (D4).) More ac-
curate methods, such as Simpson’s method, could l.wused
for determining the area under the curve, but becuuse of the
small interval chosen the consequent increase in accuracy is
m@igible. If the notation

Fn=~e-’’’’IY1e~ +Y2e*+ . . . +Y%_le’(”-l)’] (D7)

is introduced, equation @6) may be writtm simply

Im=Fs+; Y“ @8)

If equation (D5) is expanded similarly, only for an upper
limit of t– e,the expanded result would be

[
I._l =ee-’(n-l)’ Yle~+ Y~e’&+ . . . + Y.-a e’(s-ag+

~ Ym_le7(n-Ue
1

(D9)

By anaIogy with equation (D7), however,

Ffl_l =~e-’(’ ‘l)~[ylp+yze?z<+ . . . + Yn_ze’(’-~’] (D1O)

and therefore equation (D9) becomes

Ifl-l=F=_l+; Y,_l (Dll)

A study of equations (D7) and (DI O)shows that the follow-
ing relation must exist:

FE=e-y’F._l+~-YeYn-l (D12)

Now, if equation (D4) is used to rewrite Y. and I’.-l in
equations (D8) tmd (D 12), the value of Jfl may be given
finally by the equation:

In= Fm+#o@w=-;Pcle
[L’60+c(:-9W’~ ‘D13)

where

Fm=e-~’Fm-l+&o~e-~’@clw. -l–

. [ 0 (:-9+-’ ‘D”)pclce-~” U~ +C

The value of the unsteady lift integrals is thus given by
equation (D 13). & regards the analysis given in tbc
present report.,W.-I and pX_lare the values of deflection and
rotation which have, say, just been determined from the
recurrence equation for response, The value Fti-l was aIso
established and therefore I’mcan be determined as a definito
qmmtity. The value 1. is thus seen to be given in terms of
the known F. and in terms of W*and pmwhich arc the nmt
values to be evaluated from the recurrence equation.



APPENDIX E

MATRIX ALGEBRA

This appendix is written for those not fam fifi ma~ notations or mat~ me~ods” ~ ‘e ‘ati algebm ‘ecas~ . —
for the understanding of this report is described hereinafter by way of examples.

Matrix definition.-Some of the basic types of matrices are illustrated by the following arbitrary matrices which are of —
the third order:

The column matrix

The row matrix

The square matrix

The diagonal matrix

The identity matrix

L2

[

2

1

–1

[

4

0

0

[

1

0

0

–3

–3

2

—1

o

3

0

IJ

1

–2

31

1

0

0

–1 :

0

1

0

1

EIement definition.-Eaoh of the terms that appear in a matrix is ddined as an element. Its position is usually

denoted in a row by the number of terms from the left end in a-cohmm by the number of terms horn the top.

Matrix addition.-The addition of two matrices produces a single matrix. Addition is performed by simply adding -

together corresponding elements. l?or examp~e,

[:: :I+E ‘( 3=[ :3

hltiplication of a matrix by a scalar number.-In the multiplication of a matrix by a scahu number every eIement in
the matrix is multiplied by the number. For example,

~[: : :]=[: ::1

173
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Multiplication of a column matrix by a row matrix,-The product of a column matrix and a row matrix is equal to the

sum of the products of the corresponding elemente. For example,

[2

Multiplication of a column matrix
produces a column mat.rk. Consider

–3 1]: 2=(2 X2)+( –3X1)+[1X(–4)]=–3

1

–4

by a square matrix,-The multiplication of a column matrix by a square matrix
the following set of three simultaneous equations:

2#1—3y2+- y3=#1

y1+Zi2—2y3=a2

–?/l— I/a+ sys=% 1

The procedure adopted in matrix algebra is to write these equations in the matri~ form

(El)

[:: +1 : = ;

(332)

where t,homultiplicat.ion of the IvI column matrix by each row in the square matrix produces the respective elemen(S
in the Ial column matrix. (See multiplication of a column matrix by a row matrix.)

In order to simplify the presentation of an analysis, the symbolic or abbreviated matrix form is used quite often.
The symbolic form of equation (E2) is simply

[M lYl=l~l (E3)

The determination of Ial by the multiplication of Iyl by [la is illustrated with tirbit-raryvalues of y, say yl=4, yz=5,
and y~= 6, by the following equation:

[1

2 –3 1 4 (2X4)+(–3X5)+ (1X6) –1 a,

1 2 –2 5 = (1X4)+ (2X5)+(–2X6) = 2 = az m)

—1 —1 3 6 (–1X4)+(–1X5)+ (3X6) 9 a,

Multiplication of a square matrix by a square matrix’.-The multiplication of two square matrices produces a square
matrix, Mult.iplicaticm is performed by Iettkg the mult.ipIying matrk operate, as in the prece(?ing section, on each
of the successive columns in the matrix being multiplied to produce corresponding successive columns in the product
matrix. For example,

[E:W‘14=[:-1: ‘:1 ‘“5)

Order of multiplication,-h general tho commutative multiplication lavi of ordinary algebra. does not hold in
matrix methods; that is,

IAIIBI#1.Bl~A[

Therefore, whenever the product of seved matrices is indicated, these matrices must be multiplied together without
changing their order.
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Matrix partitioning and submatrices.-A matri.s may be
partitioned or divided at will into smaIIer matrices For
esample, the left-hand side of equation (E4) may be parti-
tioned as follows:

~:j:--$l;i

The matrices m-hich are formed by the dividing Iines are
mUed submatrices. These subrnatrices may be treated
as though they were elements vihen matrix operations me
performed. For exa.mple,with the notation

a=~—3 lJ

b=
—1

‘=[ ‘ 1
.2—~
–1 3

5
d=

6

the muhiplication of the foregoing partitioned matrix is as
follows :

[1
~la4 8+ad

---- .
b! C d 4b+cd

The reciprocal of a matrix and the identity matrix,-By
or&nary algebraic methods the formal operation invol~ed
in the schtion for z of the equation

~.a

is the multiplication through by the reciprocal of m; thus,

~=m-la

The sameformal operation maybe applied to matrisequationa.
For example, the solution for Iyl in equation (E3) ia simply

lvl=[~w-’l~l

where [.lll-l is the reciproctd, or the inverse, of [-ii].

The reciprocal of a matrix is found as the matri.. which

satisfies either of the equivalent equations

[M-1 [M’j-’=[~

where [q is the identity matrix. For equations (IZ2 j and
(E3), the reciprocal of [Ml is found as the matrix vrbich
satisfies the equation

If this equation is considered in relation to equations @l},
(Ez), and (E5), the dues of b,, b,, and b, would simpIy be
values of VI, vZ, and ys which satisfy equation (?31) for
al= 1, az=O, and tZ3=0; cl, CZ,and C3would be the V&duesfOr
al=O, az=l, and as=O; and di, dy, and ds would be the
values for al= 0, az=O, and as= 1. For this example, the
scdutions are

b,=; 2cl=—
3 d,=;

b3=;
5

C8=E d,=;

The Crout method (reference 6) provides a very quick and
convenient method for determining these solutions.

The determination of u by the operation [JM-’ on [al is
dlustrated as folIows for a,= – 1, a*=2, and aa=9:

[1 I

484 ‘–Ii ‘4’
1 I

E ‘1
7 5 2= 5‘ (lzIl) “ “:

157 ,9,6

The operation performed by this equation CRUbe seen to be .._
the inverse operation of equation (lM).
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