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THEORY OF WING SECTIONS OF ARBITRARY SHAPE

By TEEODORE THRODORSEN

SUMMARY

This paper presents a solution of the problem of the
theoretical flow of a frictionless incompressible flwid
past airfoils of arbitrary forms. The velocity of the 2-
dimensional flow 18 explicitly expressed for any point
at the surface, and for any orieniation, by an exact
expression confaining a number of parameters which are
functions of the form only and which may be evaluated by
convenient graphical methods. The method 18 particu-
larly simple and convenient for bodies of streamline
forms. The results have been applied to typical airfoils
and compared with experimental data.

INTRODUCTION

The theory of airfoils is of vital importance in aero-
nautics. It is true that the limit of perfection as
regards efficiency has almost been reached. This
atteinment is a result of persistent and extensive
testing by a large number of institutions rather than
of the fact that the important design factors are known.
Without the knowledge of the theory of the air flow
around airfoils it is well-nigh impossible to judge or
interpret the results of experimental work intelligently
or to make other than random improvements at the
expense of much useless testing.

A science can develop on & purely experimental basis
only for a certain time. Theory is a process of sys-
tematic arrangement and simplification of known. facts.
As long as the facts are few and obvious no theory is
necessary, but when they become many and less simple
theory is needed. Although the experimenting itself
may require little effort, it is, however, often exceed-
ingly difficult to analyze the results of even simple
experiments. . There exists, therefore, always a ten-
dency to produce more test results than can be digested
by theory or applied by industry. A large number of
investigations are carried on with little regard for the
theory and much testing of airfoils is done with insuffi-
cient knowledge of the ultimate possibilities. This
state of affairs is due largely to the very common belief
that the theory of the actual airfoil necessarily would
be approximate, clumsy, and awkward, and therefore
useless for nearly all purposes.

The various types of airfoils exhibit quite different
properties, and it is one of the objects of aerodynamical
science to detect and define in precise manner the fac-

tors contributing to the perfection of the airfoil.
Above all, we must work toward the end of obtaining
& thorough understanding of the ideal case, which is
the ultimate limit of performance. We may then
attempt to specify and define the nature of the devia-
tions from the ideal case.

No method has been available for the determination
of the potential flow around an arbitrary thick wing
section. The exclusive object of the following report
is to present a method by which the flow velocity at
any point along the surface of & thick airfoil may be
determined with any desired accuracy. The velocity
of the potential flow around the thick airfoil has been
expressed by an exact formula, no approximation hav-
ing been made in the analysis. The evaluation for
specific cases, however, requires a graphical determi-
nation of some auxiliary parameters. Since the airfoil
is perfectly arbifrary, it is, of course, obvious that
graphical methods are to some extent unavoidable.

Curiously enough, the theory of actual airfoils as
presented in this report has been brought into a much
simpler form than bas hitherto been the case with the
theory of thin airfoils. In the theory of thin airfoils
certain approximations have restricted its application
to small cambers only. This undesirable feature has
been avoided, and the results obtained in this report
have a complete applicability to airfoils of any camber
and thickness. :

The author has pointed out in an earlier report that
another difficulty exists in the theory of thin airfoils.
It consists in the fact that in potential flow the velocity
at the leading edge is infinite at all angles except one.
This particular angle at which the theory actually
applies has been defined as the ideal angle of attack.
In the present work we shall not go any further into
this theory, since it is included in the following theory
as a special case of rather limited practical importance.

THEORY OF THICK AIRFOILS

In the theory of functions there is a theorem by
Riemann ! which shows that it is always possible to
transform the potential field around any closed con-
tour into the potential field around a circle. The
direct transformation of an airfoil into a circle may,

1 Handbuch der Physik, Band III, p. 245, Fundamentalsatz der konformen
Abbfldung.
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for analytical purposes, conveniently be performed in
two steps. The first step is to transform the airfoil into
a curve which ordinarily does not d.lﬁer greatly from d
circle by the transformation

' &
§=2'+ @M

where { is a complex quantity defining the points in the
plane describing the flow around the airfoil and 2z’
is another complex quantity defining the points in the
plane describing the flow around the almost circular
curve. The constant ¢ is of dimension length and is
merely a geometrical scale factor. In the following
theory, attention is directed to the fact that the shape
of the curve resulting from transformation (I) is arbi-
trary, since the airfoil shape is arbitrary. At a later
point we shall transform this curve into a circle.
The 2z’ and the ¢ planes are shown superposed in
Figure 1. It will be noticed that at great distances

F16URE L—Showing the transformation from a noncircalar curve B Into an alrfofl

from the origin z’—{; that is, both flows are similar
at infinity. In particular, the “angle of attack,”
defined as the direction of flow at infinitity with
respect to some fixed reference line in the body, is
identical in both flows. Near the origin the two flows
are entirely different; one value of 2’ is, however,
uniquely associated with a given value of ¢ by the
relation (I).

‘We shall, at a later point, determine the flow in the
2’ plane. At present we shall determine the appear-
ance of the airfoil when the almost circular curve B
is given, or what amounts to the same thing, we shall
determine the curve B when the airfoil is given. In
Figure 1, C'is a circle of unit radius. Since the matter
of dimensions is rather important, we shall avoid
confusion in the following by adhering to this length
as unity. The curve B is uniquely given by the rela-
tion z'=ae*t¥ where y is & known or unknown rea]
function of the angle § where 6 varies from zero to 2«
and 1 is the imaginary unit. Since the airfoil surface
corresponds to the surface of the curve, the former is
given from relation (I) as

{=q ¢4 q g0
or
{=a(e*+e7¥) cos 0+1 a(e?—e¥) gin 6
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This relation may further be conveniently expressed
in hyperbolic functions

¢£=2a cosh ¥ cos ¢+ 2¢a sinh ¢ sin ¢

Since {=z+1y, the coordinates of the airfoil (z, ¥) are
given by
z=2a cosh  cos §

=2 sinh ¢ sin 0 (D)

We obtain a relation between 6 and the coordinates
of the airfoil as follows:

z
cosh "l'=2a cos @

y
sih ¥=5-5%

and since cosh? Y —sinh? ¢ =1

(zaeens) ~(zardra) =
2a cos 0 2a sin 8

or developed

2 gin? o=p+\/p’_+<—%)_’
-(3)-)

Similarly we obtain a relation between y and the
coordinates of the airfoil by using the equation

z 2 y 3
<2a cosh z,l/> +(2a ginh n,b) =1
or developed
TV
2 sinh? y = —p+—J{p’+<%>

Since ¢ is generally small for wing sections it may be
more conveniently expressed for purposes of calcu-

(I1I)

where

Iv)

lation as a series in terms of ~—=— as follows:

2asm0
We have
ef=ginh ¢ +cosh ¢

—sginh ¢+ I T ol §
=1+sinh ¢+1 sinb? g+ - -

ye=log, (1+sinh g+ sinb? g+ - - )

—sinh y— 3 sinh® g+ - - -

2asm0 6<2asm0> +- (IVa)

[for ¢ < log, 2]

We are now in a position to reproduce the conformal
representation of an airfoil in the 2’ plane, since for
each point of the airfoil (z, ¥) both 6 and ¢ have been
determined.



THEORY OF WING SECTIONS OF ARBITRARY SHAPH

The curves ¥ =constant are ellipses in the ¢ plane

' z 3 y 3
(20, cosh 1,!/) +(2a sinh 1,!/) =1
The foci are located at (+2a, 0).

The radius of curva-

. .. 2a sinh )2
ture at the end of the major axis is p=-(2?05h?-
_ (sinh y)?
or “coshy =y
= /‘2% (for small )

This relation is useful for the determination of ¢ near
the nose and the tail.
The leading edge, corresponding to =0, islocated at

5P

Thus we see that the length 4a corresponds to the
distance between the point midway between the nose
and the center of curvature of the leading edge to the
point midway between the tail and the center of
curvature of the trailing edge.?

To establish the magnitude of the velocity at any
point (2, %) on the airfoil, we start in customary manner
with the velocity around a circle in 2-dimensional
flow. Contrary to usual practice we will, however,
make the radius of the circle equal to ae*c where ,
is a small constant quantity. This quantity is shown
later in this report (equation (e)), to represent the
average value of ¥ taken around the circle C.

The potential function of the flow past this circle is

2a cosh gn/z2a,<1 + llV) 2a¢+aPP=2a+= L

a0\ T z
w=—-T <2+ —5. 084 V)
(reference 1, p. 83) and the velocity 2
dw a’eo\ il
() 5 VD

where T' is the circulation., This expression must
vanigh at the rear stagnation point* (Kutta condition)
whose coordinate is z= —aefettlate) where o is the
angle of attack and ey is shown to be the angle of
zero lift,

1 The cholce of axes is entirely arbitrary. It is a matter of convenience only to
choose the axes go that the airfoll appears as nearly elliptical as possible, thereby
making tho *almost circular’” curve B as nearly circular as possible by means of
tho single transformation I. It will be geen that the evaluation of the important
{ntegral appearing in the appendix {3 then most easily accomplished. In fact, the
transformation I itself is only a matter of convenience to permit the ready evaluation
of this integral.

! %i:. actually equals u—{p, the image of the veloclty vector about the r-axis.

4 It {s worthy of mention to note that the theory cutlined in thisreport may actually
boe applled to smooth bodies of arbitrary shape if the efrculation is specified. The
term *‘wing sectlons” has been nsed in the title to imply bodles with sharp (or
nearly sharp) trafling edges, whose clrculation is or may be conaldered fixed by the
Kutta condition or some equivalent assumption,

149900—33——16
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We obtain I'= —2—%’.’3

aeMo
-2 )
8“"""2')—6_“"""1-)

= 411'Vae"“<

=4xVae gin(a+ er) (VII)

This flow around the circle may now be transformed
into the flow around any other body. In the particular
case in which the flow at infinity is not altered the
circulation will not be altered and the force experienced
by a body at the origin will remain at the fixed value
L=p VT

We will now transform this circle, defined as
g=ae*st% into our curve B defined by the relation
2’=ae**®, TFor this purpose we employ the general

transformation 2’ =zeﬁ<4-+‘~3-),i. which leaves the flow
at infinity unaltered, the constants being determined
by the boundary conditions, By definition

z' =28 'P—"o‘l"(a-‘?)_
Consequently

SR Y= eti6—e) =2 (A, +iBo) & or

‘:l’_'nl’o+7:(0_¢)=;zz (As+iBn)% {cos np—1 sin ny)
where 2 has-been expressed in polar form
z=r(cos o+1 gin ¢)

and by De Moivre’s theorem

1 1 L.
?,=F(cos ne—1 8in ne)

Equating the real and imaginary parts we obtain the
two Fourier expansions:

v—y E[r,, cos n¢+B gin 'ngo] (a)
and
0—§o=';2; fu cos 'nga—i sin mp:l (b)
The values of the coefficients %" %» as well as the
quantity ¥, may be determined from (a) as follows:
A, 1
e S ‘L ¥ cos nede (c)
B, 1 .
;;=';f‘l' gin nede (d)
and
1 2¢
’I’o=2_ﬂ_ 0 yde (e
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The quantity §—¢ is necessary in the following

analysis. Let us eliminate the coefficient 13;" and %

in (b) by means of (¢) and (d).
We obtain

(0_99)0"' €08 Te= f ¥ sin nede
—gin n:pc}rj; ¥ cos nede

The subscript ¢ is added to indicate that the angles so
distinguished are kept constant while the integrations
are performed. The expression may be simpliﬁed

(0—¢)c=— f ¥ (sin ngp cos np,—cos ne sin ne.)de

=;nf0 ¥ sin n(p—¢) do

But
(99_ ?’c)
s . _ 1 (o—0d cos (2n+1) —
80 7 (o qo.,)==2 cot 5
2 Sl]l ‘P 2‘;06
Therefore,

2x —
0~z [, voot 50,

1 (2 cos (2n+1)-——(¢—2¢°)
~5- ).

de

2 sin (59—2' ‘Pc)

The latter integral is identically zero. (See Wilson,
E. B. Advanced Calculus, p. 368. Follow method of
exercise 10.)

Then

R O (p—¢.)
6-ee=se [ veot @5Pa,  (vim
For purposes of calculation this integral is expressed
in convenient form in the appendix.

We shall now resume the task of determining the
velocity at any point of the surface of the airfoil.

The velocity at the surface of the circle is o

(see equation (VI) and footnote). For corresponding
_points on the curve B in the 2’ plane and on the airfoil

in the ¢ plane the velocities are respectively ((11": g_z,

ddwdzdz
Rl PR A T

The quantities { and 2’ are related by the expression

dw

§—z’+;,
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Hence
2 .
m1- Gy (#- )5 ot
;, [a(e¥ —e7F) cos 6+1a (¥ +¢7¥) sin 6]
=% [2a sinh ¢ cos 8+ 2ia cosh ¢ sin 6]

Using the relations (II),

2a sinh l,l’= and 2a cosh "b-cos 9
we obtain
:115 z,(ycot 0+ z tan 6). Ix)

It now remains fto find the ratio (% From the

relation
P mp (AaHB) %
we obtain
1
Eor[ 2 ri B 5]
or
dz 1, d o
E - (g iv—vo+i@—e)])
, d .
23 W+ (0—o)+ log z)
But
z=ae¥,ttr
from which,
1
> dz (log 2)=d (log a+¢a+w)=~ (ie)
Therefore

dz’ d . .
o =7 Wi 0—e) tie)
,d
This expression may be written
dz’ d . d0
But we have

1 .de
z zdz
or
B2id p=i d(o—0)+i do
and

-@—za'(l +d(¢ 0)>
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Hence
dz/ 2z’ d . 1
L2 30 (—ip+-0). -—-——+(L€
de
where :
e=p—4§
or i !
2 21—
dz 2z 1+¢ X)
where ¢’ and ¢’ indicate g—; and %1—:: respectively.
Equations (IX) and (X) give now ‘
d¢ def d¢ 1 ; 21—/
a~z7 . 'az="d—2=;, (y cot 8+ tan 0) —z- 1+¢
i} e tam gy L 18
(y cot §+1ix tan ) > It XTI

Because we are interested more in the magnitude than
in the direction of the velocity we will write for the
numerical value of this expression

g‘i':-‘/(y"' OB 0+ tan0) AV ¢y

dz ae¥ (1+¢)
. VRS '\ . .
The quantity <§-&> cot’0+(2ﬁa> tan® is readily seen

to be equal to (by relation (II))

Y V..
(20, smg) Tsinto
or also
sinh? ¢+sin® §
Hence
\/ ~(——3’—.—>’+ sin? g | (1+y/7)
i<1£|=2 [ \2a sin § . (XTb)
dz e¥o (1+¢')

The numerical value of the velocity at the surface of
the circle is obtained by equations (VI) and (VII) as
follows: )
Substituting the general point z=qe¥ot=te) where

« is the angle of attack as measured from the axis of
coordinates, in equation (VI)

dw__p ey — 9 Vsi ~tate)
a;:-— ( —e )-21 Slll(a‘l‘ﬁz')e 44

= —V[1—cos 2(ax+¢) +2 sin(a+ er) sin (e+¢)

+1 (sin 2 (@+¢)+2 sin (a+er) cos (at¢))]
aw
d

|

r-vzm §in? (a+ ep)+ 8 sin (et ez) sin (@)
+4 sin? (a+o)]

i‘al-‘-:\nz Visin (et o) +sin (et ex)]

’
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Replacing ¢ by 8+e (er, the angle of zero lift, is the
value of ¢ —8 at the tail®), we have

‘(11—":}=2 V [sin (@+0+¢)+sin (@+em)]
For a point on the airfoil we have, then,

v=-|ii:| : ]g—ﬂ and from (XT), finally
[sin (e+ 0+ €) +8in (@t er)] (14¢) e*

V(emb? +sm? 6) (1+97) (XI0)

where the various symbols have the following signif-
icance:
i3 the velocity at any point (z, %) of the airfoil.
V is the uniform velocity of flow at infinity. )
y is the ordinate of the airfoil as measured from
the z-axis, where to fix the system of coordi-
nates (2a, 0) is the point midway between
nose and center of curvature of the nose,
and (—2a, 0) is the point midway between
the tail and center of curvature of the tail.

ais the angle of attack as measured from the
z-axis as indicated in Figure 6.

Y, 0, ¥, ¥, ¢ and € are all functions of z.
Equation (XII), expressing the value of the velocity at
any point of an airfoil of anyshape,issurprisingly simple
when the complex nature of the problem is considered.
It hasthe distinct advantage of being exact; no approxi-
mations have been made in the preceding analysis.

We shall note some of the properties of this impor-
tant relation. Because ¥ is generally small, the term
Y
2a s1n §
where sin ¢ is small. It is noticed, however, that if
E%ITf'O for 6=0, equation (XII) yields in all cases

p= . This means that the velocity at the nose be-
comes infinite for sinh ¥ =0 (thin airfoils). This fact
has been pointed out in an earlier report. (Reference

=V

is of influence chiefly near the leading edge,

2.) The quantity 275%-@01' sinh ¢ is thus of con-

siderable significance in the theory of thick airfoils.
The velocity near the tail is obtained by putting
g=m+A0 and e=er+e’'Af. Where Af is a small angle,

in equation (XIT)

‘L‘ﬂe"' (1+¢) [sin (0+a+e) +sin (a+ er)]
14 +/(sinb? ¢ +sin? 6) (1 +¢'%)
we geb

l_g_lge“" (1+¢) [—A0+atert+e’Ad+a+ter)
v VW A6 (1+¢9)
L e (14 Al
V@A) L+
eh (14¢)?

e

3 It shonld be pofnted out that the rear stagnation point is chosen to be on the
z-axis at O=x, 'ﬁgaenrvammatthetanls,nsmras&ospeciﬁcaﬂonottheldaal
cirenlation l:eoncamed. to be considered as 8 mechanical imperfecti

®

on.
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¥ near the tail may be expressed as

Pty ABHS (MO -

or
E‘i ‘I/T /4 ’
Y v+ z,b A0+
The qua.ntlty 1s infinite if ¥ is different from zero

at A§=0. The veloclty is in this case zero, indicat-
ing the presence of the rear stagnation point. If, on
the other hand, ¥, is zero, that is, if the tail is per-
fectly sharp,
- —¢—=l ’ =
AD ¢’ for AG=0

and the velocity at the tail is

_ el te)

VT

or .
eto(14-¢)4 .

(1 +¢12)2 (g)
(For the Clark Y, v,?is about 0.88 V2 near the tail.)
We obtain the front stagnation point by letting

=0 in equation (XII). Hence
a+0+eN— - (a-l-e;p)

0= — (2a+eN+eT)

vE=V?

In a previous report (reference 2)

_ exter
or= — 2

has been defined as the ideal angle of attack. It is
seen that, for this angle of attack, 6 is zero or the stag-
nation point occurs directly at the nose.

Equation (XII) may also be applied to strut forms,
and for such symmetrical shapes takes even a simpler
form.

PRACTICAL APPLICATION OF RESULTS

We will now apply Formula (XII) to the typical
case of the Clark Y airfoil and calculate the velocities
at points of the airfoil surface. The detailed method
of procedure is as follows.

1. The axis of coordinates is drawn through the
points (2a, 0) and (—2a, 0) located respectively at the
point midway between the nose and the center of
curvature of the nose and the point midway between
the tail and the center of curvature of the tail. (See
fig. 6.) The radius of curvature at the leading edge is
1.75 per cent chord.

2. The points (z, y) of the upper and lower surfaces
of the airfoil are determined with respect to this axis.
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3. Sin %, sin 4, and 6 are determined by the relation

2sm’0=p+\/z”+<y> Wher°p=1_<2> <2“>

4, ¢ is given by the relation

(v N1 y ¥
v <2a sin a) 6<2a sin a>+

5. ¢ is plotted as a function of §

1 1 (*
b= [vde = o [0

. ¥ cot(";}f’—) de¢ by for-
mula shown in the appendix:

6. Determine &= —2—171_

€= —%_[0.628¢',+ 1.065(1—¢_1) +0.445 (s — V)
+0.231 (Y3 — ¥—a) +0.104 (¥ — ¢_4)]
where ¢/, is the slope of the y curve at p=¢, ¥, the
value of ¥ at go='<p¢+%, ¥, at qo=goa+—2—57—r, etc.

¥_, the value of ¢ at ¢ = ¢, — 5 , ete.

7. From the e versus 8 curve and from the ¥ versus
0 curves ¢ and ¢’ are determined.
8. Determine F by the relation

(1+¢)e*

oy + s ]asvm

9. (6+¢) 1 1s determined in radians and degrees.

10. Sin(@+a+e)+sin(a+er) is now caleulated
where « is the angle of attack as measured from the
axis of coordinates.

11. %=F-[sin (0+a+e) + sin (a+er)]

12. IED— 1— (%)2 (pressure)

The entire calculation, properly arranged, can be quite
accurately obtained in a very short time.

COMPARISON WITH EXPERIMENTAL RESULTS

In order to compare the theory with experimental
results, the geometric angle of attack «p as measured in
the wind tunnel must be corrected for a number of
items, such as finite span and effect of wall interference.
‘We may, however, obtain approximately the apparent
or effective angle of attack e, (in radians as measured
from the'angle of zero lift) by taking the quotient
of the area of the pressure-distribution curve and
5.5,since it is known that this value of the lift coeffi-
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cient is very nearly realized in most cases. This has
been done in Table ITI, and the angle of attack e, which
should be substituted in the Equation (XII), is
given in the last column. The pressure distribution
curves, Figures 2a, b, ¢, d, and 3a, b, ¢, d, were obtained
by application of Equation (XII) to the Clark Y airfoil.
Numerical results are shown in Tables I, IT, and ITI.
The experimental values are from original data sheets
for N. A. C. A. Technical Report No. 353, and are
not entirely consistent due to difficulties experienced
in these experiments. After the theoretical pressure
distribution curves have been obtained, the moments
about any required axis may be found. Table IV

- /2 I
e . e - -
.08
M
—_—
.04 Theorstical __
Experimental
o
-4° -2° o 2° 4° &° &°

o
F1aUuBE 4.—Moment agalnst angle of attack

gives some of these results and Figure 4 shows the
comparison with experimental data taken from N. A.
C. A. Technical Report No. 312.

LAneLeY MEMORIAL AERONAUTICAL LABORATORY,
NarioNan Apvisory COMMITTEE FOR ABRONAUTICS,
LaneLey FieLp, Va., October 16, 1931.



APPENDIX

EVALUATION OF THE FORMULA
1 (o= -
&= (¢—0)s= —%_ﬁ 500015(15‘0—") de

Although the above integrand becomes positively
and negatively infinite around ¢=g¢,, it is readily
verified that for ¢ finite, throughout the range 0— 2,
the integral remains finite, the positive and negative
infinite strips exactly canceling each other.

. The value of the integral for any point ¢, may be
accurately obtained by the following device. We
know that if  is & continuous function and the range
#2 to @2 not too large

1 - gin L2 Pe
) Ll ¥ cot g‘—o—ﬁ—‘a—") de is very nearly ¢, log p—s

2
where ¥, is the average value of ¢ in the range ¢, to
. Also near ¢= ¢, we may write

‘l”l
v=y,+ (o— @e) ¥ ot (0— @c)? P 24

Then for s a small quantity

sin

s ot —_ —
@ Yo t(‘P ¢c)d =9 ¢ 3‘,!/[‘ ((" 2990).0013 (4’ 2‘Pc) de
Pe—3 Pe—8
=4 8¢/,
(Since the even powers drop out and the lim ¢ cot p=1).

¢—0

Let us now divide the interval 0—2= into 10 parts,
starting with ¢, as a reference point. (See fig. 5.)

0 Pe 1r 2
Nose @ Tail Nose
FIaurE §,—The ¢ agalnst ¢ curve, llustrating method of evaluation of «
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P lotfo‘{’o E’Soc’l'mto Yt 10’490 lotO
5w 57 VEs ks O
‘P¢+'i'()’¢c 10t° ¢a+m’¢c lotoioc 10’
O Or T Tr
¢o+10t0¢o 10"{’6 lot'oSoc lo'ﬁoo_mto

57 57 3 37 T
P10’ P 10t0¢a loand‘i’a loto‘Pc_l—G'

Then,
=—5 (o— ‘Po) d
e = 1,!/ ot 14
gin 37
1 2
-2 Tyt (= y) log— 2
IR 50
si]1511' sin Vi
2
+ (a—Yg) log — oo+ (o — ) log 20
20 Sm%
mn_g-f
20
+ (Yu—v-y) log T
Sm:?’—o
= -—% [0.628 ¢/, +1.065 (Y1 —¢_1) +0.445 (‘l;g_gll_g)

+0.231 (¥5—-5) +0.104 (Ys—y¥-J)]

where ¢/, is the slope of the ¥ curve at ¢=¢,

¥, value of ¢ ab go=-qoa+§’ ¥_; ab go=qoc—:g!

¥a at qo='%+2—;’ ¥s ab <p=qoc+3%r’ etc.

To evaluate the above integral it is, strictly speak-
ing, necessary to know ¥ as a function of ¢ rather than
of 1 We have p=6+e For all flattened or stream-
line bodies, however, e is small; for ordinary airfoils
it is, in fact, so small that ¥(§) may unconditionally be
considered equal to ¥(¢). For the sake of mathe-
matical accuracy we will, however, indicate how the
problem may be solved also for bodies of more irregular
contour by successive approximations. We have

V(p)=y @) +ey' @O+ - -

As g first approximation we neglect the second and =ll
following terms of this expression. The value of e
thus obtained by graphical integration or otherwise
is then used in the expression for ¥(y) and a second
integration is performed, ete.

1 The equation for « i3 8 nonlinear integral equation and to obtain its exact solu.
tion is a difficnlt matter; fortunately becauss of the amall magnitude of « the solu-
tion is obtainable to any desired accuracy by ordinary definite integrals.
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APPLICATION OF FLOW FORMULA TO THE SPECIAL
CASE OF AN ELLIPTIC CYLINDE

As a matter of interest we will assume the form of
. x 2 ,y ) 2
the body to be theellipse (2(1, oosh ‘b) +<2a oy '.1') =]

and find % for zero angle of attack, i. e., we have

Y=y, =constant, ¢'=0, e=0, ¢ =0, a=0.
Equation (XII) becomes

REPORT NATIONAL ADVISORY

4 sin 0-¢¥ %%
#)-7 w+sin"’-\‘/sinh’“(ﬁzm>:
a
q V. (2a sinh ¢)*+ (2ay)*

This result checks exactly with the form given by
Dr. A. F. Zahm in N. A. C. A. Technical Report No.
253, Flow and Drag Formulas for Simple Quadrics,
equation 14,
. REFERENCES
1. Glauert, H.: Elements of Airfoil and Air-Screw Theory.
Cambridge University Press, 1926.
2. Theodorsen, Theodore: On the Theory of Wing Sections

with Particular Reference to the Lift Distribution. T. R.
No. 383, N. A. C. A., 1931.

I

EXPLANATION OF THE TABLES

The first part of Table I refers to the upper surface
or to positive ordinates of the Clark Y, the second
part to the lower surface or to negative ordinates.
Column 1 gives the location in per cent of the chord; 2
gives the ordinates with respect to the 2-axis in this
same unit; 3 and 4 give z and ¥ in the present system
of coordinates; 5, 6, and 7 give sin® 6, sin 4, and 6,
respectively (Equation (IIT)); 8 gives ¥ (by equation
(IVa)); 9 gives ¢ (appendix); 10 and 11 give c(lil'gandg;
as obtained from ¥ against § and ¢ against § curves;

COMMITTEE FOR AERONAUTICS

A+¢) o

‘/[(2 rata) * o 0](1+w)

Column 14 gives §+ ¢ in degrees. The velocity at any
point z and angle of attack « is given by
v=V [gin (a@+0+¢)+ sin (e+er)]-F and the pressure,
o os()

¥y q 74

It must be noted that « is measured from the line of

er=1.11);

+2a . -2a
qa
5 il L
< L~ ' (0,00
s g = ¥
Flov -

-[00% C
FiaUuBE 6.—Olark Y alrfofl—showing system of coordinates

flow to the z-axis as shown in Figure 6, and if otherwise
measured, must be reduced to this basis.

---Unif circle e®
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Nose

Toill
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FI1GURE 7.—The unit drcle z=ef®, the clrcle z-c""“. and the correspondlng

(See figs. 7 and 8). Column 12 gives the quantity curve metH!
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polnt
=25
=0

Mr

Moment
per cent

M,y
about line
y=0

TABLE IV
Moment
o025 ¢
Pehord

Figure about line| Moment

CLARK Y

UPPER BURFACE

TABLE I

s

ama  —3°38’

THEORY OF WING SECTIONS OF ARBITRARY SHAPE

TABLE III

Table II gives the numerical values for Figure 2a in detail as an example. See also Table I.
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