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METHOD FOR CALCULATION OF LAMINAR HEAT TRANSFER IN AIR FLOW AROUND
cmww oF ARBITRARY atoss SECTION (INCLUDINGLARGE TEMPERATURE

DIFFERENCESAND TRANSPIRATION COOLING)1
By E. R. G. ECKEETand JOHNN. B. LIVINGOOD

SUMMARY

The solution of heat--lran8ferproblenMhm beconw,VW for
many aeronatiical applti%. The 8hapes of objeti to be
cook?dcan often be approximated by c@nders of W?%UScros8
sections with $OW ?wrmaJto the azi$ al?, for iM@l’ce, heat
transfer on gaa-turbinebti and on air fmh heut.edfor de-icing
purpose9.. A luminar region almy8 @n% near the stagnation
point of such objech.

A method pretiou-sly prewu!.ed by E. R. G. 13kert permiti
the calculation of lma.1h-eattransfer around the periphery of
qylinders of arbitrary cro8s sedion in the lumirumre~”on for

jfow of a$uid wilh constant property m.lua with an accuracy
SUJ?MWfor engineering pwrposes. The &d h based on
exact sohiions of the boundq%yer equatimu for incompre8-
w“blewedge-typejfow and on the postti that at any point on
the qdinder the boundu~~ayer growthi-sthe same w that on a
wedge with comparable jlow conditti. Th& &d b
etiended herein to tie into accownt the injlue-nceof large tem-
perature di#erencti between the cylindm uxd.1and the jlow m
well ao the fin@uenceof tran8pira$i.Oncooling when the 9ame
medium w the mhid.e $OW is wed a coolant. Prepared
chartsmaketb ca.lcuhtionprocedurevery rapid. For cyhders
with soi’id Wati and diptic cro88 8t?cti5?u3,a comparison is
made of therew+?tsof culculm%nsbasedon the prewnted &d,
the results of ealcula-tti by other known &h, and r&
obtuinedin experinwm!m?incestig&”on8. .

INTRODUCTION

Calculation of the heat transferred to cylinders with
arbitrary cross sections fkom air flowing normal to the axis
by a solution of the boundary-layer equations is a difficult
problem, even when the laminar region is considwed. The
problem is especially complicated by the large number of
parameter influencing heat transfer. Such parameters are:
the shape of the cross section of the cylinder, the Mach
number which determines the flow outside the boundary
layer, the temperatures on the surface of the cylinder as
well as in the stream, the stream velocity determining the
internal heat generation, and the temperature distribution
around the circumference of the cylinder. If the cylinder
is cooled by the transpiration-cooling method in which a
coolant is ejected through a porous surface into the outside
stream, the amount of coolant and its distribution around
the circumferwwe of the cross section of the cylinder are
additional parametem. Even if a solution is obtained for

such a problem, for instance by use of an electronic computer,
the solution is very restricted because of the many parameters.
Up to the present time, therefore, the problem has been
attacked only under simplifying restrictions.

The restrictions most commonly used are: (1) low veloci-
ties, (2) constant property values, (3) constant wall tem-
peratures, and (4) impermeable surfaces (no hanspiration
cooling). Under restriction (2), the development of the
boundary layer along the cylindrical surface is independent
of the heat transfer; available knovdedge on the flow bound-
ary layer can therefore be used as a basis for a heat-truusf er
calculation. Under the simplifying assumptions, which are
necessary in order to transform the general viscous-flow
equations into the boundary-layer equations, the develop-
ment of the flow boundary layer does not depend immediately
on the shape of the cross section of the cylinder but only on
the yelocity distribution in the stream outside the boundary
layer and along its surface.

One method which was applied successfully to obtain a
solution of the flow boundary-layer equation developed the
stream velocity, along the surface of the cylinder in a power
series of the distance from the stagnation point measured
along the circumference of the cylinder. In reference 1, this
method is used to solve the heat-tmmsfer problem. It is also
shown that the temperature field within the boundary layer
cim be presented in a power series of the distance from the
stagnation point in which the single te&ns contain only .kni-
versal functions of a dimensionless wall distance and of the
Prandtl number of the fluid. The heat transfer to the surface
is given by an analogous series with terms depending on the
Prandtl number. The calculation of the universal functions,
however, is a tedious process, and accordingly these functions
are known only for a limited number of term& I?or.air with a
Prandtl number of 0.7, they are presented in reference 1. For
a gas with a Prandtl number of 1, they are contai&ed in ref-
erence 2, which is based on referance 3, in which the boundary-
layer flow on a yawed cylinder is calculated. The fact
that the boundary-layer equation for the veloci@ component
parallel to the xiis of a yawed cylinder is identioal in form to
the boundary-layer. equation describing the temperature field
for a fluid with a Prandtl number of 1, flowing normal to the
axis of the cylinder, was used in reference 2 to determke
heat transfer to such cylinders. The presentation of more
terms of the series is announced in reference 4. It was found,
however, that the velocity distribution for only a limited
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range of cross sections of cylinders can be represented by a
power series converging rapidly enough that the number of
the lmown universal functions is sutlkient to calculate the
heat transfer.

The difficulties connected with a solution of the boundary-
layer equations point out the need for an approximate
approach by which, with a small expenditure of time, heat-
trmsfer coefficients can be determined with an accurwy
sufficient for engineering purposes. A considerable number
of such approachw have been tried in the past; the results
differ greatly as shown in figure 1, taken from reference 2.
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The simplest procedure is probably that in which the heat-
transfer coefficients as calculated in reference 5 are used for
flow of constant velocity along a flat plate. The fact that in
reality the strewn velocity varies along the cross section of the
cyIinder is taken into account by calculating the 10CSIheat-
transfer coefficients by use of the velocity found in the stream
at the considered distance from the stagnation point. This
method is cent ained in a summary presented in reference 6.
Unfortunately, such an approach gives heat-transfer coeffi-
cients which are considerably low in many cases (see fig. 1).

Better agreement was obtained by another approach (ref.
7) Which uses, instead of the flakplate solution, a family of
solutions of the boundary-layer equations which can be
obtained in a general form, namely, for the case where the
stream velocity varies alo~m the surface as a certain power of
the distance from the stagnation petit. Such a velocity
variation is obtained in incompressible flow around wedges.
The solutions for such a type of flow- were used to obtain
approximate heat-transfer coefficients for a cylinder with
arbitrary cross section by stipulating that the local heat-”

transfer coefficient on any location along the cylinder is
identical with the local heatrtmmsfer coefficient on a wedge
for which, at the same distance from the stagnation point,
the stream velocity and its gradient are the same as those on
the investigated cylinder. This approach was subsequently
used by d.Herent authors, and is described, for instance, in
references 8 and 9. It takes into account the tstream condi-
tions which influence the boundary-layer growth at tl.m
location at which the heat transfer is going to be determined;
however, it does not properly account for the development of
the boundary layer in the range upstream of the point con-
sidered. This development may be different on the cylinder
and on the equivalent wedge.

Another group &es an integrated momentum equation
for the boundary-layer flow as proposed by von K6rmtm and
K. Pohlhausen (refs. 10 and 11, respectively) to calculato
the velocity boundary layer. Diflerent procedures were
proposed for de&mining local heat-transfer wefficients
from the known velocity boundary layer. Some investi-
gators use Reynolds analogy directly (ref. 12) or with w
correction for Prandtl numbem dillerent from 1 (ref. 13).
Such approaches give he&transfer coefficients which are
considerably high in many cases, as shown, for instance, in
figure 1. lMore accurate re&dts were obtained when tho
heat transfar was determined by solving an integrated heat-
flow equation for the boundary layer. The velocity field
within the boundary layer haa to be known in this approoch,
since the flow velocities within the boundary layer occur in
the mentioned heat-flow equation. This method was origi-
nated by Kroujiline (ref. 14). Extensioti and simplifka-
tions are contained in references 15 to 18, and an extension
i% comprwible flow of a fluid having a Prandtl number
equal to 1 is found in references 19 and 20. Usefd informa-
tion is also contained in a summarizing report (ref. 21).

Anothm approach is based on the fact that the use of the
heat-trrmsfw weflicients for wedge-type profiles as descrikxl
previously was found to give fairly accurate heat-trnnsfer
coeiikknts. ‘It should lie expected that these he&transfer
coe.flicients can be improved to a degree which is sufficient
for all engineering purposes by a method which takea into
account in some approximate way the previous history of
the boundary layer. Such a method, called the equivalent
wedge-type flow- method, is proposed in reference 22, es-
tended to heat transfer at high flo-w velocities and variable
wall temperature in reference 23, and extended to transpire-
tion cooling with small temperature differences in reference
24. The advantages of this method are that no knowledge
of the veIocity boundary layer is required and that it cm
be readily extended to take into account the effects of Iargo
temperature di&rence9, of transpiration cooling, and of
variable wall temperature as soon as the corresponding
solutions for the wxlg~type flow are available.

Such an extension was made at the NACA Lewis labora-
tory during 1950-51 and is described herein. It is based on
exact boundary-layer solutions for wedg~type flow with
large temperat~e difference and with inspiration cooling
(refs. 25 and 26). Charts were prepared which make the
calculation of heat transfer around cylinders of any arbitrary
cross section more rapid.

,
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SOLUTION OF BOUNDARY-LAYER EQUATIONS FOR W’EDGE-
TYPE FLOW

130UNDARY-LAYEREQUATIONS

The following boundary-layer equatious describe the
‘rclocity and tempermhre fields in a laminar steady two-
dimensional gas flow the momentum equation, the conti-
nuity equation, and the energy equation. The momentum
equation is

.

(1)

When body forces are neglected. (All symbols are dbed
in nppendk A; consistent units are used throughout the
report.) Since the pressure variation normal to the surface
throughout the boundary layer may be n@glected, it follows
that the pressure is prescribed by the conditions in the stream
outside the boundary layer and can be connected with the
velocity u, in the stream and just outside the boundary
loyer by the Bernoulli equation

The introduction of this eqnw-sion changes the momentum
equation to the form

The continuity equation is

(3)

and the energy equation is

The heat. generated by internal friction, described by the
second term on the right side of equation (4), and the temper-
ature variation comected with expansion, described by the
third term, can be neglected as long as the d.iilerence between
the total and the static temperature in the gas stream is small
compared With the diiYerence between the wall, temperature
rmd the temperature in the gas stream. For this condition,
then, only the first term on the right side of equation (4) is
retained, and the energy equqtion assumes the form

( a“ 9=$(%3Pcp ‘u~+o ay (5)

Equations (2), (3), and (5) include the case of transpiration
cooling when the same medium as that in the outside flow is
used as coolant and the boundary conditions are properly
defined.

u=O, v=v~, and T= T. -when Y=O
(R)

The property values ~, k, c,, and p appearing in the equntion
lepend on ,temperature and pressure. The variation with
pressure can be neglected at the low velocities to which the
mergy equation was already restricted by disregarding the
internal friction and the expansion terms. The influence of
the temperature dependency, however, may be appreciable
in applications with large temperature differences within the
boundary layer. Solutions of the boundary-layer equations
which take into account the temperature variation of the
property values were obtained in references 9, 25, and 26, in
which the partial ditTerential equations were transformed into
total differential equations.

CHANGEOFVARIABIJN

The transformation of the partial dtierential equations
into total differential equations is possible under the following
specialized conditions: The stream velocity is assumed to
vary as a power function of the distance from the stagnation
point measured along the surface of the cylinder.

u*= w (7)

It has recently become customary to refer to the exponent m
in this equation as “Euler number.” The Euler number can
be expressed by the Bernoulli equation in the following way:

~appz
m= p8u;Jz (s)

In addition, the temperature of the wall is assumed to be
constant and the property values are assumed to vary pro-
portionally to a power of the absolute temperature T. The
numerical calculations were made for air. The exponents
used were 0.7 for the’viscositg, 0.85 for the heat conductivity,
0.19 for the specific heat, and — 1.0 for the density.
The variables

c’

pmu$
q.. y —

J1.x

T–”m
‘=”.–”s

(9) .

are used to transform equations (2), (3), and (5) into total

ditkential equations presenting and 8 as functions of q only.
The stream function Y appearing in equations (9) is defied in
such a way as to eliminate the continuity equation (3).

(10)

Introducing the new variabk into the second of equations
(10) leads to the following ccqmession for we velocity com-
ponent normal to the surface:

-p”=p~[%’g+:’’(’11)
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The velocity at the surface itself follows:

(12)

The transformation therefore prescribes a certain variation
of the coolant veloci~ u. along the surface, since the function
~m has ta be constant (independent of z). The stream
velocity is described by equation (7); thus, the coolant
velocity v= is also proportional to some powwr of x. Such a
variation of the coolant velocity leads tQ a constant wall
temperature and is therefore consisthmt wi~ the assumed
constant wall temperature -when heat tiansf er by radiation
may be neglected (ref. 27)- The transformed equations are
presented in references 9, 25, and 26, together with the solu-
tions for a Prandtl number Pr of 0.7, and for a range of
Euler number m, temperature ratio T,/TM,and the parameter
~mdescribing the cooling-air flow through a porous surface.
The results contain expressions for the thickness of the flo-iv
boundary layer which are deii.ned in two ways: the displace-
ment thiclmess

and the momentum thickness

“=J’%4-3’”

(13)

(14)

The thermal boundary layer is characterized in this report
by the convection thiclmeas

(15)

In addition, a thermal boundary-layer thickness, which is
defined as follows, will be used herein:

‘t=so=(i%)d” (16)

Values for this boundary-layer thiclmess can be easily calcu-
lated from results presented in references 2< and 26.

APPLICATION TO HIGHVELOCITD?9

The solutions described apply exactly only tQ flow with
IOWvelocities. Practically, the limiting velocity up to which
it is possible @ neglect the frictional and the expansion terms
can be set quite high for a gas; this fact can be understood
from the following transformation of the energy equation,.
in which only the specific heat is regarded constant. If the
momentum equation (1) is multiplied by the velocity u and
added to the ene~ equation (4) and if, in addition, the total
temperature T~= T+u2/2cp is introduced, the following ex-
pression is obtained:

(17)

The last term on the right side of the equation vanishes for a
Prandtl number equal to 1. In this case, the energy equo-
tion has the same form as the one for low velocities in which
the ~ction and the expansion terms were neglected, The
only diilerence lies in the fact that the total bmperature
appeam in the energy equation. Wheq the Prrmdtl number
is approximately 1, the last term in equation (17) will be
compwatively small up to considerable velocities, and the
energy equation (5) used in the following considerations
applies to this condition when the temperature T is inter-
preted as total temperature. It will be shown later that w
far as heat transfer is concerned, the range in which the
results of a calculation with equation (5) ma~ be used can
be extended even further by using a properly defined aclin-
batic wall temperature instead of the total gas temperature.

The property values p, k, c,, and p depend for gases on the
temperature. This dependency was taken into account in
the described “calculations. The density depends, in nddi-
tion, on the pressure, and the pressure variation may become
considerable at high Mach numbem. There are indications,
however, that calculations which neglect this pressure vmin-
tion can bd used with sufficient accuracy over tho cmtire
subsonic range, as is pointed out in reference 28, in which
an investigation of results obtained by L. Howarth (ref. 29)
is reported.

E1’l?ENSION OF THEORY TO ARBITRARY BODJES

D171?ERMINATIONOF Equivalent WEDGE

The solutions discussed in the previous paragraph me in an
exact sense restricted to a-certain type of veloci~ variation
along a cylindrical surface, namely, a stream velocity which
just outside the boundary layer is proportional to some power
of the distance from the stagnation point. Suoh a velocity
distribution is realized, for instance, in incompressible flow
around wedges. The wedge-type solutions may be used,
however, to obtain approximate heat-transfer coefficients on
cylinders of arbitrary cross section. In one approach in this
direction, it is assumed that the heat-transfer coefficient on
any point along the circumference of a profile with arbitrary
cross section is the same as that on a wedge at the same dis-
tance from the leading edge, provided the stream velocity and
its gradient on the wedge and on the arbitrary proiile have
the same vrdue at the location considered and that the tem-
perature ratio T,/T. is the same. It will be shown thut such
an approach tajws into account tb e right stream conditions
at the local spot for which the heat-transfer coefficient is to
be determined. However, the previous history within the
boundary layer is not properly considered. Nurnerioal
calculations presented herein show that beat-transfer co-
efficients obtained in such a manner are in most cases within
about 15-percent agreement with experimental data. It is
to be expected that a moditkation which accounts in some
approximate manner for the conditions in the boundary layer

,
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upstream of the point under consideration should improve
this approximation to the desired degree. This moditlcation
is made in reference 22 by the stipulation that the rate of in-
crease of the boundary-layer thickness is the same on the
considered point of an arbitrary profile and on the point of a
wedge which has the same boundary-layer thiclmess, the
same stream velocity, and the same stream veloci@ gradient.
This same stipulation will be used in the present report. For
a given temperature ratio T./T., the heat-transfer coefficients
on a wedge depend on the Euler number m and the value f.
characterizing the coolant flow through a porous surface.
These parameters which define the equivalent wedge prof.le
will now be expressed by the boundary-layer thiclmess and
the local stream velocity gradient.

For the wedge-type profhe, the stream velocity is expressed
by the povver la-iv

U*=C(” (18)

in which the value &expresses the distance horn the leading
edge measured along the wedge surface in order to distinguish
it from the distance ,of the point under consideration horn
the stagrmtion point on the arbitrary profile, which is denoted
by z, The vmiablea used for the transformation of the
original bounda~-layer equations in the previous section
may now be written

dp.u,
q.y —

/4

and

(19)

(20)

Corresponding to a certain value y, which indicatw the
boundary-layer thicheas 6,there is a vfduenbof the coordinate
q defined by the equation

(21)

In order to eliminate the distance t from this equation, equa-
tion (18) is differentiated to obtain

(22)

Since the velocity gradient on the wedge proiile is awmed
the same as that on the mwiile under consideration, it follows
thnt WP(= bU@Z.
t the expression

When this exprewion
is obtained

This equality give9 for the &ordinate

(23)

is introduc~ into equation (21), there

~b=’kda

b this expression, ?l, (denoted as (ti/x)@ in refs. 25 and 26)
is a function of the Euler’ number m and of the coolantAlow
parameter fu. Therefore, if this equation is written in the
form

the left side is a function of m and ju, and equation (24) re-
lates both. values to the boundary-layer thickness ~ and the
velocity gradient du$/dx. “h order to obtain a second relation
for m and j., the coordinate f is replaced in equqtion (20).
The result is

(25)

which is written again in such a way that the left side is a
function of the Euler number m and the flow parameter j.
which can be caknlatid from the results in references 25
,and 26. Both equations (24) ahd (25) are therefore sufli-
cient to determine the equivalent wedge profile.

EQUATIONSFORBOUNDARY-LAYERTHICKNESSANDHEATTRANSFER

The next step is to develop a difbrential equation for the
boundary-layer thickness from the postulate that the
boundary-layer gradient o?3/dxis the same for the red profile
as for the equivalent wedge profile. For the w-edge profile,
the boundary-layer thickness is given by the expression

which is obtained from equation (21) by replacing the stream
velocity with equation (18) and solving for the boundary-
layer thiclmcm. A differentiation of this equation and the
use of equations (23) and (24) result in

This is a d.if7erential equation for the boundarylayer thick-
ness which contains only values which are known for the
proille under consideration or which are determined from
equations (24) and (25) for the equivalent wedge-type flow.
An integration of the di.thmntial equation gives the boundary
layer along the circumference of the profile under consider-
ation.

The local heahtransfer coefficient is defined by the follow-
ing equation:

Introducing the
equation (9) and

dimensionless temperature ratio given in
the coordinate [ resnk in

(27)
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The heabtransfer coefficient may be calculated from this
expression as soon as the boundary-layer thickness s is
known, since O: and n~me functions of v andju contained in
references 25 and 26.

Up to the present time no recommendation has been
made as to which boundsxy-layer thickness should be used
in the prescribed procedure. When the momentum thickness
is used in the foregoing equations, it is easily understandable
that the integrated momentum equation is satisfied and
that the method of calculation becomes the same as the one
proposed.by von K&rmfin in reference 10. This fact can be
proved mathematically by a procedure completely analogous
to the one used in appendix B. On the other hand, the use
of the convection thickness as defied in equation (15)
satisfies the inteb-ted heat-flow equation within me bound-
ary layer, as shown in appendix B. The use of both boundary-
lnyer thicknesses leads to somewhat diiferent results for the
local heat-transfer coefficient, and a question arises as to
vrhich is preferable. It is pointed out by Schuh in reference
23 that for the purpose of detaminhg heat-tmmsfer co-
efficients, it is more important to satisfy the heatiflow
balance; the use of the convection thickness was therefore
recommended. In reference 22, the use of the thermal
boundaxy-layer thickness as defined in equation (16) is
investigated, and the results of the calculation with this
boundmy-layer thickness are found to agree even bettar
with measured values and with other calculations. The
convection thickness & and the thermal thickness ~~for the
boundary layer will therefore be used in parallel in the
following numerical evaluations.

CALCULATION PROCEDURE
USEOFDIMENSIONLESSVARIARLFS3

The procedure which may be followed in determining
local heat-transfer coefficients with the relations developed
in the preceding section is now explained. Figure 2 shows a

‘ {-”-’””nda”’”er

I L~
FIIIUEEi-sketch ofcyllnderIndicatingnotationnsai.

sketch of a cylinder with arbitrary cross section and the
notation used in the analysis. Before numerical calculations
are made, ~o-mwer, it is advisable to change to dimensionlem
quantities. In order to make this change, the distance z is

I divided by the major axis L of the cylinder and the mass
velocity in the direction of z is divided by an upstream mass
velocity. All lengths and mass velocities parallel to y are,
in addition, multiplied by the square root of the Reynolds
number R% based on the major axis fid the upstream mass
velocity. The dimensionless variablm which are sub-
sequently needed are

~*=!?
L

(28)

(29)

(30)

v“=@&mw (31)

where’
u, ~Lp3

ReO= ‘pm (32)

By use of these dimensionless quantities, equation (26) is
transformed into

where

(33)

(34)

according to equations (24) and (25), which, in dimensionJees
values, are

and

Introduction of the dimensionless quantities into equation
(27) leads to

ivu .07
X=F

(36)

where

and

(36)

(37)

OEARTSANDCALCULATIONPROCEDUREFORPRIM3CRIDEDCOOLANT
FLOW

marts have been prepared which present the functions
M and N as expressed by equations (34) and (37) in depend-
ence on (dU*/dz*)6*2and v~6*. The charts presented herein
were constructed from results presented in references 26
and 26. In figures 3 and 4, the dimensionless convection
thickness of the boundary layer is used; in figures 5 and 6,
the dimensionless thermal boundary-layer thickness is used.

At the stagnation point of any blunt nosed cylintilcal
body, conditions are the same as those at the stagnation
point of a plate normal to the flow. Therefore m= 1, but
the value of 6* is unknown. How-ever, there e..rsts at tho
stagnation point a unique relation v~6*=F[(du~/dx*)L$*~
which may, for instance, be read along the abscissa in figure
3 or in figure 5. Squaring this equation and dividing both
sides by (du?/dz*)6Mresult in

*2 1

du;;dz”’~ %$’”’)
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These relations are presented in figure 7 for the dimension-
less convection boundary-layer thickness and in figure 8 for
the dimensionless thermal boundaxy-layer thickness. ”

By use of these charts, the calculations for any profile
can be made in a very simple” manner for either the dimen-
sionless convection or the dimensionless thermal boun~ary-
layer thickness. The method of solution for the convection
thicknesses is described subsequently. For the thermal
thickness, the procedure is the same.

The valuw-of u, and du3/dxmust be found for the cylinder

proiile under consideration either by measurement or by m
solution of the inviscid-flow equations. The coolant veloc-
ity Vmis prescribed by the porbsity of the wall and by the
pressure distribution around the profile. From them terms,
the values of u:, du?/dx*, and o: can be calculated. The
value of & at the stagnation point can be detemninecl from
figure 7 in the following way: The value of t&/(du~/dx*)is
computed, and the corresponding value of (dut/dz*)L5Yis
read from figure 7. A simple algebraic operation then yields
the desired vaJue of ti at the stagnation point..
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The dimensionless convection boundary-layer thiclmess
& along the cylindrical surface is determined from equation
(33); for the numerical evaluation presented herein, this
equation was solved by the method of isoclines with the aid
of figure 3, depending upon Which ratio of stream to wall
temperature k applied. Equation (33) determhies the direc-
tion of the tmgents to the dii7erent ~-curves which satisfy
the equation. The task is to iind that curve which contains
the ~$-value previously calculated for the stagnation point.
For chosen values of Z* and &, values of (du~/&*)65 and
&& are computed and the value of 34 is read from the
appropriate part of figure 3. Equation (33) then gives the
slope of the trmgent at this selected value of Z* for the
assumed d. Several values of @ are used for this z*. The
samo calculations are repeated for other values of z*. If
the chosen distance between these z*-values is small enough,
an accurate curve of @ against Z* can be drawn which starts
at the desired previously calculated value of ~ at the stag-

nation point and vrhich will have the correct slope at each
value of z“ considered. Figure 9 illustrates this method of
solution. Values of N can then be obtained for each of the
correct ~-values and the cxmsidered o~-value for each Z*
from fiogure 4 after (du~/dz*)& and zrt& are computed (the
ratio of stream to wall temperature under consideration
determines which part of ,figure 4 should be used). The

value of ATuIIG can finally be obtained from equation (35).
The same calculation procedure can be used when the

dimensionless thermal bound~-layer thickness is considered.
Figure 8 is used for the determin~tion of the value of & at the
stagnation point; @e 5 is used to determine I14; and figure

6 is used to deternine N. The particular ratio of stream to
wall temperature under consideration determines which parts
of these iigures apply for the calculation of the values of ill
and N. Finally, equation (35) gives the desired value of

Nu/3~6.

,
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CHARTSAND CALCULATION PROCEDDREFORPRIEKXUBEDWALL
TEMPERATURE

The heat-transfer mefficiants determined ~y the values of

il%j~h can ROWbe used to oalculata the surface tempera-
ture of the cylinder when the outside stieam temperature
and the temperature at which tbe coolant is supplied to
the interior of the oylinder are known. For this purpose, a
heat balance for an element of the wail as shown in figure 10
is set up. The cylindrical volume demerit considered may
have two plane surfaces, one surface (1) coinciding with the

- outside surface of the cylinder wall and the other (2) apart
from tbe inside surface of the wall by such a distance that it
is situated outside the boundmy layer present on this side.
(The inside surface has to be considered as a surface of a

I

Y

qcdA I I

L

t
——— ——— .-— J

2
‘- Boundory Ioyer

Icp~wv.)c dA Inside

FImmim1O.-CIWSSWUOIIthru@ -t ofoylhderwallnseilfn6stttnsnPtit Mar&.

&all to which suction is applied and on which a boundary
layer builds up as shown in ,ref. 30.) The mantle surface
(3) of the cylinder may be normal to the wall surfaces,
Heat is carried by convection w@h the cooling air through
SW$WCS 1 and 2. The amount per unit time is idicatod in
figure 10. It is assumed that the coolant is heated up to
the wall surface temperature T= when it, leaves the wall.
This assumption is usutiy welI fultlIIed. Heat will DISObe
transferred by conduction through the fluid Iayera immedi-
at ely adjacent to the outside wall surfaces, the amount being
–k_ (bZ’/by)wdA. In addition, heat may be transferred to
the outside’ wall by radiation; it may be q, dA. Heat mtty
also flow into the volume element by conduction in the solid
material or by transverse flow of the cooling air., The sum
of all these individual flows may be g. dA. TIIen tbe hertt
balance is

The heat –k. (2JT/by). transferred per unit area from the
gas to the wudl is expressed in this report by a beat-transfer
coefficient

Combining these two equations results in

qr+G+WC- ZJ=C.PAT.- 2’.) (3s)

This equation permits a calculation of the wall temperature
for any place on the cylindrical surface when the ooolant
velocity UWis prescribed, when the 100al radiative heat flow
q, and the conductive heat flow gc are lmown, and when the
heat-tinsfer eoeilicient h has been obtained. The condu~
tive heat flow gc is usually small and can be neglected. Suoh
a calculation results in a wall surface temperature which
generally will vary along the circumference of tbe cylinder.
When the variations are large, the temperature distribution
obtained ean be regarded” only as an apprcminmtion, since
the m-edge solutions (refs. 22, 25, and 26) on which the
method in this paper is based were obtained for the case ofu
coqstant wall temperature.

Usually, how-ever, the problem which faces the designer in
an application is somewhat diflerent from the one tmatecl.
The purpose of transpiration cooling is mostly to keep the
wall temperature of some structural element below the limits
which the material can withstand. On the other hand, the
amount of coolant almost always must be kept small, which
means that local overcooking should be avoided. For the
mill surface under these conditions, a temperature is pro-+
scribed which should be uniform about the circumference of
the cylinder and the problem is to tid that distribution of the
coolant veloci@ VWwhich results in the desired w-all tempera-
ture. Generally, such an investigation requires u trial-rtnd-

,-
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wror procedure which is very involved. The
becomes simple and straightforward, however,

.
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procedure
when th6’-.

radiative heat flow g, and the conductive heat flow q, can be
neglected. Such a solution, then, is also useful as a starting
point for the trial-and-error procedure when radiation is
present.

TIIe heat balance (eq. (38)) can be transformed to

h _ Ptovw T.— To

CPPSW, O P,u., o T, —Tw (39)

when &=qo=O. The ratio of temperature d.iilerences in this
equmtion is now a prescribed value. A similar ratio
(~,– TJ/(T,- T.) often appeara in turbine-cooling work and
is denoted by p. Introduction of this value and conversion
to dimensionless values result in

1—(0
—=vyr —& P .

(40)

Another expression for i’ViL/@O is given by equation (35).
Combining both equations gives ‘

(41).

This equation expresses a relation between the parameters
IV and v& in figures 4 and 6 which may be used to insert
lines of gonstant p into these iigu.res. With the we of these
lines, the crdculation procedure for any specific problem
becomes quite simple. The procedure will be described for
T,/Tu= 1 (or near 1) and with the use of the convection
boundary-layer thiclmess &. The prescribed temperatures
fix the value of p.

At the stagnation point, m=l and du~/& is lmown. In
figure 4 (a) the intersection between the line m= 1 and the
line for the prescribed p determines v~ti? and (du~/dx*)~2,
rind, from both values, ~ and V3may be calculated.

The method of isoclines may again be used to determine the
development of the boundary layer along the cylindrical
surface. The use of this method implies that the gradient
&!/dx* has to be determined for any pair of values x* and
6$. For an assumed b:, the value u~& can be found in
figure 4 (a) as the value on the prescribed tiurve above the
known nbsciesn value (du~/dz*)@. Figure 3 (a) then gives.
ill and equation (33), the gradient d63/dx*. A plot. similar
to figure 9 determines the boundary-layer thickness, and the
values v: belonging to these boundary-layer thiclmeases
represent the coolant-flow distribution for the particular
temperature-difference ratio p.

NUMERICAL EVALUATIONS AND COMPARISONS WITH
ENO,WN RESULTS

SOIdDSUEFAC~ ,

The results of the outlined procedure for calculating local
heat-transfer coefficients have to be compared with experi-

mental results or calculations by some other method in
order to check the accuracy. The only cylindrical shape for
which experimental data or solutions of the boundary-layer
equations suitable for such a comparison are available seems
to be the cylinder with a circular cross section. Accordingly,
local heat-transfer coefficients mere calculated according to
the method proposed in this report by use of the dimension-
less thernd bounda~-layer thickness as well as of the dimen-
sionless convection boundary-layer thickness. The results
of these Calculations are plotted in figure 11 over the dimen-
sionless distance from the stagnation point. Also inserted
in the figure is a curve representing the average curve through
the experimentally determined local hmtAransfer coefficients

FmxmE11.—(%mparknnof -t methcdwith formerly nsei mdbcds for mkdatbn
ofM heat-transferc=MMentsarounddiudar oylInderwftblmpm-mableW~ u> O;
Pr, O.Z TJT., 1.

mentioned in reference 31. It is shown in reference 22 that
the measurements correlated well into a single curve when
the expedients with Reynolds numbers near the critical
value for transition to turbulence within the boundary layer
were excluded. The tests with high Remolds numbers gave
values of Nu/A~ which over the whole upstream side of
the cylinder were about 10 percent higher than the ones for
the lower Reynolds numbers The same behavior is reported
in references ’32 and 33 in ~hich it is shown that an increase
up to 50 percent in the heat-transfer coefficients over the
expected laminar values vm.s caused by the turbulence level
in’ the wind tunnels used. The result of a solution of the
boundary-layer equation as presented in reference 1 is also
included in figure 11.
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This method SOIVCSthe boundary-layer equations and
obtains results as a series in the distance along the surface.
Also inserted are values obtained by use of the Pohlhausen
flat-plate solution when the free-stream velocity is based on
the local values and results obtained by the methods of
references 12 and 13. Hea&transfer coefficients on wedges
With the same local stream velocity and velocity gradient
at the same distance from the stagnation point are also
included (ref. 8). Appendix C explains how these wedge
solutions were obtained.

On a cylinder with a circular cross section, separation
occurs in the subcritical range near the value x*=O.7. The
stream velocity distribution around the surface of the cylin-
der which w-as needed for the calculations was obtained from
pressure distributions given in reference 31 and is contained
in reference 22.

It may be seen from figure 11 that the use of flat-plate
values results in heabtransfer coefficients which are consid-
erably lo~er than experimental values, whereas the methods
in references 12 and 13 result in values which are too high.
~Iuch better agreement is found between the wedge heat-
transfer coefficients and the experimental results, especially
near the stagnation point. Farther downstream, the accu-
racy is improved by the method of ,this report. For the
largest distance from the stagnation point, the use of the
dimensionless thermal boundary-layer thiclmess results in
Yalues which are higher and the use of the dimensionless
convection thiclm~, in values -which are lower than the
experimental ones. The values calculati by Fr&ding’s
solution of the boundary-layer equations are also higher
than the experimental ones. Frtkdiug’s, method has to be
considered as an exact solution of the boundazy-layer equa-
tions. In reference 22 it is recommended, on the basis of
the good agreement between Frtksling’s curve and the values
obtained by the use of the thermal boundary-layer thick-
ness, that the m@hod of the equivalent wedge flow be based
on the thermal bounds&layer thickness. The values of
the heat-tremsfer coefficients depend primarily on the veloc-
ity distribution in the stream around the cross section of
the cylinder. The velocity distribution used for the calcu-
lation on the circular cylinder is also shown on figure 11.
The calculations are made for a Prandtl number of 0.7, for
a solid surface (o.= O) and a temperature ratio T./TWof 1,
equivalent to the assumption of constant property values.
These calculations agree within 5 percent with the exact
calculation and within 8 percent with experiment when the
immediate neighborhood of the separation point is excluded.
Similar comparisons have already been made in reference 2
for a gas with a PrandtJ number of 1 and a different velocity
distribution (see fig. 1). This comparison shows that the
method proposed by Squire (ref. 16) gives heat-transfer
coe5cients which agree with the exact boundary-layer solu-
tion to about the same degree as those of the method’ of

the equivalent w-edge flow. The same fact holds for the
method indicated in references 15 and 17 especially with
the impr&ement given in reference 4. It can be stated in
summary, therefore, that a riumber of methods exist today
which, at least for the circular cylinder, permit the deter-
mination of heat-transfer coefficients on solid surfaces in the
laminar region of a gas having constant property values
with a very good” accuracy. The advantage of the equiva-
lent -wedge flow method over those methods just discuswcl
is that it gives solutions in a very short time and that it
can be readily extended to include variable property values
and transpiration cooling, as was done in this report. The
wedge solution, according to reference 7, is still more rapid;
however, the results difler from the csperimental values .up
to 15 percent.

Figure 12 gives the analogous results for an elliptic cylinder
&th the ask ratio 1:2. It may be observed that heah
transfer coeilicients on mxige$ difler only slightly from thoso
obtained for equivalent wedge-type flow, whereas the fld-
plate vahms and the ones calculated with references 12 and
13 are considerably @erent. JXTOexperimental results or
solutions of the boundwy-layer equations for a cylinder With
such a cross section which could be compared with’ the cLp-
proximate solutions are lmowu to the authors. The crdcu-
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lation with Kroujiline’s method, presented in reference 22,
agrees well with the solutions obtained with the equivalent
wedge-type flow ,method. Separation of the flow occurs on
such a proiile riear x*=O.8. The stream velocities used are
eakmlated v~lues contained in reference 22.

The agreement between the wedge solutions and the results
obtained by the method herein is still closer for the elliptic
cylinder with axis ratio 1:4 (fig. 13). The reason for this
fact is the type of stream velocity variation occurring on
elliptic cylinders. Flow separation oocurs on this oylinder
near x*= O.85. The curves in figures 12 and 13 show that
the stream velocity is comparatively constant over a con-
siderable part of its circumference after a steep increase near
the stagnation point. This behavior is more pronounced for
an axis ratio of 1:4 than for one of 1:2. An inspection of
figure 13 shows that, apart horn the region near the stagna-
tion point, even the flat-plate values give a reasonably good
approximation. Calculations obtained by use of the dimen-
sionless thermal bouudmy-layer thiclmess extended to the
flow separation point, whereas those for. the dimensionless
convection boundary-layer thiclmess did not. It therefore
appeara advisable to use the dimensionless thermal boundary-
Iayer thiclmem.

J3xperimental heat-transfer coefficients found at the Uni-
versity of California for an elliptic cylinder with an axis
ratio of 1:4 (ref. 34) are about 50 percent higher than the

theoretical values shown in figure 13. There are several
reasons’ for this discrepancy.. The measured stream-velocity
distribution was diilerent horn the one on which the present
calculations are based, probably because of a limited width
of the wind tunnel. The cylinder in the experimental in-
vestigation was heated by an electric resistance which pro-
duced a constant heat flow through the surface per unit area.
Accordingly, the surface temperature varied along the cir-
cumference of the oylinder, being lowest at the forward
stagnation point and increasing in the downstream direction.
Calculations in reference 34 indicate that the higher values
found in the tests are mostly due to this fact. Another
increase of the experimental heabtmmsfer coeilioients may
again be conneoted with the turbulence level in the wind
tunnel used, as discussed in connection with the .pxperimental
results for circular cylinders.

From figures 11 to 13, it may be concluded that, for
cylinders with a stream velocity which is fairly constant over
the greater part of the circumference, local heat-transfer
coefficients may be obtained with good accuracy from wedge
solutions. k the region in which the stream velocity varirt-
tion is considerable, the method of the equivalent wedge flow
gives heaktransfer coefficients with an accuracy sufficient for
engineering purposes.

POEOUSSIJ&ACFS

Heat-transfer coefficients were calculated by the method
of the equivalent wedge flow for cylinders with circular and
elliptic cross sections for transpiration-cooled surfaces and
di.ilerent temperature ratios T,/T. by using either the thermal
or the convection boundary-layer thiclmess (figs. 14 to 18).
In thtie figures it was more expedient to base the Reynolds
numbers appearing on the ordinate and in the ooolant flow
parameter on the density at wall temperature (l?eJ rather
than on tQe upstream densi@ (l?eJ. b figures 11 to 13 and
19, both Reynolds numbem’ are identical since they are
calculated for a temperature ratio T,/T.= 1. The use of
both boundary-layer thicknesses gives difhmnt results only
for large distances. from the stagnation point. The. vari-
ation of the heatrtransfer coefficianta with the ratio of stream
to wall temperature is comparatively small for solid surfaces.
This result is in agreement with previous findings. For
transpiration-cooled surfaces, however, the effeot of the
temp~rature ratio on the heat-transfer coefficients becomes
more pronounced, especially on cylindem with nearly circular
cross sections. In reference 24, the case of transpiration
cooling with small temperature differences is calculated; this
referenoe includes the effect of the temperature ratio by a
correction factor which is based on the assumption that this
effect is the same as that determin ed experimentally for
impermeable surfaces. A comparison of results shows that
the procedure in reference 24 underestimates the oflect of
temperature ratio for transphation-cooled surfaces. h

.
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.
addition, it can be observed that transpiration cooling
results in n considerable decrease of the heat-transfer co-’
o~cients. A larger amount of coolant flow is necessary to
reduce the heat-transfer coefficients by the same amounts
in regions in which the heat-transfer coefficients are large.
Such a region exists at the stagnation poipt on a cylinder
with an ask ratio of 1:2, and especially on a cylinder with
an asis ratio of 1:4.

The variation in coolant flow required to maintain con-
stant wall temperature for transpiration-cooled cylindem
with circular and elliptic cross sections is shown in iigure 19.
The calculations were made for a temperature ratio T,/T.
of 1, n value of q of 0.5, and a Prandtl number Pr of 0.7.
Figure 19 shows that the highest local coolan~flow rates are
necessary near the stagnation point in order to keep the
wall temperature down ,at that place. The magnitude of
the coolant-flow rate at the stagnation point is proportional
to the square root of the velocity gradient du?/dx*; this in
turn is determined mainly by the value of the radius of
curvature at this point. As this radius of curvature de-
creases, the required coolant flow increasea. This is in
agreement with figure 19, which shows that the maximum
coolant flow is required at the stagnation point of the elliptic
cylinder with the 1:4 axis ratio. Downstream of the stag-
nation point, the flow rates decrease for each cylipder.
Figure 19 also shows that the use of the thermal rather than
the convection bounda~-layer thiclmess results in only a
very minor increase in coolant flow required to maintain the
circular cylinder wall at a constant temperature.

EXTENSION OF CALCULATION TO HIGH-VELOCITY FLOW

The heat generated by internal fkiction was neglected in
equation (6) according to the assumption of small velocities.

The equation
q=h(T,– T.)

gives &e heai%ransfer coefficient for
d.ready explained that the inclusion of
for a gas with a Prandtl number of 1

(42)

this case. It was
the internal friction
results only in the

chang~ that the temperature T in equation (5) ‘and the
temperature T, in equation (42) are now total temperatures,
us long M the property values may be regarded constant.
The hea&tiansfer coefficients determined in this report may
be used in this case. It is shown. in reference 35 by use of
results obtained in reference 36 that the heat-transfer co-
efficients determined for low-velocity flow apply to high-
velocity flow up to a NIach number of about 4 for a gas
with a Prandtil number ditTerent from 1, when the stream
velocity is constant (flat plate) and the heat flow is not too
large. The heatAransfe~ coefficient, however, has now to
be defined by the equation

q=h(T~– TtJ (43)

in which the temperature Tti denotes the value which an
unheated plate assumes in the high-velocity flow. The
adiabatic wall temperature may be determined from the
recovery factor

T~– T,
‘0= T=..— T,

(44)

which was found to be equal to ~r for huninar flow an-d for
Prandtl numbem of approximately 1. The difference be-
tween the total and the static temperatures in the stream
is connected with the stream velocity by the equation

TT,8– T,=~ (45)
P
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For the flat plate with a constant stream velocity, the adia-
batic wall temperature is therefore constant.

Conditions are more involved on a cylinder with a stream
velocity which vari ES along its circumference. Even when
the recovery factor is assumed to be constant, equations
(44) and (45) give an adiabatic wall temperature which
variea along the c~cumference of the cylinder. The fact
that the low-velocity h~at-transfer coefficients also repre-
sented the high-velocity values on a flat plate, however,
followed from the fact that the energy equation for constant
property values is linear in T, and that a general solution
of the nonhomogeneous equation describing the heat transfer
including the internal friction could therefore be obtained
by superposition of the solution of the homogeneous equation
valid for small velocities” and a particular solution of the
nonhomogeneous equation. Such a superposition results in
a constant wall temperature on the flat plate when the solu-
tion of the homogeneous equation for constant wall tempera-
ture and the one describing the adiabatic wall temperature
is used, since the adiabatic TWJItemperature is also constant.
For a cylinder with an arbitrary cross section, however, the
adiabatic wall temperature which repreaente a particular
%olution of the nonhomogeneous equation wries along the
circumference. Therefore, a superposition of this particular
solution tith the low-velocity’ solutions for constant wall
temperature does not give a constant wall temperature, which
was specified for the problems investigated in this report.
Accordingly, the heat transfer has now to be calculated with
the equation

q=h(Ta~r TJ (4G)

in which T4f~has to be determined for constant wall tem-
perature conditions; that is, T.fJ is the temperature which
a particular spot along the surface, for which the heat-
transfer coeihcient is im be determined, assumes when the
heat flow through the wall at this particular spot is zero
and the wall temperature along the circumference of the
cylinder is constant.

For flow around wedgw, die temperature, which may be
referred to as the “effective temperature,” can be found
from the resulte in reference 23. It is also determined for
several cases in reference 37. The calculation procedure
which determines this effective wall tempem@re from ref-
erence 23 is described in appendix D. The calculation
shows that this temperature may be ag%in expressed by a
recovery factor . .

+-Q (47)

The index o is used to indicate that such a recovexy factor
could be determined experimentxdly by a model made of a.
material with a very large heat conductivity so that the
internal heat conduction would eliminate all temperature
differences along the surface. On theotherhand, the recovery
factor describing the adiabatic wall-temperature in equation
(44) he to be determined experimentally by a model made

of ,a ~aterial with an infln.itely small heat conductivity so
as to eliminate internal heat flow. Valuea for the recovery
factor T. detwminhg the effective temperature of a wedge
are presented in figure 20. The recovery factors ro describing
the adiabatic wall temperature according to equation (44)
have been calculated for wedges in reference 7. This calcu-
lation had resulted in values which decreased slightly with
incn%sing Euler number m. Repetition of these calculations
on an electric computing machine, however, according to a
communication from Arthur N. TitTord of Ohio State
University, showed that the recovery factora for the adia-
batic wall temperature am practically independent of tho
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E&r number and have the same values as the recovery
factor r. shown in figure 20 for an Euler number m equal
to Zexo.

The consideration up to now dealt with solid surfaces.
No information was found in the literature on recovery
factors for transpiration-cooled surfaces. Some recovwy
factors were therefore determined for rt tranephation-
cooled flat plate and a flow with constant property values
(the same for outiide and coolant flow) by an integration
of the boundmy-layer equation (4). The integration was
carried out in the same way as in reference 5. The dimension-

.
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less stream function j and its second derivative were taken
from reference 30. The results of this calculation am
presented in figure 21 and the following table where T,/Tu= 1
and Pr=O.7:

f.
lycocory

–1 “ 0.713
–. 75 .750
–. 50
0 :%6

.50 .874
1 .900

The iigure shows that the recovery factors decrease consider-
ably with increasing coolant flow. The calculations were
extended to positive values of j. which apply to a surface with
suction.

fw

FIOIJFW21.-R&xwwYhotomhr tmnsphathn-cmledSatplateandconstantfluidprw-
ortk T+!Tq1;Pr,0.7.

It might be worthwhile to mention that the accurate
determination of the adiabatic or effective wall temperature
appreciably influences the heat flow RScalculated by equation
(43) only when the difference T.,– T-is of the same order of
magnitude as or of a smaller order of magnitude than the
difference TT,,– T, (see also appendix D).

RESULTS AND CONCLUSIONS

An approximate method for the calculation of heat transfer
in the laminar region around cylinders of arbitrary cross
section was presented. The method, called the equivalent
wedge-type-flow method, is based on exact solutions of the
laminar boundary-layer equations for wedge-type flow and

takes into account the influence of large temperature differe-
nces between the flow and the cylinder wall and the iniluence
of transpiration cooling. The use of prepared charts reduces
oklculations to a graphical solution of an ordinary &t-order
differential equation. The method can be based either on
the convection thickness or on the thermal thiclmess of the
boundsq- layti. The results of calculations based on one
thickness’ difler slightly from those based on the other
thickness. There are not enough experimental data avail-
able to decide ‘which boundwy-layer thickness should be
used. F7ear the separation point, however, the results ob-
tained with the thermal boundary-layer thickness seem
somewhat more’ plausible.
. The method waa applied to circular and elliptic cylinders,

and the following results and conclusions are given: .

1. Results of experiments and exact calculations were
available only for circular cylinders with solid surfaces.
Calculations based on the present method and on the thermal
boundazy-layer thickness agreed within 5 percent with the
exact calculation and within 8 percent with experiment when
the immediate neighborhood of the separation point was
excluded.

2. With-the present method, heat-transfer coeilicients may
be obtained without a lmowledge of the flow boundary layer.
Consequently, such calculations are more rapid than those
based on the momentum and hea~flow equations.

3. Heat-transfer coefficients determined from wedge solu-
tions agreed on the circular cylinder within 15 percent with
the results of experiments. The calculation procedure is
still more rapid.

4. For elliptic cylinders, the differences between the results
of calculations with the various methods decreased as the
axis ratio increased from 1:2 I% 1:4.

5. The development of the boundary layer is determined
by the velocity distribution around the cylinder. The
accuracy which has to be expected for the results of calcuhL-
tions with the different methods will therefore depend on the
character of the velocity distribution

6. For cylindem with solid walls, the variation of the
heat-trmsfer coefficients with ratio of stream to wall tem-
perature was comparatively small.

7. For transpiration-cooled surfaces, the effect of tempera-
ture ratio on heatAmmsfer coefficients became pronounced,
especially on cylinders with nearly circular cross sections.

8. A considerable decrease in heat-transfer coefficients
accompanied transpiration cooling.

9. The influence of transpiration coolirg on the recovery
factor was investigated for a flat plate and constant property
values. It was found that the recovery factor decreased
considerably with increasing coolant flow. .

LEWIS FLIGrrr PROPULSION LAROFATORY
NATIONAL ADVISORY COm~EEI FOR AERONA~CS

CLEVELAND, Oqro, March 19,1.962
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APPENDIX A
. SYMBOLS

The followimz svmbols are used in this re~ort:
dimensionle& &dl temperature gradienl taken from

~

drefs. 22 and 23, ~ f.m+l

constant

specfic heat at constant pressure
function
dimensionless stream fwiction, (p.4)/JZ,
heat-transfer coefficient
thermal conductivity
chmacteristic dimension (major axis of cylinder)

i%
Pr
P
!l
!7
%

%%
Re.
rO
r=
T
T,
u
u,
u:
v

t?*

x
x“

II
z

Nusselt number, hL/k.
Prandtl number, cpK/k
pressure
heat flOW
approximated beat flow
heat flow by conduction
heat flow by radiation
Reynolds number, u. oLpJP.
Reynolds number, t@p./p.
recove~ factor defined by (T~— Z’,)/(T~,,—2’,) (eq. (44))
recovery factor defined by (Tdr Z’,)/(T~,.—T,) (eq. (47))
temperature in bound~ layer ‘
temperature in stream
velocity component along surface
free-stream velocity
dimensionless maw veloci~ in free stream, p.u./~u,,o
veloci~ component normal to surface

::,)=’dimensionless velocity normal to surface, —

distance from stagnation point along surface

dimensionless distance horn stagnation point along
surface, z/L

distance normal to surface

dirnension@s boundary-layer coordinate taken from

r

m+l
refs. 22 and 23, ~ T

pres&re gradient parameter, 2m/(m+l)
boundary-layer thiclmew
dimensionless boundary-layer thickness, (6/L)~b
convection boundary-layer thickness (eq. (15))
dimensionless convection boundmy-layer tti.ckness,

‘ (&/L)&
displacement boundary-layer thiclmess (eq. (13))
momentum boundary-layer thickness (eq. (14))
thermal boundary-layer thickness (eq. (16))
dimensionless thermal boundary-layer thickness,

(at/L)~%

r
dimensionkxs boundary-layer coordinate, y $

r

p&,
6—

F..$

dimensiordeas temperature-cMerence ratio, ~ ,
8— w

dimensionless temperature-difference ratio, ~~~_T~,

dimensionless stream function taken from’ ref. 27,
m+l

–~ f.

absolute viscosity
kinematic viscosi~, p/p
distance along .wedge, taken from refs. 22 and 23
dtil~

T,–Tw .
dimensionless temperaturediff erence ratio, ~

8— e
stream function ‘

Subscripts :
ad adiabatic
c coolant, when ,used with T
@f elktive
s Stmyun
T total
w Wau
o except when used with r, refem to a iixed point in the

stream
superscripts :
m ~onent of distance along surface from stagnation

point for stream velocity, US= Cx”
8 deno~ diilerentiation with respect to q
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APPENDIX B

EVALUATION OF HEAT-FLOW’ EQUATION

The energy equation (5) will be integrated along y
throughout the boundmy layer under the conditions of small

Mach number, constant wall temperature, and constant
specitic heat

CpN ‘“ ‘%P”=J%(’%W“ Pu~+P ~y
o

The first term on the left side can be transformed by partial
ditlerentiation to

PU ~=: (PU”I-T $&

An analogous transformation of the second term and con-
sideration that the temperature gradient bT/Zy is zero out-
side the boundary layer (for ~= OJ) result in

The second and fourth terms cancel because of the con-
tinuity equation (3). In the first term, the sequence bf
differentiation and integration can be reversed. Introdu-
ction of the convection thickness of the bounda~ layer leads
tiredly to the integrated heatAlow equation

(61)

It will now be proved that equation (26), used for the method
of the equivalent wedge+ype flow, is the same as this inte-
grated heat-flow equation when the convection thiclmeas for
the boundary layer is used. Equation (B1) may be tmms-
formed by partial differentiation of the first term into

For w-edge-type flow, the convection thickness is given by
the expression

,— l–m—.

‘O=’+%=+%’2, (133)

Differentiation of this equation gives

J_do l–m ~e p. ‘* l—m r PW
G=---r —x ‘--5--- T — (J34)

-P& p.zu,

Introducing this expression as well as equations (9) and (12)
into equation (B2) gives the equation

(135)

which interconnects the convection thickness with the di-
mensionless temperature gradient at the wall. The gradient
of the convection thiclmess may now be determined from
the integrated energy equation (B2) wheh the expressions
in this equation are transformed to the new variables .

,
Replacing the nondimensional temperature gradient in this
equation by equation (335)results in

which is the same as equation (26).
It can also be proved by a completely analogous calcula-

tion that the method of the eq~valent wedge-type flow,
when it is used to calculate the momentum thiclmess of the
flow boundary layer, satisfies the integrated momentum
equation which is obtained from equation (2) by an integra-
tion over yin a manner simikm to the derivation of equation
@l) -
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APPENDIX c
DETERMINATION OF

The wedge solutions which were used as a first approxi-’
mation in figures 11 to 13 can be obtained very easily with
the use of figure 22 reproducwl from reference 9. The hea~
transfer coe5cient has to be determined on a wedge which
has the same stream velocity and its gradient at the same
distance from the stagnation point as the real profile. The
Euler number for this wedge can be found horn equation (23).
In the dimensionless coordinates it is

(cl)

The pararneterjm which determines the cool@ flow through
the porous wall is found from equation (2o), which reads,
when converted to dimensionless quantities,

(C2)

The value (~u/ ,R) la can be determined from figure
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WEDGE SOLUTIONS

22, and Nu/ ~~ is iimdly obtained by multiplication by

m-
When the temperature ratio q is prescribed, figure 23

reproduced from reference 9 can be used to obtain the
parameterfw for any Euler number m.’ Equation (C2) then
determines the value v: and the distribution of the required
coolant flow along the profle.
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APPENDIX D
DETERMINATION OF EFFECTIVE WALL TEMPERATURE

It is shown in reference 23 that for high-velocity flow of a
fluid with constant property values around a wedge with
constant wall temperature, the temperature field can be
expressed by the equation

T=(T.– TT,,)(l–O)+(TT,,— T8)O+T, (-III)

in which 0 represents the nondimensional temperature field
for low-velocity flow and 0, the nondimensional temperature
field forhigh-velocity flow and a wall temperature equal to the
total stre~m temperature. The heat flow from the wall,
obtained by differentiating equation (D 1), is

(D2)

‘iVith the transformations used in reference 23 (see also
nppcndix E)

U*=CZ”

P
_ 2m

m+l

(D3)

equation @2) can be transformed into

(D4)
This equation is to be brought into the form

(D5)

A comparison of equntions (D4) and (D5) gives ~

ida~

-(T. . T,) ~fi)Tw–T,~=Tm–T.,, , – — w

()

- (D6)

z.

from which the difference between the total and effective gas
temperatures can be found. The expression

defines this temperature difference and the recovery factor
for the effective wall temperate. The nondimensional
temperature gradients appearing on the right side of this
equation are presented in references 23 and 37. In this way,
the values in figure 20 have been determined.

To obtain an estimate of the conditions under which the
difference betweert the adiabatic wall temperature and the
effective wall temperature may be neglected, the’ heat flow
into the will will be approximated by the equation

(D8)

and the error of such an approximation will be determined.
The ratio of the exact heat-flow equation (D2) to the one
approximated by equation (D8) is

q. TW—TT,X TT,$—T,
~= T.–Td + TU–T=, (~–?.)

Introducing the recovery factor for the adiabatic
perature ~

TT.,— T..= (l —rO)(TT,,— T,)
givw

4?S=l_ TT.,—T,
Il.

TW_T@ (TCD-71J)

wall tem-

I?or an Euler number equal to 1, which characterizes flow ,
near a stagnation point and which, according to figure 20,
shows a large difference between the recovery factons r. and
r., the error is smaller

is larger than 2.5.

than 5 percent when.

Tti-TW
T~,,—-T,
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APPENDix i

COMPARISON OF VARIABLES

This appen&x gives a compamson of the variablez used in
references 9, 25, and 26 tith the ones used in references 22,
23, and 27. All of these references deal titi wedge-typo
flow.

The values used in this report are related to the ones in the
aforementioned references by the following equations:

1.

2.

3.

4.

5.

6.

.
7.

8.

9.

10.

11.

12.
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