
REPORT 1318

CONTENTS

SUMM~Y ----------------------------- ------------------------------------------------------
~TRODUC~ON -----------------------------------------------------------------------------
FUNDAMENTALEQUATIONSAND BOUNDARY CO~~ONS ------------------------------
DE@ATION OF INTEGRAL EQUATIONSFOR TRANSONICFLOW-------------------------

Inkgral ~uation, M.~1---------------- -----------------------------------------------------
Intsgmllquation, M=zl ---------------------------------------------------------------------
Cmoulationof Conditioneon ~ook%tim=------------------------------------------------------

REDUCTIONTO SONIC FLOW ~ORY -----------------------------------------------------
IntegratedStrex@hsof ~ti Sow~---------------------------------------------------------
IntegralEquationforSlenderBofi=, MQ=l ----------------------------------------------------

SLENDERWING THEORYIN LINEARIZED FLOW------------------------------------------
m@-------------------------------------------------------------------------------------

Evahationoforder oferrorin equation(62)---------------------------------------------------
SLENDERWING TBEORY IN SONIC FLOW-------------------------------------------------

ha@-------------------------------------------------------------------------------------
APPLICATIONSTO SEVTHIALPROBLEMSINVOLVINGSO~C FLOW------------------------

Rwum60f PrincipalResultiof Slender-Body~WV----------------------------------------------
Determinationof#(z)inTerma ofpremre DistributiononaNonlifthgBody of Revolution----------
RelationBetweenl?r~ DisiributionsonRelatedW~md Bo~-------------------------------

WmgsrmdbodieaImvingsamelongituti distributionoforosmotion ------------------------
Whgsandbodieahavingsimilarlongitudimddistributionofmo=seotion m----------------------

Applicationto the Cahdationof PremurmandForomon M~ptio Cone-Cylindematilfm=l -----
tiure distributionon notitig mn+oyhdem------------------------------------------------
lhagofnonlifting mn~yhdem --------------------------------------------------------------
Premresandforceeon Hmmn+oyhdem---__--------__--------_--:-----------------------

MomentumAna&sisoflhgof~ender Bodieaat M_=l------------------------:----------------
Derivationofgeneral*tionfor ~---------------------------------------------------------
Relationbetweendragof wingsandbodieshavingthesameareamutio=----------------------
Speoialoaseaforwb.iohthedragof wingandbodyti tie mme------------------------------------

Applicationto Nonplanarhblm -------------------------------------------------------------
CbmpariaonWith@hmWR@@----------------------------------------------------------

~n~yhdem -------------------- ----------------------------------------------------------
wmn-_-------:---------------------------------------------------------------------------
Whg-body mmb~tiom ---------------------------------------------------------------------

REF-NW --------------------------------------------------------------------------------
820

Page
821
821
822
824
824
826
827
829
829
830
832
832
834
834
836
836
836
838
839
839
8a9
840
840
840
842
843
843
844
844
845
846
846
847
848
848



,-“. .

REPORT 1318

.... .
. ...

THREE-DIMENSIONAL TRANSONIC FLOW THEORY

APPLIED TO SLENDER WINGS ANDABODIES ‘

By MAX.A. &MUJWandJOHN~ SPRRIT13R-

SUMMARY

The pre.sen+!paper re-examiw the dm”vationof the integral
eguation8’for’ transonio flow around denokr un”n48and bodiss of
revolution, giving sp& ati!entionto conditions resulti~ from
thepresence of 8hockwavesand to thereductim of therelationxto
the 8peCi.Clfor?n8n8ces8aryfOr the discussion of 8onti.flow, that
is, jlow at free-stream Mach numlwr 1. In the vim”nitgof ths
body, the disturbancejield is then 8hown to consist of a two-
dimm-sa”onaldisturban~ jield ea-tmuiinglateraUyand a lan@-
tudinal jield that depends on the ~treamwisegrowth of cross-
section area. This result extends Oswatitsch’sequivalencerule
to iijting ca8L%,prooided tlw angle of aiiack is d relztire to
the thicknem ratio. The correctntx8of the an.dysis is checked
by examination of Y08hih@a’8 numeti 80.hJtionfor sonic
jlow arownda slender, circular m-cylinder and this solution
i~ checked, in turn, by comparison with expm”mentalresults of
Solomon. An ewzmplais presented in which the general rew.lt
la applied to calculatepremure and iniegr& forces on a family
of slender, elliptic cone-@ndm8. An eqresst”m is dm”ved
which permiti the rsady cumulationof the di@rawa in drq of
two slsnder bodies having the same longitudinal distribution of
cro8s-8ecti0narea. Clu88esof wing8 and boditx are described
jor which ths di~erena in drag is zero and the BLWxnnb area
rule applies. Expm”mental datafor such a family of wings of
rectmqnd.ai-plm form are ezamined and it is 8hawnthat theory
and expm”mentare in good accord.

INTRODUCTION

The equations governing transonic flows are known and
well established by favorable comparisons with aqmri.ment
(me ref. 1 for rLre9um6). The difficulties arising as a result
of the nonlindly and mixed oharaeter of the difhrential
equation for the potential, however, have prevented the
rapid advancement of the analysis such as has occurred in
recmt yeara with both subsonic and supersonic theory.
This is particularly true for three-dimetional transonic
flows ~d, as a result, perhaps greater than usual effort has
gone into the determination and utilization of relations
between solutions. The fit of thesa to be advanced was
the transonic similarity rule which pertains to the pressures
and forces on aflinely related wings (refs. 2, 3, and 4) and
bodies of revolution (ref. 5). A seeond ralation is the area
rule Cstabuhed empirically by Whitcomb (ref. 6) which—.

1SUPO*FE NAOATN S717by Max.A. HeasletandJohn R @’dkC

statea that “near the speed of sound, the zero-lift drag rise
of thin low-sspect-ratio wing-body combinations is primarily
dependent on the tial distribution of cross-sectional area
normal to the air stream.” A third relation is the equiva-
lence rule of Oswatitsch (refs. 7 and 8) whioh maybe stated
as follows: “The solution for transonic flow around a thin,
nonlifting, low-aspeot-ratio wing can be obtained from that
for a nonlifting body of revolution having the same longi-
tudinal distribution of cross-sectional area by superposing
the difference between the two-dimensional harmonic cross-
flow solutions for the two bodies.” The area rule and the
equivalence rule are, obviously, closely related. Further
effort needs to be expended, however, in establishing the
generality and range of validity of these relations and in
exploiting the results in specilic applications. The pr~ent
paper is concerned with this task.

The problem w!ll be approached through application of
the classical method of singularities. This is one of the
oldest and most fruitful methods for solving partial differ-
ential equations and has reached a high state of development
in linearized compressibk-flow theory. There is SJSCa con-
siderable body of literattie in which the method is applied
to nonlinem compressible-flow problems by considtig the
solution of the linearized equations to be a first approxi-
mation, and iterating to obtain seeond and higher order
approximations. The reauhs so calculated are good approxi-
mations to pure subsonic flows or to pure supersonic flows,
but it is now generally agreed that the swim representation
of the solution doea not converge in the transonic range.
Approximate calculations by Oswatitsch (refs. 9 and 10)
have indicated the possibility, however, that the method of
singularities might be applied successfully in the transonic
range if the idea’ is relinquished that the linear solution is
necwamily the &at approximation in the transonic range.
This idea has been pursued kther in references 11 through
15 in which a number of ~provements me introduced and
the re+mlts of numerous spee%c calculations are shown.
Although the bssic equations axe derived for three-dimen-
sional flow h the lattar references, all applications are to
twodmensional flows. The values of the free-stream
Mach number, moreover, are resticted to values no gretker
than unity.

821
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The same general approach has been applied to
dimensional transonic flow around slender wings and

ADVLSO13Y coMMITrlm FO13 A31EONAUTTCS

three-
bodies

by Oswatitsch and Keune (ref. 8) and by Harder and
Khmker (ref. 16). b these applications, the principal aim
is not to determine actual solutions but to derive relations
between solutions for various bodies having the same longi-
tudinal distribution of cro-section area. These tmo anaJ-
yses are not entirely satisfackmy in a number of p@culMs,
not the least of which is the otilon of all considerations of
shock waves in the body of the analysis. A more important,
although perhaps more subtle, point concerns the treatment
of the cumulative effect of the nonlinear term of the transonic
equation when the free-strewn Msch number Mm is uniw.
Harder and Klunker argue that the effect on the induced
flow field is small because the term itself is everywhere small.
Actually, however, the cumulative effect of this term leads
to tits contributions at M.= 1. Oswatitsch and Keune
wmeider the cumulative effect but circumvent the difilculty
by introducing rather arbitrarily selected values for Mach
number so chosen that the value of unity is never inserted
into the vital integrals. It is the inithil concern of the
present analysis, therefore, to re-mamine the derivation of
the integral equations for transonic flow around slender
wings and bodies of revolution, giving special attention to
conditions resulting from the presence of shock waves and
to the reduction of the relations to the special forms neces-
sary for sonic flow. In ccntrsst to references 8 through 15,
which are concerned exclusively with cases in which the
free-dream Mach number is no greater than unity, equatim
are also derived herein for the case where the free stream is
supemonic. These equations are likewise reduced to the
special form associated with sonic flow and the redta are
shown to be identical to those which arise from a considera-
tion of flows tith a subsonic free-stream velocity.

Following the establishment of the basic integral relations
for transonic flow, special attention is directed toward the
case where the free-stream Mach number is unity. Here,
the integral relations me simpler in character, although still
nonlinear. Application of a convergent integrationprows
leads to the conclusion that the solution for the potential
has a particularly simple form in the vicinity of the body;
in common with linearized slender-body theory, the dis-
turbance field consists, to a given order of error, of a two-
dimensional disturbance field extending laterally and a
longitudinal field that depends on the stresmwise growth
of crow-sectional area. This result extends Oswatitmh’s
equivalence rule to lifting csses, provided the angle of attack
is small relative to the thickness ratio. The correctnws of
the analysis is checked by examination of Yoshihara’s numer-
ical solution for sonic flow around a slender, circukw, ccne-
cylinder given in reference 17, and this solution is checked,
in turn, by comptin with experimental res.dta of Solomon
given in reference 18. The results yield a simple means of
determiningg the pressure distribution on an entire family of
slender wings and bodies having the same longitudinal dis-
tribution of cross-sectional area when the pressure distrib-
utionis known for any member of the family. Starting with
the known solution for the circular cone+nder, m example
is presented in which the general result is applied to a family

of slender elliptic ccne-cylindem. This example, which was
discussed briefly in reference 1, is examined in detail. It is
shown that the lift and the load distribution are the same as
given by linear theory, confirming the ideaa advanced in
reference 19. Contrary to Whitcomb’s area rule, however,
the drag depends significantly on the cross-section shape.
Both the drag and lift of the thin elliptic cone-cylinder are
shown to be in accord with the transonic similarity rules.
A momentum analysis of the sonic drag of slender bodies in
general is then undertaken and an expressionis derived which
permits the ready calculation of the difference in drag of
two slender bodies having the same longitudinal distribution
of cross-section area. This result ccntirms the drag variation
calculated for the elliptic ccne-cylinders by integration of
the surface pressures. Several large and significant classes
of wings and bodies are described for which the difference
in drag is zero and the Whitcomb area rule appliea without
modification. One of these is a family of affiely related
W@S. Experiment data from reference 20 for such o
family of wings of rectan@hw plan form are examined and
it is shown that theory and experiment are in good accord,
provided the product of aspect ratio and cube root of the
thickness ratio is, in this instance, less than about unity.

The final section of the report has been written so as to be
as self-contained as possible and readers concerned solely
with applications of the theory may find this section sufficient
for their purposes. The initial sections of the report have
been written for readers concerned with a more completo
understanding of the derivation and limitations of tho
general theory together with the evaluation of the order
of error incurred-in the slender-body approximation,

FUNDAMENTALEQUATIONSAND BOUNDARYCONDITIONS

The basic equations necessary for the discussion of inviscid
transonic flow consist of a set of partial di.il’erentialequations
relating the velocity components and their gradients at every
point, together with an auxiliary relation for the velocity
jump through a shock wave. For thin wings and slender
bodies inclined at zero or small angles of attack, the differ-
ential equations can be simplified if the shock waves are
sssumed suiiiciently weak that the flow is irrotational and
isentropic, thereby permitting the introduction of a velocity
potential @. The further assumption of small disturbances
leads to the use of a perturbation velocity potential q which
in Cartesian ccordinatea satisfies the following nonlinear
partial differential equation

, 7+1
(l–Mm%=+f%+f%=M. ~ %4% (1)

where U. and ikfQrefer to the velocity and Mach numbm
of the undisturbed flow, y is the ratio of specitlc heata
(7=1.4 for m), ~d Z, y, and z are Cartesim coordinates.
The perturbation veloci@ vector is givdn’by the gradient of
p and has components, U,u, and w along the three axes.

Knowledge of methods for obtaining solutions of equation
(1) is meager not ordy because it is nonlinear, but bwxwde it
changes type (elliptic, parabolic, hyperbolic). This chango
of type is an essentialfeature of traneonic flow, sincesubsonic
flows arerepresentedby ellipticequations and superaonicflows
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by hyperbolic equations. If both typca of flow occur in a single
flow field, it is apparent that the differential equation must
change type. In the present case, the type of the equation is
recognized by the sign of the total coefficient of p=, as follows

{

>0 elliptic (subsonic)
(1—M.? —M.2(.y+l) & =0 parabolic (sonic) (2)

m <O hyperbolic (supersonic)

In most of the investigations of two-dimensional transomc
flows (pW=O), the ditlerential equation is transformed into a
linear equation of mixed type (Tricomi equation) by the in-
troduction of the hodograph variables. At the present time,
however, no transformation is known that achieves a corre-
sponding linearization of the three-dimensional equation, and
the investigation of other methods of solution thus becomes
relatively more important.

Equation (1) is, of course, valid only in regions where the
necessary derivatives exist and are continuous. Since these
conditions do not hold where shock waves occur, and since
shock wavea are a prominent feature of most traneonic flows,
rm additional equation is needed for the transition through
the shock. The fundamental properties of a shock surface
require that the normal component of velocity be discon-
tinuous and the tangential component, and therefore ~, be
continuous. The necessary relation follows from the classical
esprczeion for the shock polar, which in the small disturbance
transonic theory is approximated by

(1–M.1)(%.–%,)2+ (%.-%,)2+ ($%.–$%,)’

=~ 27+1 ‘Z.+w’b (wza—P=b)s (3)
“U-2

whore the subscripts a and b refer to conditions ahead of the
behind the shock.

Equations (1) and (3) are usually developed for the case
where the coordinate system is placed so that the x axis is
parallel to the undisturbed stresn at infinity, but they also
rLpplyto the case where the coordinate system is rotated
slightly. In the present analysis, it is convenient to dine
the x axis with the longitudinal axis of the wing or body as
shown in figure 1. Such a system is usually referred to as
the body axes. With these coordinates, the relation be-

FmurmI.—View!
4MJllM-ukG3

of wingand coordinatesystem.

tween the total velocity potential @(x,y,z) and
tion velocity potential q(z,y,z) is approximated

@(x, y, z,) =U.(x+az)+q(z, y, z)

where a is the angle of attack.
The exprwsion for the pressure coeilicient

invariant with respect to small rotations of the
system. In body axes, the proper expression is

c,=–; (9=+%)-+ (W’+%9
. m

823

the perturba-
by

(4)

(?, is not
coordinate

(5)

The boundary conditions require that the gradient of the
total velocity potential evaluated infinitely far from the air-
craft be consistent with the uniform free-stream conditions
there and, when evaluatid normal to and on the surface of
the airplane itself, be zero. The condition at infinity yields
@(m )= U. (z+az) or that

p(m)=O (6)

An exception to this statement occurs in the vicinity of the
wake at great distances behind the wing, but no complica-
tion eneuw due to the relative mmllness of this region.
The condition at the airplane surface results in the relation

where w, ~, and % are the direction cosines of a normal to
the airplane surface with respect to the z, y, and z axes,
respectively. This relation is too genertd for the present
needs, however, because it applies to all shapes, whereas the
analysis is to be a small disturbance theory that applies
only to slender bodies and thin wings. For such conjura-
tions, nl is small nearly everywhere on the surface and will
be neglect~d in comparison with either unity or (nx’+%’)~.
In this way, equation (7) simplifies to

where n is the normal to the curve bounding a cross section
in a plane normal to the z &s.

All of the subsequent analysis proceeds from Green’s
theorem which relates a volume integral over a region V to a
surface integral over the surface z enclosing V. Green’s
theorem can be expressed in many ways; here it is found con-
venient b use the forms associated with the linear differential
equation obtained by equating the left-hamd member of
equation (1) to zero. This results in two d.iiferentforms of
Green’s theorem, one for ill. S 1, and the other for Mmz 1

and prompts the introduction of the following abbreviations

(9)

If the undisturbed flow at infinity is subsonic (i. e.,
M. S 1),equation (1) can be rewritten as

(lo)
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and the corresponding expression of Green’s theorem is (see,
e. g., ref. 21)

where Q and # are arbitrary functions and L(Q) is defined ss
follows

aQ)%3%L+fl.+fl. (12)

and bflpv is a derivative along the conormal and is defined by

(13)

where nl, ~, ~ are the direction cosines of the normal to the
surface drawn into the region V. “

If the undisturbed flow at infhity is supemonic (i. e.,
ill. 2 1), equation (1) can be written as

(14)

and the corresponding expression of Green’s theorem is

where the following definitions

Z(Q)= –p&+Qn+fl= (16)
and

(17)

apply.

DERIVATION OF INTEGRAL EQUATIONS FOR
TRANSONIC FLOW’

In this section, integral equations corresponding to the
transonic diEerentiaJequation are derived for subsonic and
supemonic free-stresm conditions. One of the principal con-
tributions here evolves from the attention given to the shock
wave9, or discontinuity surfaces, appearing in the flow fields.
It will appear (see eqs. (23) and (30)) that the perturbation
velocity potential can be expressed, for M. less than or
greater than 1, ss the sum of integrals that show no explicit
contribution of the shocks. Closer analysis of these integrals
reveals, however, that discontinnitiea in velocity can appear
and that they automatically satisfy the shock-polar relations
(see eqs. (34) and (37)). This section is prefatory to the
formulation of the transonic integral equations for the par-
ticular cams of a slender body of revolution and a thin wing.

INTEGRAL EQUATION,Mm S 1

The function x in Green’s theorem, equation (11), is now
identified with the fundamental solution l/u of the differen-
tkd equation L(+) =0 and the function p is replaced by Q,
tbe perturbation velocity potential of the flow field under

consid~ation. From equations (10) and (11), the following
relations hold {

M%’%)’z=-sss%dv
z v

‘-JJEf-wv‘“)v

In these equations the ting coordinate in, the integr-
ationsare xl, VI, and ZIand q is to be calculated at a point P
with coordinates x, y, and z.

Equation (18) is now applied to the infmito region V
surrounding the given object to be studied. Some care
must be exercised, however, in fig the enclosing surface
z since Green’s theorem requires that singularities and
regions of discontinuity must be excluded from the domain’
of integration. It is to be noted, first, that u wmishcs at
z=z1, y=yl, and z= Z1and the effect of the resultant sin-
gularity can be determined only after the field point is
enclosed by a neighboring surface and the region V taken
external to this surface. Second, since shock waves am
to be expected within the flow field and disccntinuitiea in
the perturbation velocity components occur across them
waves, the boundary of V must also be drawn so as to include
such discontinuity surfaces.

In figure 2, a schematic indication of the body and tho
region of integration is shown. The complete three-dimen-
sional extent of the body has not been pictured; it sufflccs,
however, to state that the surface z (shown dashed) is
composed of a sphere of large radius which forms the external
boundary of V, a sphere of in.fmitesinmlradius surrounding
the field point P, and a final surface enveloping the object,
its wake, and its shock waves.

--------- -----
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FIQUEE 2.—Region of integration;M. S 1.
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lf equation (18) is applied to this region and the a priori”
assumption is mmje that the perturbation field attenuate,
sufficiently fast with distance to negate the contribution
of the surface integral over the large sphere in the limit as
the radius goes to infinity, the following expression results:

In this equation, the integration region over the surface of
the object and its wake is denoted by O+ W. The deriva-
tives in the surface integds are, in all cases, along lima
directed rLwayfrom the integration surface and into the
three-dimensional domain V since, as follows from equation
(13), the direction numbers have the same sign as the direc-
tion numbers of the true normal and the Mach number
effect is limited to a foreshortening of the longitudinal
dinmnsion. On the shock surface x the conormals are
directly opposed on the upstream and downstream facea
b and b. On the body itself, the conormal derivative can
be simplified in the manner used in developing the boundaxy
conditions of equations (8); that is, horn the restrictions
imposed on the gradients along the body surface, the direc-
tion of the conornml becomes e.ifectively that of the normal
n lying in the crossplanes w= const. Thus

a L*&=&
%=n%y

on the surface of the body and wake.
If the triple (spatial) integral of equation (’o) is integrated

by parts z-wise, the resultant form is

(21)

v

Equation (21) is of particular intertwtbecause the integrals
ovor the shock surfaces may be shown to vanish. In order
to prove this, one notes fit that the two integrali extend
over the same geometric surface but that the integrands are
evaluated, respectively, on the upstream and downskam
‘faces and, by definition, the directions of the conornds are
opposed. When the integrands we combined, the total
integrand can be cmpreasedas the difference of the two
twins, onp of which. contains the factor (p)A*—(P)A~and the
other contains the factor

( k
)WZIP%+$%l%+P.l%-Z %1% ~ +

a

(

k
)

Pzl/R%+%,%+Pz,ll’s-~ $%1% ~

The first of these factors vanishes by virtue of the fact
noted previously that the perturbation potential is contin-
uous across a shock surface. The second factor can be
rewritten in the form

P2(mb-mJ(nJ~+ (UAb-@(%)A,+ (a,–mJ(%)x,–

k
‘–~k.~ (~l)xb~ (uAb

Also, the change in the velocity vector occurring at the
shock surface must be in a direction normal to the shock.
This implies the relations

(nJ~,:(n-J~b:(@x,= (UXb–UXJ:(fib-tJAJ:(rob-@

Thus, the second factor b be evaluated becomes

19@xb–ux4)’+ (UA,-nd)’+ (Uh,-uha)’”-g (Ux:--uxmq(uAb-uAJ

[(UX,–%)’+(%-%)2+ (~b–m~~%

The numerator of this fraction, however, corresponds to the
shock-polar conditions of equation (3) and the expression
vanishes.

It finally remains to remark that in the surface integral
over the body itself, the term nlq.l’ resulting from the
integration by parts is of higher order than the normal
derivative of the perturbation potential. The term can
therefore be neglected and equation (21) becomes

Equation (22) provides another integral equwssion for the
perturbation velocity potent&1, for ikfms 1, in transonic
flow theory. The first integral on the right is algebraically
equivalent to the expressionfor P(z, y, z) in linearized theory
and the spatial integral is a contribution brought about by
the nonlinear term of the basic diRerential equation. It is
of interest to remark that a derivation ignoring the existence
of the shock waves can also lead to the same form of the
equation. In this re9pect the relation is not unlike cases
arising in linearized supersonic theory where it becomes
necessary to study the contribution provided by the fore-
most shock wave induced by the body. For the majority
of cases of practical interest, it can be shown that compen-.
sating terms arise and that the discontinuity surfacw are
taken care of by a formal development that ignores the
~tence of these surfacea (see, e. g., refs. 22 and 23).
It is not possible, however, to ignore so completely, the
existence of the discontinuity surface in transonic flow and,
as will be seen in the later developments, equation (2o) is,
for certain purposes, preferable to equation (22).
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Equations (2o) rmd (22) will now be written, for purposes
of reference, in the following final forms

$4W,Z)=$%(%?M)+:T Sssh%w’v
(23a)

(23b)

(23c)

(23d)

In each of the above equations, q~ has the analytic repre-
sentation it has in linear theory. The fit two relatiom we
obvious repetitions of equation (22). The two latter rela-
tions are transcriptions of equation (20) where the notation
A(bp/i3v)= (b@)~a+ (@@)~b has been introduced, the
continuity of p at the shock surface has been used; and
whore in equation (23d) the variable

—

“=sm-’19[(Y-Y1;+7A)W ~

–f–:~ in p —Zll+ { (z—z1)~+~2[@—y1)2+(z—zl)q }

,,. . B[(?4-Y1)’+(2-.Z1WJ

is employed to express {he integral equation in a form that
will be of value in establishing a reduction to the case of
sonic flow.

The longitudinal perturbation velocity is given by the
z-wise derivative of any of equations (23). Consider, for
wdunple, equation (23a). After iirst isolating the siqgdti~
at the field point by introducing the limits xl=x&e, one has

@ZYF)

In the limit as e+O the influence function in the integrand of
the double integral is effectively a two-dimensional pulse
function at the point yl=y, zI= z and of strength 2U/L?z.
The expression for u then becomes

k ?J’(Z,y,Z)
?@,y,z)=%(x,y,z)+p 2

-HJEG-#’v ‘x)v

A detailed account of the application of the two-dimensional
form of this equation to the calculation of airfoil pressure
distributions has been given by Spreiter and Alksne (ref. 15).

INTEGEAL EQUATION,Mm al

Use is now made of Green’s theorem as expressed in equa-
tion (15) and Q is set equal to the perturbation veloci~
potential q(z,y,z). The direct analogue of the derivation in
the previous section would require that # be replaced by
[(Z–ZJ2–L?(y-yJ2–@ (Z–ZJ~~ but this leads to the im-
mediate introduction of a finite-part technique in the inte-
gration. Ii’or the initial stages of the anallsis, ~ will be
identifiedwith the fimdamental solution Z of L(#) = Oused by
Volterra (ref. 24). I?rom equations (14) and (15), the follow-
ing relations hold:

where

‘=cosh-’19[(Y-Y;R-ZIW

The successful application of equation (25) to the tmnsonic
probleqhinges on the proper choic~ of the three-dimensional
region V and its enclosing surface z. Discontinuities in the
velocity components are again to be taken into consideration
at the shock waves l?urthermore, the fundamental solu-
tion of Volterra becomes intinite at yl=y, Zl=z, that is,
everywhere along the line passing through the field point p
and parallel to th-ez axis. I?i@r; 3 indicates the dist&bance
field of the object as well as ~ and ~ (shown with dashed

Ma>!

L-.. —..-—. -—-=-— ——--+p
,
1

fiGUREa.—~gion of integration; .i~m Z 1.



TBREE-DIMENSIONAL TMNSONIC FLOW TBEORY APPLIDD TO SLENDER WINGS AND BODIES 827

lines), The bow shock fixes the foremost extent to the dis-
turbance field and ~ lies adjacent to it and other possible
shock surfaces as well as the surface of the object and its
wake. The downstream limits of the region ~ are iixed by
the forecone with vertex at .P and determined explicitly by
the relation

(z–z,) =p[(y–y,)’+ (Z–z,)’pf (26)

The inner boundary of V is the cylindrical surface of infinites-
imal radius given by the relation

(?t%)’+(z-d’=~

The conormal derivative is defied by equation (17); on the
idnitesimal cylinder its direction.is parallel to that of the .
normal to the surface, and on the forecone from P the
conormal is directed along the surface itself. Formal
rmcdysisyields the expression

(27]

where integrals over the surface of the body and wake are
denoted by r, over the two sidesof the s~ocksurfaces by&and
X~,and over the enclosed volume by V. In each case, only
that portion of the surface or volume lying withimthe forecone
of P is included in the integrals. The surface integrals over
the forecone itself vrmish because Z and hG/hJ are zero. It
should be noted that the forecone is that of linearized theory
and has no relationship to the region of dependence in the

‘ nctual flow field.
Integration by parts, in the last integral, leads to the

relation

la
$+%?/)2)- $27 ax m (.——; %%’J++P-

7

(28)

lilqu~tion (28) is the form, for M. a 1, analogous to equation
(21), for ill. s 1, and on the body and wake surfaces involves
tlmappro.xinmtion

a b. a a

It is not d.ifflcultto show, from the shock-wave relation of
equation (3), that the combined integrals over the surfaces
h and ~b vanish. The perturbation velocity potential can,
therefore, be given alternatively as

T

Equations (27) and (29) may now be written in the various
forms

wh&e w has the same analytic form as in linearized super-
sonic theory and use has been made of the relations

z—z~;=m&-l

lmy–vl)’+(-al~’”
2G –1 ~~ 11“(31)

z= [(x–q)’-p’(y-yl)’+(z– Z,) ’p=–-:

Comparison of e~uations (23) and (30) shows once more
a di.fiiculty that appears in linearized analysis of subsonic
and supersonic flow, namely, that complete parallelism be-
twem the formulas is not achieved directly. This parallelism
can only be established after interchanging the order of
integration and diflbrentiation and, because of the singulari-
ties involved, it becomes necessary to introduce the concept
of finite-part integration. Furthermore, it is well known
that the resulting multiple integrals can no longer be written
in a unique form (see, e. g., ref. 25) but must be expressed
ditkrentiy, depending on the order in which the integrations
are to be performed. No attempt will be made to develop
these ideas further at the present time.

CALCULATION OF CONDITIONS ON SHOCK SUHFACE3

It is of some interest to study equations (23a), (23b), (30a),
and (30b) = the field point approaches a discontinuity sur-
face and to discover the mechanism by means of wl$ch these
basic equations furnish the velocity jumps associated with
the shock waves in the field. To this end, consider first the

case ill. z 1. Figure 4 shows the geometry of the problem.
The bow wave induced by an aerod~amic shape is indicated
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/

FIGURE 4.-View of element of shookwave and coordinatesystem.

and the point P, at which conditions are to be calculated, iz
chosen arbitrarily close to~therear surface of the wave. The
surfacs of the wave can be replaced locally by a planar ele-
ment and a new coordinate system & q, ~ introduced with
the origin fkied at the intersection of the line yl=y, Z1= z,
and the bow lvave. I?oint P then has the coordinates & O,
0 and the planar surface is given by the linear relation

@l+h’l+crl=o (32)

Since the bow wave is situated upstream of the linearized
disturbance field, u. is zero and, from equation (30a), the
perturbation velocity is

where 6= cosh-’[(E-&)/~( &+~12)~]. By virtue of the field
point’s nearnesato the bow wave, the term uz/2 in the inte-
grand is assumed a constant and one then gets

where

Integration and differentiation yields

(34

It ~emains to show that this result, derived from the
integral expression for the perturbation velocity potential,
is consistent with the result one would get from the shock-
polar relation of equation (3). At the downstrmm face of
the bow wave, equation (3) becomes
T –&u,’+v,’+w,’=ku#/2

The incremental velocity vector occurring at the shock sur-
face is, however, normal to the shock surface and this yields
the relations utt:v~:w~=a:b:c. Substitution into the shoolc
polar relation give9

in agreement with equation (34). It therefore follows that
the integral expression, for M. a 1, will adapt itself on the
shock surface to any bow wave consistent with given body
geometry. This result can also be edended to include any
shock wave in the flow field.

& analogous procedure follows for the case Mms 1. Lot
the shock surface in the vicinity of the point P at &,O,Obe
given by equation (32) and assume that us is composed of a
continuous part and a discontinuous part that haa the con-
stant value M2 ahead of and ub2behind the shock. Equa-
tion (23a) then yields

lj~ [U(.$-,o,o)–?4(:+,0,0)]=

(36)

where the double integration extends over the region of
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discontinuity. If the differentiation with respect to g is
now carried within the integral signs and t allowed to ap-
proach zero, the value of the integral becomes independent
of the original limits of integration. In this way one gets

. .
(37)

It can be shown, as previously, that equation (37) agrees
with the result given by equation (3), the shock polar ccm-
dition, for .M~s 1.

REDUCTION TO SONIC FLOW THRORY

In this section, the previously determined equations will
be studied in the limit as sonic, free-stream speed is reached.
Tho integral relations then assume forms that correspond to
the nonlinear differential equation when P=O.

INTEGRATED STRENGTES OF E5’ERNAL SOURCES

It is proposed here to determine a relation that will prove
useful in the following section in comection with the reduc-
tion of the integral equations to the special forms appropriate
for ill. =1. This relation will be recognized subsequently
m comecting the integrated strengti of the exterior correc-
tive sources in the cross.planez=xO=const. and the rate of
change of body cross-section area. As a means to this end,
equation (10) is written in the form

(38)

where V is the two-dimensional Laplacian operator in the
transverse plane. Each term is then integrated over the
entire CZ=ZOplane external to the body. The double integral
involving VP can be partially integrated and converi%d
into a line integral by application of Green’s theorem for a
plane

SS N )(Vv)z.zedydz=– ~ ~ .==da. (39)
.

where the line or curvilinear integral extends around the
curves O enclosing the region of integration of the double
integral. l?or cases in which the plane x=x. does not inter-
mct any shock waves, the region of integration can be taken
at oncn as the entire x=x. plane exterior to the body. If the
assumption is made, as in linear subsonic theory, that the
normal gradient of q attenuates with lateral distamm sti-
ciently fast to suppress the contribution of the curvilinear
integral along the outer bounda~, the boundary conditions
of equotion (8) permit one to equate the line integral along
o to – UJY(G) where S(ZJ denotes the longitudinal
gradient of body crow-section area. The integrated form of
equation (38) thus becomes

‘JRf3=..:y&=’2Jf(*)z-z!y&-ums’(’0)‘40)’
In the more general case, however, in which the plane Z=ZO
intersects n shock wave as illustrated in figure 5, discontinui-

x=&-----
1‘1I --- Shock wave;
I

.. . .

m
FIWID 5.—View illustratinginkmeotion

x=x. plane.

x=% plane

of shoak wave and

ties occur which require that the integration region must be
divided in~ two parts, one lying between the body and the
shock wave and the other extending beyond the shock wave
to i.niinity. Application of Green’s theorem to each region
and addition of the separate contributions results in addi-
tional line integrals carried around the two sides of the shock
surface. These two line integrals can be combined into a
single line integral, in which case equation (40) can be vmitten
as follows

N )P g dyi.z-ums(zo) (’l)
. Z-z.

where A(Zl@n) = @@n- bmlbn and where in the single
line integral the integration extends around the curve de-
scribed by the intersection of the shock wave and the Z=XO
plane, and the normal n is taken as directed a-wayfrom the
body.

In the subsequent work, attention is to be directed toward
results at ill.= 1. We assumehere that in the limit as 13~0
the first term in the right-hand member of equation (41) will
vanish and one then gets

It will become evident in the discussion contained in the fol-
lowing section that the left side of equation (42) represents
the integrated strengths of the exterior corrective sourcm in
the cross-plane z=z.=const. in the limit as illm approaches
1. It follows that under conditions corresponding to sonic
flight speed, the ttn%lsource strength in any transverse plane
is zero: The sum of the sources within the body or wing
(sources appearing in the term ~) is of equal ma=guitudebut
opposite sign to the corrective sources required by the non-
linear term in the differential equation.

Equation (42) allow-sone to make some conclusions about
the lateral attenuation of the x-wise gradient of U2. Consider
the double integral as written in terms of polar coordinates
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Sinca the definite integral must converge, it follows &at the
integrand attenuates faster than I/Tl%and if the assumption
is made that the integrand has a purely algebraic character,
one concludes that for large rl

(43)

where iV is some positive constant.
A check on equation (43) is provided by the work of

Guderley and Yoshihara (ref. 26) on axially symmetric flow
at sonic speed. k that analysis, for large T1,

au’ I
z T-ip

and this is in agreement with equation (43) when iV=2/7.
The same reference also gives

ap 1
Z rlgn

which serves to substantiate the assumption made earlier

that the curvilinem integral along the outer boundary can
be neglected m equation (40).

mTEGllALEQUATION FOR SLBNDER BODIES,Mm =f

In the reduction of the integral equations to the case l?= O,
methods analogous to those employed in references 25 and
27 will be used. Attention will be confined here to field
points at a finite distance from the body so that in tlm limit
as P approaches zero, the term /3rcan be assumed to approach
zero uniformly. As in conventional slender-body theory for
linearized flow, the longitudinal distribution of cross-section
area S(z) is assumed to possess a continuous z-wise clmivn-
tive. The method of reduction can be exhibited in a suffi-
ciently general form if a lifting body of revolution is con-
sidered. When M. S 1, the perturbation potential for n
body of revolution p. follows from equations (23) and for
the purposes at hand the form (23d) is preferable. l?or
suiliciently slender and smooth bodies the term w can be
expressed in terms of a rectilinear sourca and doublet clis-
tribution and the corrective source distribution appearing in
the triple iptegral then extends over all space external to
the z axis. If K(Z) is the z-wise distribution of doublet
strength, equation (23d) becomes

1dz,r,o)=-:J
s’(xJi% Sineb

J
- (z–z,)K(@d2h

‘Aff@%)BH’n’’-z+[(’i:i)’+’2p112]’d2m0[(z—zly+iwp—~z ~[(z—zl)*+&rq~h2KCx

I-nequation (44), cylindrical coordinates x, r, 0axe used where
P=~+&, O=tan-l (z/y) and the notation

PII= [P+r?—%rlcos(O—O1)]fi

has been introduced.
Under the imposed conditions, the tit two terme in the

right member of equation (44) reduce, ae shown for example
in reference 27, to approximately

It remains to attempt a corresponding modification of the
two remaining integrals. Consider, next, the triple integral
Siice the integration extends over all points in space, one
encounters a nonuniformity of convergence in the logarithmic
influence function when 13becomes vanishingly small and rl
becomes infinitely large. From equation (43), however, it is
known that bu’/bx attenuates rapidly with increasing rl and
the resultant error in miscalculating the effect of the loga-
rithm for large rl ie thereby reduced. The triple integral is
therefore approximated by

ka

Sss[

a uB2(q,r1,0J Z—G
———

%2 1 ~ in-d.rlo%,
2Z ax

v

This term can be rewritten as

k m 1
b uB2(zJr120L) in p=rl&@,._

~ %2

Consider, finally, the integral over the shock surface. For
B near zero, one gets the expression

which becomes

where dm represents an element of arc on the curve deter-
mined by the intersection of the shock surface and a plane
normal to the z rmis. The normal n, as in equation (42), is
directed away from the body.

The reduced form of equation (44), for the case Mm= 1,
is given by the sum of the above three expressions. In the
forms given, an apparent dependence on P remains in the
expression
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Tho bracketed term vanishes by virtue of equation (42),
however, and the dependence on p disappears. The sonic
form of the integral equation for the lifting body of revolu-
tion is, therefore,

Starting under the assumption that J4mz 1 and using
equation (30d), one can derive the same result, the only
essential difference arising from the fact that in the limiting
process care must be taken to restrict the disturbance region
~ to that portion of space within the Mach forecone from
the field point at z,y,z.

Equation (45) expresses the sonic equation in the form

HKsllnpnr,dr,dtl, (46)

where ~B(Z,T,O)is the harmonic potential for the body of
revolution in transverse planes. As expressed, this sonic
form of the integral equation for the perturbation potential
is identical to the integral equation corresponding to the
trrmsonic dHerential equation at J9=0; that is, it gives, for
a flow field in which shock waves may possibly occur, the
integral equation corresponding to the partial difbrential
equation

7+1
%V+PZZ— u %%.

—— (47a)
.

and admits discontinuity surfaces for which the diilerence
relation

is satisfied. The direct derivation of equation (46) would
follow from an application of Green’s theorem in the trans-
verse vti-ablea to equation (47a) without the introduction
of the slendw-body assumptions.

The interpretation of equation (42) in terms of net source
strengths is now apparent. Each of the three terms in the
right member of equation (46) provides two-dimensional
sources in each transverse plane ZI= const. and the perturba-
tion flow field is simulated by the combined effect of these
sources and in lifting cases, a doublet term. (The doublet
term is of no concern in the present chscussionsince its net
source strength is zero.) The fit term, q~, contains a
source on the z axis with strength iixed by the gradient of
area, fi”(x); the second term represents a curvilinear distri-
bution of sources around the shock wave with strengths
fixed by A@P/2m); the last term represents a planar distribu-
tion of sources with strengths determined by the nonlineax
term (L/2) @/bZ)Pz2. Equation (42) thus states that at
M.= 1 the combined sourc~ strength must vanish in each
transverse plane.

Equation (46) corresponds, for the body of revolution at
M.= 1, to equations (23c) and (30d) in that it contains an
explicit contribution from the shock wave and is expressed
in terms of the basic singularitiesof the d.iflerentialequation.
A form analogous to equations (23b) and’ (30.b) can also be
derived as follows. Let r=l?(cc,t?) be the equation of the
shock surface. The relation

thcmholds. Substitution into equation (46) yields

12.J {% ~j;$’;)T zn’p.k+:Jp#lnP.r@ldl -$%(%r,d)=$mB(x;r,O)+L A

and through use of equation (47b) one gets

‘a 2
J9~(xJrj@)=wB(x;r,e)+~~ J!! hwdwh (4s)

The above results have been worked out in some detail
for the body of revolution. The sonic equations for other
shapea follow sunilarly through a reduction of the general
transonic integral equations or can be expressed directly
through consideration of the sonic differential equation.
The final equations for both cases appear as follows:

4OO1O+G*54 .

I

W@;Y,z)=$m(z; Y,Z)+; g SS‘$ lnpUrJrld81 (49a)
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where ~(x; y,z) is a two-dimensional harmonic function
which, for the body of revolution and for the planar wing is,
respectively,

J
.

1
*l@)Awrv(x;Yl)Zti(I/WI)2+Zq~Y1+*~=z7 .,l~)

1
J
alw

z -,,&)‘Pw(z;“)[/%+21

(50a)

(50b)

In the latterexpression,

*w(z; yI)=W(~; Vl)Z-O+-W(~;@..o-

*dx; ?h)= d~; d-o+- cP(x; yl)..o-

rmd the lateral boundaries of the wing plan form are ii~ed by
—81(z)and s2(z).

SLENDER-WINGTHEORYIN LINEARIZEDFLOW

In the preceding development, the integral realation for
the perturbation potential in sonic flow has been expressed
in a form that follows from an application to equation (47a)
of Green’s theorem in transverseplanes. The determination
of a solution thus depends to a large extent on the evaluation
of the effect of the two-dimensional singukixities that are
placed throughout the exterior portion of the flow field.
Examples of a direct attack on a similar problem are to be
found in the calculations of two-dimensional transonic flows
by Oswmtitsch,Chdlstrand, and Spreiter and Alksne, refer-
ences 9 through 15. In the pre9ent report, an indirect
attack is to be made, following the ideas of Whitcomb and
Oswatitsch (refs. 6 and 7) by relating the solution for a
slender wing to that of a body of revolution. The analysis
will show that once one establishesthe details of the crossflow
potential fields associated with a wing and its related body
of revolution, the residual disturbance fielti near the two
bodies are the same to a certain order of accuracy in terms
of the slendernessratio. The mechanics of such an approach
can, in fact, be observed in linearized wing theory and such a
development will be given in this section as a prelude to the
subsequent sonic theory. Attention will be limited to the
subsonic case and, as an added simplitixition in the analysis,
only wings possessing lateral symmetry will be considered
rdthough such a restriction is not essential.

mALYms

The linearized equation for subsonic potential flow is

%Z+%=-1%% (51)

and if Green’s theorem is applied, formal manipulation leads
to the following integral relation for the potential ~ of a
planar wing

SS$d%YA=%(w4-g %w(wl,el)lw+r? —

No integralsalong possible discontinuity surfaces me neces-
sary since shock waves do not appear in linearized subsonic
flow theory. Equation (62) is linear in q and can be sep-
arated” into additive expressions contributing to qW,;, the
potential associated with the thickness distribution, and
~,=, the potential associated with camber and angle of
attack. In this way one gets for the perturbation velocity
components

pa
‘%, t=%w,t—~= =&SS%W.,MP+??-% cm (0—01)]%ldrlolll

(630)
pa

WTV,‘=W2W ~———
. 27 axSsq=w,}n[P+rl’ —2rrl cos (e—OJ]%ldrlclll

(63b)
and

pa
SSuw,==uqwe———. 21raz

q= W,eln[#+rli—2rr1 cos (tl-Ol)]J%ldrdl?l

(64a)

SS%a=mw,a-g:9=w,=W~+N—2rr1 cos (O—OJ]%ld@l

(64b)

The corrective integrals in equations (53) and (54) ob-
viously do not modify the area distribution in the thiclmeee
case by virtue of the vertical symme@ in the flow field nor
the load distribution in the camber case by virtue of the
vertical asyrnmetq- in the field. ItJfollows that

A%, ,=AwtW ~, MV..=A%W= (66)

where the delta notation denotes the increment in the func-
tion in passing through the plane z= O,that is, the difference
between the values on the upper and lower surfaces of the
w@. AS a comequence, nW can be &preased in the form

If exact conditions on the wing surface are to be sought in
linearized theog-, equations (63a) must also be satisfied.
I?or example, in the direct case of given thickness, equation
(56) predicts WV, and equation (53b) is then used to deter-
mine the exact streamwise velocity component as ailected
by the external-source integral In the direct case of given
loading, equation (56) predicts WW~ and equation (54b) is
then used to calculate the true wing camber, modification of
%W,~being produced by the integral term. The diiliculties
of such calculations are so disproportionate to those of solv-
ing the linearized equation by standard methods that they
appear to add needless complications to a relatively simple
problem. In transonic theory, however, the right-hancl
member of equation (51) is replaced by a nonlinear term and,
in the absence of more obvious methods of attack, the diili-
culties involved in such an approach become less of rLdeter-
rent; in particular, the intqgral forms of the corrective terms
are of added interest since they are suited to approximations.
The details of such an approach will not be considered further

.
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nt the present time since for slender wings the use of a re-

lated body of revolution yields information of a suilicient
order of exactness in both linear and nonlinear theory.

In the following work, a complete knowledge of the solution
for a body of revolution will be assumed known. Thus, if
i3(z) is the cross-sectional areaof the body and the distribution
of lift is tied by K(X), doublet strength per unit of length,
the linearized solution for the body of revolution is

&r’sine “
J

K(~I)d$I

h
(57)

o [(~—O+&l~

and the perturbation potential in the transverse plane is

(58)

The integral relations for the wing and the body combine
to give

/32

$%V-VB=$?lv-~B-~
u

(m7-~B)=M~+r?-

2rr1cos (O—OJ]firldrldill (59)

Equation (69) is exact, subject only to the restrictions of
first-order perturbation theory, but with added restrictions
on the geometry and loading it is possible to show that the
magnitude of the final integral is negligible to a certain order
of accuracy. We now assume the wing is slender, that is,
s(z) is small in comparison with over-all wing length. Let,
furthermore, the wing and body be of equal length and have
identical longitudinal distributions of crw.wectional area.
This implies

“(z)=s::)- (60)

and establishes the condition that the distribution of two-
dimensional source strength in equation (58) is equal to the
strengths integrated in the transverse plane of the sources
appcming in equation (56). It will also be convenient to
equate in the same manner the doublet strengths in those
two equations and one is led to the relation

(61)

The fimt objective will be to show that for field points in
the vicinity of the slender wing the ii.rattwo terms in the
right member of equation (59) differ from the left member
by an amount that is of higher order in s/1. The evaluation
of the error term can be pwformed by an iterative process
in which the fit step starts with the approximation

Before integration, the integrand in equation (69) will be
written as the product of Fourier expansions of its terms.
For the logarithmic term, one has

ln[fl+r+

{

(1)lnrl–m~l f = COS m(e—el)
)Tsr~

m
2rr, ma (e–19J]~=

()

(63)
lnr– ~ ~ mCos7740-01),~1~r

~-I r m

and, similarly,

rsin O
?J+y/-2ryl Cos8={“~>,(:y sin %%7,[yl]s r

(64)
l“rmZ(J‘jiim-1 1

sin mO, r= Iyll

If equatiom (63) and (64) are used, together with equation
(56), and conditions of bilateral symmetry are imposed, one
gets

where

and

(65)

Equation (65) holds true beyond the circle of radius 8(s) en-
closing the tirarwversesection of the wing; within this circle,
the expression is

flm4~;Y,z) Sw m A,=(z)
‘— z~+.zo (2n+l)2UJ 2Tl [(:)=+1-11+

( 1

2m–2n–l )]+~lsin (2m–l)O~B2=(.)[~)*-’2n_jm+1+

~ 2n

O (
1 I 1

i )12m+2n—1 ‘ 2m—2n—l ‘
r ~ 8 (67)

where the coefficients & and.& are related to the boundary
conditions through the expansions

(68a)

(68b)

Once the coefficients %, bti-l, AJ., and -& are related in
magnitude to the geometry of the wing, the size of the integgal
term in equation (59) can be estimated. Since A?u(z,y)/um
is proportional to -t(z)/l, the wing’s thiclmess ratio, it follows
from equations (66) and (68)
mat~ hold

@Jz)=o(t8/12),

that the following

J42%(z)=o(t4P)

order esti-

(69)
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Let, furthermore, AP(Z,y)/~o be assumed proportional to
a(x)s(x) where a(z) is a measure of local angle of attack or
camber; equations (66) and (68) then yield for the remaining
coefficients

b,m-l(z)=o(ql), I&(z)=o(a8/1) (70)

Equation (67) can also be written in the simplified form

$mv(z;y,z) S’(4
U.1 () ()

m Cos2me Q. z,: +=x lrM+F z,: +nXl ~m

()a sin (277z-l)eHm q : ) TS8 (71)
m-1

with the order estimates

()F Z,: =O(t&),
() ()

Qm z,: =O(ts/1~, H~ Z,~ =0(%/1)

(72)

Evaluation of order of error in
(59) is now written in the form

equation (62).—Equation

~(qJ,z)=~w(z,-y,z)—~B(z,T,e) +qB(z,r,e) +I(z,r,o) (73)

W%ere

T?-2””1 Cos(0 —el)]%ldrldf.11(74)

and an estimation of the order of magnitude of 1(x,7$?) is to
be made for field points in the vicinity of the wing. The
approximation of equation (62) is to be used together with tho
given expansions of the two-dimensional perturbation potm-
tials. It suflices to simplify the analysis and estimate the
order of the error St r equal to s. one then gets

1(2?,8,0)=1,(3,8,0) L(z,8,e)
U.1 UJ + U.1

'+Jmu{s[~(z)(:)hc0s2mel+b~+l(z)(:)ti+'sh(2m+')''l}on'`-a(:)”cosn:-’’)dr’dr’d-

(75)

After integration with respect to & one has

From equations (69), (70), and (72), the order of magnitude
of 1(z, ~,0)/ U.J is given by From equation (57), $(z) becomes, for the subsonic cam,

The fit step in the iteration ties the mtium value of
the error incurred in neglecting the integral term of equation
(74). In the vicinity of the wing, therefore, the perturbation
potential can be exprwed as in equation (62) with an &ror
if the order given in equation (76).

Near the body, a further reduction of the Werence @B—$?2B

is possible since the explicit equations for the body of revolu-
tion are available. This yields the usual form of the slender-
wing solution. Thus, from equation (62),

m’== PzW+m) (77)

It is not diflicult to show by a similar analysis taking into
account the possibility of discontinuities in the flow that
equation (77) holde also for Mm> 1 and that $(z) then has
the form

where

SS
SLENDER-WING THEORY IN SONIC FLOW’

f(~)=i~ (PB–%B)’~ O* o“ PHB(Zjrlj81)znrlTl&l@l The extension of the foregoing derivation to the nonlinear
(78) case will be given in this sedion. The iteration procedure
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designed to discuzs the linear problem is effectively the de-
velopment of an expansion in termsof the slendernessparam-
eter of the wing and with appropriate restrictions on wing
angle of attack can be applied with little modiikation.

ANALYSIS

Equation (49b), the relation fundamental to the following
discussion, provides that the sonic expression for p valid in
the x=% plane can be considered to be composed of three
terms; ~, a line integral around the possible intersections of
the sc=a plane and a shock wave, and a surface integral
over the entire portion of the z=a plane exterior to the body.
In many important cases, simplification occurs because the
line integral introduces no contribution to the vahw for p
in the vicinity of the body. Perhaps the simplest case in
which this situation develops is that encountered very
frequently at ill. = 1 in which the shock waves are situated
entirely downstream of the most rearward point. A second
cme in which the line integral introduces no contribution
occurs when the discontinuity surface is situated in an
z=% plane and is, therefore, essentially a normal shock
wave. The discontinuities associated with the normal
shock wave are contained in the contribution of the double

- integral. Site most sonic flows about smooth wings or
bodies probably fall into one of these two cases, attention
will be confined in the following discussion to those cases in
which no contribution results from the line integral. Thus,
if equation (49b) is written fit for a wing and then again for
a body of revolution, and the latter is subtracted from the
former, the following relation is obtained:

wv(%!hz) ‘wW(~;%z) ‘P2.(~;~,O +w@,~,@ +~(%~,f? (80

where

in [P–r12–2rr, cos (L9-@]%@l,d0, (61)

The quadratic nature of the intagrand in equation (81),
together with the additive dependence on thiclmess and
camber in the transverse-plane potentials, prompts one to
simplify the analysis to cases involving a thin wing of given
thickncas but limited to an angle of attack or camber-
Iength ratio a that is small in comparison with the tbichesa-
length ratio t/1. In this way, sufficient information is re-
tained to establish the relationship between the &g and

body flow fields for the thickness case and at the same time
determine a linear dependence on angle of attack of the wing
loading in the vicinity of a=O. Under these conditions it
will be possible to relate the winF~flowfield to that of a:body
having the same area distribution but not inclined to the
free stream. Consistent with thwe conditions, the following
equations apply:

WJw=mw,t+mw,d $%B=*B,t (82)

and the perturbation potentials for the wing and body can
be expressed as

WV=W7, t+wr, a) PB=9B, t (s3)

where the subscripts t and a identify. the~contributions at-
tributable to thiclmew and cmnber. The term UW2-UB2in
‘the integrand of equation (81) ,ca&now- be appre~a@,d by

UJV2-UB2 = (t&2w,t-u2B ~2+2tiB,*(’U2W,t-~B~+ - :

(u2r,t–~B,~u*w,.+2uB, tu2w~ (~)

where the initial assumption

Pw=Plw—%B,t+~B, f (85)

has been made and higher order dependence on a has been
deleted. It remains to shmv, through the evaluation of
J(x,r,O), that the assumption made in equation (85) holds.
It should ba noted that, to the order of exactness of this equa-
tion, normal shock on the wing and body are situated at the
same longitudinal station.

The first two terms in the right member of equation (84)
depend solely on the thiclmess distribution of the wing and
body, and the two remaining terms contain the effects attrib-
utable to the lift and thickness combined. Substituting
from equation (!34) into equation (81), we see that the fit
two terms contribute to J(x,r,O) a function that is symmetric
about z= O and the two latter terms contribute an asym-
metric quantity. From equation (80) one then gets

A%, ~=Aw*W~, AUW,a=AwW&

These “relations are identical to those given in equation (55)
and, as a consequence, equation (56) necessarily remains
valid along with the expansions given in equations (65) and
(67).

We now approximate J(z,r,e) at T=8:



.

836 REPORT 1318—NATIoNAL ADVISORY COMMTITDE FOR AERONAUTICS

The orthogonality of the trigonometric terms, together achieve considerable simplification
with the fact that u&~has no dependence on 0, permits one to The resulting expression is

after the L?lintegration.

The convergence of all the terms in th’e first integral is as-
sured when UB,*varies as l/P for huger, i’? being any positive
co~tint; for d 7 we =Ume uE,* ~tie8 directly tith
Cross-ectional area of the body., The order of magnitude of
J(z,@)/Z7J can then be seen to be given by

%9=0(%’”8) (87)

Since it follows from equations (85) and (56) that the magni-
tude of ~/U.J in the vicinity of the wing is O[(ts~ln s], the
relative error incurred by neglecting J/Umlis O(i!.@/ZA).

Following the method used in deriving equation (77), we
can achieve a find simplification in the -wi@’s perturbation
potential. Thus,

m =$%W+9($) (88)
where

In the absence of analytical solutions for the body of revolu-
tion problem, the evaluation of g(z) must be carried out by
less direct methods. This will be discuesed further in the
section on applications.

APPLICATIONS TO SEVERAL PROBLEMS INVOLVING
SONIC FLOW

In the following section, the exploitation of the results for
sonic-flow conditions will be carried out in m-me detail. @
view of the difficulty associated with transonic analysis, it
ap’peamlikely that the equivalence relation of equation (85)
will play an important part in the interpretation and use of
experiment.aldata as well aain purely theoretical predictions.
The discussion will be concerned principally with applica-
tions to slender wings and bodies and to the relationships be-
tween the aerodynamic characteristics of the two configura-
tions. It is obvious that the lmown basic information can be
supplied either by theory or by experimaut and many of the
results to be given are written with the idea that they can be
used in this dual sense.

R&3UhlfiOF PRINCIPALRE3UL.TSOF SLENDWBODY THEORY

It appeam worthwhile, before proceeding to the examples,
to re-examine the problem of transonic flow about slender
bodies of arbitrary cross section from a heuristic, although
less rigorous, point of view. This second approach may be

regarded, if one prefers, as a physical interpretation of tho
result given in equation (80).

Consider the case of compressible flow about the slender
body of arbitmry cross section shown in figure 6. The gen-
eral procedure is to consider first the complete threo-climen-

. ~-.
~yy + y== =0--”’” ----

,

{
0 linear

(l-M~~n+ ‘yy “’z “ ~~ ~xx
Mm”I

x

FIGURE 6.-8ohematio representationof elements of slender-body
theory.

sional problem and then to introduce simplifying assump-
tions consistent with the restriction of slender plan forms t
& in the more detailed analysis, it is again assumed that
any shock waves are situated either entirely upstream of the
most forward point of the body or entirely downstream of
the most rearwwd point, or are normal shock waves if silm-
ated along the length of the body. The resulting solution
for the perturbation potential can be expressed as the sum
of four parts. & in the preceding analysis ww,.~ ww,~jand
~B-,, are SOIUt.iOm of the two-dimensional Laplace equation
as indicated. Thus qW. corresponds to the two-dimensional
incompressible-flow sol&ion for translation of the cross sec-
tion, and wm,~to that for the growth of the cross section.
In addition to satisfying the preacrib~d boundary conditions
at the body surface, these two terms satisfy the requirement
that the lateral velocity components (bP/@, &@z) vanish
at infinity. These terms alone do not furnish a satisfactory
approximation, however, for cases in which S’(z) is different
horn zero because ~W,, acts like S’ (z) h T at large r, nnd
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hence bP/bz is infinite at a large lateral distance. This error
can be removed, however, by subtracting the term %B,~cor-
responding to the two-dimensional incompressible-flow solu-
tion for the growth of a body of revolution having the same
i3 (z) as the original body (thereby canceling ~W,, at large
r), and adding the three-dimensional solution p~ ~for flow
about the same body of revolution. If p= ~is determined
from linear theory, the results correspond ‘to the familiar
formulas of subsonic and supersonic slender-body theory.
(This leads, in both cases, to the result given in equation (62)
and reduces to equation (77) where, for subsonic flow, j(z)
has the form given in equation (79a) and, for supersonic flow,
the form given in equation (79b).) In keeping with the
previous analysis, this function of z will be denoted by j(z)
if it is determined from linear theory and by g(z) if deter-
mined from transonic theory.

Although the linear-theory approximation is unsatisfactory
at Mm= 1, the same intuitive procedure can be -extendet to
sonic flow. The desired expression follows if p~,, is deter-
mined from the transonic differential equation. Thus, as
given in equation ‘(85), one has to a known order of accuracy,

,,
and this result reduces for points near the body to

wv=%v’+9(d ~ . 4~ (91)
where

as indicated in figure 6. It is apparent that equation (9o)
has a dual basis for validity and represents either the relation
afforded by transonic theory for ill. = 1, or that given by
linear theory for other Mach numbers. The customary re-

striction to slender wings and bodies must be observed in
both applications.

The power and wealmess of the present intuitive reasoning
is well illustrated by the fact that the relation given by
equation (90) is found without recoume to the detailed inves-
tigation of the earlier sections whereas the restriction to
small angles of attack that entas in the simplification is
overlooked. This deficienq- stems from the fact that it is
insufficient to assure that merely the infinite velocities be
removed. Since the space involved is iniin.ite,it is also nec-
essary that certain integrals of veloci~ (see eq. (43)) be
finite, and it is in connection with the attenuation of the
velocities arising from the term ~Woa that the deficiency
occurs.. One could, perhaps, have continued the heuristic
reasoning but, once the principal idea has been established,
formal analysis can be used to establish the restrictions and
to evaluate the error terms involved.

Some insight into the validity of the foregoing equations
can be obtained by examining the numerical solution given
by Yoshibara in referenca 17 for sonic flow about a circular
cone-cylinder at zero angle of attack. Inasmuch as it was
not assumed either explicitly or implicitly that the per-
turbation potential in the vicinity of the body has the form
indicated by equation (91) (the boundary conditions were
satisfied at the actual body surface rather than along the
body axis), these results are particularly suited in this
re9pect for the investigation of the region for which the
simplified relation applies. On the other hand, the example
is not ideal because the sharp corner at the shoulder violates
the smoothness condition; it is, however, the only case for
which a theoretical solution is available. Accordingly,
@me 7 has been prepared so as to show the variation of

r---- ~----r -.-, ------- x.I.O

:/
$’ ,///-------------------------------------–---7 -------
-1

Uuuuu. u.. <

i

+e_---__~--–--~ ------ > .6
~:</

.04

i-

<
j ,/!)5:-------_---------_--__-----_-------___----7 -------- .4
1 /

//’
,A—------------------------------------r-- --f ->

//

.2
~

- /

j/ < Um
--------------------------------------- ~-------- — 0

/ -.1 –-–– v4#P24tt t
o .5 Lo

r Um
- FIGuw 7.—Variationof PB,JU. with r for severalstationsalongthe lengthof a cone-oylinderofsamiapex

angle1/10at fr~stream Mach number 1.
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~B> f/Urnwith r for several stations along the length of the
cone for the case in which the semiapex angle 0is 1/10 radian.
Attention is called to the fact that the values for p~,, given
in this figure are for a cone of unit length whereas the
original value9 given in figure 5 of referencO 17 are for a
cone of length 10. A dotted line is also shown for each
station representing the values obtained after subtracting
p,B,,/U.computed by

(93)

from q~,~u. at the same point. In order to illustrate
further the nature of these results, figure 8 has been prepared

8=.1 ---- -------
-1

0 L ------------- ‘-------‘-.---- /
0

x- -------- -------- --------- Lo
j----------L _____

Fmum 8.—Variation of pB,t— pjB,twith x for severalr of a cone-

uylinderof eemiapexangle1/10at fwstream Mach number 1.

to show the variation of PB,~—$@~,}with z for various r.
The resulting values should, accorchng to equation (92), be
a function of z alone for small r. It can be seen horn an
examination of th~ figur~ that the ~erenm $%9,1—%~,~is
indeed very nearly a function of x in most of the region for
which results are available. Slight deviations occur in the
immediate vicini@- of the nose and at the largest distancea
from the body. The latter departures are so small, however,
that it is necessary to possess additional information for
greater distanca from the body before one can determine the
extent of the region for which the g(z) function is applicable.

DETERMINATION OF u’@)IN TEBM9 OF PRES9UEE DISTIUBDTfONON A
NONLWITNG BODY OF REVOLUTION

Although PB,,, and hence j(z), can be calculated directly
by means of linear theory for either distinctly subsonic or
supemonic flow, general methods are not yet available for
the theoretical determination of PB ,g in transonic theory.
It is evident from its definition, however, that g(z) depends
only on the longitudinal distribution of cross-section area
S’(z), and that its derivative can be determined horn simple
aerodynamic measurements of the flow about a slender
nonlifting body of revolution having the same S(z) as the
given body. I?rom the point of tiew of applications, nothing
is lost in not knowing the actual level of g(z), however, since
knowledge of ita gradient, g’(x), is suiiicient for the deter-

mination of flow quantities such as velocity and pressure.
Since the easiest flow quantity to measure is generally tho
pressure distribution on the surface of the body, perhaps tlm
simplest way to determine g’(z) is through a relation ex-
pressing this quantity in terms of the pressure distribution.
The necessary relations for the perturbation velocity poten-
tial, pn,t and the pressure coefficient Op~,,are provided by
equations (48) and (5), which reduce, in the vicinity of a
slender nonlifting body of revolution, to

(94)

w-hereR(z) represents the radius of the body of revolution
and the prime denotes differentiation with respect to z,
These relations can be combined to solve for g’ (z) in terms of
the surface pressures and the cross-section area with tho
following redt:

The cone-cylinder solution of Yoshilmm (ref. 17) again
fiords a means of illustrating the application of this resndt
ati14. =1. Thus, figure 9 has been prepared to illustrate
the variations with z of the pressure coefficient* on the sur-
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FIwmm 9.—Variation of C= and ~(z) on the surfaos of a oone-oylindor
of eamiapes angle 1/10 at free-stream Maoh number 1.

face of a cone-cylinder having a semiapex angle of 1/10
radian, and of g’ (z)/Um computed therefrom, using equa-
tion (96). As in the case of figures 7 and 8, tho values of
g’(z) have been converted from those given originally for a
cone of length 10 to those for a cone of unit length.

It is likewise evident that the function g’(z) can also be
determined from pressure-distribution data for thin wings
in an analogous manner, although naturally more geometric
quantities are involved in the calculation.

2 ‘rfM mm h GB,j drown In &mm 9 dffers from that gfvenOI%IIKWYh rofcmnm17
due to the mnwtlon of a sfgnerrorIn the W18dratioterm of tho oxPres310nfor Prrsuro .x@
Mident. Ferthe mm havfnga semfwex owle of UIOmdfan,this olmngobiw tho offcotof
dfmfnM@ thevelnmgiven orl@AfY for C,n,, on themno uurfnmby a constantamount,
nemefy,0.02
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RELATION BETW,EEN PE~URE DISTEIS~ONS ON RELATED WINGS
AND BODIES

Wings and bodies having same longitudinal distribution
of oross-seotion area.—Equation (9o) displays the relation-
ship between the perturbation velocity potential pW for a
thin low-aspect-ratio wing and the corresponding potential
PD, j for a slender nonlifting body of revolution having the
same longitudinal distribution of cross-section area. IrI
most practical applications, however, one is not so much
interested in relations involving the velocity potential as
those involving the pressure distributions. The following
discussion will be concerned with the derivation of such a
relation. Thus, consider the two objects illustrated in
figure 10. Both have the same S(z), but the first is a non-

f’

,
J-s(x)=U/i’Z(x) ‘%x)

F1aurm10,—Views of wing and body having the came longitudinal
distribution of crosa+wction area.

lifting body of revolution and the second is a thin lifting
wing. The relations for the~potential and pressure coaf6-
ciont for the body of revolution are those given in equations
(94) and (95) of the preceding section. The corresponding
relations for qW and CPWin~thevicinity of the wing are

w’=@w+9(4 (97)

2 apw———
““= u. ax

(98)

Sinco g(z) is the same for~both objects, the desired relation
between the pressure distributions on the wing and body
of revolution can be determined by combining equations
(95) through (98) ; thus

It is interesting to note that this relation holds not only for
nonlinear theory of sonic flow, but &o for linearized slender-
body theory for subsonic and supersonic flow. This follows
directly from the fact~that equation (91) and the associated
statement are equally correct in linearized slender-body
theory if g(z) is replaced byj(z).

The term involving ~W can be considered known inasmuch
as it can be determined directly using equation (5o) or any
of several other methods (e. g., conformal mapping, etc.)
availmblefrom classical two-dimensional potential theory, or
indirectly if either the linear theory or the slender-wing-
theory solutions are known for the wing. To illustrate, let
the subscript S denote the values indicated by the slender-

wing-theory solution. Thenj for example, if (PW)S is
known, ~w is given by

*w=(Pw).—j(@ (loo)

where j(x) is provided by equations (79). Correspondingly.
one has

(101)’

If, on the other hand, the linear-theory solution is available,
the relation

Z&$%=$:.lvs (102}

applies, whence

where the subscript L refers to values given by linear theory.
Equation (99) enables one to calculate the pressurw in

the vicinity of any thin low-aspect-ratio wing, provided the
pressure distribution is lmown on the surface of a nordifting
body of revolution having the same longitudinal distribution
of cross-section area S(x). The corresponding rule relating
the pressures on two wings having different cross-section
shapes but the same S(z) can be easily derived by applying
equation (99) twice and subtracting so as to eliminate all
terms pertinent to the body of revolution..

Wings and bodies having similar longitudinal distribution
of oross-section area.-It is a simple matter to extend the
previous results so as to include more general relations which
apply to wings and bodies having longitudinal distributions
of cross-section area that are merely proportional. The
information needed to achieve this generalization is supplied
by the transonic similarity rule for slender bodies of revolu-
tion (ref. 5). The rule statea that at M.= 1 the pressure
distributions on two slender bodies of revolution having
area distributions given by

(104}

are related according to

(105

where S. refers to the maximum cross-section area and the
subscripts I and II refer to properties associated with the
two bodies. If both bodies are in air, Y1=Y=, and equation
(105) reduces to

()c;
s

‘B, II ()
- =*” CPB ~ f -# “s”(z’z) in ~ (106)

-.1 ‘T d(z/1)~ m.

If it is desired to determine the pressures G& for a wing
having an area distribution given by Sm(z/1)and the pressure
distribution is known for a body of revolution having an area
distribution SI(x/Z) proportional to Sn(x/Z), one merely com-
putes CPB,, for a body of revolution of area i5’=(@?) using
equation (106) and substitutes the result for CPB~in equation
(99).
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APPLICATIONTO THE CALCULATIONOF PEE9SIIRESAND FORCES ON TEUN
ELLIFTICCONECYJINDEFfS AT M. .1

The relations developed in the preceding section will now
be applied to the calculation of the pressures and forces at
M.= 1 on the conical portion of the thin cone-cylinder of

1
Um

\

4
1

l?mmm11.—~lew ofthinelliptiooone-oylinder.

elliptic cross-section illustrated in iigure 11. The ordinates
of the upper surface of the cone are given by

(107)

where m is the tangent of the semiapw amgle,1is the length
of the cone, and t is the maximum thickness of the cone. It
follows that the elliptic section in the plane z=% has major
and minor semiaxes equal to mxl and txJ21, respectively.
The cross-section area and surfaa slope are, respectively,

Pressure distribution on nodifting oone-cylinders.-~rom
equation (5o), ~W for the symmetrical nonlifting case can be
written as

1

J =X7.~ (Z,y,)l? ZJ(IJ-Y1)2+2WVI (109)-w=~r _=

which, when evaluated on the wing surfwm (i. e., z=O,
—mx<y<mx), yields

(110)

~ter inserting this relation into equation (99) and carrying
out the indicated operations, one obtains

(111)

where Cp~refers to the pr~ure ~tribution On Q CiI’C~SX
. cone-cylinder having such a semiapex angle 0 that it has the

same longitudinal distribution of cross-section area as the
elliptic cone-cylinder; thus

()
mt )4

‘=% ‘

The pressures on such a body can be determined trom mom
shown graphically in figure 9 for 0= 0.10 by application of
equation (106), which reduces to the form

Cp,=100@(07J@.0.10–%ln100@ (112)

As mentioned previously, following equation (99), the
difference Cpw—CPBis the same as given by linearized
slender-body theory for subsonic or supersonic flow. As a
corroboration of this statement, consider the expression
given by slender-body theory for the supersonic pressure on
the thin elliptic cone (ref. 25, p. 257)

(113)

and the corresponding expression for the supersonic pressure
distribution on the slender circular cone (ref. 25, p. 241)

The difference between equations (113) and (114) obviously
reduces to the form given in equation (111). ‘

The application of the foregoing theory to a speciiic cam
will now be illustrated by determining the pressure distribu-
tion (7PWat Mm= 1 on an elliptic cone having m=% and
t/1=0.06. The fit step is to calculate the prezaure dis-
tribution at Mm= 1 on the surface of a circular cone-
cylinder having a semiapex angle given by

()

mt W
‘= z

=(o.o15)~=o.1225 (116)

The pressure distribution on the selected elliptic ccne-
cylinder can then be calculated through use of equation
(111) and is

CPW=CPB–0.0364 (116)

The remlte for both the circular and the elliptic cone-
‘cylinders are shown graphically in figure 12. Note that tho
pressure distribution is independent of y in this caae and
that a single curve of C,W versus x11stices to define tho
pressure on the wing.

Drag of nonlifthg cone-oylinders.-The drag Z& at
A.&= 1 of thin elliptic cone-cylinders can be obtained by
direct integration of the product of the pressure and surface
elope and is expressible in the form

where the integration is extended over the plan form and
D. represents the contribution to the drag that results from
a ii.uite leading-edge radius of curvature. Since only that
portion of ~ denoted by 9W contibutee to Zl,, this quantity
can be calcula.tid in the sa&e manner as described in refer-
ences 25 and 28 for linear theory. Thus, the contribution
per unit of span is, in slender theory,

dD. ()_=r p.u.= ds =
dy 2 ‘n ii%

(118)
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■ FImmE 12.—Preswre distributionon a thinellipticcone-cylinderatfree-streamMaoh number 1.

where r. is the radius of curvature normal to the wing
leading edge and s is the local semispan. If the ordinate of
t,he~wing, in the vicinity of the lead@ edge, is

Zti=h(S,3/)(8-~)M (119)

For the thin elliptic cone, z. is given
and 8(z) =mz, hence

2

L’(8,s)=&
and

.8 )

by equation (107)

equation (118) becomes JD.=2 ,’~ mdx-~ ~ m%’ (121)

dDe ~ P. U.% d~ ~
—.- —

()
h’(8, 8) ~ (120) The seeond term on the right of equation (117) becomes, upondy22

substitution of equation (111) for OP

p.u.=
2 SSw.% ~@=+ [p,= g dx-~(l+ln#) s(l)]

w

-—m’’z(’+’”%)
=DB_: P-:.2

The drag of the elliptic cone-oylinder is thus

u P.U.’ ml
D~=D~–Z ~ m%?in ~ (122)

Note that the circular cone-cylinder and elliptic eone-
cylinder have d.Merentvalues of drag at M.= 1,even though
they have the same area distribution. As an illustration of
the order of magnitude of the quantities involved in equa-
tion (122), the drag at M.= 1 of a circular cone-cylinder
having serniapex angle 0=0.1225, as determined by inte-
gration of the pressure distribution shown in figure 12, is

(DB)o.o.im=o.oow ~ z’ (123)

whereas that of an elliptic cone-cylinder having m= 1/2 and
t/1=0.00 is

(124)

Thus, although both bodies have the same area distribution,
the drag of the elliptic cone-cylinder is less than 80 percent
of that of the circular cone-oylinder.

More general results for circular and elliptic cone-cylinders
ean be obtained by combining equations (123) and (124)
with the transonic similsri~ rule for the drsg of slender
bodies of revolution. The latter can be derived by inte-
gration of the corresponding relation for the pressure given
in equation (106) and was fit given by Oswatitsch and
Berndt in reference 5. It states that the drags at &f.=1
of two bodies of revolution having area distributions given
by equation (104) are related assuming both bodies are in
air, so that ‘h=~IIJ according to

D“=(&YP’+--2, z-d ‘125)
p=Um9SI’2(1)—SI’2(0) ~n sm.I
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For slender circular cone-oylinders S=Z@.& and equation
(125) reduces to

which becomes, upon substitution of the values given by
equation (123) for D1 and 01

paum=~2
DB=-n-94[1.55+2 ln~ ~ (127)

The generil expressionsfor ~w and D. can be compared more
readily if the relation 8= (mt/21)~ is introduced to express d
“mterms of m, t, and 1 of the thin elliptic cone having the
same area distribution, thus

-[(p.u.~ r
DB=–7 )1~m2t2 1.55+2 ln%

21
(128)

Combination of equations (128) and (122) yields the cor-
responding result for the drag at M.= 1 of thin elliptic cone-
cvlinders.

[(p.uas r
D*=–T

m3t

)1~m%? l.55+ln—
81

(129)
.

Before leaving the subject of similarityrules, it is of interest
to note that equation (129) for the pressure drag of thin
elliptic cone-cylinders is in accord with the tmmsonic simi-
larity rule for the prew.me drag of thin wings of finite span
(see, e. g., ref. 4). The latter is usually given in dimension-
less form and provides that the pressure drag coefficient
C. at lM.=1 of a family of thin nordiftimgwings of aflinely
related geometry, plan-form area S3, thickn= ratio ~, and
aspect ratio A satisfy the equation

where

(130)

(131)

and .f indicates a functional dependence. If indeterminate
forms that arise from the iniinite plan-form area of a cone-
c-ylinder are avoided by letting S= represent the plan-form
n;en of only the conic~ part if &e
related to m, t,and 1 according to

Sn=m12, A=4m,

body, Sp, A, and T are

t
~=-

1
(132)

rmd equation (129) can be rewritten as follows

It k evident from this form of the resdt that C./T55is a func-
tion of A# alone, as required by the similarity rule.

Pressures and foroes on lifting cone-cylinders.-The
relations summarized in figure 6 also permit the calculation
of the pressure distribution on a thin elliptic cone-cylinder
when inclined at a small angle of attack. To calculate this

quantity, one must fit have the expression for Wrg. The
necessmy expression is well known, however, since the prob-
lem is equivalent mathematically, for the planar boundary
conditions, to the boundary-value problem associated with
translation of a flat plate in a two-dimensiomil incompres-
sible fluid. Thus ~WA and WWon the surface of the thin
inclined elliptic cone are

WV,.= 4-UAm2#+ (134)

where the upper (plus) sign is to be used on the upper surfaco
and the lower (minus) sign on the lower surface. After in-
serting equation (135) into equation (99), one obtains

w-herethe convention concerning upper and lower signs still
holds. The aerodynamic loading, or the difference in pres-
sure between the two sidea of the wing, is thus

A skekh of the load distribution is shown in figure 13. Inte-
gration of the loading over the plan form leads to the follow-
ing expressionfor lift

Lv=—‘“~”’ (2ram2P) (138)

Although the pressure distribution at Mm= 1 is not tlm
same as given by linear theory, it will be recognized that the
load distribution and lift arisesolely from ~W4 and are thero-

FIGURE 13.—Load distribution on an inclined
oylinder.

thin elliptiooone-
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fore the same us given by linear slender-wing theory. One
recognizes, consequently, that the lift of any low-aspect-ratio
wing having such a plan form that no part of the trailing edge
extends forward of the station of mtium span is given by

~=+ (2.@) (139)

and the drag due to lift by

DW–DwW=~ L (140)

The fraction ~ enters as a result of suction forces on the lead-
ing edge. Note that the above statementsalso imply that all
reciprocal and reverse flow relations of linear theory are ap-
plicable to lifting forces at ill.= 1 on slendar wings at small
angles of attack.

As in the case of drag discussed previously, equation (138)
for the lift of thin low-aspect-ratio wings is compatible with
the transonic similarity rule which states that the lift-curve
slopes of a family of thin wings of finite span and aflhmly
related geomc%ry are related aeeording to (see, e. g., ref. 4)

++CL‘~(Z4r5$)a (141)

where

C’”=% (p. u.-/2)spa (142)

Substitution of the geometric relations of equation (132)
into equation (138) for the lift, yields simply

+$ofi _~A+S
“2 (143)

which is obviously in accord with the similari~ rule. The
drag due to lift given by equation (140) is in corresponding
agreement with the appropriate transonic similarity rule.

MOMENTUM ANALYSISOF DRAG OF SLBNDEE BODIES AT M. .1

The previous mample of the thin ellipticcone-cylinderhas

disclosed signitlcantditlerenceain the drag at Mm= 1 of
elliptic nnd circular cone-cylinders having the same longi-
tudinal distribution of cross-section area. Since this fiding
is contrary to the often quoted transonic area rule, it is of
interest to study the sonic drag of a more general class of
bodies. This will now be done using momentum methods.

Derivation of general relation for drag.-Consider a surface
z which encloses a volume conttig an aerodynamic body.
The vectorial force F on the body ean be determined by
considering the pressures and flux of momentum at z.
In general there results

F=-JJ(*-P.)di-JJPF[(fi= +i) dq (144
z z

where vector notation is used, p and p are the local static

pressureand density, rmd ~ is the local perturbation velocity
vector.

I?or present purposes, the surface z will be taken as shown
in figure 14. Two parts of z denoted as I and H, are plane

FIGURE 14.—View of surface z used in evaluation of drag.

surfaces normal to the z axis and situated upstream and
downstream of the body. The remtig part of Z, denoted
by III, is a small circuIar cylinder of radius l?z large enough
so that the body is entirely enclosed within the cylindrical
surface. Since it will be assumed that the body is slender
and smooth enough that the necessary restrictions on q are
satisfied at all stations forward of the base, but that discon-
tinuitie9 in geometry or velocity may occur there, the plane
surfaces I and II will be placed at intinity upstream and at
the base of the body, respectively.

It is sufficient, to the order of accuracy of transonic theory,
to approximate p and p at points near the body by

P _, lM.%——
Pm u.

and

P—P.=—Pm
{

U.u+; [(1–Mm~u2+0,+u?l
}

I’urthermore, if attention is restrictedto the streamtie

component of force,totaldrag of the enclosed body isgiven

by

Js SSD=; [(ikfm’-@2+ti+@ dydz-pm uu,R&t9dx (145)

JI III

where o, is the radial component of veloci~. This expres-
sion holds, of course, at Al. = 1 and becomes

SS SSD=? (#+@dydz–pm uv,R@dz (146)

/ II m

An alternative form for equation (146) which will prove useful
can be obtained by replacing the surface integral over II by
a line integral Thus, Green’s theorem provides
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z

FIGUZD 15.—View of integration contour in plane II of Z.

where C is a curve, situated in plane H., which goes around
the wing and also around the control surface Z, duOis an
element of C, and n is the unit normal drawn into the in-
terior of C, as illustrated in @we 15. But the relation
q=m+g(z) holds near the body, and therefore within 0,
hence the equation V~P=Ois satisfied in II,

(143)

and equation (146) for drag becomes

Relation between drag of wings and bodies having the

same area distibution.-Consider sonic flow about two

aerodynamic shapes, one a thin wing and the other a slender

noxdiftingbody of revolution,having the same longitudinal

distribution of cross-sectionarea. If equations (90) and

(91) are substituted into equation (146), and ifthe Fourier

expansion for %W —WB obtained from equations (58) and

(65) isintroduced into the integrsk over III and the portion

of O contiguous with III, one has

The contour C is here divided into two parts. The inner
portion that immediately surrounds the wing is denoted by
CW,whereas the outer portion is denoted by C&. It follows
simi.kwlythat a corresponding expression can be written for
the drag of the body of revolution. Thus

P. SSUBGBRa dx (151)
m

where CB refersto an integrationcontour drawn around the

cross section of the body. If the extiriorportions of the

control surface z are now selected the same for the two

cases (i.e.,surface III is the same for the wing and body),

it follows immediately by subtraction that

The integrals over & can be divided into two parts after
recalling that the analysis appliea for small angles of attack
and that qw can be written as the sum of ~w ~ and qw~,
provided the thickness does not vanish. Substitution of this
relation into equation (152) yields

where the integrals involving the cross-product terms me
absent since ~W* and its normal derivative along & are
even functions of z, whereas ~wz and its normal derivative
are odd functions of z.

Siice I@Wq is proportional to a, it is evident that the first

integral of equation (153) provides a contribution to tho

drag which is proportional to the square of the angle of

attack. This quantity is exactly the vorte..drag cmd is
represented by the ssmmexpression at all Mach numbem.

The difference of the two remaining integrals gives the
difference in the drag at h?.= 1 of a nordifting wing and
body having the same longitudinal distribution of crosw-
section area. Since the two integrals will not always cmuml,
the drag of the wing and body will, in general, be different.
One can account in this way for the difference in clrag of
tti elliptic cone-cylinders and circular cone-cylinders dis-
closed previously by integration of surface pressures, To
show this, one must evaluate the integrals of equation (162)
at the shoulder of the cone-cylinder (z= 1) using the expre-
ssionsfor ~,r and ~B given in equations (110) and (93). In
the integration, the contour ~ extends on both sides of the
y axis from —ml to +nd whereas the contour C~ is a circle
of radius OZ. Upon carrying out the indioated operations,
one obtains the same result as that given previously in
equation (122) in which the drag of the elliptic cone-cylinder
is substantially less than that of the circular cone-cylinder.

Special cases for whioh the drag of wing and body is the
same.—Although it is important to note the difference in tho
drag of two bodies, it is perhaps even more important to
know under what conditions the drag of the bodies is the
same. If attention is coniined to nonlifting cases so that
~w~ is zero, the vortex drag vanishes, and the condition for
the equality of the drag of a wing and body having the same
area distribution is that the contribution of the last two
integrals of equation (153) cancel. This condition is
satisiied for certain large and important classes of shapes,
One such class includes shapes that are cylindrical at the
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Ixlse film, then,

and

amw, afp’j,

-%J=O’ —5 ‘0
DW=DB

(154)

(155)

Another includes many shapes that taper to a point at the
rear since, then, both integrals again vanish. Other classes
for which it is more difiicult to specify the geometry include
shapes for which the integrals have equal values diflerent
from zero. The latter case provides some im%reatingsitua-
tions in which some membem of a family of wings and bodies
having the same longitudinal distribution of crow-section
mea have the same drag and others have a dilferent drag.
To be more specific, consider a low-aspect-ratio pointed wing
having rLstraight trailing edge normal to the free-stream
direction and smooth airfoil sections closing with a finite
wedge angle at the rear (an example of such a wing is a
trkmgularwing with biconvex proiiles), and a body of revolu-
tion having the same area distribution as the wing. Applica-
tion of equation (153) to this pair of bodies quickly leads to
the conclusion that the drag of the body of revolution is
irfmitely greater than that of the wing. This is apparent
because the integral around the base of the wing is fite,
whereas that around the base of the body is logarithmically
infinite since

J %iw.=H@9nRl=d ‘15’)
apjP]B

and dS/dxis finiteand R is zero at x=1. The infinite drag of
this particular body of revolution is, of course, spurious and
is no doubt associated with the fact that the round stern is
too blunt to treat with a theory of the slender-body type.
On the othor hand, there is no reason to believe that the
pressure drags of the wing and body are the same.

Since no corresponding difficulties occur at the base of the
wing, let the drag of the above wing be compared with that
of a second thin low-aspect-ratio wing having the same
longitudinal mea distribution. l?or such a comparison,
equation (153) must be replaced by the corresponding relw
tion between the drag of two wings

(s af%wr,
J

a-

DW,,=DW,–* — dTo–
*WII &L

=1 0%.$%Y1 &,
%?ll Cw;

)

(157)

It is immediately clear that the two winga have the same
drag if they have the same geometry at the base. This con-
dition for the equality of drag of two bodies having the same
area distribution has been arrived at previously by Harder
rmd Klunker (ref. 16) and by Berndt (ref. 29) by somewhat
different means. As is apparent from the preceding dis-
cussion, this condition is sufficient but not necessary.

As a further example, consider the case where the geometry
of the two wings is rdlinely related, that is, for a constant
chord, the second wing is derived from the first by simple
stitchings of they and z dimensions. F-or the present class
of wings, having straight trailing edges normal to the free-
stream direction and airfoil sections closing with a finite

wedge angle at the rear,each of the integralsof equation (157)

can be written in the form

Then the product AT of aspect ratio and thicknessratio is the
same for both wings, although -A and r individually may be
diilerent. It follows, moreover, from the fact that the ratio
z/t of the wing ordinates to the mtium thickness is the
same function of z/1 and y/sOfor aflinely related wings, that
WWis the same function of y/80 fOr both wings. SbCe 80is
proportional to A and A, is the same for both wings, it fol-
lows that the two integnds of equation (157) have the same
value, and both wings have the same drag. Inasmuch as it is
only the conditions at the trailing edge that enter into the
integrals of equation (157), similar reasoning shows that the
two wings also have the same drag if the condition of afhely
related geometry appli~ only to the cross-section shape and
surface slopes in the z direction at the trailing edge. On the
other hand, if the wings have merely the same longitudinal
distribution of crow-section area, the simple relationa just
described between the various elements of equation (157) no
longer hold, and the wings will, in general, have different
drags.

APPLICATIONTONONPLANAR PROBIJtMS

Equation (90) expressing the relation between the per-
turbation potential for sonic flow about a thin low-aspect-
ratio wing and that about a slender body of revolution has
been derived on the assumption that the boundary condi-
tions for the wing can be specified on a planar surface. The
development outlined in figure 6 suggests that the result can
actually be extended to include more general classesof slender
shapes. Accordingly, assume that equation (9o) holds for
cases involving nonplanar boundary conditions and let the
results given in the preceding sections for the drag at kfo=l
of thin elliptic cones be extended to include slender elhptic
conw of any eccentricity. The analysis proceeds identically
to that for the thin elliptic cone, the only change being that
*W must be recalculated. This is a simple problem in two-
dimensional potential theory since %Wrepresents the poten-
tial associated with @form growth of an ellipse, and the
result, when evaIuated on the cone surface, is

(159}

Substitution of this result into equation (153) leads to the
following relation for the drag

Comparison of these two expressions with the correspond-
ing relations for thin cones given in equations (110) and (122)
shows that they diiler by the inclusion of an additional factor
(1+i!/2m.Z)in the more general result. Although the contri-
bution of this term is of negligible importance for cones hav-
ing t/ridsmall, it is vital for nearly circular cones, and indeed
necewary to assure the equality of Dw and DB when the ellip-
tic cone becomes a circular cone, that is, when t/ml=2. In
order to illustrate this point further, figure 16 has been pre-
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Fmmm 16.—Drag of elliptiocone-cylindemat free-streamMaah
number 1.

pared, showing the variationwith 2mZ/t,or the ratioof major

asie to minor axis,of the drag at Mm= 1 of two families of
elliptic cones. All membem of each family have the same
longitudinal distribution of cross-section area. As indicated,
one family is defined by till= 0.02 and includes the circular
cone-cylinder having a semiapex angle 0 of 0.10 radian, and
the other by m.t/1=0.03 and includes the circular cone-
cylinder having 0=0.1225 radian. The solid line indicates
the values computed using equation (160), and the dotted
line those computed using equation (122). In both casks,
the drag D. of the circular cone-cylinder is calculated from
equation (127). As would be anticipated, the solid and
dotted lines coincide for thin canes, but they tier consid-
erably for circular cones (2mi?/t=1). More interesting, per-
haps, is the extent to which the drag of a family of cone-
cylindem having the same longitudinal distribution of cross-
section area depends on the shape of the cross section.

The procedurw applied here to the elliptic cone-cylinders
can also be applied to many other cases, such as wing-body
combinations, etc. For bodies having the same longitudinal
distribution of cross-section area as a cone-cylinder one must
merely determine the appropriate function for ~W and pro-
ceed in the same manner as for the elliptic cone-oylinders.
For other bodies it is also necessary to have knowledge of

.8

Cp

.<

c

either the theoretical solution or the esperimentol pressure
distribution for sonic flow around a body of revolution having
the same (or afhnely related) longitudinal distribution of
cross-section area as the given body. It should be remarked,
however, that the emtensionto some of these problems in-
volves the assumption that equation (9o) applies to non-
planar cases.

COMrAR180NWITHEXPERIMENTALRRSULTS

In the remainder of this paper, experimental data will be
presented and a comparison made with the predictions of
sonic slender-body theory. Although these comparisons
may not be ideal, since experimental data for Mm= 1 are
only available for fties of shapes that strain the assump-
tions of the theory, they show remarkable agreement with
the theory and help deiine the range for which the results
may be expected to apply.

Cone-cylinders.-The most informative class of bodios to
investigate further with regard to comparison of theory and
experiment is the cone-cylinder. This is because of the
availability of not only the similarity rules, etc., but also the
complete solution for the pressure distribution and flow
field in the vicini~ of such bodies. Experimental datu are
also available in reference 18 by Solomon for the pressure nt
several points on the surface of two rather blunt circular
cone-cylinders at lMachnumbem near unity. The tests wore
conducted on cone-cylinders having semiapw angles of 20°
and 25° and at Mach numbem up to about 0.96. The cor-
responding pressures at Mm= 1 can be obtained only by
extrapolation. The test Mach numbers are sufficiently
high, however, that the local lMachnumbers on the body sur-
face are virtually independent of the free-dream lhfach
number. These pressures are plotted in figure 17 togetlpx
with the theoretical pressure distribution for slender cone-
cylindem at M== 1. The latter were computed using
equation (112) together with the theoretical pressure distribu-
tion for a circular cone-cylinder having semiapex angle 0=
0.10, see figure 9. With the exception of one point on tlm
25° cone-cylinder, the theoretical and experimental values
are in remarkable agreement, considering the bluntness of the
cones

o -w

Fmmn 17.-Comparison of theoretical and experimental p~e distributions on two aone-oylinders at free-stream Mach number 1.
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It would be very informative to make similar comparisons
for cone-cylinders that are more slender, or that have non-
circular cross sections, but the authors are unaware of any
suitable experimental data. Studies involving bodies of
revolution having area distributions that differ horn that of
cone-cylinders are handicapped at the present time by the
lack of theoretical solutions for the transonic pressure dis-
tribution, and would have to be confined to the investigation
of such itmne w the range of applicability of the similarity
rules, the existence and lateral =tent of the g(z) function,
etc.

Wmgs,—Since complete solutions for sonic flow around
three-dimensioned wings have not yet been obtained, the
following discussion must be confined to cases in which
mpmimental information is known for two or more wings or
bodies having the same or aflinely related longitudinal dis-
tributions of cross-section area. Probably the most exten-
sive set of data of this type is that given in reference 20 for
a large family of ffiely related wings of rectangukir plan
form having NACA 63AOXX sections. Since the results
for -kfm= 1 can be presented most concisely by using the
variables suggested by the transonic similarity rules for
wings of finite span (see, e. g., ref. 4), the experimentalresults
for the zero-lift pressure drag and the lift-curve slope at
M== 1 are given in figure 18 by plotting CD/# and 7$~CLmas
functions of A#*. As shown previoidy by McDetitt
(ref. 20), these data confirm the statement provided by the
similarity rules that the results so plotted should define a
single curve for each aerodynamic quantity.

Tho curves representing the zero-lift pressure drag and
the lift-curve slope have the same general form for high-
nspect-ratio wings. The curves approach horizontal lines
for the wings of larger aspect ratio, and the values for the
lift and drag are not too diflerent horn the theoretical values
given by Guderley and Yoshihara in references 30 and 31
for two-dimensional sonic flow around double-wedge ptofles.
The curves approach straight lines through the origin for
Iow-aspect-ratio wings and the experimental values for the
lift-curve slope of wings having zlr~~less than about unity
practically coincide with the theoretical values given by
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FIGURE 18.—Drag and lift at free-stream Maoh number 1 of a family
of rectangular wings having NACA 6i!AOXX proilk.

equation (143). The corresponding theoretical values for
the drag at M.= 1 am not known.

Some measure of the applicability of the theoretical results
can still be derived, however, by axamining the :elation be-
tween the experimental drags of various wings. If the
effects of the violation of the theoretiwd requirements that
occurs at the round nose of the unswept leading edge of each
of the present family of wings can be disregarded, the dis-
cussion following equation (158) applies and all low-sspecb
ratio wings having a given longitudinal distribution of cross-
section area have the same drag. Inasmuch as not many
pairs of wings of the present family actually have the same
area distribution, a more useful statement of the result is
that the drag is a unique function of the area distribution.
Since the area distribution of an ailinely related family of
W@S m be specfied by giving, for instance, the chord z and
the ratio 8.IP (or its equivalent, the product of the aspect
ratio and the thicknem ratio) of the maximum cross-section
area to the chord squared, it follows that the drag and
geometry of the present family of wings are related according.
to

(161)

where fl represents an unknown function of the indicated
variables. This relation may be contrasted with that pro-
vided by the similarity rule that states

(162)

where SP refers to the plan-form area. At first glance, the
two relationships appear to bear only slight r~emblsmce.
It can be seen upon closer examination, however, that some
of the a~mrent difference are superficial and of little or no
sign&&”w. Thus,

D=+

or

This appears to be

let equation ‘(161) be rewritten as

12f,(A7)=~ ~ (A7)’f@r)

~=A#f@~) (163)~%

the closest that the two results can be
brought together without introducing additional restric-
tions or approximations. Both are now concerned with the
same quanti~, CD/#, but equation (162) states that this
quanti~ is equal to some unknown function of A#f, whereas
equation (163) states that it is equal to A7~ tinw some
function of AT. The only way in which both results can
be univemdly correct is for the functions fs and fs to be
constants and not dependent on either AT or &~. Both
rulesare not universally correct, however, since equation (163)
is derived from transonic slender-body theory and therefore
can be expected to apply only to wings of small aspect ratio.
From the foregoing considerations, one can conclude that
the drag at Mm= 1 of the low-aspectiratio wings of the
present family must depend on the geometry in such a way
that C=/r% is linearly proportiomd to i.’.ir~. Examination
of the drag data of figure 18 shows that the experimental
results exhibit precisely this trend for wings of Ar~ less
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than about unity. An alternative interpretation of this
result is that the drag of a number of Iow-sspechratio wings
of the present family all having the same chord, varies as

/(;P.u.~1~)the square of the frontal area; that is, 11

depends on the square of S~12. Further discussion of these
and related points appears in reference 32.

It appears that the degree of correspondence between
theory and experiment disclosed above for such extreme
cases as rectangular wings of aspect ratios 3 and 4 must be
attributed partially to the averaging influence of integration
and that the same close correspondence may not be found
for more detailed quantities. For example, slender-body
theory indicates that the lift on Iow-aspec&ratio rectangular
wings at Mm= 1 is concentrated along the leading edge.
Although preimwe-distribution measurements were not in-
cluded in the test program reported in reference 20, pitching-
moment measurements were made from which the center+f-
pressure position can easily be deduced. The results indi-
cate that the centeraf-pressure position at sniall angles of
attack is within the first 10-percent chord at Mm= 1 for each
of the wings of aspect ratio 1/2 or 1, but moves progressively
rearward for wings of larger aspect ratio. Hence the range
of ~~~ for which theory and experiment agree may be ex-
pected to be less than that indicated by the integrated lift
and drag results. On the other hand, application to wings
of the rectangular plan form imposes severe strain on the
slender-body assumptions, and better agreement, or a wider
range of applicability, might be anticipated with wings of
other plan form, such as triangular.

Wing-body combinations.-Several comparisons between
the experimental zero-lift drags of wing-body combinations
and bodies of revolution having the same longitudinal dis-
tribution of cross-section area were given by ‘iVhitcomb in
reference 6 in connection with his discovery of the area rule.
The bodies tested were of such geometry that the integrals
of equation (153) are zero and the drags of wing-body com-
binations and their equivalent bodies of revolution should
be the same. The experimental results show excellent
agreement in some cases, and lesser agreement in other
cases. These results will not be discussed further here since
the experimental data are already analyzed from the point
of view of equality of drag in reference 6.
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