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CALCULATIONS OF LAMINAR HEAT TRANSFER AROUND CYLINDERS OF:ARBH!RARY

CROSS SECTION AND TRANSPIRATION-COOLED WALLS WITH

APPLICATION TO TURBINE BLADE COOLING’

By E. R. G. ECImRT and J. N. B. LHGOOD

SUMMARY

~ h wmxid &d jor the development of J%ZOand
thernd boundury layers in t& lami?uar region on cylinders

with arbitrary oro88 section and trarwpiration-cooled wali% h

obtuined by the me of Karman’8 integrated mmn.entum egwution

and an analogous heat-- equutian. Incompre+wible@w
with c.omtant propert> VQJUM throughout the bowuiary layer is

axumed. The velocity and temperature proji1843 wiz%in the

boundary kyer are approximate by &xpre.s&nw compo8ed of

trigono?nelric functiOn8. Shape parmneter8 for these pro~

and junci%nw rwce88ary jor the 8olw$i0n of the bounda@ayer

eguutions are premnted m graphs 80 that the cai%uihtion for

any 8pe@c case is reduced to i!.h 8oluti0n of two jnt-orfler

di$eren$ial equati0n8.

Zhe method h applied to determine local hea~transjer

toe@.&mt.e and s-urjace temperature in the laminar @w region

of the tran.qiraiion-cookd turbine bludee for a given coolant

@w rate, or to calculate the wolant @w d&tribuiion which h

neces8a~ in order to keep the blade temperature uniform along

the ewrjace;

INTRODUCTION

Trrmspimtion cooling is a vw effective means for keeping
surfaces that are subject to a hot gas stream at a low tem-
perature. For use of this method, the surfaoe is fabricated
from a porous material and a cooling fluid is blown through
the pores. Along tie outside surface the cooling fluid builds
Qh that insulates the wall from the hot gas stream. The
transpiration-cooling method may be applied to the cooling
of structural parts in propulsion systenm such as gas-turbine
blades, combustion-chamber walls, and rocket nozzles. If
a heated fluid is blown through the porous wall, the same
method may be used to keep the surface temperature of the
wall at fbvalue that is higher than the temperature in the
outside flow. In this way, the method may be applied in
de-icing of wings or other parts of airplanes and in the pro-
pulsion system.

This report presents a method by which the heat transfer
connected with transpiration cooling in two-dimensional
hxminarflow around bodies of arbitrary cross section can be
calculated. It considers only the case where the fluid
blown through the porous wall is the same as the one in the
outside flow. Although the particular application con-

sidered in this report is the cooling of turbine blades, the
method itself may be applied to other applications as well.
The procedure by which the calculation maybe carried out
for any particular application is described in an appendix
of ti report.

The determination of the heat transfer is based on the
calculation of the thermal boundw layer which builds up
around any body in a flow field. This thermal boundm-y
layer is interconnected with the flow boundary layer for
variable fluid properties dependent on temperature or super-
imposed on the velocity boundary layer when the properties
are independent of temperature. The build-up of the flOTV

boundmy layer is determined by the pressure distribution
around the body under consideration. For the type of
pressuredistribution occurring in the aforementioned applicw
tions, only approximate methods of calculation are direct
enough for engineering purposes. For the detetiation of
the thermal boundary layer in particular, two Q-pm of ap-
proach areknown.

The &t approach was introduced by Kioujiline for the
calculation of heat transfer on solid surfaces and presented
in more detail by Frtkling and others (ref. 1). In this meth-
od, the flow boundary layer has to be known before the ther-
mal boundary layer can be calculated.

Usually a method such as that introduced by von K&m&n
(ref. 2) or Pohlhausen (ref. 3), which fdfills the integrabd
momentum equation of the boundmy layer, is applied for
the calculation of the flow boundary layer. More recently,
Wmghardt and Walz (ref. 4) have used, in addition to the
momentum equation, an integrated energy equation, and
Tetefi and Lin (ref. 5) have introduced a still more general
integral condition for the boundary layer which may be used
in such calculations. The use of the9e expressions gives”
better agreement with exact calculations and with measure-
ments in special casea,particularly in regions where the pres-
sure inoreawx in flow direction. since, in the application
considered, the regions of most concern are those where the
pressure decreasea, the integrated momentum equation,
which is simplest to handle, will be used. Schli&ting (ref.
6) used this equation to calculate the flow boundary layer
on a porous surface through which fluid is sucked in order
to keep the boundary layer laminar or to prevent flow sep-
aration. A paper by Dorodni~ (ref. 7) extended the
method to include the effect of Mach number and of variable
property valuea. However, this extension is developed only
for zero heat transfer. The calculation of the flow boundary
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layer in this report will essentisly follow Schlichting’s
approach.

After the flow boundary layer is determined, the thermal
boundary layer can be calculated according to the method of
Kroujiline by use of an integrated hea~flow equation. Ve-
locity profiles known from the calculation of the flow bound-
ary layer and temperature prdlea within the boundary layer
whose shapes are approximated by a polynomial expremion
are introduced into this heaf+flow equation and the equation
is solved for the thiclmess ratio of the thernd boundrwy
layer to the flow bound~ layer (ref. 1). This procedure,
however, becomes quite lengthy, especially when the number
of tams in the polynomial expression for the temperature
profile is incremxl in order to improve the accuracy of the
approximation. When an attampt was made at the NACA
Lewis laboratory to extend this method, which w= previously
used only to determine the heat transfer on solid surfaces, to
transpiration-cooled porous walls, it wae found that the
procedure for the solution of the heat-flow equation becomes
much simpler and more direct if the equation is solved for a
thermal boundary-layer thickness termed convection thicJc-
ness. This will be explained in detail in a later section of
this report. After the method was developed and the cal-
culations were finished, a note by Dienemwm (ref. 8) me
found in which the same kind of approach is briefly described.
Dienemann applies the method to calculate heat-@mefer
coefficients on solid surfaces and proposes to extend it in
such a way as to account for a temperature variation along
the solid surface and the influence of internal frictional heating
within the boundary layer. He also shows that this method
is superior to other approximations which were compaxed
by Goland (ref. 9) with an exact solution for a cylinder with
circular cross section. It maybe of interest to mention that
Goland obtained the exact solution from the fact that the
di.fbrential equation ctescribing the temperature boundmy
layer around an iniinite cylinder in a flow normal to its axis
and for a fluid with a Prandtl number of 1 has exactly the
same form ae the d.ifbrentisl equation describing the span-
wise flow within the boundary layer on a yawed idinite cyl-
inder. Calculations of the heat transfer on a transpiration-
cooled fiat plate which included the variation of property
values with temperature were made by Yuan (ref. 10) with

. the assumption that the total-temperature prdle within the
boundary layer is simihu to the velocity proiile. This ass-
umption is valid for a Prandtl number of 1 and for no pressure
gradient. The purpose of the present investigation is to
consider the influence of pressure gradients ae well as
Prandtl numbers different from unity.

A second approach for obtaining an approximate solution
of the thermal boundary layer was described in reference 1.
It is still simpler than the approach by Kroujiline, since in
this method it is not necessmy to calculate the flow-boundary
layer prior to the determination of the thermal boundary
layer. This method uses exact solutions of the boundary-
layer equations which axeknown for a special type of presure
variation in the flow which is encountered on wedge-shaped
bodies. These velocity profiles and the temperature profiles
are used to approximate the actual profiles for arbitrw
prewre variations. A differential equation is set up
with the condition that the growth of the boundary layer

at any place on the cylinder with arbitrary cross section
be the same as for the wedge-type flow when the boundary-
layer thickmws and the pressure gradient have the same
values in both cases. When this idea is applied to the
momentum thickness of the boundary layer, the resulting
equation is identical with IGfmrAn’s integrated momentum
equation. When it is applied to the convection thickness of
the thermal boundary layer, the reeulting differential
equation fuliills the requirement that the heat transferred
from the surface to the fluid must be found again within the
boundary layer (ref. 11). This method was compared with
exact solutions and experimental valuea in reference 1 and in
investigations performed at the University of California
(ref. 12), and the agreement obtained was quite satisfactq-.
This method can eaeily be extended to include effects of
variations of the surface temperature and of internal heating
(ref. 11); however, the corresponding exact solutions for the
wedge-type flow must be known. Such solutions, which take
into account the effecte of a surface temperature variation
and of internal heating, are presented in refanmces 11 and 13.
The method may also be extended to the transpiration
cooling of porous surfaces se soon as the corresponding exaot
solutions for this caee are known. A few of these solutions
are presented in reference 14. However, too few solutions
are given for use as a basis for the approximate method.
Brown (ref. 15) has recently made an extensive calculation
to obtain exact solutions in transpiration-cooled porous
surfacea of the wedge-flow type which include the effect of
pressure gradients and of variable property values. The
results of this calculation are now being used to extend the
method mentioned in the preceding paragraph to trrmapira-
tion cooling.

This paper deals with the method described se the iirst
type of approach. The method has the advantagw of being
applicable to cases for which the corresponding wedge-typo
flow-and heat transfer are not known.

STATEMENT OF PROBLEM AND SIMPLIFYING
ASSUMPTIONS

This report is a contribution to the problem of determining
the development of the thermal boundary layer and the
heat-transfer coeflicienta on a body of arbitrary cross section
with porous walls in a two-dimensional flow. Figure 1
shows the crow section of a body of this type. At Reynolds
numbers that are sticiently high, the flow around the body
may be subdivided into the boundary-layer region, which
surrounds ‘the body with a very small thickness, and the

f=o

FIGUREl.-sketob of turbine blsde indicating notations used.
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potential flow, which determines the pressure distribution
around the body. The highest pressure on the body is found
at the stagnation point. The pressure then decreases in
flow direction along both sides of the body and usually
increasca again later. The pressure variation along the
body determines the development of the flow boundary layer
and also whether the boundary layer is laminar or turbulent.
Usually, the ltiar part is confined to a region near the nose
of the body. The laminar boundary-layer region is investig-
ated herein. The flow of coolant through the porous
surface may be described by the veloci~ UWwith which the
coolant leaves the surface in a normal direction. .The ques-
tions which will be answered in this report are (1) what are
tho local heat-transfer coefficient and the surface tempera-
ture on any point along the body for any prescribed dis-
tribution of the coolant velocity, and (2) what distribution
of the coolant velocity gives a desired distribution of the
heat-transfer coefficient and of the surface temperature
mound the body. UsuaJly, for example, a constant wall
temperature is most desirable and the problem is to determine
that distribution of the coolant velocity which results in a
constant wall temperature.

A number of simpMcations must be introduced in order to
keep the time required for the solution of a special problem
within a tolerable amount. The following assumptions are
made: The flow is two-dimensional and in steady state,
internal frictional heating within the boundary layer can be
neglected, and proper~ values (density, viscosity, and heat
conductivity) may be considered constant. The influence
of temperature gradients along the surface of the body is
noglectid. Although this influence may be considerable
(ref. 13), there is no quantitative information available for
transpiration-cooled surfaces that would permit this effect
to be taken into account.

In applying the method to the determination of the tem-
pmaturca of transpiration-cooled turbine blades, neglecting
internal frictional heating should be admissible, since the
temperature difTerenccswithin the boundary layer generated
by the cooling process are considerably larger than those
generated by nerod~amic heating. This will be shown in
more detail later. On the other hand, the krge temperature
variation in the boundary layer is connected with a con-
siderable variation of the property values. The influence of
this variation on the heat transfer may be approximately
corrected by use of the results in reference 15.

BOUNDARY-LAYER EQUATIONS

In a coordinate system, shown in figure 1, where the z-axis
runs along tho surface and the y-direction is normal to the
surfaca and under the assumptions mentioned in the previous
section, the differential equations describing the velocity and
the temperature within the boundary layer are

(1)

(2)

(3)

(All symbols are defied in appendix A.) The equations
have to fulfill the following boundary conditions: At the sur-
face (y= O), the velocity component W*parallel to the surface
is O, the veloci~ component o* normal to the surface has L
finite value o.*, and the temperature of the surface is inter-
connected with the velocity o=*by the ovtu-all heat-transfer
proc~, so that only one of the two values maybe prescribed.
At the outer edge of the boundary layer ~= co), the U* com-
ponent of the velocity transforms asymptotically into the
stream voloci@ U* and the temperate transforms into the
stream temperature. Since only temperature d.ifbrences+
appear in equation (3), the temperature level does not enter
into the problem. Therefore, all temparatureawill be meas-
ured from the temperature in the strewn as reference tem-
perature, and t will be interpreted as the temperature differ-
ence from thisreference temperature. Consequently, outside
of the boundary layer, t= O.

la a gas stream, it is advantageous to interpret t as the
total temperature difhrence. In this cfwe, equation (3)
already includes the effect of the frictional heating for a gas
with a Prandti number of 1. Since for all gases, the PrandtI
number does not deviate much from the value 1, equation.
(3) also gives a good approximation to the real conditions for
gases as long as the temperature differenw imprwsed upon
the boundary layer by a cooling process are larger than the
temperature diilerences created by internal fiction.

In order to reduce the number of parametem, the dMeren-
tial equations will be made dimensionless. For this purpose.
all lengths measured parallel to z are divided by L, the dis-
tance between the stagnation point and the trailing edge of
the body measured along the surface, and all velocities in
this direction are divided by an upstream velocity UO. All
lmgths and all velocities parallel to y are, in addition, multi-
plied by the square root of Reynolds numbers R% based on
the body length L and the upstream veloci~ Uo:

The pressuregradient Z)&/b&is impresed upon the boundary
layer by the potential flow outside the boundary layer and
can be replaced by the stream velocity gradient by use of
Bernoulli’s equation:

In this way, equations (1) to (3) tramform into

(5)

(6}

(7)

(8}

The boundary conditions for these equations become
~= () U=Q V=v.(x) t=tw(x) (9}

y+ m u+ t+o (10)

The equations are now integrated over y from y= Otoy= m.
The result of this integration is Ebb’s integrated momen-
tum equation
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d
Jlu–u)u dY+gJ-)Pu)dlmu=(~)w(1 1)Zco

and the heat-flow equation

J ()

1 at
: ~% dy—twvm=—— —Pray.

(12)

In order to simplify these equations, the following charac-
teristic boundary-layer thiclmesses are introduced:

(1) The
layer

(2) The

displacement thiclmess of the flow boundary

“=J’(l-%)”
(13) .

momentum or impulse tbiclmess of the flow
boundary layer

“=JX%)”

(3) The convection thiclmew of the
layer

(14)

thermal boundary

(15)

where o is the ratio t/t~ with the limiting values 0=1 for
y=O and 0=0 for y= ~. Introducing these boundary-
layer thicknesses and writing dU/ckcas U’ tmmsforms equa-
tions (11) and (12) into

(16)

(17)

VELOCITY AND TEMPERATURE PROFILES

In order b obtain an approximate solution of the last two
equations, approximate expressions for the veloci~ and
temperature profil& will be introduced. The accuracy of
the rcauhs of this calculation will depend on how well the
actual prcdiles are approximated by the assumed shapes.
The tempamture proiiles as well as the veloci~ profiles are
chosen as a one-pamuneterfamily. The parameter for each
family is determined in such a way that the assumed profles
fulfill the exact boundary-layer equations (6) to (8) at the
wall surface:

In addition, ‘ the

(18)

+3.=wia
(19)

following boundary conditions will be
fulfilled:

y=() u= o e= 1 (20)

y+. U+u e+o (21)

Origimdly, polynomial expressionswm.reused to approximate
both the velocity and the temperature proflw. Schlichting,
however, pointed out that better approsirnations may be
obtained by expressions composed of trigonometric functions
(ref. 6). The following profi.leaare used in this report:

Velooity profile.-For A >0, 0 <~< 1,

( )’
~=sin~#+A l—e–gbn if

and for~>l,

u

By use of this profile,
equation (18) for the

,

(22)

the following expression is found from
shape parametar A:

m-; VJ
A=

()

(23)
9+ 33 Ud

The velocity proiile equation (22) has already been used by
Schlichting (ref. 6). For a solid flat plate (U’=0 and UM=O),
it approximate the Blasius velocity proiile very well, and for
U’=0 and 0.= —3/3, trtio~ into the ~act ~ymp-

I totic suction profl.le as calculated by Schlichting (r&. 6).

and for~>l,

——
% /

(24)

The shape parameter in this case, as obtnined from equation
(18), is

For the solid flat plate, this profile gives the same expression
as equation (22). It will be shown later that the proiilo
approximates the separation profle as calculated by Eartree
(ref. 16) better than the usual polynomial expression.
Separation occum at A= – 1 and the corresponding profile

Temperature profile,-For O< ~ <1,

t
-=e=l-sin” y
tw d-sin%)

~ ~—At Sillz E

and for; Zl,

0=0

--

(26)

(27)

The shape factor for this profile is obtained from equation
(19) as follows:
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~t= –P?’ v>,
T+Pr VA

(28)

In this mm, n negative shape factor A, is always connected
with a positive vrdue of v., whereas for the velocity profile,
the sign of the shape factor depends, in addition, on the
pressure gradient dU/dk

With these profiles, the di.ilerent boundary-layer thick-
ncssoaand the velocity gradient at the wall maybe calculated.

$=(+-HA
(29)

}

$=0.1366 +0.03791 AJ0.00786 A’ A>O (30)

(%).=%+(-3A]

H++-+)’

J

$0.1366 –0.01456A—o.02618As

J

(31)

(32)

A<O (33)

(34)

The nondimensional temperature gradient at the wall is

de

() izj.
=–; ;(l+A,) (36)

The corresponding expressions for the convection tbiclmess
of the thermal boundary layer are presented in appendix B.

TRANSFORMATION OF BOUNDARY-LAYER EQUATIONS
FLOW’ BouNDA12Y LAYER

Multiplication of equation (16) by &/Uand a partial differ-
entiation of the fit term give

The expression in the pmentheses of the second term on the
left-hand side and the term on the right-hand side are func-
tioDEof the shape parameter A. Therefore, the momentum
equation for the boundary layer may be written in its fial
form.

ua(ti?)
~ ~f@-j@U’6?+vA (37) .

with the following expressions for the two functions J and”
j,, wtich me obtained from equations (29) to (34):

1 (38).f,(A\=2+ 0.3634-0.03005A
0.1366+0.03791 A—0.00786A3

/

A~O

f,(A) =~~(3-~](0.1366+0.03791A-O.00786A’ (39)

0.3634–O.1366A
jJA)=2+0.1366-0 .01456A-0.02618Az 1

(40)

J
A~O

$(A)=; (l+A) (0.1366—0.01456A—0.02618A2 (41)

These fimctions are presented in flgu.re2. All curves have
a break at A= O because different expressions approximate
the velocity profiles for positive and negative A values.
Equation (37) is a linear first-order differential equation
from which the momentum thiclmes of the bounda~ layer

u

I?mmrd2.—Chartfor determination of j,. j,, and &/6 used in flow boundary-layer differential equation. (An 18- by 10%in. working ohart of this
figure may be obtained upon request from NACA Headquarhra)

418072-57-23
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A

I?XQUZE3.—Chart for determination of shape parameter A for flow boundary-layer oahxdations. (A 22-by lf+i-im working oharb of this figure
may be obtained upon reqwt from NACA Headquarter)

can be obtained by integration, as soon as the gradient U’
of the stream velocity U and the porous flow characterized
by u. are known as functions of z. In order to make the
calculations more convenient, the shape parameter A an be
expressed as a function of the two quantitiw U’6? and
Vdg

(42)

(43)

The ratio 8J8 occurring in these equations is a function of A
(see eqs. (30) and (33) and @g. 2). The functional relation
for A is pIotted in figure 3. By use of figures 2 and 3, the
integration procedure for the d.ifkrential equation (37) be-
come9 very simple. The step-by-stip procedure for such a
cxdcu.lationis presented in appendix C.

b order to start the calculation at the stagnation point,
the boundary-layer thiclmesa ~~at this location must be
bow-n. At the s@nation point, the stream velocity U is
zero. Since, on a blunt nose, the increase of the boundary-

layer thickness is never infinite, the term on the right-hand
side of equation (37) haa to be zero. This gives the equation

f, (A)–.f,(AlU’6?+VJi,= O (44)

However, figure 3 also applies to the conditions at tho stag-
nation point. I?rom both relations, U’b?, A, jl, and j~ wwo

u%,

VW%u’

FIGmm 4.-Chart for determination of U’d$ at stagnation point for
flow boundary-layer oaloulations.
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each obtained w a function of vw8iby a trial-and-error
process. These values are presented in table I. The con-
nection between U’ti?, A, and v& is also shown in @e 3
as the stagnation line. Table I cannot be used immediately
to start the calculation because the value Oabfis not lmown.

(o#f)’ %’However, the value ~=~, which contfi only known

values, is also Q function of U’~? and is plotted in figure 4.
From this figure, U’8? can be determined for a given vW’/U’
and & can then be obtained from this value.

THERMALBOUNDARYLA=

With the help of equations (28) and (35), the heat-flow
equation (17) is transformed into

where .K denotes the ratio L$J8. The last term on the right-
lmnd side accounta for a variation of the temperature along
the surface. A M3iculty arises in connection with this tam.
It is known from the results of references 11 and 13 that a
temperature gradient dtJdx also has a pronounced effect on
the shape of the temperature profile. Since no such effect
was included in the assumed profile (eq. (27)), the signifi-
cance of the last i%rm is doubtful. It was therefore neg-
lected herein, restricting this report to cases where the
variation of the surface temperature is kept small either by
internal conduction within the wall or by proper choice of
oU. The investigation of the influence of large surface tem-
perature gradients will be left to fwture work. With this
simplification, equation (45) can be written in ita iinal form

(46)

wherefa is a function of the product Pr Kv&, as presented in
figure 6. For a solid wall (vW=O), the equation simpliihs to

The shape parameter A, maybe written in the form

A,= –Pr KVA
r+Pr KvjJ

(47)

(48)

This equation, together with the expressions for 6LJ6
(appendix B), determines a fi.mctional relation between
K, 84,/8,A, and Pr z@, which is presented in iigure 6. The
figure presents the ratios 6AJ~ for each of three values of the
shape parameter A (—1, O, and +1). For intermediate
values of A, linear interpolation in the range A= —1 to
A=O, or A=O to A=l, at a constantvalue of K may be
used with good accuracy. The heat-flow equation (46)
is again a linear fit-order differential equation horn which
the thcmnal convection thickness is obtained by integration
when the stream velocity U, the flow through the porous
surface VW,and the Prsndtl number Pr are proscribed, and
the boundary layer thickness 6 and the shape factor of the
flow boundary layer A are lmown horn a preceding solution

of equation (37). The step-by-step procedure for such a
calculation is explained in appendix C.

IiLorder to start the calculation, the convection thickness
8L. must be known at the stagnation point. A partial
diilerentiation of the left-hand side of equation (46) gives

u~+u’&,.=%J3
At the stagnation point, U is zero, and the boundary-layer
increase d5LJdx is not iniinite on a blunt-nosed body. This
results in the equation

; 6,,,=ja (PT KVD6)
w

or

(49)

!?IGWItZ 6.—Chart for determination of js used in thermal boundary-

Iayer differential equation.
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This is a relation between the two unknown ratios 8LJ6 and
K A second relation is given by figure 6. From both, the
wdues 61,,/6 and K can be determined by a trial-and-arror
procedure. The values are presented in table II and
figure 7.

When the thermal convection bound~-layar thickness
is known, the local heat-transfer coefficient follows by a
simple calculation. The equation which defines the local
heat-transfer coefficient his

(60)

This equation gives, for the local Nusselt number based on
the length L,

Tho introduction of equation (17) for the temperature
gradient leads to the expression

Without porous cooling, equation (52) simplifks to

NUT I
~?n

(53)

In mrmy crises, all the heat transferred horn the outside
flow to the wrdl surface is picked up by the cooling fluid on
its flow through the porous wall. In this case, the wall
surface temperature may be calculated by the equation

ht.= ,OCPV.*(to–t.) (54)

where & is the temperature with which the coolant enters
the porous wall. The ratio of the difkrence in gas temper-
ature minus wall surface temperature to the difference in
gas temperature minus coolant temperature is given by the
exprwion

a=:= 1 J

P%% ‘3

(55)
0 1+~*

COMPARISON OF ASSUMED VELOCITY AND TEMPERATURE
PROFILES WITH EXACT SOLUTIONS

The accuracy of the method depends on how well the
assumed profles approximate the actual ones. It is there-
fore necessary to check the accuracy of this approximation
with the results of exact calculations to the extent that these
are available. Such a comparison will be made in this section.

VELOCITYPRoFILl?s

For the solid surface (om=O), the comparison can be made
with exact solutions, which were obtained by Hartree (ref.
16), for wedge-type flow for which the stream valocity is a
power function of the distance from the stagnation point
(U= Z@’). A set of velocity profles taken from reference
16 is presented a-sa family of dashed lines in figure 8, where
the ratio of the velocity u in the boundary layer to the stream
velocity U outside of the boundary layer is plotted over the
dimemionlesa distance

af,c/8

FIQUnEI7.—Chart for determination of ~,,# and js at stagnation point for thermal boundary-layer oaloulations. (A 17- by 9-irL working ohart
of this figure may be obtained upon requ~t from NACA Headquarkza.)
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FIGURE 8.—Ckmparkon of approximate velocity Profik for solid
surface with Hartrea solutions (ref. 16). o=, O.

and the shape parametar f? is defied by the equation

~2$1. The expression for the dimensionless displace-P=—

J_~ Therefore,‘ent ‘tick-b ~=,l& x

7719UA differentiation of U=U,&’ gives U’=m ;=Z_T ;

Therefore,
p.&=u’s: (56)

The value z~as a function of p is presented in reference 1.
Since U’~? is n function of A, according to equations (42)
and (43), equation (56) presents a relation between f? and A
fkcm which A may be calculated for any value of /3. The
shape of the approximate veloci@ profle is determined by
A (eqs. (22) and (24)). In this way, the solid profiles of
figure 8 were determined. They are superimposed on the
exact profles in such a way that the displacement thickness
is the same in both cases. Figure, 8 shows that generally
the agreement between the exact proiiles and the approxi-
mation used in this report is satisfactcny. Only for the
separation profle (f?= —0.1988) are the deviations larger,
but even for this separation profile the approximation by
equation (24) is better than the usual four-term polynomial
approximation, which is shown as a dash-dot line.

For a porous wall, some exact solutions are contained in
reference 14. The notations in this reference me the same
as the ones mentioned in the previous paragraph in connec-
tion with the Hartree solutions. In that report the porous
flow velocity VWis chmactarized by

‘=”&=’.&

From this and the previous expression for z~

&p k zf=*&$* - (57)

The value of zt is presented in reference 14 as a function of
X for two values of B (O and 1). Therefore, equation (57)
presents a relation between X and A for a certain value of P.
Equation (57) therefore connects the paramehr L which
determines the shape of the exact velocity profile, with the

1.0

.8

I
+

I — Trigmwnelric a“ppm”ma!ian
I –––– Exact salulim

.2

0 I 2 3 4 5 6 7 8
z

Fmmm 9.—Comparieon of approximate veloaity profiles near stag-
nation point with Schlichting solutions (ref. 14). P, 1.
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.4 Y

— Trigarorrml~lc apprwhdan
–-–– Exact sduhan
—-— IWynarnial approximation

.2

0 2 3 4 5 6 7 8
z

I?mmm 10.—Comparixm of approximate velocity profiles for flrbt
plate with Sahliahting solutions (ref. 14). & O.

form parameter A deta.ning the shape of the approxima-
tion. FigUrea 9 and 10 show a comparison between the
exact proilles and the approximations for the neighborhood
of the stagnation point (#=1) and for a flat plate (19=0).
It maybe seen that again this agreement is quite satisfactory
for 13=1. For S=0 the approximation is not w good for
profiles with a distinct S shape. For the largest coolant
flow (characterized by the highest value of A or the smallest
value of A) the deviation is considerable, although the rLgroe-
ment is somewhat better than that with the four-term poly-
nomial approximation indicated by n dash-dot line. There-
fore, the method presented in this report should not be used
for excmive coolant-flow rates.

TEMPERATUREPROPILE

For a solid wall (v== O), the approximate expression
(eq. (27)) for the temperature profile haa a unique form,
independent of the pressure gradient along the surface.
For a gas with a Prandtl number of 1 and constant pressure
along the surface, it is lmowm that the temperature profde
is similar to the Blasius velocity profle. This sirnibrity
also holds for the approximation in this report. In addi-
tion, it is shown in reference 1 that the shape of the actual
temperature prcdile is i.n.iluencedordy to a minor degree by
a pressure gradient in the flow. Therefore, these approsti-
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Fmmm 11,— Comparison of approximate temperature profiles for
flow at stagnation point with exact solutions (ref. 14).

t

t

/ \ (b)

(a) Blado I. Ratio of ohord length b distance betwwn consecutive
bladea C/J+ 1.408.

(b) Blade II. Ratio of chord length to distance between consecutive
bladea c/8, 1.136.

I’mmm 12.—Turbine-blade proliles used for calculated examplea.

mations should be quite good for a solid surface. For a
porous wall, with a constant pressure along its surface,
and for a fluid with a Prrmdtl number of 1, the veloci~ and
temperature profiles are again simikw. Therefore, @e 10
rdaoshows the degree of approximation for the temperature
profile.

I?or the flow in the neighborhood of a stagnation point
and a fluid with a Prandtl number of 1, some temperature
proiiles were calculated in reference 14. Figure 11 presents
the exact temperature profiles and the approximations in a
way that shows the thiclmeas of the temperature boundary
layer, which is defied in the same way as the displacement
thiclmws, to be the same for the accurate solution and the
corresponding appro.simation. F~e 11 shows that the
agreement is satisfactory as long as the coolant flow clmr-
acterized by the value Aor At is not too large. The approxi-
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~.O .8 .6 .4 .2 : .2 4 S .8 LO

(a) Blade I.
(b) Blade II.

FIGUEE13.—Velooi@ distribution around surface of blade.

mation for the highwt coolant flow rate (A=3.191) is not
shown since it is obvious that the exact curve cannot be
approximated by the trigonometric functions from which
the approximation is composed. Large coolant flows in
the ranges where the agreement ceases to exist will probably
not be used because the gain in cooling effect for a given
increa9e in coolant flow is too small in this range.

NUMERICALCALCULA~ONSFOR TURBINEBLADES

The method developed in the previous sections was used
to calculate the 100al distributions of the hint-transfer
coefficients for two turbine blade shapesfor which the velocity
distributions were known. The two blades are shown in
figure 12. The line at the nose of the blade indicates the
circumfermtial direction and the arrow-,the direction of the
upstream velocity. Figure 13 shows the velocity distri-
butions around the blade circumferences. The velocity
distributions around the blades were calculated using the
method described in reference 17.

The method outlined in this report w be used to calcu-
late the development of the laminar-flow boundary layer
in the downstream direction up to the point of separation.
b reality, at the Reynolds numbers encountered in gas-
turbine engines, the boundary layer usually becomes turbu-
lent before it reaches this point. Tine transition point to
turbulence is determined by the pressure gradients along
the blade surface, by the boundary-layer thiclmes-s,by the
temperature distribution within the boundary layer, and, in
addition, by the curvature of the blade surface and by the
stream turbulence (ref. 18). Little quantitative kmowledge
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(a) Blade I.
(b) Bfade If.

FIGUREI&—Growth of flow impulse and thermal convection boundary-
layer thiclmes.ses for blade. Pr, 0.7.

exists on the influence of all these parametem. However,
there are indications that on turbine blades the point of trans-
ition is near the point at which the maximum value of the
velocity is reached. A calculation which deals with laminar
boundary layers is therefore useful for the region near the
nose of a turbine blade. The points of maximum velocity
are indicated in figures 14 to 16 by small dots.

The fit part of the czdculation deals with the problem
in which a uniform coolant flow rate Owis prescribed along
the blade periphery. The development of the flow and of
the thermal boundaxy layers was calculated in the way
described in appendix C. The results are presented in
figure 14. Apparently both boundary layers start out with
a fit e vrdue at the stagnation point and increase in thick-
ness in the downstream direction on both the suction and the
pressure surfaces. The boundary-layer thiclmesses at any
place along the blade increase with increasing coolant flow
rate.

In figure 15 the local heat-transfer coeilicients along the
blade surfaces that are obtained horn the thermal boundary-
Iayer thiclmess are show. The figures show that very
high local values are encountered at the stagnation point
and that the values decrease considerably with increasing
distance from this point. The application of transpiration
cooling decreases the heaktransfer coefficients effectively
horn the values obtained on a solid blade surface (00=0).
The decxease is not as pronounced at the stagnation point
itself as on the sides of the blade. The value of the velocity
ratio ow*/Uo* may be obtained horn the parameter UU
presented in the diagrams by dividing it by the square root
of the upstream Reynolds number. For turbine bladea
this Reynolds number is near the value Id, so that a velocity

*
— =0.00316 corresponds to a value of oU= 1. Values

‘tlo :0*

for this velocity ratio which are considered in practical
applications are in the neighborhood of 0.01. A comparison
of figures 15 (a) and (b) shows that generally the valum of
Nu/~ at the stagnation point decreaae considerably
with an increasing ratio of the radius of curvature at the
blade nose to the blade chord. The values of Num are
determined by the velocity gradient dU/dx, which also
depends mainly on the dimensionless radius of curvature.
Increasing the radius of curvature at the blade noso is
therefore an effective means of decreasing the heat-tmnsfor
coefficient in this region. Downstream of the point of
boundmy-layer transition to turbulence, the heat-tranefor
coefficients will increase. To give some indication of tho
magnitude of the valuea that may be expected in the turbu-
lent region, heat-trader coofbients were calculated at tho
location z=O.5 under the assumption that these values are
the same as on a flat plate at the same distance x from the
leading edge, with a stream velocity equal to the local vrdue
found at the blade at z=o.5, and with an upstream R%
equal to 10s. Formulas derived by Rannie and I?riedman
(ref. 18) ware used for these calculations. The short horizon-
tal lines in figure 15 indicate these values; the dashed pwrt
of the curve oU= Oin figure 15 (a) shows the probable heat-
transfer valuea in the transition and turbulent regions.

The surface temperature of the blade is determined by
the heat-tmmsfer coefficients. Equation (55) gives the
relation between both values when heat conduction in
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(a) Blade I.
(b) Blade II.

FTGURE 15.—Varfation of local heat-transfer coefficient near stagnation
point for blade. Pr. 0.7.
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x

(a) Blade I.
(b) Blade IX

Fmmm 16.-Surface temperature distribution for blade. Pr, 0.7.

the blade wall and heat radiation can be neglected. Figure 16
shows the values 1—@ determined from equation (55).
Tho quanti~ 1–@ is the ratio of the difference in blade
surface temperature minus coolant temperature to the
d.ifbmnce in effective gm temperature minus coolant tem-
perature. The higher heat-transfer coefficients near the
leading edge create high blade temperatures at that location.
Heat conduction within the blade wall tends to reduce
them high 10W1temperatures. This reduction is assisted by
the fact that the blade temperatures are especially low
in the hmni.narregion on both side-s of the leading edge.
Therefore, it may be that the blade-nose temperature is
reduced to a value not higher thm the blade-wall temperature
in the turbulent part, especially for blades with a blunt nose.
On the other hand, it has to be kept in mind that the hint-
conductivity values for porous materials are lower than for
solid walls (ref. 18). It has already been mentioned that
temperature gradients along the blade surface influence the
loud heat-transfer coefficients somewhat; however, not
enough information is available to account for this effect.

413072—67—24

A surface temperature that decreases in flow direction
tends to increase the heat-transfer coefficients so that the
decrewe in surface temperature on both sides of the stagna-
tion point may be slightly leas than those shown in figure 16
where heat conduction within the blade walls is excluded.

A second set of calculations was made for blade I to deter-
mine that distribution of the local coolant flow rate o= along
the blada surface which results in a constant blade tempera-
ture. The procedure for such a calctiation is also described
in appendix C. The local coolant flow rates OWwhich are
necessary in order to keep the temperature ratio @ (eq. (55))
at the value 0.7 are shown in figure 17. The flow boundary
layer and the thermal boundary layer determined in this
way are prcsenkd in @e 18. A comparison of this figure
with @e 14(a) indicates that the development of the
boundary layers is considerably different for both cases.
The boundary-layer growth is smaller for the case of con-
stant wdl temperature. Figure 17 shows that the highest
local flow rates are neces9ary near the stagnation point in
ordar to keep the wall tempwature down at that place. The
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Fmwrm 17.—Vsbriation of coolant flow required to maintain constant
blade temperature for blade I. @, 0.7; Pr, 0.7.
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layer tbicknes-sa for constant blade temperature for blade I. ~,
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magnitude of the coolant flow rate at the stagnation point
is proportional to the square root of the velocity gradient
dU/& which is itself determined mainly by the value of the
radius of curvature at the blade nose. The smaller this
radius, the larger the velocity gradient and the local coolam%
flow rate. The flow rates decrease on both the pressure and
the suction surfaces in the downstream direction. Down-
stream of the transition point the boundary layer will be
turbulent. It is lmo-ivn that the cooling effectivauess of a
turbulent boundary layer is less than that of a laminar
boundary layer. Correspondingly higher values of the cool-
ant flow rate are necessmy in the turbulent region in order
to keep the blade temperature constant. In order to give
some indication of the magnitude of the coolant flow rate
necessary for the turbulent region, the values O. which result
in the same value (@=O.7) w in the laminar region were
calculated at the location z= 0.5. For this calculation the
formulas presented in reference 18 were used and it was again
assumed that the local @ value on the blade surface is the
same m on a flat plate at the same distance from the leading
edge and with a velocity equal to the local stream velocity
U and an upstream Reynolds number R% equal to 10s. The
flow ratw V. obtained in this way are indicated by short
horizontal lines in iiguxe 17. The values in the turbulent
region along the blade can be expected not to deviate much
from these values. Apparently a considerably higher coolant
flow rate is necessary in the turbulent portion of the blade
surface than ‘in most of the laminar portion. In order to
simpl@ manufacturing problems, turbine blades may be
produced in such a way that the required coolant flow rate
hss a constant value along the pressure surface and a dif&-
ent constant value along the suction surface. This then re-
sultsin 10VWlocal blade temperaturesin the region of laminar
boundary layers; the heat conduction into this cooler part
of the blade may reduce the local temperature at the stag-
nation point to value9 equal to or lower than the tempera-
tures in the turbulent region, especially when the radius of
curvature at the blade nose is not very d. For blades
with a very pointed nose it may be necessary to have a
coolant flow rate at the stagnation point approximately
twice as large as along the sides in ordar to reduce the tem-
perature at that point.

CONCLUSIONS

A method which permits the approximate calculation of
local heat-tnmsfer coficients and surface temperatures in
the larnirwr flow region around cylinders of arbitrary cross
section with tran.spiratiomcooledwalls was developed. Veloc-
ity and temperature profles in the boundary layer were
approximated by trigonometric expressions. The method
wss applied to determine local bent-transfer coefficients and
surface temperatures in the laminar region of two trm.epi-
ration-cooled turbine blades for a given coolant flow rate.
Coolant-flow distributions necessary for maintaining uni-
form blade temperatures ware also determined. The follow-
ing conclusions me made:

1. For small coolant flow ratea, the assumed trigonometric
approximations for the velocity and temperature profiles
within the boundary layer agree well with exact solutions.
For high coolsnt flow rates (which are outaide the rango of
practical interest), the agreement becomes poor. It is, how-
ewar, better than the four-term polynomial approximation
formerly used.

2. Transpiration cooling results in a considerable reduction
in heat-transfer coefficients for turbine bladea in the laminar
region.

3. The surface temperatures of a blade with negligible
heat conduction are highest at the leading edge, lowest in
the rest of the laminar region, and have intermediate valuea
in the turbulent region.

4. The following variation of the coolant flow rate along
the blade surface is necessmy to keep the blade temperature
constant. Highest local coolant flow rates are required at
the stagnation point in order to keep the blade surface tem-
perature down at that point. The coolant flow ratw de-
crease very markedly in the downstream direction on both
the suction snd pressure surfaces in the lamimw region.
However, they increase again when the turbulent region is
reached.

5. In order to maintain the same surface temperature on
both sides of the blade, d.i.fbrentcoolant flow rates should be
used for the suction and pressure surfaces.

Lmms FLIGHTPROPULSIONLABORATORY
NATIONALADVMJORYCorammm FORbRONAUTICS

ti?dVELAND,@ZO, June 22,1961



APPENDIX A

. SYMBOLS

Tho
c
C*
f,

fa

f

K

1!

L

h
Pr
P*
ReO
s
t

u
U$
u,
u,
u
~$
v

@
x
Z*

II
II*

following symbols are used in this report:
chord length of turbine blade, ft
specific hat at constant pressure, Btu/(lb) (W)
function of shape factor of velocity prdle (see eqs.

(38) and (40))
function of shape factor of velocity profile (see eqs.

(39) and (41))
function of Pr, K, Ow,and 6 (see eq. (46))
heat-trrmsfer coefficient, Btu/(see) (sq ft) (YE’)
ratio of thermal to flow- boundary-layer thiclawas,

6,/6
thermal conductivity, Btu/(see) (ft) (W)
length of either side of surface of proiile measured

from stagnation point, ft
exponent (termed Euler number) in U= U1&
Nusaelt number, hL/k

Prandtl number, cpP/k

pressure along body, lb/sq ft
Reynolds number, UJ/v
distance between bladea, ft
temperature difference between local and free-stream

values, ‘F
nondimensional stream velocity, U*/UO
stream velocity, ft/sec
upstream velocity, ft/sec
constant in wedge-flow velocity, U= U1&
nondimensional velocity component along surface,
u*/uo

component of velocity along surface, ftlsec
nondimensional veloci~ component normal to sur-

velocity component normal to surface, ft/sec
nondimensional distance along surface, &/L
distance from stagnation point along surface of

profile, ft

nondimensional distance normal ta surface, %*~R~

distrbncenormal to surface, ft

nondimmsional distance used in wedge-type flow,

JJ&:

nondimensional displacement thickness used in

wedge-type flow, —
JJ&;

shape parameter for wedge-ty-pe flow, 2nz/(m+ 1)
shape parameter of velocity profiles (see eqs. (23)

and (25))
shape parameter of temperature profde (see eq. (28)

or (48))
flow boundary-layer thickness
flow boundary-layer displacement thickness,

II-w
flow boundary-layer momentum or impulse thick-

“?HK-W
thermal boundary-layer thickness
thermal boundary-layer convection tbiclmess,

J

m
o~dy

o
nondimensional temperature ratio, t/tw
shape parameter for exact solutions for porous walk,

r

viscosi@, lb/(ft) (see)
kinematic viscosi~, PIP, sq ft/sec
density, lb/cu ft
nondimensional temperature ratio, t&

Subscripts:
c coolant (at blade surface)
w wall
o upstream condition
Supersmipts:
* dimensional
f differentiated with respect to z

APPENDIX B

DETERMINA’ITON OF THRRMAL BOUNDARY-LAYER CONVECTION THICKNESS

The determination of the thermal boundary-layer convection tbiclmew 8L., which is similar to the imrmlse thickness of
the flow boundary layer, results horn the evaluation of equation (15) “-’-

.

, &,.=
J

“u
o eudy (15)

when the assumed temperature and velocity proties are inserted in the iutegrand. A single temperature proiile was assumed;

it is given by equation (27) and is for O~ ~ ~ 1

-6-s%%)
~Y _ . ~Y8=&sin2& ACSlll~ ~~

and for~>l

0=0 I (27)

353
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Distinct velocity prcdileswere assumed, depending on the sign of the shape parameter A. Moreover, these profles WOIW fur-

ther subdivided into diilerent expressions depending on; ~ 1 or ~~ 1. These assumedvelocity profiles are given by equations

(22) and (24); they are for A20, Os # <1.

(

au

)
—=sin~~A l—ev —sin ~f
:

andfor~zl

$=1 —Ae+
}

(22)

(24)

It is at once obvious that, for the evaluation of 6L., four distinct cases must be considered. -
The upper limit of the integral in the evaluation of L$Lamay be restricted to the value 6,by virtue of the assumed tempera-

ture profile. If ~,S& the value of 8L. can be determined horn a single integral with Oand 6, as limits, because the integrancl
vanishes for Y2 &. On the other hand, if 3<3,, two integrals are required for the evaluation of 6L. because of the assumed
velocity profdw. These integrals have limits Oand 6, and 8 and 3,.

Results of the evaluation of 8G.for the four cages follow:

Case I—A<O and &~&

Integration and simpIifimtion lead to the following result:

~=~ (l+A) (1-cOS:~)-&sill T~)+(l+A+A,+MJ [T(KK+l) Sti~(K+l)-7(KK_11 skf(K–1)]+

[
‘+=

P
()

Pcos a- K—; -
‘A+M~) T(2K—1) a-(2K+ 1)—7(2K—1) ( )1

COST K% +
T(2K+1)

[
(A,+M,) 1 I 2 TK 1

(?
1——

( 91IT(2-K)+X(2+K)-; Cos 2 ~(z.-q Cos x 1 —y —42+K) co’ ~ 1+3 +

Mt
[

K;= sin TK—
8T(K+1)

sin ?r(K+v-8w(g-1)
7

5inn-(K-l)-Z

Integration and simplification in this case lead to
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~=(l+A) ~–$+K–l–~
( )

(l+A,) ‘OS &+A, : ;+~ti; +———

{
(l+A+A,+AA/) ~KK+l)

“HH-.:-1FWW’

{
(A+AQ ~2g+1)+&–T(2:–1)

‘s[d2z’)1-ti2:+l, ~s[ti2E1)l-:’”’%1+

cOs[d:=ml-d&lcOs[tiz?T+
(A,+Mt){~2~~+~21~–N2~~

{
KMt ~ sin~-~-

K ‘k[ti~l)]-,d:+llsti~(~l)]lK 4 87r(K-1)

Case III –A>O and 8,<6:

S[8,L$t,.=l–sin”y
( )1[

~z—A@;~ l—sin;:
o ( )1

$~ ~ ~+A l—e~—sin E $!28 ‘y

Integration and simplification for this case led to

[
~=(1–A) ;–(1–A) # cos ~+AK+~ e-3’–~+(–l+A–A, +M,) ~(KK_l) sin “(KK–l)-r(KK+l) sin ~ (K+I)]+

[
(A+M,) ~3wZ;~ Y (3&Z;#)

1 .[
e-3K +(A,–M,) 1

1 1———
(9

——
7r(2+K)+7r(2—K’) —T(2-K) Cos= 1 2

1
?r(2+K) cOs”(l+a-:cOs%l+M’[%(9J+T?+6(9s+fi ‘-3K+(9E%@”l

(YaseIV –A>O and 3,>6:

Integration cmd simplifktion for this case result in

& . 2(1–A) 2A-L-=Y+Y+K–l-(l+AJ 2: cos &-$ e-3K+A, ($–~+~ sin ~)+
8

{
(–l+A–At+MJ ~j

‘%%)]-.(:+lF
~@f~U]~

[
–E+$ cos i=&-(3&w+2) e-’” +‘A+M’) (3&!t#) ‘H 1

[

1 1 1 T(2—K)_ 1 ‘.’ r (2+K) +
‘AJ—Mt) r(2+lq+7T(2-K)-T? (2-K) ‘Os 2K n-(2+K) 2K 1

APPENDIX c

PROCEDURE FOR CALCULATION OF FLOW AND THERMAL BOUNDARY LAYERS

In this appendix the prcwadure will be explained by which the flow and thermal bound~ layars, the heatAmm.sfer
coofficientsj and the temperature distribution wxnmd a body of given shape may be obtained. As outlined previously, the
bound~ conditions on the surface of the body maybe prescribed in two difbrent ways, either by prescribing the coolant
veloci@ ~u* or by prescribing the temperature around the surface. The cahm.lation procedure becomes simpler in the
tit case and this will be considered first. In addition to the value oM*,the distribution of the stream velocity D just outside
the bound~ layer around the body must be lmown. This velocity distribution maybe obtained by any of the lmown calcula-
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tion procedures for fiictionless flow on bodiw without flow separation or it has to be determined ex~erimentally when flow
separation occurs. l?rom the velocity ~(z) the gradiant W(z) can be found.

The values mentioned have to be transformed into the dimensionless quantitks ~(z), U’ (cc),and U*by use of equations (4).
FLOWBOUNDARYLAYER

The aim of this calculation is to detarmine the momentum thickness&as a function of the dktance z from the stagnation
point as measured along the surface of the body.

As a first step, the value & has to be found at the stagnation point. For this purpose, determine Um9/U’,and read the
value U’~$ hmmfigure 4, thereby dekrmining the momentum thiclmess &. The intersection of U’~? with the stagnation line
in figure 3 determines A, the shape parameter for the velocity proiile. The velocity prcdile itself may be determined from
equation (22) or equation (24) if it is desired. The required parameters may also be taken fiwm table I.

The momentum thiclmess along the proille surface is found ftom equation (37). This first-order linear diiTerontiml
equation may be solved by any of the lmown procedures. The method of isoclines was used for the solution of the numericrd
examples described previously, and its use will be outlined here. Equation (37) determines the direction of the @gents to
the different 3? curves which satisfy this equation. The task is to find the one curve which contains the & value calcubtod
previously for the stagnation point. Figure 19 shows the 6? valuea as ordinate and the distance z from the stagnation point
m abscissa. The directions of the tangents maybe obtained hwm equation (37) for any point in this figure characterized by
a pair of values z and ha and may be inserted on the ordinates through a chosen sequence of distances xl, u, % . . . along
the abscissa for several 6? values. The calculation proceeds for z and a chosen Btin the following way: determine U’6? and
o~( and red horn figure 3 the value A and &m figure 2, jl andj.. Calculate from equation (37), d(&7/dx. Now tho direc-
tion of the tnrqgentmaybe inserted in figure 19. The same calculation is repeated for other 6? values and the corresponding
directions of the tangents are inserted in figure 19. The same calculation is repeated for the distances Q, % . . . If the
distance between these values is chosen small enough, a curve that starts out with the predetermined value 6? at tho stagmw
tion point and is tangent to the straight lines inserted in figure 19 can be drawn in the figure with good accuracy. The calcu-
lation may be shortened considerably when the curve is inserted step by step after the tangents have been calculated for any
value z. Then the correct value ~? for the following distance z may be guessed from the shape of the curve up to that point
rmd the tangents need to be calculated only in the neighborhood of this value.

The values which will be needed for the calculation maybe arranged in a table such as the following:

x

, F
u u’ 0= & A 8

0
z~
%

The momentum thickness & in this table results horn the preceding calculation. The shape parameter A was found in the
course of this calculation and the value 3 may be determined horn figure 2.

TEERMALBOUNDAEYLAYER
The calculation now hsa to be~estricted to a fluid with a-certain Prandtl number. The value which chmacterizos the

thermal boundary layer and will be. determined in this section is the convection boundary-layer thiclmess 8,,,. To fmd this

8j 2

xl X2 X3 X4 X5 “ ‘6

l?rGmm 19.—koline solution of flow botidary-layer equation.
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value at the stagnation pofit, de-e U&from tie prece@ ~ble, read from me 7 or ~ble n &J~ ~d-f~. This detw-
mines ar,d$ Equation (52) determines the local Nusselt number i%, and for the case in which the heat-bakmce equation (54)
is satisfied, equation (55) determines also the temperature ratio@. The shape factor A, determin@ the shape of the tempera-
ture proiile according to equation (27) maybe detetied from figur6 5 and equation (48).

The convection boundmy-layer thick= 81OWthe mfam of the pmfle iS detaed by equation (46). This equation
may be solved in the same way as the corresponding flow equation. Figure 20 indicates the procedure. The product U&,@
is plotted over the distance z horn the stagnation point. The short straight lines in the figure again indicate the direction
of the tangents. It is known horn exact SOIUtiOmthat the ~adient of my bo~d~-kyer thiolmess at the stagnation point
is zero and that the boundary-layer thickness itself has a finite value. Thus, the curve U6,,, in figure 20 starts out with the
value zero and with the inclination U’6~,.for z= O. In order to find the direction of the tangents for any value z, for example
x1,assume a value U&,,, calctite b ~d b/& r-d the Value K from @e 6, detbe the product X’r vd.K, read f.. from

.figwe 6, anddcuhte born the h~~flo~ wation (46) the wdient : (ufsJ.Ihsertthe corresponding tangent into figure 20

and repeat the calculation for other values U&,~ Now the curve U&,,, which begins with the value zero for z=O and with
the corresponding inclination, may be extended to q. The calculation is now repeated for the next distance %, the curve is
extended, and this procedure is repeated until the curve is known for the whole length z. The result of this calculation gives
6,,. rmdj3. These values maybe inserted in a table such as the following:

The ratio iVU/@& which characterizes the local hmt-titim me.fliciat, is found horn equation (62). For the special me
that the heat-balance equation (64) is timed, equation (55) dettiw the temperature ratio Q.

/

/

U8,,c

xl X2 X3 X4 ’75 ‘6

Fmmm 20.—Isooline solution of thermal boundary-layer equation.
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The calculation is more tedious when the surface temperature instead of the flow velocity VWis prescribed along tho blade.

V7hen the heat-balance equation (54) is satied, the temperature ratio @ may be determined as a function of z. Now the
momentum equation (37) and the heat-flow equation (46) have ta be solved simultaneously by a trial-and-error procedure.
A value vu is assumed. The calculation procedure described previously is carried out to determine a temperature ratio @

corresponding to the assumed ZJW. The calculation has to be repeated until the determined @ value matches the prescribed

value. This calculation ha-s to be carried out steptie for the distances ZI, % %, . . .

In some cases heat maybe transferred to the surface of the prdle by radiation and may flow along the -wallof the body
by conduction. Then an equation which takes these processes into account has to replace the equation (54). The determi-
nation of the coolant flow velocity u~ which results in a prescribed blade surface temperature, maybe determined in the same
way as was just described. The procedure, however, becomes rather tedious in this case.
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TABLE I-STAGNATION POINT VALUES FOR FLOW BOUNDARY LAYER

359

fl

40000
41059
4.2029
4.2768
4.3260
43633
4.3800
44007
4.4216
4.4508
4.4644
4.4781
44976
45066
4.5158
4.5250
4.5324
4.5374
46442
4.5492
45661
46568
4.5618
k 5688

fa

0.6000
.4336
.3820
.3471
.3267
.3110
.3060
.2966
.2888
. 27s
.2739
.2692
.2627
.2696
.2566
.2539
.2615
.2497
.2478
.2464
.2449
.2439
.2424
.2406

VA

–2. 9988
–2? 4783
– L 9145
– 1.3056
–O. 6627

0
.3380
.6780

L 3643
2.0647
27643
24698
41870
48986
6.6140
6.3336
7.0522
7.7684
& 4926
9.2133
9.9432

10.6634
IL 3798
121169

&
-ii

0.3333
.3399
.3462
.3488
.3610
.3626
.3633
.3641
.3650
.3661
.3566
.3571
.3679
.3582
.3585
.3588
.. 3591
.3693
.3696
.3597
.3599
.3600
.3602
.3604

U’lvVA A

-0.4999
—. 4
-. 3
—. 2
—. 1

0
.06
.1
.2
.3
.4
.6
.6
.7
.8
.9

L o
1.1
L2
L3
L4
L6
1.6
1.7

L 0000

0.78

.6066

.486

.411

.359

.329

.3076

.279

.242

.226

.208

.1836

.172

.161

.161

.142

.135

.128

.123

.114

. 113

. 107

.101

0.0001
.0008
.01936
.0345
.06225
.0716
.0812
.09025
.1106
.130
.161
.1718
.19176
.213

234
.255
.276
. 2975
.3196
.341
.362
.384
.405
.426

0.1667
.1614
.1667
.1632
.1609
.1492
.1484
.1475
.1466
.1453
.1447
.1441
.1433
.1429
.1425
.1421
.1418
.1416
.1413
. 1411
.1408
.1408
.1406
.1403

TABLE 11-8TAGNA’ITON PO’INTVALUESFOR THERMXG BOUNDARY LAYER

Pr= 1 PT=2 Pr=loPr=O.7

CT*.O
T f,

2 ~8
L 607
L 198
L 091
L 053
L 0326

K

0.66
.78
.94

M{
&

6

0.0742
.1207
.1773

f$ K K f,

L%7
L 081

0.2042
.2286
.2616
.3172

3664
:4027
.4338

0.3888
.3949
.4142
.4291
.4518
.4690
.4869
.4995
. 6101
.6208

6296
:6371
.6444
.6488
.6524
. 6569
.6608
.6667
. 6697

1.66
L 54
L 66
L 58
1.61
L04
L 66
L 68
1.70
L 72
L 74
L 76

0.3140
.3271
.3477
.3808
.4124
.4371
.4607
.4783
.4933
.6066
.5174
.5266

1.2
1.215
L 26
L36
L 43
L 60
L 57

0
0005

.1

.2

.3

.4

.6

.6

.7

.8

.9
LO
L1
L2
1.3
1.4
L6
L6
L7

L 80
L 76
L 72
L 74
L 74
L 74
1.74
L 76
L 78
L 79
L 80
L 80
L84
L84
L84
L86
L 85
L85
L85

3.:10
2113
L 408
L 233
L 142
L 096
L 068
L 063
L 040
L 032
L 026

4.m40
2565
L 629
L 336
L 228
L 158
L 116
L 087
L 068
L 056
L 048
L 038
L 037
L 028
L 024
L 021
L 018
L 017




