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ANALYSIS OF PLANE-PLASTIC-STRESS PROBLEMS WITH AXIAL
SYMMETRY IN STRAIN-HARDENING RANGE'

By M. H. Lee Wu

SUMDMARY

A simple method is dereloped for solring plane-plastic-stress
problems with arial symmetry in the sirain-hardening range
which is based on the deformation theory o7 plasticity employing
the finite-strain concept. The equations defining the problems
are first reduced to two simultaneous nonlinear differential
equations involving two dependent variables: (a) the octahedral
shear strain, and (b) a parameter indicating the ratio of principal
stresses. By multiplying the load and dividing the radius by
an arbitrary constant, # 1is possible to solve these problems
without iteration for any value of the modified load. The con-
stant is determined by the boundary condition.

This method is applied to a circular membrane under pressure,
a rotating disk without and with & cenfral hole, and an infinite
plate with a circular hole. Two materials, Inconel X and
16-25-6, the octahedral shear stress-sirain relations of which do
not follow the power law, are used. Disiributions of oclahedral
shear strain, as well as of principal stresses and strains, are
obtained. These results are compared with the results of the
same problems in the elastic range. The variation of load with
maxrimum octahedral shear strain of the member is also
inrestigated.

The following conclusions can be drawn:

1. Inasmuch as the ratios of the principal stresses remain
essentially constant during loading for the materials considered,
the deformation theory is applicable to thiz group of problems.

2. In plastic deformation, the distributions of the principal
strains and of the octahedral shear strain are less uniform than
in the elastic range, although the distributions of the principal
stresses were more uniform. The stress-concentration factor
around the hole is reduced with plastic deformation, but a high
sfrain-conceniration factor oceurs.

3. For the rotating disk and the infinite plate the deformation
that can be sustained by the member before failure depends
mainly on the maximum octahedral shear strain of the material.

4. The added load that the member could sustain between the
onset of yielding and failure depended mainly on the octahedral
shear stress-strain relations of the material.

INTRODUCTION

In the design of turbine rotors, it is desirable to know the
detailed stress and strain distributions in the strain-hardening

range and the increese in load that can be sustained between
the onset of yielding and failure. It is also desirable to know
the effects of a notch or a hole in a turbine rotor or other
machine members that are stressed in the strain-hardening
range. If a member is thin, it can be analyzed on the basis
of plane stress. For problems of this type for ideally plastlc
material, Nadai obtained solutions for a thin plate with a
hole and a flat ring radially stressed (reference 1), and
Nadai and Donnell obtained & solution for a rotating disk
(reference 2). For materials having strain-hardening
characteristics, a solution of plane-stress problems has been
obtained by Gleyzal for & circular membrane under pressure
(reference 3). The concept of infinitesimal strain was used
and the solution was obtained by an iterative procedure
with a good first approximate solution. The plastic laws
were always satisfied by using a chart given in reference 3.
In reference 4, a trial-and-error method is given for a rotating
disk with very small plastic strain, in which the elastic

stresses and strains are used as the first approximate values. .

An experlmental investigation of high-speed rotating disks
is given in reference 5; distributions of plastic strains (loga- -
rithmic strains) for d.lﬁerent types of disk are measured.
Reference 6 gives an experimental investigation of the burst
characteristics of rotating disks; stress at the center of the
disk is calculated by assuming that the material behaves

elastically at the burst speed; the average tangential stress - _._

along the radius at burst speed is also calculated.

A simple method of solving plane-plastic-stress problems .

with axial symmetry in the strain-hardening range for finite
strains was developed at the NACA Lewis laboratory during
1949-50. This method is based on the deformation theory
of Hencky and Nadal (references 7 to 9), which is derived
for the condition of constant directions and ratios of the
principa.l stresses during loading. The equations of equilib-
rium, strain, and plastic law ere reduced to two simultane-
ous nonlinear differential equations involving three variables,

one independent and two dependent, that can be integrated

numerically to any desired accuracy. These veriables are
the proportionate radial distance, the octahedral shear
strain, and a parameter « that indicates the ratio of principal
stresses. The magnitude of variation in calculated values
of the parameter a with change in load directly indicates
whether the deformation theory is applicable to the problem.

t Supersedes NACA TN 2217, ““Analysis of Plane-Stress Problems With Axial Symmetry In Straln-Hardening Range” by M. H. Lee Wu, 1950.
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The method developed - is applied to: (1) a circular
membrane under. pressure, in order to compare results
obtained by this method with those obtained by Gleyzal
(reference 3); (2) rotating disks without and with a circular
central hole, in order to investigate plastic deformation in
such disks and the effects of the hole; and (3) an infinite
plate with a circular hole or a flat ring radiaIIy stressed, in
order to investigate the effects of the hole in the strain-
hardening range. :

In the investigation of (2) and (3), two materials, Inconel
X end 16-25-6, with different strain-hardening character-
istics were used in order to determine the effect of the
octahedral shear stress-strain curve on plastic deformation.
The octahedral shear stress of these two materials is not a
power function of the octahedral shear strain, so that more
general information can be obtained. Distributions of
stresses and strains of the same problems in the elastic range
are also calculated for purposes of comparison.

Acknowledgment is made to Professor D. C. Drucker for
his discussion of this work and for his stggestion to examine
whether the logarithmic strain could be applied correctly
to the present problems and his suggestion to plot the

stress-strain curves of Inconel X and 16-25-6 on a Iogarithmic.

scale in order to show that these materials do not obev the
power law.

SYMBOLS

The following symbols are used in this report:
A, B, C, D, E, F coefficients of nonlinear differential equa-

. . r
tions; functions of «, v, and 7

a - initial radius of hole

b mitial outside radius of membra,ne, rotat-
ing disk, or flat ring

¢ initial outside radius of plate, very large

compared with radius @

G H J L trigonometric functlons of a .

h instantaneous ' thickness of membrane,
rotating disk, or plate

bine initial thlckness of membrane, d1sk or plate

K, K, arbitrary loading constants

k constant having a dimension of length

P pressure on membrane

r radial coordinate of undeformed membrane,
disk, or plate

8 arc length

% radial displacement

w axial displacement

z axial coordinate .

a parameter indicating ratio of pnncrpal
stresses . —

¥ octahedral shear stram

€ logarithmic strain (natural strain), loga-
rithm of instantaneous length d1v1ded by
initial length of element

0 angular coordinate

P mass per unit volume

o true normal stress, normal force per umt.
' instantaneous area -

T octahedral shear stress

) angular velocity

Subscripts:

b at radius b

c - af radius ¢

0 at center for member without hole; at

radius ¢ for member with concentric
circular hole

principal directions in general

principal directions: radial, tangential, and
axial directions

:li—l-
By
= o
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STRESS-STRAIN RELATIONS IN PLASTIC DEFORMATION

The deformation theory of plasticity for ideally plastic
materials was developed by Hencky from the theory of
Saint Venant-Levy-Mises for the cases in which the directions
and the ratios of principal stresses remain consiunt during
loading (reference 7). Nadai extended the theory to include

" materials having strain-hardening characteristics (references

8 and 9). The conditions for the deformation theory have
been emphasized by Nadai (reference 9, p. 209), Hyushin
(references 10 and 11), Prager (reference 12), and Drucker
(reference 13). Experiments conducted by Davis (reference
14), Osgood (reference 15), and others on thin tubes subjected
to combined loads with the directions and the ratios of the
principal stresses constant throughout the tube and remaining
constant during loading show that good results can be
expected from the deformation theory.

In more recent experiments on thin tubes by Fraenkel
(reference 16) and Davis and Parker (reference 17), it has
been shown that.even with considerable variation of the
ratios of principal stresses during loading the strains obtained
from the experiments were in good agreement with the strains
predicted by use of the deformation theory. Further ex-
perimental investigation is needed to determine the extent
to which the variation of ratios of principal stresses is
permissible with the deformation theory. However, when
the variation is small (approximately 10 pereent over the
strain-hardening range), the deformation theory can be
expected to give good results.

In the present problems with axial symmetry, the diree-
tions of the axes of the principal stresses remain fixed during
loading and it is probable that the ratios of principal strains
and of principal stresses also remain approximately constant.
The deformation theory previously discussed is thercforo
used. The stress-strain relations arc as follows:

€1+Eg+63=0 (l)

o1—03__03—03 o3 —o0r (2)

€y—¢€;

€1~ €3 * €3— €3

r=1(7) ' 3)
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where

T——[(0'1—-63)’4‘(0'2—ﬂ'a)"l‘(ﬂ’a‘—ﬂ’z)i]m (4e)

r=3 (e (e Hes— e (4b)

From equations (1), (2), and (42) or (4b), the following
relations are obtained:

€z=% ZI: —(0’1+0'z)

For plane-stress problems oy=0. It is convenient to use
cylindrical coordinates for the problems considered; the
prineipal directions 1, 2, and 8 in the preceding equations
become radial, circumferential, and axial directions, re-
spectively. The equations thus become

erterte=0 (1)
=§-(G,2— a',a'¢+ ﬂ'(x)” (5&)
-y=2_\/§(e,’+erea+éa’)” -(5b)

and
k)
eo=% % (0’0—% G'r) (Gb)
—— i [-— (e++ o’a)]— —(&+a) (8¢)

When o, and oy are expressed in terms of ¢, and ¢, there is
obtained

=2 1-(25,-[- )
v (7)
a=2 5(26('{"6,)

Because large deformations in the strain-hardening range
will be considered, the concept that the change of dimension
of an element is infinitesimal compared with the original
dimension of the element is not accurate enough. Hence,
the finite-strein concept, which considers the instantaneous
dimension of the element, is used. (The equations of in-
finitesimal strains considered as special cases of finite
strains are given in appendix A.) The stress is then equal
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to the force divided by the instantaneous area and the
strains are defined by the following equation:

8(e) =%:)

where /; is the instantaneous length of a small element having

I

i

i
LR

the original length of ([,), and j is any principal direction.

During plastic deformation, the plastic strains at & particular
state depend on the path by which that state is reached.
For the paths along which the ratios of principal stresses
remain constant during loading; however, the octahedral

shear stress-strain relation, the value of the octahedral shear

strain, and the values of the principal strains are defined by
the initial and final states (references 14, 15, and reference 9,
P- 209); 8(e;) is then an exact differential and

oo o e bt
e =log. gy, o ¢ =y,

8 2

It should be noted that the condition under which equation ” N
(8) was obtained is also one of the conditions under which _

the deformation theory is derived; s long as the deformsation
theory is applicable, equation (8} can also be used.

EQUATIONS OF EQUILIBRIUM AND STRAINS
INVOLVING DISPLACEMENTS

CIRCULAR MEMBRANE UNDER PRESSURE

Equations of equilibrium and equations of strain are de-
rived for a circular membrane under pressure. The mem-

E

brane considered is so thin that bending stress can be

neglected (reference 18, p. 576). Figure 1 shows the mem-
brane clamped at the rim and subjected to a pressure p and

(27
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F1eURE 1.—Thin cfrcular membrane (ander pressure} and its element In deformed state.

a small element defined by Af and A¢ taken at radius r4u . __

in the deformed state. In the undeformed state, the same

element would be at radius r and defined by A¢ and Ar. The _

dotted lines represent an undeformed membrane. The in-
stantaneous thickness of the element and the stresses acting
on the element are also shown in the figure. Two principal
stresses are o, and oy, and ¢ is the angle between o, and the
original radial direction.
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Equations of equilibrium.—When all the forces acting on
the element in the direction of ¢, are summed up, the follow-
ing equation of equilibrium is obtained:

o (r+-whAG— (o, +Ac,) [r+u-+Alr-+u)] A8 (A4 AR) cos Ap+
200 A5 (h+%Ah)sinA7o cos p—pAs(r+u)Ad sin%’:O

When A(r+u) approaches zero as & limit, the differential
equation of equilibrium may be obtained:

d(a.h)

r+u) d(r—-i-u)=h('"_ or) (9

A cap of the membrane bounded by radius »+« and the
forces acting on it are shown in figure 2. Summing up the
forces in the z-direction yields

px(r+u) =dr 7 dw 21rh(r+u)
or
[d(r+u)] [ 2"-‘“ 1)
p(r+u)
p 1
6"/L——r+u —le—rru —)l\
- - - - - - - ——

Fiaurx 2.—Cap of membrane with radius r 4- « in deformed state.

Equations of strains.—Inasmuch as the element at radius
r, defined by A8 and Ar in the undeformed state, is moved by
the application of pressure p (fig. 1) to radius r+% and
defined by A6 and Ag, by use of equation (8) the strains are

-
ee=log, —— r-I—u
e,=log,%“_‘
Then
et = .d("""“){ +[d(r+u) 2}”2 (11a)
gu="T" “(11b)
ee-=him (11¢)

ROTATING DISK

Equetion of equilibrium.—A disk of .radius b and thickness
k, rotating about its axis with angular speed w, and an element
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taken at radius 7+, defined by A6 and A(r4-u), are shown in
figure 3 with all the external forces acting on the element.

FioURE 3.—Rotating disk and its element.

Sﬁ_mmiﬁg" up all forces acting on the element in the radial
direction yields

a,(fr+u)h.Ae—<a,+Aa,)[r+u +A(r+u)]A0(h+Ah)+
203{A(r+1u)] (h-{- Ah) sin 7 —

o[ rutd A(r+u)]"”[(’+A2’—r’]Ae

When A(r+u) approaches zero as a limit, the following
equation of equilibrium is obtained:

F+w) dcgirl_hi)':(“‘ e )h—pa’r? hmlr+u 3(1‘——'—) (12)

Equations of strains.—The strains are

dr+u)

e‘r dr (138-)

e TY - (13b)
r

g‘:=hh: (130)

INFINITE PLATE WITH CIRCULAR HOILE OR FLAT RING RADIALLY
STRESSED

An infinite plate uniformly stressed in its plane in all
directions and having a circular hole is shown in figure 4.
The whole system is equivalent to a very large circular plate
of radius ¢ with 2 small concentrie circuler hole radially sub-
jected to the same uniform siress ¢ on the outer houndary.
The solution obtained for such & plate within any radius &
can also be considered as a solution of a flat ring with outer
radius b and inner radius @, that is, uniformly loaded ai the
outer boundary with the radial stress o, obtained in the
plate solution.

The equations for this case can be obtained in a manner
similar to the two previous cases, or by simply setting dw/dr
and w equal to zero in equations for the membrane, or by
getting w equal to zero in the equation for the rotating disk.
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EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY IN
TERMS OF PRINCIPAL STRESSES AND STRAINS

CIRCULAR MEMBRANE UNDER PRESSURE

A set of ten independent equations (equations (la), (3},
(5b), (Ba), (6b), (9), (10), (118}, (11b), and (11c)) involving
the ten unknowns o,, oy, €, &, €, 7, 7, R, %, and w define the
problem of the circular membrane under pressure. If equa-
tion (11b) is differentiated with respect to r and combined
with equation (11a),

da_
dr

e(e,.—e.)
1

2)112

1+[d(r+u) j

Substituting equation (10} in equation (14) to eliminate w
yields the following equation of compatibility:
deq p(r+ u)

r ——cle —e.)

dr 2ho,

(14)

7”2 1 (15)

Equations (9) and (15) can be simplified by using equations
(11) to climinate u and A, which results in

(eg—e, 112
da’,+ r?'(f{r—(w—crr)e("’_“’{ I:TPeEo ):rl/ 16)

dr ohml.l Or

and
rpg“l"‘;)]‘] 75 -
[ 2hhu¢7r (1 ‘)
The ten equations defining this problem are now reduced to
seven independent equations, (1a}, (6a), (6b), (5b), (3), (16),
and (17), with the seven unknowns o,, o, €, €, €, 7, and 7.

The solution of the problem is simplified by introducing an
arbitrery constant & into equations (16) and (17):
r d des

pl r u.-n‘) 2 Ui\
[ —¢ hiuuk
+ l— o’,)e { [ 20a, }}
(k) o

pL r ("_') 2, /2
r dE‘ _e(_t —(‘){1_ hult" } —I
A 2
Ld( ) 2¢,

where k is any arbitrary unknown constant with the dimen-
sion of length. By use of the two parameters r/k and
Pkfh s, it is possible to solve the problem in a simple, direct
way without the use of the iteration. This will be further
discussed in the section ‘“Nethods of Numerical Integration.”

dﬂ
r el Q)
dr

r da-,.

a'( .

J

(18)

ROTATING DISK

For the rotating disk there are nine independent relations
(equations (1a}, (3), (5b), (6a), (6b), (12), (13a), (13b), and
(13¢)) with the nine unknowns o, o, €, €, &, v, 7, &, and u.
If equation (13b) is differentiated with respect to r and
combined with equation (13a), the following compa.t1b111tv
equation is obtained:

des

dr

=gl 1 (19)
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(a) Infinite plate with circular hole unfformly stressed fn its piane In all directions.
(b) Flat ring radially stressed.
(¢} Element,

b
6. +Ad-
Ti»f —t
—r+u——+»smrﬁ
'Ef Theth

i1

L1 1

FIGURE 4+—Infinite plate with circalsr hole, fiut ring radially stressed, and Its element o =~

deformed state.

As in the case of the membrane, % and & can be eliminated
from the equilibrium equation (12} by using equations (13),
which yields

d"f+a, O (oo —petriete)  (20)

The nine equations defining this problem are now reduced

to seven independent equations, (1a), (6a), (6b), (5b), (3), )

(19), and (20), with the seven unknowns &, os, €, &, €, 7,
and v.

The solution of the problem is made simpler by introducing
an arbitrary constant k into equations (19) and (20):

N
r der — T r;: des =(a'|—o'r)e‘°"“’—P(wft)z(%)’ el—ed
() te(p)
k k
-
% dE; =e(er_‘l)—1
d(z

o/
1)

3
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By use of the parameters r/k and wk instead of r and w, &

simple direct solution is possible for any arbitrary value of .

wk with & to be determined by the boundary condition.

INFINITE PLATE WITH CIRCULAR HOLE OR
FLAT RING RADIALLY STRESSED
The equations of equilibrium and compatibi]ity for the
infinite plate with a cxrcular hole or the flat ring radially
stressed are: _

r dﬂ‘r 7' des ____(o_‘_a_r)e(qr—e‘)
RIGHEHE
22
r des —plrie 1 (22)

*4(3)

The problem is defined by equations (22) together with
equations (la), (6a), (8b), (5b), and (3} (sevan equations
with seven. unkmnowns). _

EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY IN
TERMS OF OCTAHEDRAL SHEAR STRAIN AND PARAM-
ETER INDICATING RATIO OF PRINCIPAL STRESSES o

In the preceding section, displacements are eliminated
from the equations, which result in seven equations involving
the seven unknown quantities o,, gs, €, €, €, 7, and y. The
quantity e, can be expressed in terms of ¢ and e (from
equation (1a)). Two of the four unknowns a;, o4, €, and e
can be eliminated by using equations (62) and (6b) or (7). The
quantity = is & known function of v that is experimentally
determined. The problem is then reduced to one involving
three unknowns. Obtaining the solution of the resulting
equatmns is not, however, & simple matter; the iterative
process is usually needed.

. It is proposed that this can be avoided hy usmg the fol-
Iowmg transformation : )

Fet o= 34—1'8111&
ortor=+6rcosa

ar

= —1'(1/—81.[1 a—Ccos a)
(23)

¢,=\/§- 7(+/3 sin a+cos’ oc).!

Then o, and s satisfy equation (5a), because the yielding
surfaces are ellipses according to the deformation theory.
The octahedral shear stress =, a function of v, in the preced-
ing equations varies with /% and also with loading. Such a
transformation has been used for ideally plastic material
(r=constant) by Nadai in the section “Yielding in Thin

Plate With Circular Hole or Flat Rings Radially Stressed”

- (reference 1, p. 189) and for a rotating disk (reference 2).

From equations (6a), (6b), and (23), the principal strains
also can be expressed in terms of v and e:

e,=—L,.._(sin a—+/3 cos a)
2v2

(24)
P (8in e+ 3 cos a)

2+/2

The equations of equilibrium and compatibility™ ior the
three problems considered herein are then obtained in ‘terms
of v and « in the following form:

dy

r da r d <I)—
fa <A) d (k)

where the coefficients 4, B, C, D L’ and F are functions of
a, v, and 7/k. For the czrcular membrane under pressure,
from equatzon (18),

r da -[-B—-

(@)

(25)

¥ COS o )

2

A= (\f_cos a+sm. &) ~—(/3 sin a—cos a)

B= (ﬁsma—cos@("’dr 73‘1“ 1

C=2 (cos ) e(_‘/;'r ma)
'\/-(\’-slna-l-eosa)'r

143
[1_61-:(\ /3 sin a—cos «)* (L) (hm) ]

D=(+/3 sin a—cos a)y

v

=—(+/3 cos a+sm )
F=242
\/-sn CO0S e, 1
{l—e(_\/g'fﬂ““)l:l e‘ﬂ i etem ( )( :|
_ _ 673 y/3 sin a—cos a)\k/ \fee.
(26)'
For the rotating disk, from equation (21),
3\
A=(+/3 cos a+sin a)—(+/3 sin a—cos @) — 7= r=c cos =
ydr «sin 1

B=(+/3 sin a—cos a)(rd'r ‘[—a

—./8 « t Lang
C'=2(cos @) el( ‘/;ﬂm )—\/; plwk)? p (%) eV3 S (27)

D=(+3 sin a—cos o)y
E=—(+/3 cos a+sin a)

F=2+2 I:l —8(—‘@1“’“)]
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For the infinite plate with a circular hole, from equation (22),

-
A=(/3 cos a+sin o) — (3 sin a—cos a) %—a
'\-l
. vydr ~sina\l
B=(/3 sin a—cos a) (T dv —1/2—)7 :
C=2 (cos a) e( 1‘“1“)“) L (28)

D=(/3 sin a—cos a) vy

=—(+/3 cos a+tsin «)
F—2.2 [1—e(—‘[§’““)]

With these transformations, the solution of the problems
is reduced to simply a numerical integration of the two simul~
taneous differential equations (equations (25)) involving the
two unknowns y and «. Furthermore, the parameter v,
being the octshedral shear strain, directly indicates the
stage of plastic deformation at any point under any load.
(In plastic problems, according to the deformation theory,
the individual stress and strain distributions cannot give as
clear a picture of the stage of plastic deformation as can the
octahedral shear strain.) Also, the parameter o« indicates
the ratio of the principal stresses or strains. At any point,
if « remains constant during loading, the ratio of principal
stresses at that point remains fixed.. The value of « obtained
at each point in the calculation during loading directly indi-
cates whether or not the deformation theory is applicable to
the problem.

o

The value of « is known at the boundaries or the center.
This value can be determined from equations (23) and (24).
For the circular membrane under pressure,

when r{b=0,
Gr=2a¢
a=2=1.5708
when rfb=1,
«=0

P>
a=-§ r=2.0944

For the rofating disk without a hole,

when rfb=0,
=a"
T
=5=1. 5708
when rfb=1,
=0
a=5=0.5236

For the rotating disk with a hole,
when rfa=1 and rfb=1,
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¢ or=0
a=5=0.5236
For the infinite plate with a circular hole,

when rfa=1,
ar=0

TRV |

a=%=0.5 236

f..iJ !

when r/a approaches ¢fa or a value that is large compared
with 1,

I

Tr==0¢

[l £

a=%=1.5708

METHODS OF NUMERICAL INTEGRATION =
Two methods are developed to solve the differential equa-
tions (25). In the first method, the differential equations "
are numerically integrated along rfk, which is considered the ..
independent variable. (In the second method, « is con-
sidered the independent variable.) Because many terms in
the equations are trigonometric functions of «, the use of
as the independent variable considerably reduces the work
of computation. -
Numerical integration with r/k asindependent variable.—
Equation (25) can be written in the following forms:

| i A

[

Fde 1

i

r da _CE—FB) ]
k., (r\ AE—DB
(%)
r (29)
r dy _Fd4-CD
kE,/r\ EA—BD
(%)
o

At any point, if « and v are known, dg-?lc) and dg'}rk) can be _

calculated by equations (29). At the boundaries or the _-
center, « is known, but v is determined by the load. Only -
one value (unknown) of ¥ correspondm,, to a particular load  _
exists on each boundary; therefore it is difficult to start the _
numerical integrations on the boundary with the correct
value of v corresponding to a given load. Also, in plastic
problems covering the strain-hardening range, the method
of superposition is invaelid. Usually, e method of iteration _
is used to solve the problem (for example, references 3 and 4).

In the method presented herein, an arbitrary but unknown

constant k has been introduced in equations (18), (21}, and _ _
(22). For the cases considered, the terms in the equations

5 3
that involve load are always multiplied by r, so that hZ:T “)

. Pk \E /T\E . .
can be written as (h- “> (f) in equations (18} and (26)

and (ur)? as (wh)? (%)’ in equations (21) and (27).
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The numerical integration then can be started’at the
inner boundary (or at the center if there is no circular hole
at the center) by using the known values of «,, & desired

value of v, and an arbitrary value of (h ) for the

membrane or of (wk)? for the rotating disk. The numerical
integrations can then be carried out, obtaining values of a
and v at different values of r/k, until « progressively reaches
the value that satisfies the outer boundary econdition.
Because the value of r is known at the boundaries, the value
of & can be détermined for the selected value of v,. The
number of points and the formulas used in the calculation
depend on the accuracy required (references 19 and 20).
If the formula for evaluating definite integrals is applied
after using tho forward integration formula (references 19
and 20), great accuracy can easily be obtained.

The procedure used herein to obtain solutions is the same
for each problem. Calculations are started from the inner
- boundary (or from the center if there is no circular hole at the
center) with the known value of «, the desired value of
70, and the arbitrary loading term. The parameter a, is
equal to =/2 at r/b=0 for the membrane and for the solid
rotating disk and is equal to 7/6 at r/a=1 for tbe infinite
plate with a circuler hole and for the rotating disk with a

2
hole. The arbitrary loading terms are (%ﬁ) and (wk)? for
init. )
Then
and [R(%/Yl?)l’ corresponding to «, and v, at the

the membrane and the rotating disk, respectively.

[d(r/k)
inner boundary or the center, are obtained from equations
(29). The following formulas for forward integration are
used to determine the first approximate values of a and v
at the next point (or* and 7,*):

at=at] () -(2).] :d (é:')_ |
w00

By substitution of o* and v,;* into equation (29), approxi-

mate values of _de and _dy_ are obtained and
JOINNE)
1 1

the second approximate values of o; and v, (a,** and v,**)
can be computed from the following formulas:

-G 55)
A FOlNEGIN

The values of &**

> (30a)

a

o

> (30b)

and ~v,** are substituted inta equation (29)
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k
l: ( ] . By use of the following formulas for evaluating
9

again in order to calculate the values of [—@;.—-:l and
d(~
()],

-definite mtegrals, the \olumes of ay and 7, are ealculated:

~

=ty [(A) (A)]{[ ():Jr_d_(%):}
et [(}c) (k) d(k) ) _"’%;E)::}

This procedure is applied to the next point, and so forth,
until the value of « reaches the required value of o, at the
outside boundary (a,=2/3 v at r/b=1 for the membrane,
a=nx[6 at r/b=1 for the rotating disk, and a=x/2 ai
rfa=c/a for the thin plate with a circular hole). Inasmuch as

> (30¢)

-+

Gt

the loading terms are determined as follows:
For the membrane,

For the rotating disk,
b 2
(wb)P=(wk)? (E) @31b)
For the infinite plate with a circular hole,
e .
te=ch, (r—)l:u =ohue~tr=ch e V2 (31¢)

or for the flat ring radially stressed at the outside diameter
b,

‘ N A L (sin o —r -a
fh=(0'r)bhb (r-l;u)b=(0'f)hhiaa€ 2V bV e (31(1) .

where ¢, and ¢, are the tensions per unit original circum-

ferential length at r=c and r=~5, respectively.
Numerical integration with « as independent varigble,—

Equations (29) can be written in the following forms:

dy_FA—CD
da— CE—FB
r (32)
d(k)_AE—DBL
do ~CE=BF F

By use of equations (26) to (28) and expansion of ¢«
into a series, the following equations are obtained:
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For the circular membrane, from equations (26),

(E—BF=267—] 23HTg( e, L 2E) fu (e +243 | (a2 )
Td‘}' k hbu'l

AF—CD=3\ZL—2HJy—2vZL A i( a7, 0 2X) -

ydr
AE—-BD=—I1*—J%|( a,v, )
( Ty T dy
For the rotating disk, from equations (27),

CE—BF=—2HL—2v 3HJg( o T

AF— (’D_i 8H?—23HL{l— fila, ’Y)]-I-J—(k) fi (a,'Y)}

AE—BD=—I—Jg( a7 2 5T)

) i v)+LI"(k) Sl |

Y

For the infinite plate with a eircular hole, from equations (28),

— dr
CE—BF=—2HL—2v3HJg (T 7 ) file)

AF—CD={8H*—23HL[1—fi{e, V] }7

AE—BD=—I"—J%( ¥ 5,7)

where

G=sin «

H=cos «

J=+/3 sin a—cos «

L=+/3 cos a+sin &

x=(E)

Ky 2 o(ok)
and

Flam et [1—VF o]
-\/_ (cos a)y

= 1—% -\/g- (cos a)‘y-l-j:—: {cos? 2)y?— . . .
Faym=e V3OS

=1 —.Jg (cos a)'y—l-%)(-g- (cos® a)y?—

%‘J%(cos‘ ar+ ...

=1 -—.\/g (cos a)yfi(e, 7}

T
flaypy=evT

=1—l—(i sin a) 'y—l—l (—l sin a)z'y’-l-
% (=

171 . 3
E(;;ESLU.(! ‘Yz—l— .

37._

g( ydr\ ~vdr 3 ¥

239 & = 2l i
’ Td'Y rdy V2 .3sina—cosa 747

@ <f>T

q'r(\ 3 sin a¢08 &)

(a r k)[
INHVEh 61-’(\ sin a—cos o)?

{-B e eI

(33)

34 _.

(35)

The symbols @, H, J, end L are trigonometric functions of

« only; K, and K, are arbitrary loading constants.

The

symbols fi, fi, fs, and g are functions of « and v; j is a

function of «, v, and r/k.

For the solution of an infinite plate with a circular hole
is the independent variable. The procedure of numerical
integration is similar to that used in the method in which
r/k is the independent variable. The first four terms of the ._ _
series of e/t=v are used ; the accuracy of the resultis the same  _
as that of the previous method, but computation is reduced

by one half.
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Both methods presented herein are used to obtain the solu-

tions for the given values of v, The purpose of the present
paper is to obtain solutions for the entire strain-hardening
range and the methods developed are very convenient for this
purpose. If, however, a solution for only a particular value
of loading is required, it can be obtained by interpolating
between values obtained from two or_three solutions corre-
sponding to loading near the specified value.

NUMERICAL EXAMPLES

Membrane.—In order to compars the results for the
circular membrane obtained by the method developed herein
with those obtained by Gleyzal (reference 3), one numerical
solution for infinitesimal strain is calculated by using the r(y)
curve of the tensile test in figure 1 of reference 3. Inasmuch
as reference 3 states that: “For simplicity, strain will be
taken to mean convenjional strain (ds—ds,)/ds, where ds and
ds, are final and initial arc length, respectively.”, equations
(258) and (36) given in appendix A for infinitesimal strain
are used. The calculation’is started at »/k=0.005. Values
of «,=1.5708, v,=0.0299, and pk/k i, =55,920 are used.

Rotating disk.—N umerlcal solutions for the rotating disk

1 20x/03
L1000
[na
g el
N Py
o 80 /
q’ —
v / L
£ s T

P
V2
1 ‘
E 40
g /ncone/X
u ——<= /p-25-8
J
R 20
(a)
0 2 .2 .3 L4 s 6
Logarithmic octahedraf shear strain, 7
(a) Linear-scale plot.

§ /SO — o —

Ly '

35

§§/00 s el

< !1 80 // — ==

o B = e

Q E 6'0 —— .1 =

£ __ —1=
.Of .02 .04 .06 .08.10 20 40 .60

Logarithmic octaheédral shear strain, ¥

(b} Logerithmie-seale plot.
TI16URE 5.—Octahedral shear stress-sirain ourves,

- REPORT 1021—NATIONAL ADVISORY COM.MITTEE FOR AERONAUTICS

for finite strain (equations (25) and (27)) are caleculated.
The 7(y) curves of two materials, Inconel X and 16-25-6,
are plotted in figure 5 (a}). These data were supplied by
W.F. Brown, Jr., H. Schwartzbart, and M. 1. Jones. The
same 7(y) curves are plotted on logarithmic coordinates
in figure 5 (b). These materials, Inconel X and 16-25-6,
for which r is not a power function of v, wero chosen so that
more general information can, be obtained. The given
octahedral shear stress-strain curves (fig. 5) of these two
materials have not been corrected for the triaxiality and
nonuniform stress distribution introduced by necking and
consequently do not represent the exact stress-strain relation
after necking of these two materials. The solutions obtained
from the. r(y) curves of the tensile test after necking can,
however, represent the solutions corresponding to materials
having the exact r(y) curves shown in figure 5 and for simplic-
ity such materials are herein referred to as “Inconel X"
and “16-25-6"’,

The calculation for the solid rotating disk is star ted at
r/k=0.005, as in the case of the membrane.

Threa solutions are also obtained for the rotating disk with
a central hole, using Inconel X. Calculations are started
at rla=1.

All numerieal examples for the rotfating disk are given
in the following table:

Bolid rofating disk
M‘Laterlal Yo Iﬁ-'Jg-p( wk)l
g Inconel X 0.0 1X10°
- L1182 1X10%
.30 1X108
16-256 004 1X100
L1182 1X10¢
2. 5103

- Rotating disk with central hole

| —Jz-p(m)’

. Dleterial T
Incomel X 0.30 ' 1104
- .30 X1t ;
.30 - £X10 i
|

Infirite plate with circular hole.—The calculations for
the infinite plate with a circular hole are carried out for the
casa in which ¢,=0 at rfa=1. The value of ¢, at rla=1
is then equal to 0.5236. (When o, is different from 0 al
rla=1, the corresponding value of «, should bo used.) The
same materials as in the previous problem are considered.
The numerical examples are:

Material e
Inconel X
. 1152
.1871
.30
10-25-8 0.04
L1871
.30
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RESULTS AND DISCUSSIONS

The radial and circumferential stresses ¢, and o4, respec-
tively, obtained for the circular membrane are plotted against
r/b in figure 6. Two curves, taken from reference 3, cor-
responding to calculations for ebout the same pressure used
in the present calculation, are included in the figure for com-
perison. In the present calculation, the r(y) curve given in
figure 1 of reference 3 and the same infinitesimal-strain defini-
tion based on the original dimension are used. The initial
thickness hi.: is also used for consistency in the calculation
rather than the instantaneous thickness &, which is used in
reference 3.

The variations of a with the radius for the rotating disk
and with the radius for the infinite plate with a circular hole
are plotted in figures 7 (a) and 7 (b}, respectively, for different
loads and materials. The variations of « with v, (or loading)
at various radii for the rotating disk and the infinite plate
with a circular hole are plotted in figures 8 (a) and 8 (b),
respectively. Similer curves for the ratio of the principal
stresses o,/aq are shown in figures 9 (), 9 (b), and 10. Com-
parison of figure 7 and figures 9 (a) and 9 (b) shows that the
variations of & with radius are very similar to the variations
of o;fos with radius, although the relation between « and
o,/os is not linear. * -

Numerical examples for & membrane with a large strain are
not caleulated herein, because the result of reference 3 is
sufficient to give an approximate variation of the ratios of
principal stresses along the radius during loading, although
the infinitesimal-strain concept is used. The variations of
the ratio of principel stresses with radius for different loads,
based on the values of o, and o given in figures 8 and 9 of
reference 3, are calculated and plotted on figure 9 (¢).
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FIGTRE 7.—Variations of parameter e with proportionate radlus distance for Inconel X and
16-25-6.
~ . e

The values of o, are plotted against oo at various radii
under different loads for the rotating disk and the infinite

heavy solid and dashed curves represent the values of o,
and oy at different radii for any given load and are called

C o

plate with a circular hole in figures 11 (a) and 11 (b). The

loading curves. The loading curve moves away from the
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Fieurg 8.—Varlation of parameter & with maximum cctahedral shear strain at different radii.

4

origin with increasing load. The light solid and dotted lines
connecting the different loading curves at a given radius and
extending to the origin represent the values of ¢, and oy at
different loads for any given radius and are called loading
paths. Also shown in the figures are the yielding surfaces,
which are ellipges under the deformation theory. -

A clear picture of the variation of the ratios of principal
stresses in this group of problems with different loads for
Inconel X, 16-25-6, and the material used in reference 3 is
given in figures 7 to 11. It is evident that the ratios of
principal stresses remain essentially constant during loading.
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(b) Infinite plate with hole.
Fioure &.—Varlations of ratio of prinelpal stresses with propurtionate radinl distance.

The deformation theory is therefore applicable to Lhis group
of problems, at least for the materials considered.

The variations of v and v/y, with radius are plotied in
figures 12 and 13, respectively, for the rotating disk and the
infinite plate with a circular hole. It is interesting to note
that the curves in figure 13 for different loads for the same
materiel are quite close together. For different malierials,
the curves of figures 7 and 9 are also close, but the curves of
figure 13 are not as close together.
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The distributions of principal stresses and prineipal strains-
along the radius for the rotating disk and for the infinite plate

TR E

TS TIE

[

Lk

e

ik

IR S| l:-ihl{i.ﬁ

with a circular hole are plotted in figures 14 and 15, respec- T

tively. For comparison, the variations of ¢/(ae)s, ef (s}, and -

7/, with radius for both the elastic and the plastic range are
plotted in figures 16 and 17.

‘tions for the elastic and plastic cases are compared (figs.

16 (a) and 17 (a)), it is seen that the stresses are more uniform

il {

(The equations for the elastic
case are given in appendix B.) If only the stress distribu- . -

{.

in the plastic state; but if the distributions of the principal _:

strains and the octahedral shear strain for the elastic and the

plastic cases are compared (figs. 16 (b), 16 (c), 17 (b}, and t

17 (e)}, it is evident that a less-uniform strain distribution is
obtained in the plastic state. It is of special interest in the
case of the finite plate with a hole to note that with plastic

deformation the stress-(tangential stress) concentration .

factor around the hole is reduced; instead there is a high
concentration in principal sirain and in octahedral shear

1
"

AL
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strain. A similar conclusion regarding the concentration
factor around a circular hole in a tension panel is given in
references 21 and 22.

The quantities os/(c4) s, a:/(07)s, €/(€}o, and af(e), 2long the
radius for the rotating disk and /(o). 2nd e&/(e), for the
infinite plate with a circular hole are plotted in figures 18
and 19, respectively. The curves representing o,/(s,),, &/(&}s,
and «f(e), for Inconel X and 16-25-6 and different values
of v, are close together; but the curves of ¢s/(as), are quite
far apart for the two materials, as well as for different values
of v,.

The relation between the rotating-speed function p(wh)?

and 7, for the rotating disk and the relation between the .

tension per unit original circumferential length fyfh sy and
+, for the infinite plate with a hole are plotted in figures 20 (2)

B

FTSER

it o)

e
-
ey

-

and 20 (b), respectively. It is shown in these figures that

p(wb)? and #/hu. increase considerably for Inconel X and
increase only slightly for 16—-25-6 as the value of v, increases
from 0.04 to 0.30. .
Figures 7, 13, and 16 to 19 show that for the plate with a
hole, the variations of &, /v, &/(e)o, and ef(e), With radius
are essentially independent of the value of v, for the plate
and the r(y) curve of the material, at least for the materials
considered. These results show that the deformation that

_—

o
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can be accepted by the plate before failure depends mainly
on the maximum octahedral shear strain (or ductility) of the
material, which would not be true if the strain distributions
were a function of the 7(y) curve. For the rotating disk,
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however, a slight effect of v, and the 7(y) curve is apparent
on the strains; this effect seems to be caused by the body-
force term of the disk.

The stress distribution that will determine the Joad which
a member can sustain is now considered. Figures 16 o 19
show that the variation of se/(es), with radius depends on
the r(y) curve of the material and on the value of v, for the
member. Figure 20 indicates that the load elso depends on
the +(y) curve. It therefore follows that the added load
that the member can sustain between the onset of yielding
and failure depends on the 7{y) curve of the material. The
octehedral shear (or effective) stress and strain curve of the
material should be used as a criterion in selecting a material
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for a particular member under a particular loading condition,
because consideration of the maximum octahedral shear
strain only (or ductility only) of the material is insufficient.
The variations of «, v, o1, 0, ¢, &, and v/y, with radius for
three rotating disks with e hole are shown in figure 21. The
values of the ratios of outer to inner radius b/a of these three
disks equal 5.32, 12.45, and 28.12. These disks were made
- of Inconel X and had a maximum octahedral shear strain
v, of 0.3 at the inner radius.of the disk. The tangential
stress oy, the tangential strain ¢, and the octahedral shear
strain v are much less uniform for the disk with a hole than
for a solid rotating disk. The ratio of maximum to minimum
octahedral shear strain v./y, is equel to 7.41 for a disk with
bja=5.32, 11.75 for a disk with b/fa=12.45, and 14.1 for &
disk with 5/a=28.12; for a solid disk of the same material,
the ratio v,/vs is about 5.3. ) . L
The load, rotating-speed function p(wb)?, for disks of
Inconel X reaching & maximum octahedral shear strain «, of
0.3 at the inner radius of the disk and having different ratios
of inner to outer radius a/b is represented by the solid curve
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in figure 22. The dashed curve in figure 22 is obtained by
extending this solid curve toward a/b=1, where the value of
p(wb)? can be determined by considering a rotating ring with
afb—1. 'The figure indicates approximsately how the load
p(wb)? varies with disks having different ratios of inner to
outer radius and reaching the same meximum octahedral
shear strain at the inner radius of the disk. The value of
p(wb)® for a solid rotating disk made of Inconel X with
1,=0.3 at the center of the disk is indicated in the same figure.

CONCLUSIONS

The results obtained for a membrane, a rotating disk
without and with a hole, and an infinite plate with a hole
strained in the strain-hardening renge in which the elastic
strains are negligible compared with the plastic strains for
Inconel X and 16-25-6 in the absence of time and tempera-
ture effects and unloading show that:

(1) The method developed not only accurately solves
the plane-plastic-stress problems with axial symmetry in a
simple manner but also shows clearly the octahedral shear
strain distribution and the ratio of principal stresses during
loading.

(2) The ratio of the principal stresses in the cases investi-
gated remained essentially constant during loading and,
consequently, the deformation theory is applicable to this
group of problems for the materials considered.
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(3) The distributions of principal strains and octahedral
shear strains in the plastic state are less uniform than those
in the elastic state, although the distributions of tangential

stresses appear more uniform in the plastic state. The

stress concentration factor around a hole is reduced in the
plastic state, but instead there is a high concentration of
principal strain and octahedral shear strain.

(4) The ratios of the sirains along the radius to their
maximum value are essentially independent of the value of
the maximum octahedral shear strain of the member and
the oectahedral shear stress-strain curve of the material.
Hence, the deformation that can be sustained by the member
before failure depends mainly on the maximum octahedrsal
shear strain (or ductility) of the material.

(5) The stress distributions depend on the octahedra.l_
shear stress-strain curve of the material. Hence, the added

load that the member can sustain between the onset of .

yielding and faifure depends mainly upon the octshedral
shear (or effective) stress-strain curve in the strain-hardening
range of the material.

Lewis Friger Prorursion LasoraTory
NaTiaNal Apvisory COoMMITTEE FOR AERONAUTICS
CreveLanDp, Omro, February 28, 1950

APPENDIX A

EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY FOR
INFINITESIMAL STRAIN IN TERMS OF « AND v

The final forms of the equilibrium snd compatibility
equations for small strains are given in this section. The
concept of infinitesimal strain is defined es follows: The
changes of dimensions are small compared with the original
dimensions but are large enough so that the elastic strain
can be neglected. The equations presented can be obtained
either by direct derivation as was done previously or by
reducing the equations for finite strains through expanding
the ¢/ terms in series and neglecting the small terms.
For infinitesimal strain, the coefficients (functions of « and )
A, B, C, D, E, and F of equations (25) are each denoted by
& superscript prime but the coefficients (functions of « and )
are simpler than those for ls.rge strain.

A’T da ,r dvy o
r
td (k) “a (%)
(25a)
D,r da E,r dy —F
ta (A) Fa()
For the circular membrane under pressure,
A’=\/§cos a-L-sin o A
. 1dr
B’ =(+/3 sin a—cos a);a—,;
0'=2cos
=(+/3 sin a—cos a)y r (36)

E’'=—(+/3 cos a+sin a)

Pk r
J2 how
f=2 1
F V37 cos ot 6 | _r(+/3 sin a—cos a)_| J

For the rotating disk, -
A’=-/3 cos atsin a

. - l1dr
=(+/3 sin a—cos a) Ty

s B ()
=(+/3 sin a—cos a)y
E'=—(+3 cos a+sin a)
—23 (cos ahr N

Y

(37)

For the infinite plate with a circular hole,

A’=1/3 cos atsin a A
B’'=(+/3 sin a—cos «) :1_-3—;-
("=2 cos

={(3 sin a—cos a)
E'=—(+/3 cos a+sin a)
F'=24/3 (cos o)y J

> (38)

For small strains, the coefficients 4/, B/, ¢/, D', E’, and F”
are used in equation (29) instead of 4, B, @, D, E, and F,
respectively.
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APPENDIX B

EQUATIONS FOR ROTATING DISK AND INFINITE PLATE
WITH CIRCULAR HOLE IN ELASTIC RANGE

ROTATING DISK
For a solid rotating disk with the radial stress at the

periphery (r=>5) equal to zero, the principal stresses can be
expressed by the following equations (reference 23, p. 68):

o =28 pudpi—r)

(39)
o'c=3§_'v P ’b’-—l -;?’V:pw’rz
where » is Poisson’s ratio. At r=b,
1 2
(so=g pub(1—)
Dividing equation (39) by (oe), yields
5 3+’[ -(5)]
(b‘d)n 2(1 —V) b
(39a)
a8 3+ 1 +3v ( )’:l
(ea» 20— L~ 3+» \D

The stress-strain relations of plane-stress problems in the
elastic range are:

e,=%'(o‘,— vag) B
) : (40)

eo=*11'f:,~ {co—ra,)

where E is the modulus of elasticity in tension and com-
pression,

Substituting equations (39) into equations (40) yields:

=gy (1= v)(3+ﬂ)(Pw’bz)|:1—3(l+y) b)tl
(402)
w=g% E (1—»)(3+»)(pw?b?) I:l—m (b)j
or
'(::),,=3—2i—y|:1—3(31:_:) %)j (40b)
e - 6]

The equations for the octahedral shear stress and strain
given by equations (4a), (4b), and (5a) can be applied to both
the elastic and the plastic ranges, but equation (5b) can be
applied only in the plastic range. The octahedral shear
strain in the elastic range can be calculated by equation (4b)
or by using the following equation:

7—2(1 +y) 21+ “‘;/3,2 (02—, 0y

A (4.1)

Substitute equations (39) in equation (41) to obtain:

2 2 Gy
[G+r—sa+ae+n () +a+2t1a(5)]" @t

or
y__ 1
¥vs 2(1—»)

[+r—s+a@+0 (§) +a+artma(5) ] @y

The value of Poisson’s ratio » for the two materials are:

»=0.29 for Inconel X (reference 24)
»=0.286 for 16-25-6 (reference 25)
INFINITE PLATE WITH CIRCULAR HOLE

For a uniformly loaded infinite plate with a circular hole,
the principal stresses are (reference 23, p. 56):

a,=%+20
4 (42)
a'a=?'+20

where A and O are arbitrary constants. For the plate con-
sidered herein, the boundary conditions are:

a,=0 at r=ea

0= (O'f)b

These boundary conditions are used to determine the
arbitrary constants A and C, which yield

(o:)s - () 1)
EEONC

at r=>

- (42a)
— (a-,),, ()+1
EEONOE
or ) \ N
g 1 (g) —1
(o) _l_(%)’ (&)’
-+ (42b)

G
T




PLANE-PLASTIC-STRESS PROBLEMS WITH AXTAL SYMMETRY IN STRAIN-HARDENING RANGE

Substituting equations (42g) into equations (40) yields

or

-

a—n (L) —+»

=l (o) 2
)0
, (43)
(L (e a-9(5) +a+)
1—(6) (E) J
. (1—v)(£)2_(1+v) ‘
(e-)a_[(l —9)+(1+7) (%)2: GY
4 - (43a)

A= (L) +a+»

1@

€4

H‘:[(l —rta+n (%)

Substituting equations (42a) into equation (41) yields

or

7((1+v) (o) <)+3

_(b) ( )

(44)

Y ( +3 m
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