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THE MINIMUM INDUCED DRAG OF AEROFOILS.

By h M. >fUNK.

INTRODUCTION.

The follow@ paper is a dissertation originally presented by the author to the Uni-rersity
of Goettingen. It was intended principally for the use of mathematicians and physicists. The
author is pleased to note. that the paper has aroused interest in other circles, to the end that
the National Advisory Committee for Aeronautics wilI mtdie it a&ailable to a larger circle fi
America. The following introduction has been added in order to first acquaint the reader
with the essence of the paper.

In the fo~ovrirg development all results are obtained by integrating some simple expr~=ions
or reIations. For our, purposes it is suilicient, indeed, to pro-re the results for a pair of smalI
element.s. The qualities deah?with are integrable, sine:, under the assumptions we are alknved
to make, they can not be affected by integrating. We have to consider only the relations
betwecm any two M5kg elements and to add the effects. That is .to say, in the process of inte-
grating each element occurs twiceflrstl as an element producing an effect, and, second, as am
element experiencing an effect. In consequence of this the symboIs express@ the integration
look somewhat confusing, and they require so much space in the mathematical expresion that
they are apt to divert the .retider’s attention from their real meaning. We have to proceed up
to three dimensional problems. Each element has to be denoted twice (by a La@ letter and
b-j a Greek Ietter), occurring twice in a different.connection. The integd, therefore, is sixfold,
six symboIs of integration sknc@ together and, rtccordin#yj six differentials (always the same)
stand~o at the end of the expresion, requiring almost the fourth part of the line. The meaning
of this vohmcinous group of symbols, however, is not more complicated and not les elementary
than a si@e integraI or e~en than a simple addition.

In section 1 we c~nsider one aerofoil shaped like a straight Iine and @ how all li\t&~
ekments~ which we assume to be of equal intme.ityl must be arr~aed on this line in order to
offer the least @u.

If the distribution is the best one, the dr& cm not be decreased or increased by transferring
one lifting element from its old position (a! to some new position (b). For then either the
resulting distribution viould.be imprond by this transser, and therefore -irasnot best before, or
the transfer of an element f~om (b] to (a) would have this effect. No-iv,the shwe of one element
in the drag is composed of two parts. It takes share in producing a downmsh in the neighbor-
hood of the other lift:hg elements and, in consequence, a chmge in their drag. It has itself a
drag, being situated in the downvm.shproduced by tho other elements.

Considering only tATOelements, Fig. 1 shows that in the case of the lifting straight line the
two downwashes, each produced by one element in the neighborhood of the other, are equaL
For this reason the two drags of the two eknents each produced by the other are equal, too,
and henceJhe two parts of the entire drag of the W@ due to one element. The entire drag
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produced by one element has twice the Talue as the drag of that element resulting from the
downwash in its environs. Hence, the entire drag due ta one eIement is unchanged when tho
e~ementis transferred from one situation to a new one of the same dowmvaeh, and the distribu-
tion is the best onIy if the downwash is constant over the whole wing.

In sections 2 to 6 it is shown that the two ptirts of the drag change by the same value in
all other cases, too. If the elemente are situated in the same tranevelse plane, the two ptirts tire
equal. A glance at Fig. 2 shows that. the dowmvash produced by (1) at (2), (3), (4), and (5)

t is equal. But then it also equals the downwash due to (4), say, produced at (l). This holds
true even for the component of the down-washin the direction of the lift if the elements aro nor-
mal to each other (Fig. 3.); for this component is proportional x.y/F, according to the symbols

-1- -r –“—— ---n
d--y+

U /7$?.3.

of the figure. Hence, it is proved for lift of any inclination, horizontal and vertical elements
be~c able, by combination, to produce lift in any direction.

There remains only the question whether the two parts of the drag are also equal if 1he
eIements are situated one behind the other-that is to say, in different longitudinal positions.

- They are not; but their sum is independent of the longitudinal distance apart. To prove
this, add in Fig. 4 to the lifting element (2) a second inverse lifting element (3) with inverse

—

linear .longitudinaI vortices in the inverse direction. The reader observes thut the tnmavcrsc
vortices (z) and (3) neutralize each other; the Iongit,udinal linear vortices, however, have the
same sign, and all four vorticw form a pair of vortices running from infinity to in.6nity. The
drag, produced by the combination of (1) and this pyr, is obviously independent of the longi-
tudinal positions of (1) and (2). But the added eIement (3) has not changed the drag, for (1)
and (3) aro situated symmetrically and produce the same mutual down-wash. The direction
of the lift, however, is inverse, aud therefore the two drags hm-e the inverse sign, and tkcir sum
is zero.

If the two lifting eIements are perpendicular to each other (chapter 5), a similar proof can
he given.

Sections 6 and 7 contain the conclusions. The condition for a minimum drag does not
depend upon the longitudinal coordinate% and in order to obtain it the downwash must h
assumed to be constant at all points in a transverse phme. of a corresponding system of aero-
foils. This is not surprising; the winga act like two Jhnensional objects accelerating the air ●

passing in an infinite transve~e plane at a particular moment. Therefore the calculation
leads to the consideration of the two dimensional flow about the projection of the wings on a
transveme plane. .
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Section 8 gives the connection between the theory in perfect fluids and the phenomenon
in true air. It is this connection that allows the application of the results to practical questions.

* 1. THE LIETING STRAIGHT LINE.

A system of aerofoils moving in an incornpr~sible and frictionleas fluid has a drag (in the
direction of its motion) if there is any lift (perpendicuhw to the direction of its motion}. The
magnitude of this drag depends upon the distribution of the lift over the surface of the mrofoils.
Although the dimensions of the given system of aerofoils may remain unchanged, the distribu-
tion of the lift can be radically altered by changes in details, such as the aerofofl section or the
angle of attack. The purpose of the investigation which is given in the following p&es is to
determine (a) the distribution of lift which produces the least drag, and (3) the magnitude of this
minimum drag.

Let w iii% consider a shgle aerofoil of such dimensions that it may be referred to with
sufficient exactness as a lifting straight line, -d@h is at right angles to the direction of its flight..
The length or span of this line maybe denoted by 1. Let the line coincide with the horizontal,
or x axis of a rectangdar system of coordinates .having its origin at the center of the aerofoil.

,, The density of the lift
(1.A

“’=XX (1)

where A, the entire lift from the lef t end of the R@ up to the point x, is gemsmdlya function of
z and may be denoted by~ (x). Let the velocity of flight be WO.

The modern theory of tlight’ allows the entire drag to be expressed as a definite double
integral, if certain simplifying assumptions are made. In order to find this integral, it is neces-
sary to determine the intensity of the longitudinal vortices -rrbichrun from any lifting element
to infinity in a direction opposite to the direction of flight. These vortices are generalIy
distributed continuously along the who~e aerofoil, and their intensity per unit length of the
Wrofoil is

I.r=l dA’
‘vo.p . x

(2)

where p is thedensity of the fluid. Now, for each Iiftirg element&, we shall calmdate the down-
wash w, which, in accordance with the law of Biot-%vart, is produced at it by all the Iongg-
tudinal vortices. A si@e vortex, beginn@ at the point z, produces at the point z =.$ the
downwash

du=_!_ . _
hpvo ‘A’‘ &

Therefore the entire downwash at the point&is

(3)

._

_-

“0
.-

—

..—

—

(4)

The integration is to be performed along the aerofoil; and the principal value of the integral is
to be taken at the point x=& This rule also applies to all of the folIowing integrals. Hence it
follows that the drag according to the equation

—
1See L. PrmdtI,TmgEQgeItheacie,I. MltteUung. Nechriditen der Gs. d. ‘Wk- m MttIngeG 1’JI!.
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or, otherwise repressed,

1 ‘+%? “;%d~w= -J--@’ SS (6)

-+-+ –
*

f’ here signifies the derivative of .f with respect to z or #. The entire lift is represented by

1

A=~f(ddx (7)

-+

the
Hence the solution of the problem to determine the best distribution of lift depencis upon

determination of the function j so that the double integml

+; +-$

.Jl= ffwtSS (8)11—---
xx

shall have a value as small as pcmible; while at the same time the value of the simple integral

I

J,= YT(da =’imst.
–+

is tied.
The first step towards the solution of this problem is to

+& +4 +4

. (9)
..

,

form the first variation of Ji

+4

(lo)

,. -+ -4 +.. -+

The second integral on the right side of (10 can be.-reduced ti the first. BY exchanging ~h~
symbols z and t and by partial integration with respect to x, considering,~’ (t) as the integra.blo
factor, there is obtained

(11)

The second member
hand part of (11)

upon substitution of

disappears aim .f=0 at the limits of integration.z l’urther, the right

the new variables x and t= x– & for x and &.is transfor~cd into
*

f If thiswere not true,theremuId be fmlnite vekoltles at thess paln~
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Now’

or, sincefdisappears at the limits of integration,

which, upon the replacement of the original variabks, becomes

so that, finally,

‘i,

–+ -k -i -+

Substituting this in (10) there finally results

-.

—

(12)
.-.. —

(13)

From which the condition for the minimum amount of drag, taking into consideration the
second condition (9), is

+;

/-

.fgd~+h=o

--2

(14)

or, when equation (4) is taken into consideration

w = Const. =V& (15]

5!%e neces8ary condition for the minimum of drag for a hjling 8traight line is that the doum-

u!a8+ produced by the longitudinal vortices be constant alorq the eniire line.

That this necessary consideration is also sufficient resuIts from the obvious ‘meaning of
the second variation, which represents the infinitesind drag produced by the variation of the
Iift if it alone is acting, and therefore it is alvrays greater than zero.

2. PARALLEL LIFTING ELEMENTS LYING IN A TRANSVERSE PLANE.

The method just de~eloped maybe applied at once to problems of a more gened n~ture.
If, instead of a sir@e aerofoil, there are several aerofoiIs in the same straight line perpen-
dicuhw to the direction of ~ht, onIy the limits of integration are ch~med in the development.
The integration in such cases is to be performed along all of the aerofoils. EEoweverj this is

nonessential for all of the equations and therefore the condition for the minimum drag (equa-
tion 15) appIies to this entire system of aerofoils.

.,—
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Let us now discard the condition that all of the lifting lines are lying in the same straight
~ine, but retain, however, the condition that they are pardkd to each other, perpendicular tu
the ~ineof flight as before, and that they are alI lying in a plana perpendicular to the line of
flight. ,Let the height of any lifting line be designtited by z or f. Equation (3) transfcmm into
a sirdar one which gives the downwash produced at the point .c, z by the longitudinal vortox
beginning on the lift@g element at the point r: _ -

4:.0 ‘A’dw-=—
[–x

(:–x)’ +(r–z)’

b The expression, which must now be a minimum, is

with the unchanged secondary candition

J, =fj(z,z) dit= const.

Tlmse integrals are to be taken over all of the aerofoils.
This new problem may be treated in the same manner as the first.,

(3a).

(8rL)

(ila)

is always h be substituted for —”& It may be shown

affect the correctness of equations (10) to (15). Therefore

W=const. =tio

that thie substitution does not .

( Iba)

is again obtained as the n’ecwsary condition for the minimum of the entire drag.
Finally, this also holds true for the Iirnitiig case in which, over R limited portion of%m

transverse plane, thti individmd aerofoils, like venotian blinds, lie so closely together that
they may be considered w a continuous lifting part of a plane. Including N rascs which
have been considered so far, the condition for a minimum of drag can be stute.d:

Let the dimemions of a w.ystem of aerofoil.s be giveq those in the cilrectwn of Jight being ~mall
in comparison d the in othr directions. Let. the lift be everyw?wre directed vertically. Under

these condtiiow, the downwmh prodwced by the la~”tudinal vortices must be uniform at all points

on tie aerofoi.la in order thut there may 6e u minimum of drag for a given totul lift.

8. THREE DIMENSIONAL PARALLEL LIFTING ELEMENTS.

The three-dimensional problem may be based upon the two-dimensional one. Let now
the dimensions in the direction of flight be considerable and let the lifting elements be rlis-
tributed in space in any manner. Let y or ~ be the coordinates of any point in tho direc-
tion of flight, For the time being, all lifting forces are assumed LObe vertical.

The calculation of the-density of drag for this c~e is somewhat more complicated than in
the preceding cases Consideration must be given not only to the longitudinal vortices, which
are treated as before, but also to the transverse vortices which run perpendicular to the lift at
any point and to the direction of flight. Their integaity at any point where thero is a lifting
element is

,;p -f(wjz)”~”1’=L4’ ---
V@l

The densit~of drag, W’ now has two components, H’land W’2,the fist being due to the t.rans
verse vortices and the second to the longitudinal vortices.
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For the solution of the present problem only the

IT=f W-’d.r
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total drag of all lifting elements --

is to be considered. In the fit place it will be shown that the integral of those parts of the
density resulting from the transverse vortices

IT*=J IT-l’(h

does not contribute to the total drag. A small e~ementof one transv~se vortex of the length Jz
at the point (z, y, z) produces at the point (& q, ~) the downwash

~w= 1 q–’y
—~f(wz)”dx .4Tpvo

(16)

where
P=(~–&+( q-l J)’+@-z)’.

Therefore
.

(17)

This integration is to be extended over all the aerofoils. It k possible to write this expression
in such a manner that it holds for a continuous distribution of lift over parts of surfaces or in
space. This is true, moreover, for most of the expressions in this paper. Now, exchanging the
variables z, y, z, for & q, ~, in equation (17) does not- change the value of the integral, since the
symboIs for the variables have no influence on the value of a definitg integral. On the other
hand, the factor (v– @, and therefore the integral also, changes its sign. Hence

T!71=-TY*=0 (18)
and, as stated,

IT= T,. (19)

Therefore the entire drag may be calculated m“thout taking into consideration the transverse
vortices.

The method of calculating the effect of the longitudinal vortices can be greatly simplified.
At the point ([, T, ~) that part of the density of drag rwdting from a longitudinal vortex begin-
ning at the point (z, y, z) is

where

M
The entire drag is

(20)

.

(21)

Now, in the double integral (22) the variables z, y, z may be exchanged with &q.,t, as before,
without affecting the value of the deiinite integral. Partial integration may then be performed
twice, first with respect to f and then with respect to z. The substitution results in .-

.— .

.—

—

—
.——.

.-

_..._

.

lT=--&-JJf (2, y, ‘] f’ (g, q, r) ;ii.d (23)
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~ is obtained from # upon the exchange of varial&s. Its value is thereforo

(24)

When partially integrating with respect to dg, the integrable factor is~ ($, T, r)

(25) -

In the subsequent partial integration with respect to dx, the integrable factor is $? = –; ?“

TV=–& SSf ($)T)r)“f’(%y,,z)@ki&
Finally, by addition of (22) and (26), there is obtained

(26)

(27)

s = y+ q–s may now be substituted in (24) for the variable of int~mrations. Then t changes to
t, and with the exception of the sign the integrand in (21) agrees with the resulting one in (22)

-m.

~. J-J’+
r

Subtracting (28) from (21) there results finally

S-1 ‘E+
$–$=~

-m

(28)

(29)

Hence, $ – & and the&fore the entire ~ht side of equation (22)& seen to be tidependent” of tlm -
longitudimd mordmates y of the lifting elements.

TAerejore the entire rezietance of a ihree-dhnin.simuil 8y8tem of aerofoila with parallel lijting
elands doe~ not depend upon the longitudinal posiiiona of the lifti~ element~.

4. LTFTING ELEMENTS ARRANGED IN m DIRECYI’IONS IN A TRANSVERSEPLANE.

The.problem considered in section 2 can also be generalized in another way. For the present
the condition that W lifting elements be in one transverse plane may remain, However, they
need no longer be parallel, and the lift may be du~ to not ordy a great number of infinitesimal
lift~dA but also to similar transverse forces dB. In the first place let the direction of all lifting
elements be arbitmry, but such that there is a minimum drag, and let this direction bo an
unhmown quantity to be detemnined.

In the present problem it is desirable to consider a continuous distribution of lift over given .
a.ieas instead of lines. Tlm Iast case can be deduced from the first at any time by passing to
the Iimit. .—

bt A’ =f (z, z) be the density of the vertical lift per unit area, and B’= F(x,.4 he density
of the lateral force per unit area. The’ lateral force is ccmsidered positive when acting in the
positive direction o~the X-axis. Then the density of the transverse -vortices has the com-

ponents &p .A’ and –v-& B’. The density of the lcm~itudinal vortex ,is the divergence of the.

1(::-3.density of the transvemal vortex, or ;Ol The longitudinal vortices beginning
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at the point (z, z) therefore produce at the point (.f,~) the dowqvmsh and the transverse velocity

(3b)

(3C)
-.

(5b)

AU of these integrtds are to be taken over all of the lifting surfaces. Now the f3rst two
integraIs have forms corresponding to the integral in (8), and therefore there is a possiihility of

._

subst&iqg (1!2)for these. A si.rdar relation also holds for the last two integrals. For emun-
ple, the variation of the third integd is

.. -L-

(31)

No-ivin the first term on the right-hand side the variables x and z may be exchanged with C
and t. It may then be partially integrated with respect to d& the integrable factor being dJ(&f).
This &S

-.

This may be partialIy integrated with respect to &, the integrable factor being

d ~–z d g–x
d~ F dz7

SSSSV’(zAF(M)‘~rMdtdr=–Mu
.

~f (W) “F’ (%z) $# dzdzd@~

Hence the first term of the variation of the third integd of (3o) can be transformed
second term of the variation of the fourth integral of this equation. In a similar manner the
two other terms may be transformed into each other. It is therefore demonstrated that the
m.riation of the entire drag may be written

(33)

into the —.—

.-
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Two problems of variation can now be stated. In the first place limited parts of the surfaces
may be at our disposal, over which the vertical lift A and the horizontal transversal force B
may have any distribution. Only the total Iift

A = ~~j (z)z) dzdz = const. (W)
will be given in this case. —.

Then
W=const. =wo; U=o (15b)

is the tiondition for th least drag.
If, however, the lifting parta are similar to lines, there is generally one other cond~t.ionto

fulfill. It is thm required that the lift disappear everywhere along thedirect,ion of tho uerofoils.
That is to say,

jsinfs-F’cos/s=o (34)

where @ is the angle of inclination of the aerofoil to the horizontal X-axis, In order to add tke
new requirement (34) a second Lagrange constant ~ is introduced. The condition for the least
drag is now

w+h+~” P
Cos 0=0’u‘~in—~= 0 (34n)

and after the elimination of P
w cosj3+u sinj3=wOcosfl (15C)

the constant 2 h being replaced by – WO,as before. IrLwords:
If all lijtang elements are in one transverse plane, tle component of t}le velocity perpendicular

to @ wings, produced by the .@@tudinal vortices, must he proportional, at all lifting elements, to

the cosine of t7beangle of lateral inclination.

6. LIFT DISTRIBUTED AND DIRECTED IN ANY MANNER

The results obtained previously can be generalized not only for lifting elements distrilmt.cd ,
in a transverse plane but also for lifting elements “d~.tributedin”any manner in space. That
part of the tatal drag resulting from the transverse vor~ces is, in the general case

Both terms have th same form as.the integral in (17). The demonstration for (17) therefore
applies to both. In the general case also the total drag can be calculated from the longitudinal
vortices without taking i@a consideration the transverse -rortic=:

‘wusssssw= -–-— f(z, y, d J (t, T, r) *, d.@/@Wr

+LfJJJJ F’ (z, y, z) F (:, q, ;) $, d@/~d&Wr

-SSSSLI (22a)
;(Z, y, 2) F’ (t, h’,r) k d.zdydzw?dr

-JJJJJJ 1F($,y,Z) f ‘ (t, q, ~) i, d.@/~@@{

In this as in (20),
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The fist two terms in (22a) have the same form as the righhhand side of (22), and the stie
conclusions are therefore did for each”. It can be proved directly for (22a) as for (22) that
each of the two double integrals is independent of the .longitudinaI coordinates of the Iifting
elements. This proof can now be extended over the Iast two integrals of equation (22a).

The third integraI, after changing the variables, becomes

Now, let F’ be. chosen as the integrable factor and be partially integrated with respect to z.

.+s in the previous cases, the second integral to be ~xpected wmishes since f as well as F

disappear at the limits of the integration. Nat $ ~,,= – $ ~, ischosen asthe integrable factor

and partially integrated tith respect to z. By ~2,by tmaloa~, is meant

~Novr~z may be transformed, the wiriables in the de- equation being replaced by T+ y – ~.
The result is that

J
- ~ dg, t~=”(~–z)’+ (q -s)’+ (~–z)’.~,=~

I

It.is seen that the integrand agrees with that of the defining integral & Therefore, and simx
the right-hand side of (37) contains the same function under the double integral as the fourth
turn in (22a), this fourth term can be combined with the transformed third member. This
gives

11-f.rj-f~ (% v, z) ~’ (.%?l, r) 4,dzd@d@ldf+ (38)

11-.l-.f.r~r~~’t ‘Y}z) j’ (:, v, r] .V@dydzdwdr=

J~~I~~F (xi Y, Z)~’ (~, n, f) (IJ2-7,)~dyd=_Wwt
where

~, –;, ~d fierefore the two sides Of (38) me ~dependent of Y. This is ~erefoKe demon-
strated for the whole right-hand side of (22a). ●
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“ In general it can ‘therefore be said: ,

The total resistance ig alwayg independent oj tfie km.@wdinal coordinates oj the lijting elements.
And further:
The mod javorable didribution oj tie lifi, with rejerence to the total drag, occurs when t7Lis&

also the ca8ejor the projection oj the lijting *meti on a tran8ver8e plune.
That is to say, all of the lifting elements are projected on a plane perpendicular to the

direction of fl.ig@, and any element so obtained has a-lift equal to the sum of the lifts of all lifting
elements projected onto it.

6. DETERMINATION OF THE SOillTIONS.

The previous demonstrations show that the investigation for the distribu~ion of lif t which
causes the least drag is reduced to the solution of the problem for systems of amofoils which am
situated in a plane perpendicular to the direction of flight. In addition, the condition for least
drag (15c), which becomes the condition of uniform downwash (15) if the lift is vertical, leads
to a problem which has often been investigated in the theory of two-dimensional flow with a
logarithmic potential. The flow produced within the lifting transverse plane by the longitudinal
vortices originating in it is, indeed, of this type.. Each such vortex produces a distribution of
velocit$ such as is produced by a two-dimensional vortex of half. its intensity, and the wholo
distribution of velocity is obtained by adding the distributions produced by the longitudinal
vortice5. The potential flow sought is determined by the condition of (15c). LeL it be com-
bined with the flow of constant vertical upward motion w= - WO. The result.ing flow sntisfies
the condition at the boundarim

wcos~+~sinfl=O (39)

a;d there results, for the case of lifting lines:
The two dhnensid potential $OW is of the type that entircleg We lifting lines, and at a great

dtitance the velcmly h directed upward~ and has thevalue w = – w,.
Within lifting surfaces the velocity is zero according to the condition (15b), and the fluid

therefore flows around the.contour.
The intensity of the longitudinal vortic= ““

. —..
at any point is twice tho rotation of tho two

dimensional flow. In the case of the lifting lirms, therefore, the density of the longitudhd
vortices is double the discontinuity of velocity from one side to the other. The intensity of the
transversal vortices is determined by integrating the longitudinal vortices along tho acrofoils
and therefore equals twice the difference of the.-mlocity-integral produced on the two sides of
the aerofoil. NTOWthe integral of the velocity produced is, identical with tho potential and
hence it appears:

The dewity of tie ltjl perpendicular to the l@hg line h proportional to the discontinuity of

potential pa – WI, and has the value

, JAIS+BIS=2W(P,-P,) (40)

Hence the total lift obtained by integrating over all aerofoils is .

Sometimw a transformation of this equation k-useful. In order to obtain it, suppose that
all of the lifting lines are divided into small parts. Then, on the two ends of each lifting ch’mcnt
there begin two inverse longitudinal vorticw, the effqct of which on a distant point is that of a
double vortex. Their velocity-potential q and their stream function 4 may be combined in tho
complex function # + ip, and, not considering the existence of a parallel flow, which is without
any importance”in the calculation, this complex function has the form for a lifting line,

W+ip)=d:y
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where z represents z + @ and ZO=Zn+ iyO,Z. and y~being the coordinates of the lifting ?Jementeof
the line. For a M distributed over areas a simihr equation can be formed. The integration of —
(42) gives

J
U+idB

-.

~+iQ=
z —Z.

(42a) ..—

h’ow the residuum of th’eintegrand at Mnity is U + MB and therefore the residuum of the . . . ..—
integraI is A+ B. Therefore the expression can be writt=.

(41a)
—

where the last part means the rerd part of the residuum of $ + ip at infinity. In the most im- .

portant case of horizontal aerofoils the residuum itseIf is rwd and can be used direct.Iy to c&u-
late the lift. The density of drag at any point is proportional to the perpendical component of

—.
.

the density of Iift and is TV’=~. A’, from which results W=~. A.

‘=Aa&J&l)dx
1l_f’=A22V$PR~esw&+iq)l

The integraI in the denominator of (43) represmts an area

Making use of (41) one obtains

(43)

(43a)

characteristic of the”system of
aerofo& inv&tigated. Frequently the easies~ method of calculation is to assume from the
beginning the velocity w, at tity to be unity.

The case of the lift continuously distributed over single parts of areas is derived from the
preceding one by passing to the limit. Since the verticaI velocity w disappears at all points in

—

the Ming surfac-, the velmity is zero at fl points and the rotation vanishes.
Therefore, in. the case of the nwt fuuorable distribution of llft, all of the long.itudinal rortices

from the canlinuoudy lijling areas begin at the 6oundatiea of tiit?areae.
Equations (43) and (43a) remain. The distribution of Iift is indeterminate to a certain

extent. On the other hand, it is possible to connect the points of the contour having the same
potential p by strips of any form, and it is only necessary that the lift be always perpendicular
to the strip and its density have a constant value along the whole strip. According to equ~tion
(40) this equals the ditlerence of the potential at the contour between the two bordera of the —.

strip. Worthy of note is the speoial case in which aII of the strips run aIong the contour, thus
-.

coning again to the case of IMtingbee. It appe~ that:

Closed lines have the same mimimutn of drag aa t~e enclosed area~ when conh”nuously tided.
Especially important are those symmetrical contoum which are cut by horizontal Iines in

only two points. With such the Imitation to vertical lift does not involve an increase of the
minimum drag. For this case it appears that:

The derw”ty of the vertical lzY per unit area mud 6e proportional to tie vertical component of
the vekmity of the. twculimerwional$ow at the pot”nt of the contour of tie ~ame high! z. # i8

(44)

The corresponding density of drag is

.

(45)
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. 7. EXAMPLES OF CALCULATIONS.

Exainples of calculation of the previous demonstrations can be based on my calculated
two-dimensional potential flow around parts of Ii.ne.sor areas. The simpkxt flow of the first
kind is that around a single horizontal line. It leads to the problem investigated at the begin-
ning of this paper.

In this case the potential is the real part of ~~ where p denotes z +iz. The lifting
line joins the two points z= 0, x= –1 and z =,0, x=-+1, and has the length 2. The velocity itt
infinity is ?0=1. The discontinuity of potential along the lifting line is p2– VI= Zlf
density of lift is distributed according to the same law, therefore if plotted over tho spnn the
density of lift would be represented by the half of an ellipse.

The minimum drag is

(46)

If, instead of tho value 2, the span had the general value b, the minimum drag would bo

(47)

This same result has been obtained by Prof. Prandtl by another methods
“ The simplest example for a lifting vertical area is the circle. ” Let its center coincide with

the origin of the system of coordinates. Then the potentiil of the flow around this circle is

(48)

where r= &a +2. At infinity WO= 1. Under the condition of and according to equation (40)
the density of lift is

This results in a constant density of lift of A’ = 2. Therefore the drag is

(49)

(50)

The double integral is to be taken over the @rcle. If the general case for the diameter
equal to ~ be considered, then the least drag is

(51)

Hence in resipect to the minimum drag &e circle is equivalent to a lifting line having
a length ~ times the diameter.

—

A lifting circidar line would have the same minimum drag as the circular area.
This result was also obtained by Prof. Prandtl by another method.’ A reduction of the

original problem_of variation to the tyo-dimensional flow sometimes enablw a survey of the
result to he made without calculation. For instance, let a third aprofoil be added b&cen the
two aerofoiLsof ..a biplane having a sxpall gap. (The gap may be about one-sixth of tho
span.) Then, in order to fhd the most favorable distribution of lift, the double line about
which the flow occurs is to be replaced by three lifting lines. Now! in the region of tlm middle
lifting line the velocity is small, even before this line is introduced. Therefore the discontinuity
of the potential along the middle line is very much smaller than that ‘along the others. Henca
it results that the middIe aerofoil of a triplane should lift lCSSthan the other two.

8F1* Conlrnllllllwiorlmmmhg t kh ZWwhdttftir FIugtethdk mid ?dotorl. 1914. 8. ?39,In ● note by Betz.
~W TeohnfecheBdchte de.rI?lUgelrgmei.memlBd. rf mm a.
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8. PROCEDURE FOR THE CASE OF FLUIDS WITH SMALL VISCOSITY. -

The preceding results do not apply so much to the calculation of the most favorable distribu-
tion of lift as to the calculation of the least drag. For it appears, and the results are checked

-. —

by calculation, that even considerable variations from the condition of most favorable d&ribu- —
tion of lift do not increase the drag to any great extent. Usually the -~ dr~u can be
considered as the real drag of the system of aerofoils and in order to allow for the effect of

..—.—

friction of the air it is su.tlicientto make an addition. This addition depends chiefly upon the
.7

aerofoil section; it also depends, omitting the Reynolds Numberj onIy upon the area of the
@%s and on the dynamical pressure. It is independent of the dimensions of the system of
mugs themselves. It maybe usefuI to have a name for that part of the density of drag, inde-
pendent of the friction of the air, which results “from the theory developed in this paper. It is
caUed the ‘(induced drag.” Gene@Iy it is not the drag itself but an absolute coefficient which
is considered. This cmfllcient is defied by

where Wf is the drag previously denoted by W, g ‘B the dynamical pressure vOz.p/i?,and F is
the total area of the wings. Equation (43) can now be written

C=Z. F
c~~=r(k. b)’

A
where co is the Iift coeflkient ~ corresponding to eW.

system of wings perpendicular to the directiori of flight
actaistic of the proportions of the system, k is a factor
foils and has, according to the preceding, the value.

.

It has a speciaJ physical signitlcance.

—
(53)

The greatest horizontal span i5of the

is arbitrarily chosen ss a length ch-
characteristic of the system of aer-

—

.-
(54)

--

Vnde; tfie sam~ conditions G tingle aerojbil with a span of k times tie tin-mum gpan of a
systetn of aerofoik hag the same induc;d minjrnutn remktanee as the system.

.-

9. REFINEMENT OF THE THEORY. “

The demonstrations given -rest on tha ssunption that the ~elocities produced by the
vortices are small in comparison with the velocity of flight. The next assumption, more ac-
curate, would be that only powers higher than the fit power cmdd be negkcted.

In this case the solutions just found for lifting elements in a trans%se plane can be con-
sidered as the first step towards the calculation of more exact solutions. The following steps

—.

?nust be taken: The -act density of drag is IT’= A’&v where v is the horizontal velocity .

produced at the U.ft&melements by the transverse vortices. It cm be calculated exactly
enough from the first approximation. Now, the condition of least ti%~ is

.-
..——

()
W.cosfi+p sinlll=u’o COSP l+;O (15d)

and the flow of potential, according to ~s condition at the boundary, is to be found. Compared
with the fit approximation the density below is in general somewhat increased and the den-
sity above is somewhat decreased. The

——
rginimum drag .chang= only by quantities of the

second order.
●
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If the Ming elements are distributed in
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three dimensions a similar refinement can easilv
be found. In t~ case there is,to be taken into consideration a second factor which alwafi
coma in if the differences of the longitudinal coordimites of the lifting elements are consider-
able. The direction of the longitudinal vortices do not agree mmctly with the direction of
flight, but they coincide with the direction of tha~velocity of the fluid around t.ho acrofoil.
They are therefore somewhat inched downwards_ A better approximateion is ob Ltiinedby
projecting the lifting elements not in the direction of flight hut in a direction slightly inclined

2*”. Except for this, thi methodupwards from the rear to the front. This inclination is about ~

of calculation remains unchanged.

9


