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THEORETICAL CALCULATION OF THE POWER SPECTRA OF THE ROLLING AND YAWING
MOMENTS ON A WING IN RANDOM TURBULENCE ‘

By JOHNhf. EQGLESTONand FRANKLINW. DIBDEB.ICIH

SUTkMARY

The correl.aiionjunctions and powti spectra oj -h roi?ing
and yawing moments on an airplmw wing due to -the three
.compmwntsoj continwow random turln&nc4 are eaLAa&d.
The rolling moments due to the longitwdimd (lwriwntd) and
normal (verticul) compomzw!adepend on tlw spanwise distm”bw
tion8 oj irw!.antwwus gust interwity, which are taken into
account by wing the inherent properties of qpnmetry oj tio-
tropic turbti. Th4 rwu.h% c0n&3t oj apremima joT
correlationjunctions or spec$raof the rolling moment in t.9rnu3
oj th8 pm”nt correlation jutiiow oj the two component8 oj
turbulence.

Specijicnunwm”cdcdcm?atiomare ?na&joT a pair of corrda-
tion junctionx given by simple analytic expremions which@
availableexpm”mtmiddda q-uti well. Calculationsare mude
for jour lifi di.@vWiorw. Compari.wn is & with the
results oj prem”ousanaly8e8which qwumed random turbulence

along the$ighi pa$hand linear variaiiom of@ veloeity across
the 8pan.

The TOUi7&gmomentdue to ti(d (side) gw%, which is s-mull,
is exprex8edin t.errmoj the in#tanimeou8 vah.e of the gu$tnear
the c-mt.erline oj the ju.wlage, 80 that the e~ect of spanwise
van”ationin gust ini%rwityis ignored. The yam”ng moment8
are wn.sideredto be propotiional to the rolling momentsm“ththe
mtants of proportiondty given by simpk iwrodynamic
relatiorw.

lN!i!RODUG1’ION

The gust velocities acting on an airplane flying through
turbulent air are functions of position or time known only
in a statistical sense. Consequently, aerod~amic forces and
moments produced by the lifting surfaces of the airplane
can be known only in a statistkl sense. If the statistical
characteristics of the turbulence are assumed to be invariant
with position along the flight path, flight through turbulent
air may be considered to be a stationmy random process’
and the mathematical techniques developed for such pro-
cesses (see ref. 1, for instance) may then be used. in this
problem.

This approach has been adopted in many papem on this
subject, among them references 2 and 3. Inasmuch as in
these pape& the motions and forces associated with the
longitudinal degrees of freedom were of primary interest, tha
assumption was made, implicitly, that the gust intensity is
uniform along the span at any instant. Howev&, for the

problem of analyzing the motions and forces associated
with the lateral degrees of freedom, this assumption is
inadequate, inasmuch as it implies that the vertical and
horizontal gusts produce zero rolling and yawing moments
on the wing. This problem has been treated in references 4
and 5 and elsewhere on the basis of the assumption that at
any instant the gust intensity-varies linearly across the span.

A fundamental method of accounting for the lift on a wing
due to random variations of the gust velocities in both the
&h&path and the spanwise directions is given in reference 6
for the longitudinal response of an airplane in atmospheric
turbulemx. The approach is based on the assumption that -
the turbulence is *etfic (a~r~ to ref. 7), so fiat,
at any arbitrary time or position in the turbulence, the
statistical oharacteristimof the turbulence encountered by an
airplane do not depend on the heading of the airplane. On
the basis of this aswmption, the variation of gust intensity
across the span can be related to the variation of the gust
intensity along the flight path.

k the presentreport the approach of reference 6 is extended
to the calculation of the rolling and yawing moments on a
wing due directly to vertical gusts, longitudinal gusts (herein-
after referred to as horizontal gusts), and lateral or side
gusts. These moments are required as a first step in cd-
culating the motions of a complete airplane in atmospheric
turbulence; the moments due to the motions caused by these
input moments can be calculated by conventional methods
and will not be considered herein.

Ih the fit part of the report, a theoretical analysisis made
defining the power epeotra of the rolling and yinving moments
of a wing in terms of the statistical characteristics of the
atmospheric gust velocitk. By ushg an analytical expres-
sion to deiine these characteristics, a numerical solution of
the lateral moments is prwented in the last part of the report.

SYMBOLS
a=p’{~
b wing span
c wing chord
z wing mean aerodynamic ohord
E(k), K(k) complete elliptic integrals of the second and

first kind, respectively, of modulus k
j. longitudinal correlation function for” iso-

tropic turbulence
F Fourier transform of j
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‘ug, Ug,Wg

x, Y, z
x

‘Y
Ay=y2—yl

Y*

lateral correlation function for kotropic
turbulence

Fourier transform of g
indicial-response function of time only
indicial-response function of time and dis-

placement
Fourier transform of two-dimensiom+lcorre-

lation function

2—~
modulus of elliptic integrals, -2+7
reduced kequencj, wL/O
mod.iiied Bessel functions of the second

kind
incomplete modi.iiedBessel functions of the

second kind
section lift
integral scale of turbulence
rolling moment
rolling velocity
dynamic pressure
yawing veloci~ (used only in stability

derivatives); linear displacement between
any two points

wing area
time
mean forward velocity
displacement along the flight path
component of airplane velocity along posi-

tive Y-axis
three components of gust velocity (see fig.

1(a))
reference axe9 (see fig. 1(a))
chordwise distance
spanwise distance

nondimensional spanwise coordinate, xb/2
angle of attack, radians

span influence function
integral weighting function

dummy variable of integration, Y,*—Y**
atmospheric density
dummy variable of .thne
circular frequency, 2i@?eriod

Rolling moment
rolling-moment coefficient, a.S’b

Yawin~”-rnoment
yawing-moment coefficient, @b

M?,
c,r=~

am

97 correlation function
@ power spectral density ~
Subscripts:
o trim value
g gust component

A bar over a quantity denotes the mean value of the
quantity. The absolute value of a quantity is denote! by I [.

THEORETICAL ANALYSIS

PRELIMINARYCONSIDERATIONS

In this section expressions are derived for $he power
spectra of the rolling and yawing momenta of an unswept
airplane wing or thin lifting surface of arbitrmy plan form
due to flight through random atmospheric turbulence.
Essentially, the procedure consists of expkssing tho rolling
moment at any arbitrary position along the flight path in
terms of the gust velocity at that position, establishing the
correlation function between the rolling moments at any
two points along the flight path, and tmnsfonning this cor-
relation function into an expression for the power spectral
density. The power spectrum of the ymving moment is thm
related’ to that of the rolling moment through simple amo-
dynamic relationships.

Assumptions.-The following assumptions are made in
the analysis:

(1) The turbulence is homogeneous and isotropic; that is,
the statistical characteristics of the turbulence are invariant
under a translation or rotation of the space axes (although
the results obtained for the vertical component of turbulence
require only the somewhat less restricting assumption of
axisymmetry).

(2) Time correlations are equivalent to space correlations
along the flight path—an assumption usually referred to as
Taylor’s hypothesis. (See ref. 7.)

(3) The chordwise penetration factor (the indicial-
response influence function) for the rolling and yawing
moments can be expressed as a product of a function of
distance along the flight path (or time) only and distance
along the span only.

(4) The wing considered herein is relatively rigid and, as
a result of the turbulent velocities, perfomns small motions
about a mean steady flight condition.
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The implication of these assumptions and the limitations
tlmy impose on the results of the analysis me discussed in a
subseqwmt section of the report.
, Coordinate system and gust components.—The system of

axes and the local velocity field relative to the lifting surface
are shown in iigum 1 (rL).“ The velocity at each point in the
field is resolved into components lying in the three planes of
an orthogonal set of axes, the X-axis of which is tangent at
every point to the flight path. Throughout this report these
three components are designated as follows: The component
dined with the X-axis is referred to as the horizontal gust
u~; the component dined with the Y-axis is referred to as
the side gust Ug;and the component alined with the Z-axis
is referred to as the vertical gust w~.

As the wing moves through the local velocity field, the
random variations in the horizontal and vertical gust com-
ponents are defined both in the fight-path direction and in
the spanwise direction at every position along the flight path.
Random variations of these gust components across the
chord are taken into account by indicial-response -functions
and, hence, need not be considered separately.

The side gust component of the gust veJocity field is
treated in only n limited maimei. Neither the chordwise
nor the spanwise variations of Vz are considered along the
flight path; rather, u. is assumed to act on the wing as a
point velocity with a variation only along the flight-path
direction. Contemporary aircraft dibit such wide varia-
tions in distribution of dihedral across the span that it is
doubtful that n generalized analysis could be utilized. The
point or centroid analysis should be fairly accurate when the
dihe.tlraldistribution is predominant over only a small section
of the span near the fuselage. Such a distribution is ex-
hibited by an unswept wing with zero geometric dihedral
mounted very high or low on a fuselage, For a wing with
zero aerodynamic dihedral, this component could be neglected
completely.

Detlnition of gust correlation function&In order to deiine
random variationa of the gust velocities both along the
flight path and across the span of the wing as it moves
through the turbulence, it is necessary to deiine the correla-
tion between any two velocities in the gust field through
which the wing passes. The space correlation function of a
velocity u is defined in terms of the distance T as

(1)

Von K6rmin and Howarth (ref. 8) have shown that, in
homogeneous isotropic turbulence, the correlation betwean
two velocity vectors a distance T apart can be de.iined in
terms of two scalar functions f(T) and g(r) and that this
relationship is invariant with respect to rotation and reflec-
tion of the coordinate axes. These one-dimensional corre-
l~tion functions relate the paired velocity components
obtained by resolving the velocity vector at any two points
n distance T apart into two parts: The pair lying along the
straight-line path between the points are known as the
longitudinal components and the pair normal to the straight-
line path are known as the lateral components. These two

.,
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pafi% of components are pictorially shown in figure 1(b).
Such velocity components may be measured in wind tunnels
downstream of a grid mesh. (See ref. 9.)

In reference 8, it is further shown that these correlation
fmictions are interrelated by the differential equation

r df (7’).—~ ~ +f (r)‘g(r) (2)

By defining the variable T in the coordinate system of this
report and using the correlation tensor of ieference 8, a two-
dimensional analysis of the turbulence as it affects the w$g
may be made in terms off(~) and g(r). The variable in the
correlation functions of the horizontal and vertical gust com-
ponents in the two-dimensional XY-plane of the wing is
given simply by

The correlation function of the horizontal gust components,
as derived from th% correlation tensor of reference 8, is
defined in terms of z- and y-components of the present
analysis by the formula . .

IP=$Ax,Ay)=?
{ (d$~AY)~ f [~(A@’+(AY)’]+

Y
[ 1}. (Azf$+~AtJ2g ‘(AZ)’+ ‘Ay)’ (4)

The relationship between the components is shown schemati-
cally in figure 2 (a).

In a like manner, the correlation function of the vertical
~wt components affecting the wing; given in terms of the
mean-square value of the vertical gust velocity ~ may be

%’

— Longitudinalcomponents,f(r)
*r+

W) [[, Loteralcomponents,g (r)

(a) Wing p~ing through three-dimensional turbuknoe.
(b) Components of turbulence as a f~ction of distanoe r.

l?IGmm 1.-8ign convention and stabtity axea of a wing pawing
through a turbulent velooity field. Arrows denote positive direotion,
where applicable.
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seen to be simply

For the case of side guste acting on a wing, the correlation
function would be defined in terms of AXand Ay if thes an-
wise correlation were considered. (See fig. 2(b).) Ind uch
as the side gust is considered to act only at a point on the
span, Ay is zero, and the correlation function for the side
gust in terms of iti.rnean-square value becomes

Z.g(fiz) =~g(Az) (6)

Although the mean-squme value of each of the three gust
components is given separate identity, under the assumption
of isotropy

With the gust-velocity correlation functions thus defied,
the forces and moments due to antispnmetric components
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(a). Horizontal gust components.
(b) Side gust components.
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FIGURE2.-Sohematio drawing of the relationship between the compo-
nents of horizontal and side gusts at any fnvo artiltmry points.

of the gust-velocity field acting on a wing passing through
that field may be derived in terms of these correlation
functions.

ROLHNG MOMENT DUE TO GUSTS

Vertical gusts.-The instantaneous wing rolling moment
due to vertical gusts can be written in terms of an indicial-
reaponse influence function h’ (t,y) aa

J J

m b12

fMx(t)= h’(t@wg(t – tl,y)dydt, (8)-m -bfs

According to assumption (3) of the section entitled ‘(Pre-
liminary Considerations” (see also the argument presented
in ref. 6), the function h’ (t,y) can be expressed in the form

IL’(t@) =h(tl)y(y) (9)

where -y(y) is a steady-state span influence function and h(tl)
conta~ the unsteady-lift effects. The rolling moment can
then also be written as

If the correlation function for the rolling moment is calcu-
lated from equation (10) and a power spectrum for the
rolling moment is obtained by taking the Fourier transform
of the correlation function, the resulting exqxession may bo
shown to consist of a product of two functions: One function
is the result obtained from quasi-steady considerations alone,
and the other is the absolute squared value of the unsteady-
lift function for sinusoidal gust penetration such as. that
giveri by Sears in reference 10. Consequently, considera-
tion will be confined to an analysis using quasi-steady ex-
pressions for the rolling moment; that is, the lag in buildup
of lift acro%sthe chord of the wing due to the gusts is not
included.

In quasi-steady flow, the rolling moment of a wing duo
to a variable angle-of-attack distribution across the span is
given by

Mx= qSbC,

where section lift

and local angle of

.
J
bfl[l(y) ]”=”%q/dy (11)
- bll

Z(y)= c,(y) qc(y)

attack due to gusts

Cig= W,/ u

Now, one theorem of linearized airfoil theory states that
the lift (or rolling moment) on a wing due to an arbitrary
spanwise angle-of-attack distribution is equal to the integral
over the entire wing of the product of the spmmise lift dis-
tribution due to a unit constant (or linearly varying) angle
of attack and the given arbitrary angle-of-attack distribu-
tion. Hence, the rolling moment is also given by

J

W2
@7b(71= [l(y) ]”=”ag(y)dy (12)

-bJ2
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This theorem is valid not only in steady but also in indicial
flow. (See reciprocity theorems of ref. 11.)

When the indicated substitutions are made, the rolling-
moment coefficient along the flight path is

=q$’!j:;q-w’)d,a (d = &

+2, 1s=&_17m%(w’9dr (13)

~ and the steady-state lift distribution
‘here ~*- bp

‘(~)=r’~;:)l””
(14)

pertains to a linear antisymmetric angle of attack across the
span. It may be seen that, by virtue of its definition,
T’(v*) m~t aatidy the relation

J
‘~(&) @d@=2 (15)

o

Horizontal gusts.-b analogy to the analysis of the pre-
ceding section, consideration will be cmdined to the quasi-
steady case. When stability axes are used, a change in
forward velocity at any spanwise station increases the m~-
nitude but does not change the direction of the lift and drag
vectors. Thus, the horizontal-gust contribution to the
dynamic pressure is

A~(Y)=~ ~{ [%(y) +U12–U2}

==: P(%2+2%)

=2*0%

under the assumption that u~<<U. When this linearized
approximation is used, the lift on each section is proportional

A WLNQi lN MANDOM ‘1’ UliBULJ!iN(M

to the local angle of attack

The rolling-moment coeilicient due to horizontal-gust ve-
locities is thereby defined as

where now

‘(fl=r%!nk;”(17)

The only di.ilerence in evaluating y(y’) for horizontal and
vertical gusts lies in the defi&ion of the parametar having
a variation of y* across the span; for the vertical gust, that
parameter is taken as the ac@ional angle of attack and, for

the horizontal gust, that parameter is 2a0~ The condition

that

J

1

‘r(t#)&d#=2
o

remains unchanged.

ANTISYMMETIUC SPAN INFLUENCE FUNCTION Y&)

The antisymmetric span influence function ~(y”) is defined
over the span so that any given distribution of y(y*) will
produce a unit rolling moment. T&se distributions refer to
the span loading due to a linear angle of attack a=y* for

the vertical gust or a linear leading-edge velocity 2a0 ~=y*

for the horizontal gust. Four basic variations of y(y*)
have be& considered with the proper constants so that
equation (15) is satisfied. The equations for the -y(y*) vari- ~
ations considered are given in table I and plots of these
vaiiationsare shown in @ure 3(a). The names given to the
four distributions obtained by rolling the wing refer to the
distributions which would be produced by a“uniform angle
of attack.

COFLFtEIATION FUNCITON OF THR ROIJJNG MOMRNT

Vertical gusts,-The autocorrelation function of the rolling moments due to vertical gusts’at any two stations along the
path of the wing is defied as

. wcJ(fi-zJ = lim ~
J

~+m~ :x C’,(X’)C,(z,) (lx, (18)

lVith the substitution of the expkssions for Cl(q) and Cl(zl) as given by equation (13), the correlation function of equation
(18) becomes 0

(19)
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where it is assumed &at the functions are convergent under
either order of integration. An expression is thus obtained
for the correlation function of rolling moment in tenps of the
correlation function of vertical-gust velocity. In equation
(19),

is the same as the two-dimensional correlation func-
tion defined earlier as equation (5) with Z2—XI=AZ and

By the proper substitution of variables, the double inte-
~ls of equation (19) may be separated into the single
integral of the product of the integrated weighting functions
of y (y*) and the correlation function I?wt. Thus, with the
substitution of

~—z~= UT

y2*—yl*y

equation (19) become

Equation (22) may be recognized as being equivalent to
equation (5).

Horizontal gusts.-In ah identical reamer, the autocorre-
Mion function of rolling coefficient due to horizontal gusts
at any two stations don the path of the wing is derived by

tuse of equations (16) an (18)J

With the same change of variables as in the preceding section,

where .

f

(23)

(24)

and equation (24) is now the ~equivalent of equation (4),
The integral weighting function I’(n) is the same for both
the horizontal- and the vertical-gust contributions to their
rolling-moment correlation functions.

INTEGRALWRIGHTING FUNCTION r(q)

The integral weighting function I’(q) as defined by equa-
tion (21) has been evaluated for the four distributions of
y(Y*) given in table I. These values me listed in table II
and plotted against-~ in figure 3(b). It may be shown that
the nature of the function is such that the relationship

J
~r(q) dq=o (26)

must be satisfied for any variation of r which ertains to m
antisymmetric variation of -r(y*). III table 8 the elliptic
distribution is givdn in terms of K(k) and l?(k), which me
complete elliptic integrals of the fit and second kind,

2—T The derivation of thorespectively, of modulus k=w.

elliptic -weighting function is included in the appendix of
the report.

POWERSPECTRA OF THE ROLLING MOMENT

The power s ectrum of the rolling-moment coefficient Cl
1is defined M t e Fourier transform of the autocorrelation

TABLE I

VARIATION OF 7(1/*)

Distribution

Reotangnk

Elliptio

Parabolic

Triangular

-r(u*)

15y*(l–@)

24V*(1-IY*I)

TABLE H

INTEGRAL WEIGHTING FUNCTION I’(?)

Distribution

Rectangular

Elliptic

Parabolio

Triangular

r(d

6(4–~+#)

%(2+9) [49(??-377-l)lc(k) +

(4+9#–q9E(k)]

;(64-336@+280#-J12#+ 3T9

~(2–10#+5#+5q4-3q~

*(8–21h+10#+5#-5n4 +fl

Limits
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c,:

(

(26)

For the vertical &sts, the power spectrum of the rolling-
rnoment coefficient may be, fo~d by, -substituting, the
derived relationship for VUJ(UT) given by equation (2o) into
equation (26):

Changing the order of integration here is permissible in-
asmuch as the integrals of the correlation function of WI are
convergent in both Ur and ~. The integral 1= is defined as

(28)
*

Similarly, the power spectrum of rolling-moment coefficient
due to the horizontal component of gust is obtained from
the substitution of equation (23) for the term XYC1(UT)
app&ring in equation (26):

‘“z(”)=%%rr’’)’.(~”)”(29)

where the integral I. in equation (29) is defined as

)N AWINGIN

Thus, for

RANDOM TURBULENm 95’7

two of the three components of turbulent mat
velocities, the power spectrum of the rolling-moment co-
efficient is dependent oh the ‘integration of a function of the
lifting distribution of the wing times a function which repre-
sents the Fourier transform of the correlation function of
the vertical and horizontal ~t components over the wing
span. ,

As previously stated, these results are based on quasi-
steady considerations.” Unsteady-lift effects can be taken
into account simply by multiplying the power spectral
density of the rolling moment due to each gust component. . . ..

1<)1
x

by the function
% ~ where P is the Sears function

given in referenci ‘lO-. - ‘

APPROXIMATION FOR fROE GUSTS

As pointed out previously, the side gust is treated here
only in an approximate manner; that is, the spanwise effect
is neglected. Based on this approximation, the rolling-
moment coefficient is defined as

og(Ax)
c, (z)= C,@~

The correlation function is deiined by

and the power spectrum is deiined by

(31)

(32)

(33)

RELATIONS BETWEEN THE YAWIN13 AND THE ROLLING MOMENTS

No attempt is made herein to calculate directly the yawing
moment due to atmospheric turbulence. Because of the
more complicated nature of the phenomena which give rise
to drag, as compared with those which give rise to lift, such
an undertaking would be quite di.flicult. Furthermore, in
view of the fact that the yawing moments on the wing due
to turbulence are relatively small, a detailed analysis would
not generally be warranted. In this section, therefore, an
approximate procedure is outlined for obtaining the yawing
moments from the rdli.ng moments.

The yawing-moment coefficient due to sideslip can be
expressed in the form

C==cnp(a)p

w-here,in this case, a is the sum of the trim angle CEOand the
q

instantaneous mean vertical-gust angle ~ and where /3 is
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T=
the instsmtrmeousmean side-gust angle ~ so that “

()
——
WgV*

c.=c&g) $+%$.oi7 u

where the segond term is of higher order and is neglected.
Similarly, differences in OXalong the span give rise to higher
order terms.

The rolling moment can be expressed in the same form, so
that the relationship between the yawing and rolLing mo-
ments due to side gusts is given by

()
C.(og)= % c1(OJ

‘% .0
(35)

ActusJly, this contribution to the yawing moment is generally
negligible and is included here primarily for the sake of
completenws.

For the yawing moments due to vertical and horizontal
gusts, similar reasoning may be employed. The yawing
moment in these cases ariseafrom the antisymmetric part of
the instantaneous angle-of-attack distribution due to turbu-
lence, as does the rolling moment, so that the two moments
may be expected to be approximately proportional to each
other; that is,

(36)

(37)

In essence, these relatio~ imply that the yawing moment
due to a given instantsmous spanwise gust distribution is
the same as the yawing moment due to a linear gust distribu-
tion which has the same rolling moment. The deviation of
the actual distribution from a linear one results in small
differences in the vortex field and, thus, in small diilarences
in the induced dowmvasli Thwe difhrences lead to a con-
tribution to the yawing moment which is believed to be small
and, hence, has been ignored.

In terms of their power spectra, the yawing moments are
&fined as

(38)

The power spectra of the rolling moments are defined in the
preceding sections.

APPLICATION

APPROXIMATIONS TO THE ONE-DIMENSIONAL (POINT) CORRELATION
FUNCTIONS

In order to evaluate the effects considered in the preceding
part of the report, calculations will now be made by using
the results derived therein. These calculations will be based
on a simple analytical expression for the longitudinal point
correlation function which has been suggested in reference
12 on the basis of measurementsin wind tunnels:

-Id
f (r)=e L (39)

where L is the. longitudinal scale of turbulence deiined for
any longitudinal cornilatioh function f(r) by

J
L= j(r)& (40)

The characteristics of clear-air turbulence mmsured in
the atmosphere (ref. 13) may be shown to be reasonably well
represented by equation (39), with a value of L of approxi-
mately 1,000 to 2,000 feet. There are some theoretical
obj ectiohs to this function-primarily the fact that it has a
nonvanishimg slope as r+O and, hence, that the associatwl
power spectrum does not decrease rapidly enough for very
short wavelength These conditions imply that the mean
square of the derivative of the gust velocity with respect to
the space coordinate is infinite. However, from available
measurements on atmospheric turbulence, it appears that
equation (39) remains valid to distances which are small
compared with the span of the airplane (on the order of
several inches), and the behavior of the spectrum at vmy
short wavelengths is relatively unimportant because airplanes
cannot respond to them to any appreciable extent. There-
fore, in the absence of more reliable information all calcula-
tions described in this report are based on equation (39).

Tbe corresponding lateral correlation function related to
f(r) by equation (2) is found to be

k!+dT)=(l-2L)e (41)

A plot of the functions given by equations (39) and (41)
is shown in @we 4. Their respective power spectra, denoted
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COLby (3(k’) and F(k’) where k’=—~ ~are given by

L l+3(k’)’t?(k’)=~ [1+ (k~)q~

(42)

(43)

These power spectia are plotted to a logarithmic scale in
figure 5, where it may be noted that the asymptotic slope as
h’q~ hm a value of –2.0.
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Fmwrm 5.—Power speotra of lateral and longitudinal compononta of
isotropic atmospheric turbulence.

CALCtlLATIONS FOE VERTICAL GUSTS

m

Rolling-moment correlation function.-When equation (41) is substituted into equation (22)with r= (U.) + z)

the correlation function defined by equation (22) becomes

‘[%=(m;;-%JUW) =% (44)

Inasmuch m the evaluation of the rolling-moment correlation function, as such, is not necessary to the analysb of this report,
only limited consideration is given to the calculation of autocorrelation functions. Equation (20) has been evaluated in
closed form for the case of the rectanguhm distribution of the span influen~e function y@*) as given in tables I and D.:

}
(4~3+12A2–3&A’+24A+24)e-X+p’’@l@’,k) –A.ZO(19’,A)] - (45)

40010&6~2
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where & and ~1 are defined in reference 6 as incomplete mocli.fled Bessel functions where

(4(3)

These two pwameh represent the ratios of the distances b and Ur to the integral scale of turbulence L. The parameter B’
reflects the size of the wing span relative to the characteristic size of the turbulence and, as such, is one of the more important
parametem appearing in all the calculations involving spanwise correlation. It effectively scales the magnitude and shupo
of the correlation functions and power spectra and, in the limit as @’~0, the equations for the antisymrnetric moments lilce-
wise go to zero inasmuch as no rolling or yawing moment will exist when a iinite span shrinks to a point.

The parameter A is a measure of the flighfipath distance relative to the characteristic size of the turbulence and, in the
limit as A4 O, the correlation function must reduce to the mean square value of the rolling-moment cmfficient; hence,

B=%, (X=O)

(47)

inasmuch as no adequate tabka appear to be available for the functions ~G and& a numerical evaluation of equntion’
(45) has not been made. However, an analysis of this correlation function with other approximations forf(r) indicates that
the effect of span loading-is minor and that a reduction in B’ attenuates the correlation function.

()
.—For the vertical gust component, the integral definition of IM &I is given by equ~tion (28)Ev~uation of I. ~~v

()
whereas Vmg(UT,v) is now defined by equ-ation(44). The indicated integration may be performed in closed form as a function
of q and the reduced frequency parameter k’. Thus,

where

k’=g

(48)
-l/

for a range of values of &q/2
and & and K1 are modified B~el functions of the second kind of order Oand 1, respectively.

A plot of equation (48) is shown in figure 6 as a function of the-frequency parameter k’,
from O to 1.0. Although the physical signi.thnce of the function 1. is rather obscure, the plots are usef~ in the aubsequont
numerical integration of the product of I* and I’:

Power spectrum of rolling moment.—In general, the analytical solution of equation (27) for the power spectrum of the
rolling-moment ccwflicient due to vertical gusts, when possible, is a tedious process. Numerical integration by means of
either Sipson’s rule or some integration process of higher order is generally preferable to integration in closed form. How-
ever, the analytical evaluation of equation (27) for the case of a wing with rectangular span loading is given here in order to
illustrate some of the characteristics of the equations. After the indicated substitutions are made, equation (27) becomes
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solution is

18~Lc#
@c,(k9=mpa4 [1+ (k’)q’ (scd(k’)’:&(z)&+{a’+l&z2[l–(~’) ~}~(a)+

{2d[3-(kql+3%[l- (k')q}KI(a)+2a' [l-3(Ml-32[l-(k~~)

wlmro a=/3’~~, L?=@#J and K-j(a) and Kl(a) are

modiiied Bessel functions of the second kind 2 of argument
a, Equation (49) is plotted in figure 7 (a) as a function of
k’ for a range of f?’ between 0.03125 and 1.0.

For small valuea of frequency o (and hence k’) or scale
factor /3’, equation (49) becomes poorly behaved’ because
the solution takes the form of small differences of higharder

2Vokmfortho fntegrolof Eo my bo found fn mveral Publfc@arq one ofwldch Isrefomrrm
14, tubk 2 (Zahlerrtnfel2). A mmprobemlve listlng of other avaflable rrmthomatimltabh
Inciudlog tbew Be] functions lagfven In rekcnce 16.

t--t
I.OM

.lkM4w44L

10

.01

k-’

I_(k’)
ficWrR~ O,—Variation of vcrtkal-guet weighting parameter ~ for

a number of valuea of 9’q/2.
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(49)

terms. The reason for this may be seen by expanding the
Bessel functions in their power-series form and grouping
like powers of the variable a. The coefficients of the &t
three terms of the power seriesa+, ‘a-a, and ao (wfi& me the
predominant terms for values of a<l) are identically zero.
Under these conditions, small computing errors or the lack
of signiikmt figures will cause large inaccuracies in the
numercial evaluation of the function.

The dif%cultiesjust described maybe overcome somewhat

1.0

I I I I

1111

.[

.,. ,

u%

.Ooo1

.Cmol ,
!-0 !0 !00

K“

(a) Reota?gular span loading. ,

FIQUEHT.—Power speotra of rolling moment of wing due to vertioal
gusts.
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by evaluating equatiori (49) for the limiting case’ of k’=&

18~LClp2
@c&’=o) = [@’+16/9’9K003’)+(619’a+3W’)K,@’)+2P’’-32]

Tuyl”

(60)

When the Bessel functions are again ~anded in powers of P’, only several terms are needed to evaluate the function at
small vfdues of f?’. As before, the coetlhents of all negative orders and the zero order of B’ are identical zero.

rThe physicsl necessity that, as the span b approaches zero, the expression for the power spectrum o the rolling-moment
coefficient must also approach zero ip satded by equation (49) inasmuch as the lowest order term with a nonzero coefficient
appearing h the equation is aa (as pointed out above)-; that is, for b+O,

@a,(co)= (Constant) a2=0

In order to compute %1 for the other three types of distribution of wing loading given in tablea I and H, a numerical-
intcgration process involving Simpson’s three-point rule of integration was employed. The .ower spectra thus obtained
are plotted m figures 7 (b),(c), and (d). This method was also used for the rectangular lift & tibutlon and was found to
give ood agreement with the analytical results.

l!’t is of interest to note that whereas the power s ectra of the vertical gust approach a 10 arithmic decrement of —2
f?(see fig. 5), the rollin -moment power spectra shown in gure 7 approach a decrement of –3.

3
At&e low-frequency end of the

spectrum (long wav engths) the power appears to approach a constant which is zero only when B’, the ratio of span to scale
of turbulence, ISzero.

Some simplified ap ~oachea to the calculation of the rolling power of gusts (for example, ref. 4) lead to the result that
Lthe spectrum of the ro g power of the vertical gust ap~ears as the fit derivative (slope) of the vertical-gust spectrum.

b maybe seen horn figure 7, such an approximation is @Meal only in a very small band of frequencies for wings having
small values of @’.

CALCULATIONS FOR HOREZONT.4L GUSTS

Rolling-moment correlation fmmtion.-When the expressionsfor j(r) and g(r) given by equations (39) and (41), are sub-

stituted into equation (24) with r= d (2)
(U~)’+ @ ‘~ the one-dimensional correlation function for horizontal gusts becomes

[ &le’- ~**J%)=? l–& (61)

The correlation function of rolling moment is obtained by inserting equation (51) into equation (23) and integrating. For
a rectangular distribution of @$, -

.—
31@tx?t=~ ~

J
‘Ct@)= Ug ~ (4 —h+Yt)

and

2k2+6]e~—4(A2+3X+ 3)e-x
}

(62)

G==-QF’[@’3+3~’’+6~’+6)e-fl-6] (53)
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As in the case of the vertieal gust, the cofielation function haa not been
for the reasons already given.

IN RANDOM TURBIJZQNCE

calculated for the other three

()Evaluation of IU ~ q “—The evaluation of ‘Is, as. defined by equation (3o) for the case of

given by the expression

where k’=$ and K and K1 are the modiiied Bessel functions of the second.kind of argument ~
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(b) Elliptio span loading.

FIWRE 7.—Continuti.

963

distributions of ~(@)

the horizontal gust,is

(54)
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The function given by equation (54) is plotted against i?
in figure 8 for values of /3’7/2. Values taken from this plot
may be used in the numerical integration of the power
spectra of the rolling-moment coefficient.
. Power spectrum of rolling moment.—The power spectrum
of the rolling moment due to the horizontsJ components of

, turbulence acting on the wing has been determined by using
the expression for 1. obtained in the preceding section and
the four distributions of the paramekir r(q) given in table II.
The integral of equation (29) hss been evaluated numerically
for alI four cases of load distribution, and the resulting
variations of the power spectrum with frequency and P’ are
plotted in figure 9. h addition, the analytical solutions for
the cases of rectangulsx and parabolic distributions are given
here and their numerical values were checked against those
obtained ,by the numerical-integration process. By use of
equation (54), the solution for the rectangdsr csse is found
to be

1
16a(az+4)Kl(a)-64 (55)

.

t
I I I I 11111

-.001

-.0!, 1.0 10 too
..

I.(H)
FIGURE 8.—Variation of horizontal-gust weighting parameter ~

lig2L
for a range of valuex of L9tq/2.

where a=p’~~ and k’=f$. The analytical solution

for the parabolic distribution is given by

24@-’La:c,2
‘ [(209a’+26j344+ 331,776@)&(a)+G,(k’) ‘7=@aS[l+(k??

(a7+3,424a’+133,632a3 +663,552a)K~(a) + .

J
(a7+63as) ~&(z) dz-l,120a4+32,256a’- 663,562]

(56)
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FIGURE 9.—Continued.Fxcmnm9.—Power spsotra of rolling moment due to horizontal gusts.

A comparison of the values obtained for equations (55)
and (66) rmd plots of the results obtained by the numerical-
integration process indicated no di.lference,and none is shown
in figure 9.

It is significant to observe that very little variation exists
in the power spectra of figure 9 for the four span loadings
considered. However, as compared with the rolLingmoment
due to vertical gusts (fig. 7), the rolling moment due to
horizontal gusts is relatively small for small vshm of trim
rmgle of attack. Although no exact expression for the ratio
of the power spectra of the rolling moments due to u~ and w~
may be given without including & and y, it may be seen
from @gurea7 and 9 that, in general,

equal to the variation of equation (41) with ~, which is.
plotted in &ure 4.

The powar spectrum of the rolling-moment coefhcient as
given by equation (33)- with G(lc’) given by equation (43)
becomes

(59)

The variation of the spectrum with frequency ii’=$ is

shown as the f3(k’) curve of figure 5.

DISCUSSION

The purpose of this section is to discuss the implications
of the assurhptions made in tbe analysis of this report, the
reasons for making these assumptions, and the application
of the results.

(57)’

whore ciOis given in radians.

CMmATrONS FOR SIDE Gws ASSUMPTIONS CONCERNING THE NATURE OF TURBULENCE

For the side gust considered, the correlation function of
the rolling-moment coefficient as given by equation (32)
becomes

The turbulence was assumed to be homogeneous in order
to make the problem stationary in the statistical sense and
thus permit the use of the mathematical techniques developed
for such problems. In a practical sense, turbulence can be
homogeneous only in a limited body of air. The assumption
thus implies that the dimension of this body of air along the
flight path is large compared with the distance @aversed

(58)

and ,the variation of this function with UT/L is; of course,
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FIQUEB9.—Continued.

in the reaction time of the airplane. In the case of loads
studies this reaction time is of the order of the time to damp
to one-half amplitude, but, in the case of motion studies,
the reaction time may be much larger. Obviously, the
greater the body of air, tie greater the reliability widi
which the loads and motions can be predicted (in a statistical
sense) for one run through it. In ‘general, turbulence at
very low altitudes, which may be influenced aignMcantilyby
the conflgnration of the ground, and the turbulence in
thunderstorms may not be suEiciently homogeneous for this
tgpe of analysis, but other types of turbuIenca are likely ta
be substantially homogeneous over sufiiciautlylarge distances.

Isotropy was assumed in order to permit the required
two-dimensional correlation functions to be expressed
simply in terms of the one-dimensional correlation functions.
For suiliciently short wavelengths all turbulence is isotropic
(see ref. 7), but for long wavelengths it can be isotropic only
if it is homogeneous (both in the pltie of the flight path
and perpendicular to it). (The condition of axisymmetry is
less restrictive inasmuch as it does not specify the variation
of the characteristics of the turbulence in the vtical
direction.) In practical problams, if the turbulence may be
assumed to be homogeneous, the conditions of isotropy are
likely to be satistied suf6ciently to permit the use of the
npproach presented herein for all but very long -wavelengths.
The wavelength at which this approach ceases to be valid
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FIGURE 9.—Conoluded.

dependa on the size of the body of air under consideration,
being longer for a large body.

Taylor’s hypothesis implies that the variation in gust
intensity that prevails along the flight path at any instant
will remain substantially the same until the airplano has
travemed the given body of air. The required correlation
functions for atmospheric turbulence are thus in the nature of
space correlation functions (rather than time correlation
functions) and have been considered as such. The statistical
characteristics of the turbulence are then independent of
the speed at which it is traversed. Clearly, the validity of
this hypothesis depends on the flying speed of the airplane
and it would be expected that, at very low speeds; the
hypotbis of Taylor becomes less valid and the results may
be less accurate. On the basis of present knowledge, no
deiinite 10WWlimiting apeed can be quoted. The effect
of finite flying speed on the gust correlation function can be
expected to be most pronounced for large distances, where
the correlation is weak. Thus, the effect on the various
spectra is likely to be small and to occur at the Iongeat
wavelengths, where, aa previously mentioned, the spectra
are somewhat uncertain for other reasons w well.

For practical purposes, the parameter L (the integral scale
of turbulence) used herein is a largely fictitious quantity,
imuimuchas it is, to a large extent, proportional to the values
of the gust spectra for infinite wavelengths. In view of the
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uncertainties in the values of the spectra at long wave-
lengths and the fact that the spectm in this region pre-
dominantly define the area under the integral, the parametq
L has little physical signi.dcance. Therefore, at present,
insticient information is available to give an exact value
for L to be used in connection with the numerical results
calculated herein. However, on the basis of the measure-
ments such as those of reference 13, a value of 1,000 to 2,000
feet appears to be appropriate for the conditions of the
referenced tests. It is desirable to obtain more information
concerning the spectm of atmospheric turbulence under a
wider range of conditions. More detite wdues could then
be deduced by fitting measured results by means of an
analytical expression of the type used here. ~This expression
could be used M a means of obtaining a value of L by extrap-
olation of the measured results to inihite wavelengths (zero
frequency).

ASSUMPTIONS CONCERNING THE AERODYNAMIC FORCE9

The fundamental assumption concerning the aerodynamic
forces is that they vary linearly with gust intensity. This
assumption implies that the ratio of the gust speed to the
flying speed must always be fairly small; if the aerodynamic
forces and moments tend to vary with gust intensity in a
nonlinear manner, as the wing yawing moments do for all
angles of attack and the other forces and moments do for
high tmglea of attack, the ratio of gust intensity to flying
speed must be very small-about 1/30 or less. However,
M previously mentioned, the wing yawing moments due to
gusts are likely to be quite d, so that some error in them
due to slight deviations from linearity is not likely to aflect
appreciably the results of an analysis of the lateral motion.
Henca, for an airplane flying at small angles of attack and
at speeds of about 200 knots or more, in continuous turbu-
lence, the assumption of linearity should be valid; for flight
in severe thunderstorms, it is not likely to be valid, and, for
flight at high anglea of attack, it is likely to be valid only for
light turbulence.

The rigidi~ of the wing, which &s mentioned in the
list of assumptions, enters only indirectly into the problem
considered herein. The results obtained here are valid
whether the wing is rigid or not. However7 in the case of
flexible wings (the term “flexible” being used to describe
wings with deformations which give rise to appreciable
aerodynamic forces), certain additional inforrqation is
required. (See ref. 6.) This information may take the form
of span influence functions y(g) modified by static aero-
elastic effects, or may require certain moss-comelation
functions or cross spectra between the gust forces and the
dynamic forces, depending on the individual case.

The assumption that the indici@esponse inlluence func-
tion h(t,y) can be written as a product of functions of time
only and distance along the span only is based on the reason-
ing of referenca 6. This reaaoning, in turn, is based on the
observation that, according to the available information for
the lift distributions due to sinusoidal motions (and, hence,
those due to indicial motion), the lift distribution tends to be
substantially invariant with frequency (or time) except for an
overall factor. Inasmuch as this information is confined to
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unswept wings, this assumption may not be valid for swept
wings.

APPLICATION OF THE ~DLTS

In this report the rolling moments and yawing moments
have been “calculatedfor a wing due to the u, u, and w com-
ponents of turbulence. . H the turbulence is isotropic, these
components are statistically independent at a point. In any
practical application, all three component9 are always pre9ent
and the wing rolling and yawing moments due h- the com-
bined action of the three components must be known. In
isotropic turbulence, the cross correlations between u and w
and between v and w in the horizontal plane are zero, although
u and u have a nonvanishing cross correlation. Thus, the
moments due to o and w can be added directly, but, if hori-
zontal-gust effects are to be taken into account, not only the
moments due to u calculated herein but also the moments
which arisefrom the cross correlation between u and o should
be added to the othem.. However, there is reason to believe
that the horizontal-gust eflects on the lateral moments are
generally very small, so that neglect of this cross-correlation
effect is usually justied.

The rolling and yawing moments due to u= and Wg con-
sidered herein are only those contributed by the wing but,
inasmuch as the lateral moments contributed by the fuselage
and tail as a consequence of thwe two components of gusts
are generally very small, the results given here may, in
genaral, be used to represent the lateral moments on a com-
plete airplane due to these two gust components.

Similarly, the rolling and yawing moments of a &mplete
airplane due to the wnmponent of gusts depend not only on
the wing contribution considered here but also on the con-
tribution of the vertical tail, which can be calc~ated in a
straightforward manner. For instance, a method of calcu-
lating the yawing moments and side force on a fuselage nnd
vertical fin due to side gusts is found in reference 16.

Although the contribution of the horizontal component of
gusts to the lateral moments appears to be small compared .
with the other two components, it should be kept in mind
that the eilect of this component increases as the square of
the trim angle of attack. (See eq. (57).) For conventional
airplanes in the landing configuration and for vertically rising
airplanes in the transitional stage, the effects of horizontal
gusts may well be predominant in calculations of the forces,
moments, and motions due to turbulence.

CONCLUDING REMARKS

The correlation functions and power spectra of the rolling
and yawing moments on an airplane wing due to the three
components of continuous random turbulence have been cal-
culated. The rolling moments due to the longitudinal
(horizontal) and normal (verhical) components depend on the’
spanwiae distributions of instantaneous gust intensity, which
were taken into account by using the inherent properties of
symmetry of isotropic turbulenm. The remits consist of
expressions for the correlation functions and spectra of the
rolling moment in terms of the point correlation functions of
the two components of turbulence.
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Specific numeric@ calculations were made for a pair of
correlation functions given by simple analytic expressions,
which fit available experimental data very well. Calcula-
tionsmere made for four lift distributions and the d.iilerences
in the results calculated for these distributions were small.
By comparison with the results calculated herein, the results
of previous analyses for which it was*assumed that random
turbulence along the f&ht path and variations of turbulence
across the span were linear have been shown to be valid only
when the ratio of the span to the integral scale of turbulence
(about 1,000 to 2,000 feet) is SDld.

A comparison of the power spectra of the rolling moments
due to horizontal .-t.s and those due to vertical gusts showed
that the vertical gusts were predominant at small values of

trim angle of attack (or trim lift coefficient); however, the
relative effect due to horizontal gusts increased as a function
of the square of the trim angle of attack.

The rolling moment due to lateral (side) gusts, which is
small, was expressed in terms of the instantaneous value of
the”gust at representative points on the wing, so that the
effect of spanwise variation in gust intensity was ignored.
The yawing moments were considered to be proportional to
the iolling moments, the constsnts of proportionality being
given by simple aerodynamic relations.

LANGLEY AERONAUTICAL LABORATORY,
lWATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., September6, 1966.

. . APPENDIX

EVALUATION OF THE ELLIPTIC INTEGRAL WEIGHTING FUNCTION

The evaluation of the integral weighting function I’ (q) involves the integral given by equation (21):

J

l-q
r(q) = ‘r(?/l*) -K?h*+ll) @/1*

–1

For the case of the elliptic distribution of the additional span loading factor,

and the integral weighting function to be evaluated becomes

Urider the substitution ,

the inteagralmaybe written as -

I -1

Lmsmuch as l–z’= (1–z)(l+z),

M.O=$(2+*(2+7) J
:1 [(2–71)2@-T’1i(l -h) (1-M) (1–z) (l+kz) O?Z~

~ (2–71)2(2+7i)~: [(2–TOW–f14(l-h7 (l–&) dx
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where the integmnd may be seen to be an even function of the variable z. Multiplying numerator and denominator by the
radienl rmd expanding yields

The integrals may be recognized as elliptic integrak in powers of a+ for which the closed-fo&n solutions may be found in

referenco 17, for example. In terms of the standard elliptic integrals (in Jacobi;s notation) of moddus k ==,

is doiined as a complete elliptic integral of the first kind, and ,

is deiined as a complete elliptic integral of the second kind. Tables of these integrals may be found in most mathematical
handbooks as well as in referenm 17. In terms of these integrals, the solution for the titebya.l weighting function is found
to be

r (TJ+$ (2-$(2+T){ ‘~5;q)2 [(8+3P+~K(k)– (8+7&+ 8k4)E(k)]–
.

lP[(2+7)*+(2-q)’+?lq
3k4 [(2+F)K(k)-2(l+& E(k)] +

[(2–q)2+#+q%q
P

[K(k) –E(k)]–&(k)
}

=% (2+q)[4v(qs–3q–l)K(k) +.(4+ 9q’–q4)E(k)]
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