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COLiiPRESSIVE STRENGTH OF FLANGES ‘

By ELBmCIE Z. STOTVJCm

SUMMARY

The mam”mumcomprem-re stres~carn”edby a hingedjartge
is computedfrom a deformation theory of pla@ifl”@ combined
un”ththetheoryfor$nite de$ectionafor this structure. The c4m-
puted strewes agree well with thow found experimentally.
Ernpirieal obser~~ationindicates that the TeSd~S will ako apply
fairly well to the more commonly used$anges which are not
hinged. :.

INTRODUCTION

Or&uariIy the abiIity of columns and plates to carry
additiomd load does not entirely cease when they buckle.
If the load is increased sufficiently beyond the buckling
load, they will ultimately refuse to carry more Ioad, with
subsequent permanent. distortion. In the case of columns,
the masimum load is not far above the buckling load (see
reference 1); in the case of plates, there may be a consider-
able spread betvieen the two loads.

The first essentkd requirement for the solution of the
probkrn of maximum Ioad is the existence of a tite-
deflection theory for the behavior of the structure. Maximum
load always occurs at some finite deflection or distortion
beyond the budding load. The problem of the Ioad for a
given distortion is thus nonlinear even without the intro-
duction of plasticity. Few such solutions exist for post-
buckling behavior of structures even in the elastic region.

The second essential requirement for computation of
maximum load ia the abiIity to desm-ibe the nonlinear b+
hatior of the structure that results from plasticity of the
material. Neither coIumns nor pIates would ever pOESIXS
a maximum load in compression, if the material of-which the
structure was made obeyed Hoolie’s Iaw at all times, al-
though they might be tremendoudy distorted. In such a
structure it would always be possible to add still another
increment of load, which would result in still another incre-
ment of distortion. The question of a maximum load must
therefore be directIy linked with the failure of the material
to obey Hooke’s law—that is, with the plasticity of the
material and the nonhnear behavior of the structure which
results from that.plasticity. ‘

>.

For the calculation of the maximum load tied _by a
buckled structure, these two eesential but difllcult require-
ments musk be met. This report treats the maximum com-
pressive strength of a. aimpIe plate structure for which the
eflects of both type of nonlinearity can be found—that is,
the compressed flange hinged idong one side edge.

The maximum load carried by a long hinged flange is

computed as follows: The strain distribution across the.
flange at any augIe of twist is found from kno-ivIedgeof non-
linearity due to finite deflection. This elastic strain &-
tribution is aewmed to persist into ‘the pkstic region. This
strain distribution is transformed, with the aid of knowledge ~
of nonliietity due to plasticity, tito a stress distribution
by means of some appropriate stress-strain relatiom The ~
Ioad carried by the fkmge at the particular twist is then
obtained by integrating the stress diatibution across the
flange. The load ia then investigated to see if it has a
maximum ~aIue as thd twist increases; the maximum load
should correspond with the experimentally observed maxi-
mum load.

Experimental data on the behavior of hinged flanges have
been obtained in the LangIey Structures”Research Diwkion
by the methods of reference 2. These data are used in the
present report for comparison with theoretical relations.

The theoretical treatment of the behavior of & hinged
flange commences in the next section with a discussion of the
effects due to finite deflections. DetaiIs of the theoretical
calculations are presented in two appendixes.

NONLINEARBEHAVIORDUE TO FINITEDEFLECTION

Theoretical strain reIations.-A flange of length L, width
b, and thiclmess t is shown in figure 1 together with the
coordinate system. The flange is hinged along the line z=O
and has a free edge along the line z=b. Compression is
appIied Iongituclidly.

The load ia applied uniformly at first. The theory of
appendix A shows that, for strains below a certain critical
strain cc,, the flange wiU shorten without twisting. The
critical strain c., at which twisting begina is sho-ivnto be

e.r=2~/y,)+;(;) (1)

where P is Poisson’s ratio.
As the load is increased beyond that required to start

twisting, both the middle-surface strain and the strees dis-
tribution across the flange width become nonuniform, larger
than the average at. the hinge, Iess than the average at the
free edge. The middk-eurface strain at any point. (z,z) of
the flange is shown by the theory of appendix A to be

(t/b)’
‘2 ‘-(’-39+3 “a)‘==2(1 +p)+=+24 1+ki

-.
1Supersedes N“ACA TATX02. “Ocmme6s&e Strength of FIm@’ by EJbrfdgs Z. StmelL 1960.
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in which & is a parameter lying between O and 1 which
specifies the amouut of twist,

J
z/2

K=
da

0 ~1–ii’8i112 ~ .

is the complete elliptic integral of the &at kind, and

[
_ (W)’

‘2=12 “’ 2(1+/J)
]=X?(l.+P)(;)

The average middle-surface strain G=,in the elastic range
the average stress divided by the elastic modulus E.
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(a) Without distortion. (b) With large dfstort!on.
(o) Enlargement of swtion e.@12

FIGUREL-Oruolform eeotlon, omskting of four fdcntfcal tfanges, before and aftsr buckllng.
Coordinate eysbm fs ehown on one flange,

Thus, if a value is assigned to 1= (a certain amount of
twist), both the quantities K and m2 are dctm-mined; the
strain at any point (z,z) may then be computwl,

Equation (2a) may be simplified as shown in appc.ndix A
to the following expression which holds over t.hc essentially
straight part of the flange:

,==:=,+: (%-6,,) (1–3 $) (2r.))

Theog also shows that over most of the flango Icngt1]
(except at the middle and extreme ends) the relation between
the middIe-surface strain at the hinge 6*,the avcrrigc middl.e-
surfaco strain over the width of the flange c=,,nml the crit.icnl
strain e6~is

and the”rotation @~azat the .middlc of the flange is

or approximately

f#mm=l.37 : 4--1.55;

(3)

(4n)

(4L)

Relations (I), (2), (3), and (4) are susceptilh to expcrimcnla]
chOck, and the following section describes tho wsulb of
experiments designed to test these relations.

Experimental check of strain relations,-The hinged
flange shown @ ~gure 1 was realized exporirnentally by the
cruciform column shown under test in figure 2. ‘l’he cruci-
form column has four identical flanges which, if equally
loaded, will twist at the same time without restraint.to cad
other; thus the condition of zero restraint against rotation is
fulfilled. ThG colu~ were all sutllciently short to causo
them to buclde by twisting rather than by Euler bending.

The tests included measurement of the stress-strain curve
for the rnaterialfrom which the diflerent groups of specimens . .

were made, determination of the buckling and maximum 10uI
for each specimen, a study of the strain distribution across
the flanges of two spcwirnens,and a measurement of rotation
of each specimen at the middle.

Results of the buckling-load measurements and their con-
nection $vith the streswdrain curves for tho specimens wcro
given in reference 3 and are shown in figure 3 of this repro%
where the buckling stress is plo t,twl against tho, calculatcd
elqstic buckling strain. Because t.ho experimental points
follow along the strsss+train curve, the proper reduced
modulus for pure twisting in the plastic rango is concluded
to be t~e secanLmodulus, w~ch agrees with the theoretical
value of.ref erence 3. -.

The” relation between” the computed and expcmimontal
middle-surface strain distribution over the width of tho
flange for one specimen at the quarter heigkt for a number
of diflerent loads is shown in figure 4. The highest average
stresses_exceeded the proportional limit of tho material.
The measured strains for the four flanges wem averaged
to give the pointa shown in the figure. Three average strains
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were some&at larger than the ratio of average stress to ~
at the very I@hest loads where plasticity reduced the a~er-
age efiecti~e mod~us. From the experirmmtrdly observed
aver~ae strain across the fhmge at each load and t-hecritical
strain at which budding began, the corresponding theoretical
strain distributions ~ere computed from equation (2b) and
me presented as the curves in Iigure 4. This calculated
strain distribution agrees fairly weLI with that observed
experimentally. -

FIGLZF.2—Bucklhrg of n uucIform section fn compression.
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‘lb relation between average strain, corner stmin, and ___
critical strain given by equation (3) w= investigated experi-
mentally. From measurement of the strain in two opposite ‘“-
flanges of one budded specimen, averages were taken to
give mean dues of e, amd % The critical strain ●crwas .._
also accurately known. Figure 5 shows the theoretical rela- ,,
tion of equation (3) compared with the averaged experi-
mental points. The agreement is good. The stmh @
ceases to be elastic at. a value of 0.0025, so that both the
curve and the points extend well into the plastic region.
The persistence of the agreement betvrecmequation (3) and
the experimental points up to the highest strains indicates
that, even though equation (3) was derived on an elastic _
basis, it is a good apprcminmtion in the plastic region also.

F~e 6 compares the theoretical rotation of three cruci-
form specimens of widely different lengt-hs with the mess- --
ured rotations. The ordinate in figure 6 is the shortening
6/L, which is, the hinge strain %. Rotation was measured
by a pointer attached to the flange and moving past a ‘-
circular scale. Equation (4b) was usecl to compute the
theoretical rotations. The agreement between theory and
experiment is good in this case also.

NONLINEARBEHAnOR DUE TO PLASTICITYOF THE
.MATERLAL

The material of the flanges (24%T aluminum alloy) is
defied by the stress-strain curve of figure 3. The figure
shows that above 2!5ksi the materkd starts to depart from
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purely elastic behavior and becomes partly plastic. As a
result of this plasticity, the flanges exhibit nordinearbehavior
above about 25 ksi

The most elementary consequence of the plastic nonIinear
behavior is the substitution of E,,, for ~ in the formula for
critical stress which, for a hinged flange, is (reference 3)

C,,=E,,OEC, (5)

Another consequence of the nonlinear behavior due to
plasticity is the .existence of a maximum load. 13iperi-
mentally, as the load is increased more and more, the twist
of the flange will increase untiI a value of load is reached at
which the flange ceases to carry more load; this value is the
maximum loaci. As was pointed out in the introduction,
if the material of the flange obeyed Hooke’s law strictly
at all times, the rotation of the flange would increase
indetinitely with increase in ~oad. The existmce of a maxi-
mum load is therefore directly attributable to plasticity
of the material.,

As the structure twists more and more beyorid ““thebuck-
ling load, greater and greatm shear strains are setup through
the thickness of the flange. The shear”strains are zero at
the middle surface and have opposite signs at the faces.
These shear strains will combine with the compressive
strain already present to form a strain intensity; at a point
where the compressive strain is ~rand the shear strain is 7,

d

-.

the strain intensity is ei= e~+$. (In order not.to have to

consider variations of -r through the thiclmess, a mean value
of # is used.), According to the deformation theory of
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plasticity used herein (reference 3), the value of e~ at any
stage of ,defonnation determines the reduced modulus of the
matmial at that stage.

Since the ma.simumload always occurs it a finite rotation
of the fla&e, the two effects of nonlinearity must be Corn bincd
in order to account for the maximum load. Such u comb-
ination is effected in appendix B and the results are giveu
in the following section.

MAXIMUMLOAD OF A FLANGE

. It is show-n in appendix B how ihe maximum load on a
hinged flange may be computed from the dimensions of the
flange and the stress-strain curve for the material.

The middle-surface strrtin distribution across the ffango
is given by equation (2a). In addition LOthese strainswhich
arise dtiectly from the comprmsive load, there me also
shear strains in the flange due to its twist. Thwe shear
strains become as large as two-thirds of the compressive
strains upon which they are superposed. Although, stricl)y
speaking, the deformation theory of plasticity has only bcm
shown I.ohold for simple loacliig (reference 4), its validity is
also assumecl herein for complex loading. The squtiro of
the compressive strains and the mean square of tho shear
strains were added in the proper manner to give a strain
intensity. (The highly loctdized effects of bending at tho
middle and ends have been neglcctcd.) From the com-
pressive stress-straincurve for the material the value of tho
secant modulus -?3sec~vas read at this strain intensity. Nor
increasing strain intensities the compressive strce9 u at
any point across the width of the flango is thm sirnpl~
& times the compressive strain at the point. IVeaf the
free edge the strain intenti~y decreases; in such a casti, the
elastic modulus ~ is used to comput~ t,l~e corrwpomling.
stress reduction. The average stress a., across the fhmgo
is then

The value of u*, is computed for a number of Wlement twists
until a maximum average stress amtiis found.
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Figure 7 shows the results plotted in a nondimensional
form simihw to that employed in refermce 2. The param-
eters used have some theoretical justification and ha~e the
effect of making the information giwm by the plot largely
independent of the material. The agreement between the
computed curve and the experimental points for cruciform-
section columns is satisfactory.

The fact that mtium loads may be computed in thk
case solely on the basis of deformation theory suggests that
the theory is sufficiently accurate whm the stress state
changes from pure compression to combined complwssion
and shear, for shear strains up to two-thirds of the kwgeat
compressive strains.

An interesting side light on this computation is revealed
by the -dues of stress intenaity at the supported edge when
the load is a matium. The stress intensity for eight widely
tierent. cruciform is a constant, to about 1 percent., equal
to about 47 k.si (See table 1.) This value is close to the
yield stress for the material (46 ksi).

When the flanges are present in actual structures, they
are generally connected to other members which offer a
certain elastic restraint against rotation along the supported
edge. The question arises as to what effect this connection
has upon the calculations based on the assumption of a
hinge connection. The ehtst,ic.restraint-along the supported
edge fl have two major effects: The criticaI strain will be
appreciably raised and the effective length Z of the buckles
wiIl be appreciably ehortened. A necesary consequence is
that the rotation (which is proportional to Z) is reduced

+ 24S-T4 Crucifiwm
0 .24S-T4 H-secfion
❑ 75S-T6 H-sectbn
o R303-T H-seci%n
A /4S-T4 H-sectim

.4 -

2 --

,1 1 1 1 !
0 2 .4 .6 .8

6=
L

6.. -

Frmim 7.-C0mwknnoftheoreticalcurvefor the maximumstrength0[24S-T4.dumlnnm
8UOYmdforniwith test reetdk. ComWESSImyfeld stmm ucP46 M. (’ExI)wht=@d
tines fcz E-secthns of various alnmfnurn allays ham been added for comparison wfth
the theoretical enme.)

1
0

and, therefore, is more nearly of the shape of a circular sine
along the length of the flange than it.would be when a hinge
is present along the joint. A third effect is the introduction -
of a alight curvature across the width of the flange. When
the revised miticaI strain and the revised length are inserted
into the forrmdas of appendir A, which were derived for a
flange supported along a hinge, it is found that the rotation
and the strain relations may still be accurately predicted
for finges with restraint aIong the supported edge. Such
a result seems to indicate that the smfl amo~t of tra-m .._
verse curvature introduced by the restra~t, does not have
an important effect on the formulas.

In view of the fact that the theory of appendis A appLies
fairly weLI to flanges -with restrained edges, it might be
expected that the maximum strength, also, might be given ___
by the same theory. Experiment shows that such is the .–-
case; the ~alues of rnasimum strength for H-sections are .
included in the experiments.1points shown in @me 7 and
the points intermingle with the cruciform points such that

-one set cannot be distinguished from the other. The .
theory of this report may then be said to apply approximately
to fingea with elastic restraint along one side edge as ~~ _
as to ffanges without elastic restraint.

CAUSEOF MA~lllM LOAD

31aximum load occurs when it is no longer possible for the
stress, on the average, to grow with increasing strain. The
natural tendency for the stress to grow is defeated b-y the
decrease in effective modulus.

h order to ike.trate this effect graphically, figures 8(a)
and 8(b) have. been prepmed. These 6gures illustrate the
calculated strain and strss distributions across a hinged

flange of 24S–T4 ahuninum alloy tid of proportions $= 14

and ~= 12. These distributions hold over the greater part

of the flange -where the bending is. negligible. Up to the
critical strain of 0.002 Ud the critic~ StreSSOf 21.5 PsiJthe
&tributions are u-form. As the load is increased beyond
the critical mdue, the distributions become. more and more
nonuniform as a result of twisting of the flange. , With in-
creasing load, the strain increases faster at the hinge than at
the middle of the flange as shown in @ure 8(a).. l?or aiime,
the corresponding stress also increases faster at the hinge
than at the middle of the flrmge, as shown in &ure 8(b).
Eventually, however, the strain intensity at t-he hinge
(averaged over the thick=s) be~mes so l~ge tit the
modulus is greatIy reduced. When that occurs, the stress at
the hinge line ceases to grow with increase in strain and even

TABLE 1.—SHOWING COXSTAXCY OF STRESS I?STEXSITY
AT HIXGE LISE AT MAXIMUM LOAD

1

I At fallurs I

(% I ?%
45.9
4116
4A8
27.6
32.4
37.3
25.8
!ZLi

4s. 7
40.0
4L0
Mo
3&2
39.2
m. 5
31.3

4a6
45.9
47.6
47.6
47.1
4&6
4a2
48.2
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starts to decrease (see fig. 8(b)). The maximum area under
the stress curve, and tbexe-forethe maximum load, occurs
just as the hinge stress starts to recede.

CONCLUSIONS

A theoretical analysis of the compressive strength of
flanges, based on a deformation theory of pheticity oombined
with the theory for finite deflections for this structure, and
comparison with e-xperimental data lead to the following
conclusions:

1. The maximum load for a flange under compression and
hinged along one edge may be wmn-ately computed from tie
dimensions of the flange and the compressive stress#rain
curve for the material,

2, Maximum load occurs when, because of the onset of
plasticity, the bffective modulus has been reduced to such a
low value that it is no longer possible for the average stress
to increase with increasing strain. FaiIure is not a locyd

phenomenon hut is an integrated effect over tbe cross section
of the flange.

3. For a wide variety of cruciform sections, the stress in-
tensity (averaged over the thickness) along tlm hinge line at
maximum load is a cunstant to about 1 percent. This VRIUO
of stress intensity is very close to the yicld stress for t.ho
material.

4. The fact that m~simum loads maybe computed in this
case suggests that the deformation theory of phsticity is
sufficiently accurate when the stressstate changes from com-
pression to combined compression and shear in the case when
the shear strains are lem than about two-thirds of the com-
pressive strains.

JJANGLEY-~ERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LAK@LIIY FIELD, VA., December 9, 15’49.



APPENDIX A

FINITE DEFLECTION THEORY FOR A HINGED FLANGE TINDEE COMPRESSION

ELLIFTIC-FUNCTION SOLUTION

The coordinate system and dimensions of the hinged flange
(one-fourth of a cruciform-section column) are shown in
figure 1 (a); the form of the distorted shape is shown in figure
1 (b). The fundamental hypothesis of the calculation is
that.at any section z=~onstant there is no curvature of the
flange in the direction of z. The correctness of thishypot.he-
sie is amply borne out by tests on the flanges while under
twist. With this assumption it becomes possible to avoid a
formalized plate treatment of the probkm.

For indniteshmd rotations, the differential equation of
equilibrium for a column under the simultaneous action of a
compressive stress a and torque T has been shown by Waagner
(reference 5) to be

(Al)

where

C?J~ St. Venant component of internal resisting
torque

d~
UIP—

CLC
component of internal torque due to applica-

tion of compressive force. (This component
is not a resisting torque but aids the applied
torque T in twisting the column; its sign is
therefore negative.)

dad
– E~BT =3 component of rnterna~resisting torque due to

bending of column m it twists

For the case in which the applied torque T is zero, such
as for a compresed hinged flange, equation (Al) becomes

(A2)

As previously mentioned, equations (AI) and (A2) are
limited to infinite&nal rotations and thus cannot be used to
determine the behavior of a column above the buclding load
where rotations may become Iarge.

Jn order to investigate the behatior of a compressed hinged
flange above buckling, a theory which permits the calculation
of the large deformations which may occur after buckling
must be employed. The cWerential equation (Ag) mus~
therefore be amended to include the effects -whichappear at.
finite values of tie rotation 4.

DERIVATION OF THE BASIC DIFFERENTIAL
I?ITWTE EOTATIOSS

EQUATXOA- FOE

The effects of iinite rotation involve the changes in the
middIe-surface strain that occur after buckling. ,As the
plate twists, the longitudinal fibers fl be inclined at a small
angle to the hinge Iine as shown in figure I (b). As a.result.,
the longitudinal fibers are stretched in ~arying amounts and
the horizontal components of the forces along the fibers pro-
duce a torque which resists twist~m of the plate. The re-
sisting torque increases very rapidly fith twisting of the
plate, which thus becomes progressively stitler. The rapid
increase of stiffness with rotation provides the required
mechanism for maintaining the rotation at a finite due.

Stretching of middle-surface fibers titer buckling.-A
short section of the plate as shown in figure 1 (c) vri.Uha-re
the Iength ac before the plate buckles. Mer buckling, the
length ac’ will be greater than ac because ac’ is inclined at,an
a.ngle Ya with the hinge line. (See ~. 1 (c).) Thus the
strain at the free edge a due to stretchi~~ for small -raluesof

ac’—ac 2

‘~b= =Sec ~b—l SE -: - — (A3)
ac 2

(The strain e, is positive -whencompressive.)

If the line aa (fig. 1 (c)) has been ro tated an angle + from
its origi.mdposition, the free-edge fiber at c mows a distance -
b(@+-d@). The angle of inclination of the free-edge fiber
is thus

~O=W+dW@=b ~
dx

(A4)

If the point c is not at the free edge but at some interior
position a distance z from the hinge line, it can similarly
be sb.crmuthat

_Ez =<
2 (A5)

(A6)

From equations (A5) and (A6), the strain E.resulting from
the stretching action can be given as

.—
(A7)

Equation (A7) gives the difference between the hinge-line

stmin and the strain at any fiber due to the stretching action,

for a gi=ren position along the width of the flange. It is thk

6S1



682 REPORT 102*NATIQNAL .4DVI~By coWI~EE FoB AEM?NA~IC3

difference which causes the middle-surface strain distribution
after buckling to differ from the uniform strain distribution
at the instant of buckling and which will now be considered.

Middle-surface strain distribution after buckling.-A
compressive load P applied to the hinged flange will cause the
ends @ approach each other by a distance & .The .unit
shortening e is 6/L. Equilibrium of the internal compressive
forces with the applied force P requires that

sP=tE ~b(e+q) cos ~, dz (A8)

The angle ~, is usually so small that cos ~, may be taken
as unity. Then, substituting the expression for e~ from
equation (A7) into equation (A8) yields

The unit shortening e is therefore

(AIo)

The ratio P/AE is the average strain over the cross section.
If P/AE is denoted by e~,,equation (A1O) becomes

(Allj

The longitudinal middle-surface strain c. at any fiber z in the
cross section is therefore

(A12)

Moment due to axial stress after buckling.-The longi-

tudinal strain c. does not have the direction of the hinge line

but of the slightly inchned longitudinal fibers (the angle T.,

equation (A6) ). ~onsequently, & has components per-

pendicular to ~he hinge line which create the moment AM

resulting from the applied compressive force.

The component of li’c= perpendicular tQ the hinge line att

any fiber z is & sin y. and for small aggles is approxQnately

‘d As this component has a lever arm z, theequal to Eczz —.dx
internal resisting moment AM is

(A13)

Substituting the expression for e=from equation (A12) into
equation (Al 3) results in the following relationship:

The term UIP2 is the same term thtit apprars in equation

(A2). Thti last term cd equation (A14) is the required
additional term whkh takes into account the stretching
actions, which occur for finite rotations of the flange, and
permits the computation of thtirotation +.

Basic differential equation of torque for a compressed
hinged flange which includes the effects of finite rotation.—
The complete dif7erentiaIequation of torque which rcplams
equatiou (AZ) and includes the last term of equation (A14) is

The cm.@ants of equation (AI 5) are

J=g ‘
3

Substituting equations (AI6) into (AI5) yields

A further simplification is effected by the use of

~b=~ g

~=; ..

[

_ W)’
“=12 ‘“’ 2(1 +y) 11

(A18)

The substitution of reIations (A18) into equation (A17]
gives the basic differential equation for a compressed hinged
ffarure _-.

(Al 9)

SOLUTION OF TEE BASIC DIFFERENTIAL EQUATION
FOE FINITE ROTATION

The basic differential equation (AI9) has the solution

.

where c and .$0are constants of integration. (The sign of

-.
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the radical must be chosen so as to keep d: positive.) With

(
the condition that T= O for ~= O # equals zero at the ends

)
and the substitutions

g2=g+J~–$’

Fh’=;–l q–-:C
}

equation (MO) may be written

d(y,[c)
~=Jo’* ~1[1–g2(y,/c)21[1–~7-@Yl

With new -i-ariables !P and k defied by

1~shq=~

k=~
g }.

equation (A22) is transformed into

J# “ d~
g o \“l—iP sin~*

(~~1)

(.A22)

(A23)

@24)

In order to determine the constant c, use is made of the
L L

condition that ~a= O for ~== or z =7 The upper limit
d

:
for equation (A24) corresponcl@~ to X=2 must then be q?=r

in order to satisfy the first of equations (A23):

Llrd*J—=—%gOl;l-k2 sin2*

In eI.liptic-function notation,

Equation (A25) therefore maybe written

~=ti”t
T

and equation (A24) becomes

(A~5)

(A26)

(A27)

$fKX= * da

–J ()=Sn-l g-
L O \/l_kz s~z ~ c

so that taking the elliptic sine of both sides gives

4KT
()

~a=~ sn —
L

(AZ8)

The coefic.ient c/g is readily found from the dtitions of g
and h in equations (A21). From the fit of these equations

h=\~=./~
d

(~l~)z g2 --——.
6“-2(l+p) 12.

and from the second “-
-.

;=$h’J’w$

Makkg use of equation (A27) leads to the genend solution

(t/b)’
y~= ~m

-W7sn(% ‘“’)‘“’–2(l+#) 12

Another form of the solution which is sometimes convenient

may be obtained by using a diilerent expression for h: Since

addition of equations (A21) gives

()m2=g2+ h2=g2(l +k~= ~ 2(1+.F) (A30)

it follows that

g=>
~!l+k2

and that

h=kg=+

Hence,
.—.

With either equation (A29) or equation (A31) now a-rail-
able as an accurate expression for the fiber slope ~a, it is
possible, besicles checking the lmovm formuIa for the critical
compressive stress, to write formulas also for the rotation
at any station along the flange, for &e middle-surface strain
distribution along and across the flange, for the relation
betrreen hinge-line, average, and critical strains, and for
the fractional shortening. Tha formulas -rrilInom be gi-ren
in that order. .

Check of critical compressive tiess.-b order to show
that. equations (A29) or (A31) give the correct buckling
stress at the start of the rotation (Tb=()), the behavior of t-he

elliptic function is considered as the rotation approaches zero.

,.
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The preceding section showed that the angle ytiis propor-
tional to h, and therefore to k. Aa k approach% zero, K
approaches_ T/2, and the elliptic sine approaches the circular

sine. Hence for loads only slightly above the critical, from

equation (A29),

At the critical load, ~~= O,and for Ioacled edges clamped,

This is the .cxpression given as equation (1) in the body of
the report, The critical compressiv~e.ss a,, is obtained
by multiplying both sides of equation (A32) by the effective
moclulus in comprewion l?~~~. Then

c,,= E,occc,= E,,,
[

(t/b)’
—+A (Kt)q (A33)2(I+P) 12 L

This is the. expression givcm as equation (5) in the body of
the report.

Rotation of any station along the flange,-13y symmetry,
the rotation of any station a distancz z from either ml is
given by.

(A34)

and so is “obtained by a simple integration of the fibm tmglc
distribution along the length of the flmgo, subject to the
condition that the rotation is zero at both ends of tho fiango.

If an “analyticalexpression for @is desmed, eit.hcrequation
(A29) or its alternate (A31) maybe integrated, Integmt ion
of equation (A31) gives .

Since

the general integral becomes
.u

Variation of middle-surface strain over length and
from the hinge line was given in equation (A12) as

‘z=’a,+%l-’~)

-.—. -“( )—=—::
width of flange .-The middle-sufiace strain

The slope of the free-edge fiber y, may now be inserted in this expr~ion from either equation (A29) or equation (A31).
Thus

or

or

‘==’~+$4%(’-Gi”2(3

()t%%+$+?=‘Z=2(1+P) 12 24 l+k’ W)sn’.(% -““

(A36a)

(A3iIb)

(A36c)
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Relationships between hinge-line, average, and critioal
strains.-Along the hinge he z= O, and equations (A36)
gi~e

(4.=0=%,+; ‘[ (t/b)’—-wwn’(%‘ao–z?(l+p) 12
or

Along the hinge line at x=+ and z=~~,

[.

(t/b)’
+~ (~)’] (A37a)(EJZ.O=; 6=,–: 9(1 +p) 12

or

(A37b)

Mong the hinge line at z=O, z=$ ancl r=L,

Thus at the ends and at the middle the strain is uniformIy
distributed across the width of the hinged flanges.

Fractional shortening,-The fractional shortening of the
flange 6/~ (1/4 of its Iength is considered for con~enience) is

5 Trlz E()‘~”’+~~+~z ~—~

s~i.?where ~= ~!l –kz ainz a da. From equation (A30)

4Kf,0
WL=T 11 +kz, and by use of this due of m,

a ()10 ~ 2K(K–~
‘=~=’a’% L

(A38)

APPROXIMATE RELATTONS_ FOR POSTBUCKLNG BEHAVIOR

The preced~ relationships for the behavior of a hinged
flange when mmprwsed beyond the buckling Ioad may be
greatly simplified if the flange is Iong enough so that bending
is negli#ble compared -withthe twist. Under such conditions

the term IK’,, ~ in the differential equation (A15) may be

neglected. The basic chfferentisI equation (A19) then
reduces to a simple algebraic equation

The fiber angle ~b.~ktiom of the preceding equation

axe .—
ya=o

-
and

(A39)

(t~b)’the ~em ~ le~th now being omitted.in vdlicll e~~=
2(1+ U)’

The same qua&iti~ which viere computed under “Elliptic
Function Solution” may now be expressed once more in
terms of the approximate solution for%.

Rotation of fluge,-The approximate rotation @ be
the integral of the approximate value of ~~, or

‘=J%=4)G) (%’0)
‘d‘=w=(’-~x:)(“i’+)
A reference to @ure 2 shows that the distribution of the _
angle + is nwdy Hnearfor large rotations.

(A40)

A second appro.xima.tion,-which contains a small correction
term to equation (A40), may be found fro~ the relations . _

~ Co’h-’&=lOgA’
and

b ~~’=lw&–~ 2
as k~l,

cosh-L —=K–log 2
A.

The exact rotation at the middle of the column is given by
equation (A35):

dIIIU=I’%: cosh-’ 1
m

therefore, as k+l,

@.ar=fi ; (K–1og 2)

(

/- t mL _log z
=>~~ ~t

)
L

=1.37 –~ =—1.55 ; (A41) -

This corrective term 1.55 ~ is ahva$ a small part of @==



686 REPORT 1029--NATIONAL AbV~ORY COmirhiEE FOI+“AJ3RONAUTICS

Variation of middle-surface strain over”width of fiange.— Relationship between the hinge-line, average, and criticaI
The approximate strain distribution is :obtatied from equa- strains,-Along the hinge Iine z= O, so that, approximateely
tion (A12) by ‘wing the approximate value of ~~from equa-
tion (A39):

( -%? ‘A”) “=)s=4=:’”’-:’:

(A43)

~;=%+: (cm—em) 1
FraationaI shortening.-The approxnnatc! shortening is

s
This result holds over most of the length of the flange but is

4KX
in error near the ends and the middle where sn

()~ has

L9
J(

5
)

5~=—
i , T ‘=’–1 ‘“ dx=: “V-Z ‘“

~A44)

. .
a value different from unity. I and therefore is identicaI with e. along the hinge line s=O.

.

.-.

*

—..

.-

,-

.-



APPENDIX B

MAXIMUM STRENGTH OF A CRUCIFORM-SECTION COLUMN

The deformation them-y of plasticity used here states that

a relation exists between the stress intensity Ui and the

strain intensity e~which is of the following form:

for loading (e, increasing)

for unloading (e, decreasing)
.

dui=Edei
where

Ui= r=2+ u.2—uzrz+ 3?

r,, e stress and strain in the x-direction

u=, ez stress and strain in the z-direction

T)‘Y shear stress and strain

In the case of a cruciform~ection column compressed beyond
the buckling strew cr~,,the vaIue of a= is the stress in the
direction and is larger than u,. over most of the flange
width. Also a.= O, ind with Poisson’s ratio equ~ to 1/2,

1
ez=—~ 6=; so that the fund.amental stress-strairireIation for

increasing ui reduces to

inwhich
u== I&+z

E
T== ‘y

3

The due of % at any point (r, z) of a cruciform flange is
assumed from appendix A to be as in equation (A36c)

_ (t/b)’ m’ 5 kz.mz
–(’-’%)(%)%)‘*—2(1 + P)+ti+m 1+kz

where 1#is a parameter lying between Oand 1 which specifies
the amount of tit,

SK= *12 ‘a
o ~h —k2sin2a

[
(t/b)’

?n2= 12 E.,
2(1-f-#)

]=~(l+k~ (:)’

As soon as a value is assigmd to Ii?corresponding to a certain
amount of twist, the quantiti& K and m2 are fixed fid ~

may be computed.

()

4KZ
Omr”most of the kngth of the column, en ~ =1 and, -

therefore, the variation of e= with z may be neglected by
taking

_ (tlb)2 m’ 5 h~.m’
—(’-3$)‘=—2(1+J%% 1+IP

‘4 f the flangeThe ehear strain ~ misee from the twist ~ o

after buc.lrling ~d is proportional to the distance r away
from the center hne of the cross section:

~=#!Q
dx

Eowe~er for insertion into the formula for strain intensity,
a value of 72 is desired which is independent of ~. Such a
value may be obtained by taking the average value of #
over the thicknees. The mean due of # over the cross
section is

6S7
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From the theory of appendix A (equation (A31)),

~b=%% ~“~#.%,W... -.-, -

()
4Kxover most of the section for which sn — =1, HenceL

~_ 5 t 2 k2m.2
()–

..~—~~ l+k? ._

and thus the strain intensity
d

%Z+$ k completely de-

termined as soon as a value of the parameter J!?is seIected.
From the stress#rain reIat,ion the value of the stress

intensity and of course l?~w is determined by the V~W of

the strain intensity. (The elastic modulus i!l is used if the
strain intensity is decreasing.) The stress a. may then be
computed by the relation UZ=JQCZ as a function of the
+coordina te across the flange. The average value of C=
across the width of the flange is then

1 r-b

and is Lhe average stress that JVO.UM be determined from a

tc&ng machine at the value of W select ed.

Iu the: actual oalculat.iom, the. width fJ of the flango was

divided into ten equal strips and the value of u., was found
by a numerical summation. As the twist of fho fhmgc
varie9 from zero to infinity, the parameter k2 varies from
zero to 1. The value of u., may be investigtitrd as a func-
tion of 1? and will have a maximum at some value of k~,
This maximum value of u=, multiplied by the tdaI m-m
give9 th~ maximum load for the cruciform fkmgc under
wmsideration.
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