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COMPRESSIVE STRENGTH OF FLANGES *

By ELBRmGE Z. STOWELL

SUMMARY

The maximum compressive stress carried by e hinged flange
1s computed from a deformation theory of plasticity combined
with the theory for finite deflections for this structure. The com-
puted siresses agree well with those found experimentally.
Empirical observation indicates that the results will also apply
Sfairly well to the more commonly used flanges which are not
hinged.

INTRODUCTION

Ordinarily the ability of columns and plates to carry
additional load does not entirely cease when they buckle.
If the load is increased sufficiently beyond the buckling
load, they will ultimately refuse to carry more load, with
subsequent permanent distortion. In the case of columus,
the maximum load is not far above the buckling load (see
reference 1);in the case of plates, there may be a consider-
able spread between the two loads.

The first essential requirement for the solution of the
problem of maximum load is the existence of a finite-
deflection theory for the behavior of the structure. Maximum
load always occurs at some finite deflection or distortion
beyond the buckling load. The problem of the load for &
given distortion is thus nonlinear even without the intro-
duction of plasticity. Few such solutions exist for post-
buckling behavior of structures even in the elastic region.

The second essential requirement for computation of
maximum load is the sbility to deseribe the nonlinear be-
havior of the structure that results from plasticity of the
material. Neither columns nor plates would ever possess
a maximum Joad in compression, if the material of which the
structure was made obeyed Hooke’s law at all times, al-
though they might be tremendously distorted. In such &
structure it would always be possible to add still another
increment of load, which would result in still another incre-
ment of distortion. The question of a meximum load must
therefore be directly linked with the failure of the material
to obey Hooke's law—that is, with the plasticity of the
material and the nonlinear behavior of the structure which
results from that plasticity.

For the calculation of the maximum load carried by a
buckled structure, these two essential but difficult require-
ments must be met. This report treats the maximum com-
pressive strength of & simple plate strueture for which the
effects of both types of nonlinearity can be found—that is,
the compressed flange hinged along one side edge.

1 Supersedes NACA TN 2020, ““Compressive Strength of Flanges” by Elbridge Z. Stowell, 1950.

The maximum load carried by & long hinged flange is
computed as follows: The strain distribution across the.
flange at any angle of twist is found from knowledge of non-
linearity due to finite deflection. This elastic strain dis-
tribution is assumed to persist into ‘the plastic region. This
strain distribution is transformed, with the aid of knowledge
of nonlinearity due to plasticity, ihto a stress distribution
by means of some appropriate stress-strain relation.. The
load carried by the flange at the particular twist is then
obtained by integrating the stress distribution across the
flange. The load is then investigated to see if it has a
maximum value as thé twist increases; the maximum load
should correspond with the experiment&lly observed maxi-
mum load.

Experimental data on the behavior of hinged flanges have
been obtained in the Langley Structures’ Research Division
by the methods of reference 2. These data are used in the
present report for comparison with theoretical relations.

The theoretical treatment of the behavior of & hinged
flange commences in the next section with & discussion of the
effects due to finite deflections. Details of the theoretical
calculations are presented in two appendixes.

NONLINEAR BEHAVIOR DUE TO FINITE DEFLECTION

Theoretical strain relations.—A flange of length L, width
b, and thickness ¢ is shown in figure 1 together with the
coordinate system. The flange is hinged along the line z=0
and has a free edge along the line z=5b. Compression is
applied longitudinally.

The load is applied uniformly at first. The theory of
appendix A shows that, for strains below a certain critical
strain e, the flange will shorten without twisting. The
critical strain e, at which twisting begins is shown to be

NN
“=2a+m T 3 W

where p is Poisson’s ratio.

As the load is increased beyond that required to start
twisting, both the middle-surface strain and the stress dis-
tribution across the flange width become nonuniform, larger
than the average at the hinge, less than the average at the
free edge. The middle-surface strain at any point (z,2) of
the flange is shown by the theory of appendix A to be

&= 2((:/3-);) 12" 254 1‘1”2,(1 b:) 2(&?) (2&)
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in which %% is a parameter lying between 0 and 1 whxch
specifies the amount of twist, -

. (w2 da
K= f ——gde
0 +/1—k%sin®
is the complete elliptic integral of the first kind, and

SO )

The average middle-surface strain e, in the elastic range is
the average stress divided by the elastic modulus E.
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(a) Without distortion.

(b} With lgrge distortion.
{c) Enlargement of section aac’c.
F16URE 1.—Cruciform sectlon, consisting of four identical fianges, hefore and after buekling,
Coordinate system Is shown on one flange,

Thus, if a value is assigned to %* (a cerfain amount of
twist), both the quantities K and m? are determined; the
strain at any point (x,2) may then be computed.

Equation (2a) may be simplified as shown in appendix A
to the following expression which holds over the essentially
straight part of the flange:

5 21
€= f¢u+z (eaa_ecr) <1 —3 _b'g') (2b)
Theory also shows that over most of the flange length
(except at the middle and extreme ends) the relation between
the middle-surface strain at the hinge ¢, the average middle-
surface strain over the w1dth of the flange e,,, and thc critical
strain e,, 18

4 5
eav=_g' 5h+§ €cr (3)

and the rotation ¢, &t the middle of the fange is

! —JE ol .
- Q"maz— 'J_ b COSh /Tk . = (4&)
or approximately i
bne=1.87 ¥ eu—en—1.55 + (4b)

Relations (1), (2), (3), and (4) are susceptible to experimental
check, and the following section describes the results of
experiments designed to test these relations.

Experimental check of strain relations.—The hinged
flange shown in figure 1 was realized experimentally by the
cruciform celumn shown under test in figure 2. The eruci-
form column has four identical flanges which, if equally
loaded, will twist at the same time without restraint to cach
other; thus the condition of zero restraint against rotation is
fu]hlled The columns were all sufficiently short to cause
them to buckle by twisting rather than by Euler bending.

The tests included measurement of the stress-strain curve
for the material from which the different groups of specimens
were made, determination of the buckling and maximum load
for each specimen, a study of the strain distribution across
the flanges of two specimens, and a measurement of rotation
of each specimen at the middle.

Results of the buckling-load measurements and their con-
nection with the stress-strain curves for the specimens were
given in reference 3 and are shown in figure 3 of this report
where the buckling stress is plotted against the, caleulated
elastic buckling strain. Because the experimental points
follow along the stress-strain curve, the proper reduced

~ modulus for pure twisting in the plastic range is concluded

to be the secant modulus, which agrees with the theorctical
value of reference 3.

The relation between the computed and expenmental
middle-surface strain distribution over the width of the
flange for one specimen at the quarter height for a number
of different loads is shown in figure 4. The highest average
stresses _exceeded the proportional limit of the material.
The measured strains for the four flanges were averaged
to give the points shown in the figure. These average strains



COMPRESSIVE STRENGTE OF FLANGES

were somewhat larger than the ratio of average stress to £
at the very highest loads where plasticity reduced the aver-
age effective modulus. From the experimentally observed
average strain across the flange at each load and the critical
strain at which buckling began, the corresponding theoretical
strain distributions were computed from equation (2b) and
are presented as the curves in figure 4. This calculated
strain distribution agrees fairly well with that observed
experimentally.
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FiguRE 8.—Experimental volues of the buckling sizess for eruelform-section columns of
245-T4 extruded aluminom alloy compared with the compressive stress-straln curve for
that material.
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The relation between average strain, corner strain, and = _

critical strain given by equation (3) was investigated experi-
mentally. From messurement of the strain in two opposite
flanges of one buckled specimen, averages were taken to
give mean values of &, and ¢. The critical strain e, was

also accurately known. TFigure 5 shows the theoretical rela-

tion of equation (3) compared with the averaged experi-
mental points. The sgreement is good. The strain &
ceases to be elastic at & value of 0.0025, so that both the
curve and the points extend well into the plastic region,
The persistence of the agreement between equation (3} and
the experimental points up to the highest strains indicates
that, even though equation (3) was derived on an elastic
basis, it is a good approximation in the plastic region also.

Figure 6 compares the theoretical rotation of three cruci-
form specimens of widely different lengths with the meas-
ured rotations. The ordinate in figure 6 is the shortening
8/L, which is the hinge strain ¢. Rotation was measured

by a pointer attached to the flange end moving past & o

circular scale. REquation (4b) was used to compute the
theoretical rotations. The agreement between theory and
experiment is good in this case also.

NONLINEAR BEHAVIOR DUE TO PLASTICITY OF THE
MATERIAL

The material of the flanges (24S-T aluminum alloy) is
defined by the stress-strain curve of figure 3. The figure
shows that above 25 ksi the material starts to depart from
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FIGCRE 4—Theoretical middle-surface straln distribution across & hinged flange at the
quarter-dength stetion along & cruciform-section column compared with experiment.
(Experimental values are average for the four fianges: ew=0.0016.) _
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flange compared with experiment. (Iu-g u+g e for e-->¢«.)

purely elastic behavior and becomes partly plastic. As a
result of this plasticity, the flanges exhibit nonlinear behavior
above about 25 ksi.

The most elementary consequence of the plastic nonlinear
behavior is the substitution of E,e for E in the formula for
critical stress which, for a hinged flange, is (reference 3)

Oor=Lspeo€er : (5)

Another consequence of the nonlinear behavior due to
plasticity is the existence of & maximum load. Experi-
mentally, as the load is increased more and more, the twist
of the flange will increase until a value of load is reached at
which the flange ceases to carry more load; this value is the
maximum load. As was pointed out in the introduction,
if the material of the flange obeyed Hooke’s law strictly
at all times, the rotation of the flange would increase
indefinitely with increase in load. The existence of a maxi-
mum. load is therefore directly attributable to plasticity
of the material.. L S N R

As the structure twists more and more beyond the buck-
ling load, greater and greater shear strains are set up through
the thickness of the flange. The shear strains are zero at
the middle surface and have opposite signs at the faces.
These shear strains will combine with the compressive
strain already present to form & strain intensity; at a point
where the compressive strain is e, and the shear strain is v,

the strain intensity is e,=\/ e,“—l—%. - (Inorder not.to have to

consider variations of v through the thickness, a mean value
of 4* is used.): According to the deformation theory of

Txl03
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FI1auRe e.—Réat[on between the shortening 3/ and the rotatlon ¢ of & hinged flango com-
- pared with experiment. ;—’-12.

plasticity used herein (reference 3), the velue of e; at any

stage of deformation determines the reduced modulus of the

material at that stage.

Since the maximum load always occurs at a {inite rotation

of the flange, the two effects of nonlinearity must he combined
in order fto account for the maximum load. Such a com-
bination is effected in appendix B and the results are given
in the following section.

MAXIMUM LOAD OF A FLANGE

- It is shown in appendix B how the maximum load on a
hinged flange may be computed from the dimensions of the
flange and the stress-strain curve for the material.

The nriddle-surface strain distribution across the flange
is given by equation (22). In addition to these strains which
arise directly from the compressive load, there are also
shear strains in the flange due to its twist. These shear
strains become as large as two-thirds of the compressive
strains upon which they are superposed. Although, strictly
speaking, the deformation theory of plasticity has only been
shown o .hold for simple loading (reference 4), its validily is
also assumed herein for complex loading. The square of
the compressive strains and the mean square of the shear
strains were added in the proper manner to give a sirain
intensity. (The highly localized effects of bending at the
middle and ends have been neglected.) From the com-
pressive stress-strain curve for the material the value of the
secant modulus E,,; was read at this strain intensity. For
increasing strain intensities the compressive stress o at
any point across the width of the flange is then simply
E,e timés the compressive strain at the point. Neaf the
free edge the strain intensity decreases; in such a case, the

elastic modulus E is used to compute the corresponding

stress reduction. The average stress ¢., across the flange

is then
b

1
t'J'a,=—b- o O'dZ (6)
The value of ¢4, is computed for a number of different twists
until & maximum average stress o,,; is found.

— 6 1§ 20
Rotation, 8, rodions : S
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Figure 7 shows the results plotted in a nondimensional
form similar to that employed in reference 2. The param-
eters used have some theoretical justification and have the
effect of meking the information given by the plot largely
independent of the material. The agreement between the
computed curve and the experimental points for cruciform-
section colurons is satisfactory.

The fact that maximum loads may be computed in this
case solely on the basis of deformation theory suggests that
the theory is sufficiently accurate when the stress state
changes from pure compression to combined compression
and shear, for shear strains up to two-thirds of the largest
compreéssive strains.

An interesting side light on this computation is revealed
by the values of stress intensity at the supported edge when
the load is 8 maximum. The stress intensity for eight widely
different cruciforms is a constant, to about 1 percent, équal
to about 47 ksi. (See table 1.) This value is close to the
vield stress for the material (46 Lsi).

Then the flanges are present in actual structures, they
are generally connected to other members which offer a
certain elastic restraint against rotation along the supported
edge. The question arises as to what effect this connection
has upon the calculations based on the assumption of a
hinge connection. The elastic restraint along the supported
edge will have two major effects: The critical strain will be
appreciably raised and the effective length L of the buckles
will be appreciably shortened. A necessary consequence is
that the rotation (which is proportional to L} is reduced
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FI6GRE T.—Comparison of theoretical curve for the maximum strength of 248~T4 aluminnom
alloy cruclforms with test results. Compressive yleld stress ooy=46 ksi. (Experimental
values for H-sections of verious aluminum alloys have been added for comparison with
the theoretical curve.}

.one set cannot be distinguished from the other.

and, therefore, is more nearly of the shape of a circular sine
along the length of the flange than it would be when a hinge
is present along the joint. A third effect is the introduction
of a slight curvature across the width of the flange. When
the revised critical strain and the revised length ere inserted
into the formulas of appendix A, which were derived for a
flange supported along a hinge, it is found that the rotation
and the strain relations may still be aeccurately predicted
for flanges with restraint along the supported edge. Such
a result seems to indicate that the small amount of trans-
verse curvature introduced by the restraint does not have
an important effect on the formulas.

In view of the fact that the theory of appendix A applies
fairly well to flanges with restrained edges, it might be
expected that the maximum strength, also, might be given
by the same theory. Experiment shows that such is the

case; the values of maximum strength for H-sections are .

included in the experimental points shown in figure 7 and
the points intermingle with the cruciform points such that
The
theory of this report may then be said to apply approximately
to flanges with elastic restraint along one side edge as well
as to flanges without elastic restraint.

CAUSE OF MAXIMUM LOAD

Maximum load occurs when it is no longer possible for the
stress, on the average, to grow with increasing strain. The
natural tendency for the stress to grow is defeated by the
decrease in effective modulus.

In order to illustrate this effect graphically, figures 8(a)
and 8(b) have been prepared. These figures illustrate the
calculated strain and stress distributions across & hinged

flange of 24S-T4 eluminum alloy end of proportions %=14
.

and E=12' These distributions hold over the greater part

of the flange where the bending is negligible. Up to the

critical strain of 0.002 and the critical stress of 21.5 psi, the
distributions are uniform. As the load is increased beyond
the critical value, the distributions become more and more
nonuniform as a result of twisting of the flange. - With in-
creasing load, the strain increases faster at the hinge than at
the middle of the flange as shown in figure 8(a). For & time,
the corresponding stress also increases faster at the hinge
than at the middle of the flange, as shown in figure 8(b).
Eventually, however, the strain intensity at the hinge
(averaged over the thickness) becomes so large that the
modulus is greatly reduced. When that occurs, the stress at
the hinge line ceases to grow with increase in strain and even

TABLE 1.—SHOWING CONSTANCY OF STRESS INTENSITY
AT HINGE LINE AT MAXIMUM LOAD

Specimen At fallure
Tar Omax (-4
b Lk ) ) (i)
8 12 45.9 45.7 46.6
g 18 0.8 40.0 45.9
10 4 4.8 4.0 47.5
10 10 31.8 38.0 47.5
13 10 B4 36.2 47.1
12 4 37.3 30.2 48.6
13 10 25.8 3LS 48.2
4 12 2LT 3L.3 48.2
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Figure 8,—Theoretical middle-surface strafn and stress distribution across a flange at the quarter-length station along a typleal erueiform. b-lt.% -12

starts to decrease (see fig. 8(b)). The maximum area under
the stress curve, and therefore the maximum load, occurs
just as the hinge stress starts to recede.

CONCLUSIONS

A theoretical analysis of the. compressive strength of
flanges, based on a deformation theory of plasticity combined
with the theory for finite deflections for this structure, and
comparison with experimental data lead to t.he following
conclusions:

1. The meaximum load for a flange under compression and

hinged along one edge may be accurately computed from the

dimensions of the flange and the compressive stress-strain
curve for the material.

2. Maximum loed occurs when, because of the onset of
plasticity, the effective modulus has been reduced to such a
low value that it is no longer possible for the average stress
to increase with increasing strain. Failure is not a local

phenomenon but is an integrated effect over the cross section
of the flange.

3. For a wide variety of cruciform seetions, the stress in-
tensity (averaged over the thickness) along the hinge line at
maximum load is & constant to about 1 percent. ‘This value
of stress:intensity is very close to the yield stress for the
material.

4. The fact that maximum loads may be computed in this
cagse suggests that the deformation theory of plasticity is
sufficiently accurate when the stress state changes from com-
pression to combined compression and shear in the case when
the shear strains are less than about two-thirds of the com-

_ pressive strains.

LaNeLEY AErRONAUTICAL LABORATORY,
NATIONAL ApVvisorY COMMITTEE FOR AERONAUTICS,
Laxerey FieLp, Va., December 9, 1948.



APPENDIX A

FINITE DEFLECTION THEORY FOR A HINGED FLANGE UNDER COMPRESSION

ELLIPTIC-FUNCTION SOLUTION

The coordinate system and dimensions of the hinged flange
(one-fourth of a cruciform-section column) are shown in
figure 1 (a); the form of the distorted shape isshown in figure
1 (b). The fundamental hypothesis of the calculation is
that at any section =Constant there is no curvature of the
flange in the direction of z. The correctness of this hypothe-
sis is amply borne out by tests on the flanges while under
twist. With this assumption it becomes possible to avoid a
formalized plate treatment of the problem.

For infinitesimal rotations, the differential equation of
equilibrium for & column under the simultaneous action of &
compressive stress ¢ and torque 7 has been shown by Wagner
(reference 5) to be -

do d3¢
(GJ—O‘ p) -(E_ EC’BT '@=T (Al)
where
GJ ? St. Venant component of internal resisting
z torque
d¢ . ' .
cl, dz component of internal torque due to applica-

tion of compressive force. (This component
is not a resisting torque but aids the applied
torque T in twisting the column; its sign is
therefore negative.)

3
—ECsr i component of internal resisting torque due to
dzs p mg
bending of column as it twists

For the case in which the applied torque T is zero, such
as for a compressed hinged flange, equation (A1) be_:comes

3
@7 —oL) 2 £, T—0 (A2)

As previously mentioned, equations (AI) and (A2) are
limited to infinitesimal rotations and thus cannot be used to
determine the behavior of & column above the buckling load
where rotations may become large.

In order to investigate the behavior of a compressed hinged
flange above buckling, a theory which permits the calculation
of the large deformations which may occur after buckling
must be employed. The differential equation (A2} must
therefore be amended to include the effects which appesar at
finite values of the rotation ¢.

DERIVATION OF THE BASIC DIFFERENTIAL EQUATION FOR
FINITE ROTATIONS
The effects of finite rotation involve the changes in the
middle-surface strain that occur after buckling. . As the
plate twists, the longitudinal fibers will be inelined at a small
angle to the hinge line as shown in figure I (b). As a result,
the longitudinal fibers are stretched in varying amounts and
the horizontal components of the forces along the fibers pro- -
duce a torque which resists twisting of the plate. The re-
sisting torque increeses very rapidly with twisting of the
plate, which thus beecomes progressively stiffer. The rapid
increase of stiffness with rotation provides the required
mechanism for maintaining the rotation at a finite value.
Stretching of middle-surface fibers after buckling.—A
short section of the plate as shown in figure 1 (¢) will have
the length ac before the plate buckles. After buckling, the
length ac’ will be greater than ac because ac’ is inclined at an
angle vy with the hinge line. (See fiz. 1 (¢).) Thus the
strain at the free edge e due to stretching for small values of

Y is
ac’—ac

_ _ ~'Yb2
—ep= =se¢ Yp—l=~—o - - —(A3)

(The strain ¢, is positive when compressive.)

If the line ae (fig. 1 (¢)) has been rotated an angle ¢ from
its original position, the free-edge fiber at ¢ moves o distance
b(¢+d¢). The angle of inclination of the free-edge fiber
is thus

L, betde)—bs_ do
dx

dz (A4)

If the point ¢ is not at the free edge but at some interior
position a distance z from the hinge line, it can similarly
be shown that

2
—g =7?= (A5)
— BNV

From eguations (A5) and (A8), the strain e, resulting from
the stretching action can be given as

2 d 2 R
e,=—%<£) (AT)

Equation (A7) gives the difference between the hinge-line

strein and the strain at any fiber due to the stretching action,

for a given position along the width of the flange. It is this
: - 681
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difference which causes the middle-surface strain distribution
after buckling to differ from the uniform strain distribution
at the instant of buckling and which will now be considered.

Middle-surface strain distribution after buckling.—A
compressive load P applied to the hinged flange will cause the
ends to approach each other by a distance 4.
shortening e is 8/L. Equilibrium of the internal compressive
forces with the applied force P requires that

P=tEﬁb(e+e,) cos v, dz (A8)

The angle v, is usually so small that cos ¥, may be taken

as unity. Then, substituting the expression for e, from
equetion (A7) into equation (A8) yields

pess g3 Jimma 53] a0

The unit shortening e is therefore

b rdo\!
e—AE+ 5\dz/.

The ratio P/AE is the average strain over the cross section.
If P/AE is denoted by e, equation (A1G) becomes

2
e=€m+'y—g‘

The longitudinal middle-surface strain e at any fiber z in the
cross section ig therefore

) 2 2 ' .
e,=e+e,=eu+lg——-?— i‘—# (A12)

2\dz

Moment due to axial stregs after buckling.—The longi-
tudinal strain e, does not have the direction of the hinge line
but of the slightly inclined longitudinal fibers (the angle v,,
equation (A6)). Consequently, Fe. has components per-
pendicular to the hinge line which create the moment AM
resulting from the applied compressive force.

The component of Ee, perpendicular to the hinge line at

any fiber z is Ee, sin v, and for small apgl_gs is approximately
equal to Ee,z 3—: As this component has a lever arm 2, the

internal resisting moment AM is

AM=—Etf°<e,z %?)zd.z
[i} A

Substituting the expression for e. from equation (A12) into
equation (A13) results in the following relationship:

de
AM=—o1I, % +15 EbI, ( 2 ) (A14)

The unit .

(A11)

(A13)

do . . .
The term ol ,ﬁ is the same term that appears in equation

(A2). The last term of equation (Al4) is the required
additional term which takes into account the stretching
actions, which occur for finite rotations of the flange, and
permits the computation of the rotation ¢.

Basic differential equation of torque for a compressed
hinged flange which includes the effects of finite rotation.—
The complete differential equation of torque which replaces
equation (A2) and includes the last term of equation (Al4) is

@J—oI,) %2 d _EC, %8 d + 3:428 ( "’) 0 (A15)

The constants of equation (A15) are

b h
J=T
3
1,5 y
(A].(S)
b3
- BT—%
E
S Teunt

Substxtutmg equations (A16) into (A15) yields

A e Ol R

A further simplification is effected by the use of

-

_p 48
'Yb"“b dz
=5 - - (A18)
1 _(@foy
12[ BEICET

The substitution of relations (A18) into equation (A17)
gives the basic differential equation for a compressed hinged
flange _

d*v»

52

SOLUTION OF THE BASIC DIFFERENTIAL EQUATION
FOR FINITE ROTATION

+miye— =0 (A19)

The basic differential equation (A19) has the solution

E+Eo—:tf\/

m”h’+ -yt | ”(A20)

where ¢ and & are constants of integration. (The sign of



COMPRESSIVE STRENGTH OF FLANGES

the radical must be chosen so as to keep d£ positive.) With

the condition that y=0 for {=0 gqs equals zero at the ends)
and the substitutions

£= m? +\ m* _é ot
\ . (A21)
. m /-m 4
F=o—y7T3¢
equation (A20) may be written
=f‘"‘ d('Yb/G) (A22)
o+ [L—g*(vale)] [L —R*(vsfc)]
With new variables & and % defined by
1 sin \If=%
A23
_k (A23)
4
equation (A22) is transformed into
1(Y__d¥ (A24)

~gJo \1—F*sin® ¥
In order to determine the constant ¢, use is made of the

L
or r=x:.

condition that ~v,=0 for E—L 5

The upper limit

for equation (A24) corresponding to :r=% must then be =1

in order to satisfy the first of equations (A23):

L 1 f d¥
2t gJo y1=kIsin? ¥
or
4t (=2 dv
— A25
T, N1—kZsm® ¥ (425)
In elliptic-function notation,
x/2
0 Y1—Fk*sm’a
. J (A26)
f et =sn ~!(sin ¥)=sn"! (gﬂ)
0 V1—E’sin? \ ¢
Equation (A25) therefore may be written
4Kt )

and equation (A24) becomes
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@:j‘w——— -t (g‘YD)
L (i "1 k?sin? e

so that taking the elliptic sine of both sides gives

<4K:r)
’Yu—- sn

The coefficient ¢fg is readily found from the definitions of g
and k& in equations (A21). From the first of these equations

(A28)

—tmZ_ gt 19 {t/5)? _ﬁ_
T e +s 12
and from the second '
E N 3
RPN 3 Bl Y

2(1+p) 12

Making use of equation (A27) leads to the general solution

e T T (2 o (2)

Another form of the solution which is sometimes convenient

| may be obtained by using a different expression for A: Since

addition of equations (A21) gives

mi=g*+h*=g%(1 +kz)=(é?)- A1+5)
it follows that

(A30)

and that

(‘uﬁ) (A31)

With either equation (A29) or equation (A31) now avail-
able as an accurate expression for the fiber slope 7,, it is
possible, besides checking the known formuls for the critical
compressive stress, to write formulas also for the rotation
at any station elong the flange, for the middle-surface strain
distribution along and across the flange, for the relation
between hinge-line, average, and critical strains, and for
the fractional shortening. The formulas will now be given
in that order.

Check of critical compressive stress.—In order to show
that .equations (A29) or (A31) give the correct buckling
stress at the start of the rotation (y,=0), the behavior of the
elliptic function is considered as the rotation approaches zero.

Hence,

4Kz
Pra (-7
sn. B \l—l—k’
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The preceding section showed that the angle v, is propor-
tional to k, and therefore to k. As k approaches zero, K °
approaches /2, and the elliptic sine approaches the circular
sine. Hence for loads only shghtly above the critical, from
equation (A29),

7°=‘[1_5\/6"’_2g/3-:) 12(2ﬂ> : 2ﬂ E

At the critical load, v,=0, and for loaded edges clamped,
SUBE 1 (2t
12\ L

2(1+u) +#)
This is the expression given as equation (1) in the bady of
the report. The critical compressive stress o, is obtained
by multiplying both sides of equation (A32) by the effective

(A32)

(e u-).,,a_o: €er=
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This is the expression given as equation (5) in the body of
the report.

Rotation of any station along the flange.—By symmetry,
the rotation of any station a distance x from ecither end is

given by
o=g (7).

and so is obtained by a simple integration of the fiber angle
distribution along the length of the flange, subject to the
condition that the rotation is zero at both ends of the flange.

If an analytical expression for ¢ is desired, either equation
(A29) or its alternate (A31) may be integrated. Integration
of equation (A31) gives

(A34)

\15 km J“K’/L (ﬂ{{)d 4K.t)
2 JiTr 4bK (

{ulus 1 ion Fg,. Th
modadulus 1n compression el _ _ f‘_ m __L__._ - 1 _cosh—ﬂ'l— Ak I
oo B | 8P 1 (glt)’] (A33) | 2 i+ 4K VI—R? VI—&?
cr— BOC CT 880 2(1_{_“) 2 L . ) (A_35)
Since
4Kt
2 T e—
“‘g'\'l'l'k T '\/
the general integral becomes
1=z
=L‘Jg%[cosh‘1 1 cosh—t Y1 —k%sn*(4Kz/L) | 12720
2 2 — R
V1—k R .y 2 15258
L=4
_i:_t_[ o 1 _ 1—F’sn’(4Kz/L) | 3_z_1
o= 3D cosh ‘m+c03h ! '\/1_—_“ i (Zg fgz)
=
=l’§ I -1 1 . _ z 1 z
P=7 3N (Z‘=4 orT=1
— V8L cosh-t —L . z_1
$mer=+/5 3 cosh AT =3

Variation of middle-surface strain over length and width of ﬂange.—The middle-surface strain ¢, at any distance z

e,—ea,+% (1 )

The slope of the free—edge ﬁber Y, May NOw be inserted in this expressmn from either equation (A29) or - equation (A31)

from the hinge line was given in equation (A12) as

Thus
cmety| e ity (1) J(-s )= (°F) (A3t
or
ea,+954m(1 ’) (4K‘”“) (A36b)
or
(b) om? 5 Em? 4Kz
“Tol w127 241+k”<1 ) ( ) (A36c)
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Relationships between hinge-line, average, and critical
strains.—Along the hinge line z=0, and equations (A36)
give

et (5] ()

or
5 k*
@mrmsartzg 1 (*)
Along the hinge line at ‘I=—i and a:=STL )
T 5[ @by 1 (AKRY
@y gt ()] wm
or
22 p 2
(Ez)z-oz €a+2£4‘ 1k+”£'z (A37b)
L

Along the hinge line at 2=0, =% and r=1,

(ec)imo=F6ar

Thus at the ends and at the middle the strain is uniformly

distributed across the width of the hinged flanges.
Fractional shortening.—The fractional shortening of the

flange 8/L (1/4 of its length is considered for convenience} is

Il
e

L/d
—2] o da

1 K
=E . (Ez)z-od

4Kz
L

5 k'm* 1 rF nz(iﬂg)d(%)
24 1+k2 K J, L '\ L

€t

‘"‘"94 1+&2< K)
where E"=f V1—k? sin? « da. From equation (A30)

m—% /14 k2, and by use of th.1s value of m,

]

=g —cuty (%) KE-F) (A38)

APPROXIMATE RELATIONSHIPS FOR POSTBUCELING BEHAVIOR

The preceding relationships for the behavior of a hinged
flange when compressed beyond the buckling load may be
greatly simplified if the flange is long enough so that bending
is negligible compared with the twist. Undersuch conditions

3
the term ECr %zi; in the differential equation (Al5) may be

neglected. The basic differential equation (A19) then
reduces to a simple algebraic equation

a 8
m"Ya—'g'Yaa:O

The fiber angle v,.—Solutions of the preceding equation
are

Ys=0
and
'Yb=:!:ﬁm=:l: -1—5"\."6“—6.;, (.A.39)_
8 \' 2
in which ec,=ﬂ£)-2— ; the term in length now being omitted.
2(1+p)

The same quantities which were computed under “Elliptic
Function Solution” may now be expressed once more in
terms of the approximate solution for v,.

Rotation of flange.—The approximate rotation will be
the integral of the approximate value of v,, or

15 \/L 1_=x
=V Vf““*ﬂ(l‘)(?) (531%0)
d
15 2\/L ' z_1
e (1-7)3) (12723

A reference to figure 2 shows that the distribution of the
angle ¢ is nearly linear for large rotations.

The maximum value of ¢ is 5 V7 2 +emw—eer ( ) or

Omaer=1.37 L /

B ¥ €ar— €cr

' (A40)

A second approximation, which contains 8 small correction
term to equation (A40), may be found from the rela.twns

. a1 2
hﬁcosh Wiy~ 10g1/1—k’
and
. 4
]E'E%K_Iog y—l—k’
Since
as k—1,
cosh™! wﬁ]:__k2=K—_log2

The exact rotation at the middle of the column is given by
equation (A35):

=1 _ 1
Prar= '\’53 cosh™ ﬁ—=]£§

therefore, as k—1,

t
Prmar= '\/g 3 (K—log 2)

(Ad1)

This corrective term 1. 55 3 is always a small part of dmes
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Variation of middle-surface strain over width of flange.—
The approximate strain distribution is obtained from equa-
tion (A12) by using the approximate value of ¥, from equa-
tion (A39): : :

3
e,'=e¢.+:15- {€as—€cr) (l —3 -z—z (A42)

This result ilolds over most of the length of the flange but is
in error near the ends and the middle where sn (gKf:) has

a value different from unity.

Relationship between the hinge-line, average, and critical
strains.—Along the hinge line 2=0, so that, approximately

(Cz)s-g=% eaa—g‘ €cr ) (A43)
Fractional shortening.——The approximate shortening is

e_lf"(ﬂ _3 )dx_ﬂ _5
=1 0 4 €ap i €cr =% Eap i €er

and therefore is identical with ¢; along the hinge line z=0.

(A44) |



APPENDIX B
MAXIMUM STRENGTH OF A CRUCIFORM-SECTION COLUMN

The deformation theory of plasticity used here states that
2 relation exists between the stress intensity o; and the
strain intensity e; which is of the following form:

for loading (e; increasing)
o= Eqecty
for unloading (e, decreasing)
doy=Ede;

where

cr=+o2+ 0.2 —o 037

2
e:=—,3=\/ez’+ &+ et
Y

oz, & stress and strain in the z-direction

0, €, stress and strain in the z-direction

r,v  shear stress and strain

In the case of a cruciform-section column compressed beyond

the buckling stress ¢.,, the value of o, is the stress in the

z-direction and is larger than o, over most of the flange
width. Also ¢,=0, and with Poisson’s ratio equal to 1/2,

e,=—% €;; so that the fundamental stress-strain relation for

increasing o; reduces to

8] a'r +37' —Esec‘\ €r +’Y

in which
0= Fgects
B
T=g—

The value of e;, at any point (r,2) of a cruciform flange is
assumed from appendix A to be as in equation (A36¢)

iyttt (-8 7) = ()

where k? is a parameter Iying between 0-and 1 which specifies
the amount of twist,

x/2 da
e " —k%sin’a

s gl i (8

As soon as & value is assigned to & corresponding to & certain
amount of twist, the quantities K and m? are fixed and &
mey be computed

Over most of the length of the column, sn (%Kl) =~1 and,

€=

therefore, the variation of e, with r may be neglected by
taking .
@62 ,m?*_ 5 km? (
“—gitp T TR 52)

The shear strain v arises from the twistgisof the flange

after buckling and is proportional to the distance r away
from the center line of the cross section:

7—2?2;:
However for insertion into the formuls for strain intensity,
a value of 4? is desired which is independent of r. Such a
value may be obtained by teking the average value of +*
over the thickness. The mean value of 4* over the cross

section is _
t/2 d¢ 2 tz d¢)2 ,sz<t)2
4ar2( 2% L (eey_ e (b
ftlz r<d2? dr 3((1:1: 3\b/
687
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From the theory of appendix A (equation (A31)),
V5 _km

PE VIR

over most of the seetion for which sn (iflf—l.)zl. Hence

=_5 (1Y km? e
"‘12(6) 1+#% o

. o
and thus the strain intensity \/ a,"—{-% is completely de-

termined as soon as & value of the parameter %? is selected.

From the stress-strain relation the value of the stress
intensity and of course E,, is determined by the value of
the strain intensity. (The elastic modulus E is used if the
strain intensity is decreasing.) The stress ¢, may then be
computed by the relation o,=FE,.e. as a function of the
z-coordinate across the flange. The average value of o.
across the width of the flange is then

b
6‘"=%J; o.dz
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and is the average stress that would be determined from a
testing machine at the value of % selected.

In the actual caleulations, the width b of the flange was
divided into ten equal strips and the value of o,, was found
by & numerical summation. As the twist of the flange
varies from zero to infinity, the parameter %? varies from
zero to 1. The value of o4 may be investigated as a func-
tion of k* and will have a maximum at some value of A%,
This maximum value of ¢4 multiplied by the totlel area
gives the maximum load for the cruciform flange under
consideration.
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