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TRANSVERSE VIBRATIONS OF HOLLOW THIN-WALLED
CYLINDRICAL BEAMS!*

By BernaArD Bupiansky and Epwin T. KrUszewskI

, SUMMARY

The variational principle, differential equations, and bound-
ary conditions considered appropriate to the analysis of trans-
verse -vibrations of hollow thin-walled cylindrical beams are
shown. General solutions for the modes and frequencies of
cantilever and free-free cylindrical beams of arbitrary cross sec-
tion but of uniform thickness are given. The combined influence
of the secondary effects of transverse shear deformaiion, shear lag,
and longitudinal inertia is shown in the form of curves for
cylinders of rectangular cross section and uniform thickness.
The coniribution of each of the secondary effects to the total
reduction in the actual frequency is also indicated.

INTRODUCTION

The elementary theory of bending vibration is often in-
adequate for the accurate calculation of natural modes and
frequencies of hollow, thin-walled cylindrical beams. Such
secondary effects as transverse shear deformation, shear lag,
and longitudinal inertia, which are not considered in the
elementary theory of lateral oscillations, can have appre-
ciable influence, particularly on the higher modes and
frequencies of vibration. The effects of transverse shear
deformation and of rotary (rather than longitudinal) inertia
have been studied by many on the basis of the original inves-
tigations of Rayleigh (ref. 1) and Timoshenko (ref. 2).
Anderson and Houbolt (vef. 3) have presented a procedure
for including the effects of shear lag in the numerical calcu-
lation of modes and frequencies of box beams of rectangular
cross section. However, there does not appear to exist a
general solution for the vibration of hollow beams that in-
corporates the influence of all the secondary effects men-
tioned.

The purpose of the present report is threefold: First, to
exhibit the variational principle, differential equations, and
boundary conditions appropriate for the analysis of the

uncoupled bending vibration of hollow thin-walled cylindrical

beams; second, to give general solutions for cantilever and
free-fres cylinders of arbitrary cross section but of uniform
thickness; and finally, to show quantitatively the influence

of the secondary effects by means of numerical results for
hollow beams of rectangular cross section of various lengths,
widths, and depths.

SYMBOLS

cross-sectional area

Fourier coefficient

effective shear-carrying area

parameter defined in equation (30)

constant

modulus of elasticity

shear modulus of elasticity

moment of inertia

geometrical parameter defined in equation (29)

length of cantilever beam, half-length of free-
free beam

parameter defined in equation (38)

maximum kinetic energy

maximum strain energy

P QNE BRNamaRpER

half-depth of rectangular beam
half-width of rectangular beam
ba Fourier series coeflicients
1, J, m,n  integers
. [uL*
kg - frequency coefficient, » E
A EI
3 coefficient of shear rigidity, f .4
krr coefficient of rotary inertia, L i
D perimeter of cross section
8 distance along penphery of cross section (see
fig. 1)
t wall thickness
u(x,8) longitudinal displacement in z-direction
w(z) vertical displacement in y-direction
z longitudinal coordinate
y - vertical coordinate ’ )
y y-coordinate of center of gravity of cross section
Yas shear strain

1 Bupersedes NACA TN 2682, ““Transverse Vibrations of Hollow Thin-Walled Oylindrical Beams"” by Bernard Budiansky and Edwin T. Kruszewski, 1052,
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€ longitudinel strain

0 inclination of normal with vertical (see fig. 1)

A Lagrangian multiplier

n mass of beam per unit length

p mass density of beam

¢ longitudinal direct stress

T shear stress

w natural frequency of beam

W natural frequency of beam calculated from ele-
mentary beam theory

84y Kronecker delta (1 if ¢=7; 0 if 15£7)

@ constraining relationship

BASIC EQUATIONS

Assumptions,—The problem to be considered is that of
the natural bending vibration of a thin-walled hollow
cylindrical beam whose cross section is symmetrical about at
least one axis (see fig. 1). The transverse vibration is sup-
posed to take place in the direction of this axis of symmetry
of the cross section so that no torsiomal oscillations are
induced.

In the present analysis, the following simplifications are
introduced:

() Changes in the size and shape of the cross section are
neglected. L

(b) Stress and strain are assumed to be uniform across the
wall thickness. ’ .

(¢) The small effect of circumferential stress upon longi-
tudinal strain is neglected.

In accordance with statements (a) and (b), the distortions
of the vibrating beam are completely described by the
vertical displacement w(z) of & cross section and the longi-

Symmetrical
about

—_—y

y
1

© | (@ g
Y J
a) Typical cross section. Sign conventions.
Ec{ Cantilever beam. 83 Free-free beam.

Figure 1—Coordinate systems and sign conventions.
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tudinal displacement % (z,s) of each point of the median line
of the beam wall. :

The longitudinal-and shear strains are given in terms of
u(z,8) and w(z) as

ou '
ez='6§ (1)
and
ou , dw .
7"=$+¢7¥ sin 6 (2)

and the corresponding stresses become

ou
O':——E a‘ * (3)
and

o=@ (%Jrg—"; sin a) 4)

where § is the inclination of the normal with the vertical (see
fig. 1). ‘ t
In elementary beam theory, where the effects of all shear

" distortion are neglected, the longitudinal distortion u(z,s) is

related to the vertical displacement w(z) by
% @)= G—1) S

where % is the y-coordinate of the center of gravity of the
cross section. In the present report, however, u(x,s) is
allowed to be perfectly general, so that shear distortions (and
consequently the so-called shear-lag and transverse-shear-
deformation effects) are fully taken into account. Further-
more, because cross sections are not constrained to remain
plane, the inertia effect asgociated with motion in the
longitudinal direction is more properly designated as the
effect of longitudinal inertia than the effect of rotary inertia.

" Variational principle and geometrical boundary condi-
tions.—The variational equation to be written is appropriate
to beams whose ends are either fixed, simply supported, or
free. For some such beam vibrating in a natural mode, the
maximum strain energy is,

U=1 fo LgﬁE(g—";-)’zf dedzti fo Lsﬂa(%Jr%’ sin a)’t ds(dr;:
) (53

where u(z,8) and w(z) are the amplitudes of displacement for
the particular mode considered. The maximum kinetic
energy is ’

1026 . 12
-1 ﬁ fﬁpww*ds dot3 ﬁ 99ptw*uﬂdsda; ©)

where w is the natural frequency of the mode under considera-
tion and p is the mass density of the beam. The second
term in equation (6) constitutes the contribution of longi-
tudinal inertia to the kinetic energy.

A natural mode of vibration must satisfy the variational
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equation

U —T)=0 (7

where the variation is taken independently with respect to
u(z,8) and w(z) and with the provision that both u(z,s) and
w(z) must satisfy the geometrical boundary conditions of
the problem; furthermore, w(z,s) must be periodic in the
coordinate s with a period equal to the perimeter p. The
geometrical boundary conditions are w=0 and u=0 at a
fixed end and only w=0 at a simply supported end. At a
freo end no geometrical boundary conditions are imposed.
Differential equations and natural boundary conditions.—
Equations (5), (6), and (7) in conjunction with the usual
procedure of the calculus of variations yield the following
simultaneous integrodifferential equations for » and w:

bub ou dw.
I:G’t Sudv

Ethts a>:|+pw =0 (@)

9§G’t Y Z') sm()—[—d zsin® 0 ) ds+ po*w=0 (9)

#=§f;ptd8

and the boundary equations at each end of the beam are

where

(10)

9§Et du ds=0 (1D
ou , dw
9§Gt aZ’—}— dw sin 0) sin 0 ds sw=20 (12)

At a fixed end, both boundary equations (11) and (12) are
satisfied by virtue of the fact that the geometrical boundary
conditions require that both su and 6w be zero. At a simply
supported end sw=0, but, since su(z,s) is perfectly arbitrary,
the variational process forces the equality

ou
Kt el

(13)
Iinally, at a free end, since there are no geometrical con-
straints, both sz and sw are arbitrary and hence the varia-
tional process forces, in addition to equation (13), the

equality
?Gt aﬂl-z; s 0) sin 8 ds=0

Equations (13) and (14) constitute so-called “natural
boundary conditions’ because they are automatically satis-
fied as the result of a variational process. Equation (13) is
recognized as the condition of zero longitudinal direct stress
while equation (14) simply stipulates that the total vertical
shear force vanish. )

Thus to summarize, the appropriate boundary conditions
required for the solution of equations (8) and (9) are

(14)
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Fixed end:
’ w=0
u=0
Simply supported end:
w=0
gy QU ©
Et -a—x-—O
Free end:
ou , dw

9§Gt 58 +d sin@)sin0d8=0

ou
Et &——0

The integrodifferential equations (8) and (9), which specify
equilibrium in the longitudinal and transverse directions
respectively, can, of course, be written directly without
recourse to the variational principle.

GENERAL SOLUTIONS FOR CYLINDERS OF UNIFORM WALL
THICENESS

The following exact solutions for cylinders of uniform wall
thickness are carried out by means of Fourier series in con-
junction with the application of the variational condition
(eq. (7)). This procedure, which does not require explicit
consideration of the natural boundary conditions, was
believed to be more expedient than a direct attack upon the
simultaneous integrodifferential equations (8) and (9) and
all their associated boundary conditions.

Cantilever beam.—The geometrical boundary conditions,
for a cantilever beam, as previously shown, are

w(0)=u(0,8)=0

(see fig. 1). Appropriate assumptions for the displacements ’
w(z) and u(z,s) are ,

wkx)=0+ Z b, cos 7;“2: 15)

and
2mrs

@ (-] x
>V D3 Gma sm

u(x,8)=
@9) maL3,5 n=01,2 oL ¢

(16)

The condition %(0,s)=0 is satisfied by each term of equa-
tion (16); the condition

w((i)=0+ﬂ§M ba=0 an

is introduced into the variational procedure by means of the
Lagrangian multiplier method. The choice of the particular
trigonometric functions used in the Fourier series (15) and
(16) was guided by consideration of the orthogonality
required for the simplification of expressions in the strain
energy. The constant C is needed in the expression for
w(x) in order that w(L) be unrestricted.
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Using equations (15) and (16) in equations (5) and (6)
yields

U—-T=
lfbﬁEt(i f__," Gmn 2% 08 T2
2 Jo m~1,3,5 n=0,1,2 ’"—?E 2L
1t = e 2nw . mwx . 2nws
§fo 36G‘ (mz 2o 0mnp SR SR

=13,6 n=0,1,2

2n7r8

dsdz+

. nw sin
smen?;'}u bnzL —T d8d2:'—

-i—f?ﬁw%t( i b,, cos mr:c+0> ds de—
o~ n=1.3,5

= sin mwz 21twa\2
_f ? (m-1,3.5 n%,z Om o7 CcOs -—p—) ds dz (18)

To make equation (18) stationary and at the same time
satisfy the constraining relationship

. o=C4 >3 by=0 (19)
n=13,5

1t is sufficient to set
SU—T—Ap)=0 (20

where the variation is with respect to the a’s, b’s, and C
considered as independent variables; here ) is 2 Lagrangian
multiplier. This variational process results in the following

equations:
oU 1) Op 2 na® Ay (’i AgL
0by .—)\abt ﬂ-O,l,zat 2 2 it @ 2L) - 3 0
L =1 9L
edag o 2L 4y
B bi (—1) 2 T B C—2x
= (1=1,3,5,...) (21)

o(U

Et( ) —'(1+6oj)atj+Gt( ) —L-Z—)tlu"l'

aau

Gtz:’ﬂ- A,b;—w pt——(l +aoj)(lu—0

(= :3; 3 . )
i—0,1,2, ... (22)
~7)_,% ey 2L
=0 ) 23)
where
A,=3g§ sin 0 sin 2278 g @4
= D <

As=9§t sin? 6 ds (25)
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With the use of the nondimensional parameters

k=t o (26)
ks ——%- 27
o L _ T
- ka _'ptLZ_ALS (28)
161
P_ZS_P (29)
and
St el (2) (30)
equations (21), (22), and (23) may be reduced to
o mr’ I 17\ 1 1
n% 4 As nafin+§ ?> Eﬁ bt‘—g kp*b,—
e sz0-%‘=0 ' (=1,3,5,...) @1)
(ks*BE+EK35%) (1+80y) 011+E 57 A7 bi—“o
(z=1,3,5,...)
(j=0,1,2,...) (32
-] 2 )
kB’n_lz':)%”T )2 ) +kB’0+~—=0 (33)
For =0, equation (32) becomes
ks? [i’—ka’km’ (—72;)3] Go=0  (i=1,3,5, ...) (34)

Equation (34) is not coupled to any of equations (31) to
(33). A given value of a4, corresponds to the amplitude of
the 7th mode of longitudinal oscillation, and if this value of
an is not equal to 0, then equation (34) simply gives the
frequency of this longitudinal mode. Consequently those
equations in equation (32) for values of j=0 are not asso-
ciated with transverse bending and so are ignored henceforth.
For the remaining values of j (that is, 77%0) equation (32)

yields
h . ‘K’4LA’” b, (=1,35,..)
Y= ABA LR i=1,2,3,...)  (35)

Substituting the expression for a4 in equation (35) into
equation (31) and solving for b; gives

i-19 I
(—=1)2 E'kBZO_I-ET

b(_ N{

' (¢=1,3,5,...) (36)
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where
= W KEA L.,
ot 1 N\VeEg g A .
T8 kS kB3A+Kn?  2°%
n=1,23
In the appen‘dix' this expression for N; is shown to be equivalent to
_ Pty P A z T A2 1
Ne=%5 Bi—1¢ ASB‘ kst K’n”(ks’B,’-l—K’n") —gks (38)

Since the series in equation (38) is considerably more quickly convergent than that in equation (37), equation (38) should be

used in actual numerical calculations of N;. -

Substitution of equation (36) into equation (33) and the constraining-relationship equation (19) gives the following two

homogeneous equations in C and A:

’[1+~k 2 SO (3 2—1—] o+ [1+I& 2
B Bn=1,3,5 wr) N, B

[1+he 53 07 24

n=1,3,5

21 9 1 L3

Finally the condition for a nontrivial solution for C and X gives the frequency equation

ke 2\ 1
2 2 i P
ks [1+kB n§3,5<’n7" Nn]

n-1
kst 33 (—1) 7 g

which the frequency parameter kp must satisfy. Since the
terms of the infinite series which appear in the frequency
equation contain kp itself, the roots of equation (40) are most
conveniently found by trial. Fortunately the infinite series
in equation (40) as well as the series in the definition of N;
converge rapidly so that only a few terms are needed to
evaluate them with sufficient accuracy.

Once kp has been determined for a particular mode, the
corresponding mode shape can be found by letting C=1 and
solving cither of equations (39) for A and then finally evaluat-
ing b; and a4 successively from equations (36) and (35).

Free-free beam—symmetrical modes.—If the origin of a
free-free beam of length 2L is taken at the midspan (see fig.
1), the form of the Fourier series assumed for w(z) and u(z,s)
when the beam is undergoing a symmetrical mode of vibra-
tion may be exactly the same as that assumed for the
cantilever beam of length L (see eqs. (15) and (16)). The
only difference in the ensuing calculations is that the con-
straining condition (19) is not introduced. Consequently, it

can be readily seen that the frequency equation for the

—h 39
20T w7 (88a)
LS)\
39b
]O+<MM oA =0 (39b)
Ik 3 (-1 7 2
B n=1,3,6 nr Nu
=0 (40)
- _]:— .
na13,s Na

symmetrically - vibrating free-free beam is obtained from
equation (392) by setting A=0 and is

() o

After a particular root kjp is found from equation (41), the
shape of the corresponding symmetrical free-free mode may
be obtained from equations (36) (with A=0) and equations
(35).

Free-free heam—antisymmetrical modes.—Consider a
free-free beam of length 2L undergoing antisymmetrical
vibrations. Explicit consideration need be given only to the
right half of the beam (see fig. 1), and for this half-beam the
only geometricel boundary condition that must be imposed
i8 that w(0)=0. 7The spanwise d.lsplacement %(0,8) is unre-
strained by virtue of antisymmetry.

Appropriate assumptions for the dlsplacements w(z) and
u(x,8) are then

o [1+k,;z > (41)

n=1,3,6

nwTx

w@)= 33 basin 57+

(42)
n=z, 4,6
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and
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i} G mn COB 7;2 cos — Znws (43)

u(z,8)=_ 2>, ?

m=0,2,4 n=1,2,3

The linear portion Cz of the expression for w(z) is needed in order to g1ve the beam sufficient freedom at the tip (z=L).
The choice of the particular trigonometric function in the series expansion for u(z,s) was, as in the case of the cantilever
beam, guided by consideration of the orthogonality required for the simplification of the expressions in the strain energy.
The zeroeth term in the series for u#(z,8) in the s-direction was omitted because it only leads to the frequency equu.tlon for

longitudinel oscillations.

Using equations (42) and (43) in equations (5) and (6) yields

1(E L =, mr .
_§ f é Et (m‘-i;,214 ngz,s_amn ‘)L

sin 4
n=2,4,6

fgs t ( Q A mx COS —F7— maz
()
2 P m-m,,-m ma oL

The variation of equation (44) with respect to the a’s,
b’s, and C gives, after suitable simplification,

i

(Bik2 K39 a,,—m% Afijb=0 (=2,4,6,...)
(G=1,2,3,...) (45)
I:K’j’— ke ntles? (%)’] au—E* 2 4,4C0=0

(=123,...) @

@ 1 Lt 'i'nﬂ'z 1 1 3’1 2 l . _
n-;?,aﬁ.?—ﬁ:' 4 A.at" 2E2 P) bi+2 kB bi

(— 1)1/2% EfCL=0 (1=2,4,6, .. D @n

1Lt . _CL_
b o Ag T OnGn TS

kst Z —( 1)*2 b, —kB’CL 0 @48

n=2,4,6 T

From equation (45)

K2 4,5
4L <7 _
s < b

which, except for sign, is the same expression as that ob-
tained for the cantilever and symmetrically vibrating free-
free beams (eq. (35)). From equation (46)

B L 4, .
Ty T ¢ (17=1,2,38,...) (50
Substitution of equa.tiqn (49) into equation (47) gives

b= (=0 25 0r (1=2,4,6
: Fy v 14,6, ..

) (61)

mre 2nw8

Mx2 27L7r8 @ 2nw .
sin 5= €0 )dsd + fgSGtI:m_m“_Lu—-a,.. > €os v~ sin » +

E b. 2L nwz+0>:rdsd:c———f 9§ptm (n-u, b, slnT—l-C’a:) dsdx—
s:”‘%”—s> ds dz ' _ e

where IV, is defined in equation (37).

Substitution of equations (50) and (51) into equation (48)
and simplification gives as the frequency equation for the
antisymmetrically vibrating free-free beam

o [,,.:2,4 s, (’n-:r ]' "'2 As km ng,z,a Bogks’+K’»n’+3 0
(62)

After a particular value of %5 is found from equation (62),
the shape of the corresponding antisymmetrical free-free
mode may be obtained by giving C the arbitrary value of
unity and calculating the b’s and a’s successively from
equations (51), (50), and (49). .

Discussion of parameters,—The parameters entering in
the -frequency equations merit discussion. The unknown
natural frequency is contained only in the frequency co-

efficient ks, which is defined by the formula w= %;
and is in common use in beam-vibration analysm. The

parameters ks and kpr are identical with the shear and
inertia parameters defined in reference 4, which considers
the effect of only transverse shear and rotary inertia on
beam vibrations. The quantity As which appears in the
present definition of k5 is actually the effective shear-carrying
area when plane sections are constrained to remain plane;
that is, when shear lag is neglected. The remaining param-
eters appearing in the present derivation, namely, 4/A4g,
K, and A4;, 4, . . . are essentially shape parameters which
actually depend only on the contour of the cross section;
as shown in the appendix,

Ag 1 & 2

472 ,,2;,\'2,3 A
and

2_££ @ A2
K TxAgnnlz’;; n

and the A,’s are simply the Fourier coefficients of the
function sin ¢, which is dependent only on the shape of the
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cross section. These shape parameters are related to shear-
lag effects and their interaction with transverse shear
and longitudinal inertia.

The effect of longitudinal inertia is associated with the
parameter kgr. If the effect of longitudinal inertia is to be
neglected, it is sufficient to set kzr equal to zero in the final
frequency equation. If kg is equal to zero, B; becomes in-
dependent of kp. Appreciable simplification in a trial-and-
error solution for the natural frequency then results since,

with B, independent of kg, the infinite summation contained -

in N is also independent of k5 and need be calculated only
once for any particular beam. As is shown in the following
section, the effect of disregarding the influence of longitudinal
inertia may often be negligible.

Without presentation of details, it may be mentioned that
for the case of a circular cylinder, which has no shear lag,
all the A,’s except .4; vanish and the frequency equations
(40), (41), and (52) may be put into closed forms identical
to those given in reference 4. Again, if in the general fre-
quency equations ks is set equal to zero, the equations may
be put into closed forms equivalent to those of reference 4
where only rotary inertia is considered.

)
!

RESULTS FOR CYLINDRICAL BEAMS OF RECTANGULAR
CROSS SECTION

In order to show quantitatively the effects of shear lag,
transverse shear deformation, and longitudinal inertia on
the natural frequencies of hollow thin-walled cylindrical

1.0
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beams, numerical calculations have been performed for
cylinders of rectangular cross section oscillating as free-free
beams. The calculations have been limited to symmetrical
modes of vibration, and consequently the frequency equation
(41) is applicable. For rectangular cross sections the quan-
tity IV; may be put into closed form as shown in the appendix,
and this closed-form version of IV; was used in the calcula-
tions. A value of E/G equal to 2.65 (appropnn.te for
aluminum alloys) was assumed.

The results of these calculations are shown in ﬁgures 2,3,
and 4. In figure 2, the ratio of the natural frequency o to
the natural frequency o, obtained from elementary beam
theory is shown as a function of the plan-form aspect ratio
L/b for cross-sectional aspect ratios of 1.0, 3.6, and o,
The contribution of each of the secondary effects to the total
reduction in the natural frequency for the cross-sectional

aspect ratios %=3.6 and 1.0 can be seen in figures 3 and 4,

respectively. The cross-sectional aspect ratio of %= ®

corresponds to the limiting case of a beam where the effects
of transverse shear deformation and longitudinal inertia are
negligible and therefore the reduction in natural frequency
is due entirely to shear lag.

The dashed lines in figures 3 and 4 show the reduction in
frequency due to the inclusion of the effect of only transverse
shear deformation as obtained from reference 4.

The long- and short-dash lines are calculated from the
frequency equation (41) with %z=0 and consequently

m///

o /
3.6/

A

'8 /

N
\
\

INA

N

N\

S
&

25—

(a) {b)

0 3 10 14 2. 6
Lib

(a) First symmetrical mode.

i0 14 2 6 10 14

Lib : L/b
(b) Second symmetrical mode.

(¢) Third symmetrical mode.

Fraure 2.—Change in the natural frequency of a symmetrically vibrating free-free cylinder due to the inclugion of secondary effects.
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1.0~
8
6
w j—
By
a4
Effects included:
——~———— Transverse shear (ref, 4)
———-——— Transverse shear and shear lag
Transverse shear, shear lag, and
2 longitudinal inertia
! [ ] 1 ] j
03 6 ) 4

Lo

Fiaurk 3.—Contribution of transverse shear deformation, shear lag, °

gnd longitudinal inertia to the reduction in natural frequency for
2=3.6. : .-
a

represent the reduction in natural frequency when both shear
lag and transverse shear deformation are taken into account.
Thus the hatched area between the dashed and the long- and
short-dash lines may be considered as showing the additional
reduction in natural frequency when the influence of shear
lag is considered. Finally, the solid lines are calculated with
kgr taken into account, and consequently the shaded area
shows the additional ‘influence of longitudinal inertia in
reducing the frequency.

Examination of figures 3 and 4 and the curves for -g= e In
figure 2 shows that the influence of shear lag increases as the
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10— _
Mode:
B
2d symmetrical
S
U"é L —
4 3d symmetricol
]
Effects included:
—— —— — Transverse shear (ref, 4)
D —r Transverse shear and shear lag
Transverse sheor, shear log, and
2 longitudinal inertio
L I B I 1 J
O 3 10 14

L/b

FreuvrE 4.—Coniribution of transverse shear deformation, shear lag,
_and longitudinal inertia to the reduction in natural frequency for

LAY
a

cross-sectional aspect ratio increases; whereas the influence
of transverse shear and longitudinal inertia decreases with
increasing cross-sectional aspect ratio. Indeed, it appears

from the results for %=3.6 .that for this aspect ratio the

effects of longitudinal inertia may already be considered
practically negligible.

A word of caution. concerning the interpretation of figures
3 and 4 may be in order. Since in some cases the depth of
the hatching increases with increasing L/b, it might appear, at

_ first glance, that the shear-lag effect increases with increasing

plan-form aspect ratio. However, if the additional effects
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of shear lag are considered on a percentage basis with the
dashed line as a base, it will be found that shear-lag effects
actually reduce in percentage with increasing L/b. A similar
criterion should be used in judging the influence of longi-
tudinal inertia.

CONCLUDING REMARKS

The numerical celculations ‘show that secondary effects
have appreciable influence on the natural frequencies of
rectangular box beams of uniform wall thickness. These
results constitute an indication of the probable inadequacy of
elementary beam theory for the vibration analysis of actual
aircraft structures of the monocoque and semimonocoque
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type and emphasize the need for practical calculation pro-
cedures for such structures that would take into account
transverse shear deformation, shear lag, and, when necessary,
longitudinal inertia. The general solutions presented for
cylinders of uniform thickness, as well as the numerical results
for rectangular box beams, should be useful in the assessment
of the accuracy of any procedure of this kind that may be
developed.

Y

LANGLEY AERONAUTICAL LABORATORY,
NaTioNaL ADVisory CoMMITTEE FOR AERONATUTICS,
Lawauey Frewp, Va., January 21, 1952.

APPENDIX
TRANSFORMATION OF PARAMETERS

Expressions for As/A, I, and K*.—Ifsin § is expanded into
o Fourier series

sin 0= 3 A, sin 2’;”3

n=1,23

(A1)

the Fourier coefficients A4, are the same as those defined in
equation (24); that is,

A2 56 sin 6 sin 2778 ds
P D

(A2)

The effective shear area Ag (eq. (25)) can now be written
as o function of the Fourier series expansion for sin 6 as

As_9§
um1,2,3

With the use of the appropriate orthogonality conditions,
equation (A3) becomes, after the integration is performed,
As=gt i A 2—é i An2
n=

12,3 22503

277,74'8 2 ds (A3)

or

As 1o g2

A 2 n=1,23 (AA:)

The moment of inertia I of a cylinder is defined as (see
fig. 1)

I= ﬁ ? % ds— AT (A5)

where 7 is the y-distance to the center of gravity of the cross
section and is given by

e
pt

y=f;sin 6ds

(A6)

But
(A7)

or

y= > A,

n=1,23

(A8)

P (1_003 2n1rs>
2nw )

and, consequently,

" % (AQ)

With the use of equations (A8) and (A9), the expression
for I in equation (A5) becomes

At o 4.7

81!’2 n=1,2,3 7L2

(A10)

With the series expansion for I in equation (A10), the param- 7
eter K?, as defined in equation (29), becomes

2 A & 4.2

J B et (A1

Transformation of expression for N;,—In equation (37)
N; was defined as

z’w’ ix? ¥ niA,? 1

- Ne= 16ks? KRASnIE kB +Kn? 2

ks* (A12)

The infinite series that appears in this expression converges
as A, and therefore is a relatively slowly converging series.
In order to increase its-rate of convergence, the following
transformations are made.-

By adding. and subtracting 4,}K* inside the infinite
summation in equation (A12) and using equation (A4), the
equation simplifies to

P A L, e A, 1

T 4 > 2
N= 16 As ' 2033 k*BE+E 0 2 ks (A13)

By adding and subtracting A,2/K*n? inside the infinite
summation in equation (A13) and using equation (A11), the
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expression for IV; can be transformed to

i P A - A2 1,
Ni=g5 Bé—15 7, B 2, mopgaps 102 2k (A14)

The infinite series in equation (A14) converges as A,*/n* and therefore is considerably more quickly convergent than the
series in equations (A12) and (A13), which converge as 4,* and A,%/n? respectively.

Closed form of N, for cylindrical beams of rectangula.r cross section.—For a cyhndncal beam of rectangular cross
section, with dimensions as shown in figure 2, it is possible to write the expression for N; in a closed form. The param-
~ eters for such a cross section become

As=4at h .
A=4(a+tb)i=pt
A,=0 (n even) (- ' (A15)
g cos 2nab (n odd)
nr P J

With equations (A15) the parameter NV; shown in equation (A12) becomes

o 2nab :

_i i p & p__1,, '
Ni—sksz 4k8§ a ﬂ;ﬂﬁ _k_8_§ B 2+n2 P) kB (A].G)

Kg i
or
dnxd

7:, - 1 o COST/ 1

1 + > —5 kst SRV Ty

Ni_—_F5 S a n-;s's?ng—l_n n-lﬁ,ﬁg .B2+7b

Each of the infinite summations in equation (A17) cen now be written in closed form as shown in reference 5, and the
closed expression for N; then becomes
SlD.h T ks .B{ (Sa )

it K p wksp (1,
Ne=g13\" " Ti.B. a wrksp +tanh 5 5 By | p—5 ks (A18)
cosh 5 = B
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