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DEFLECTION AND STRESS ANALYSIS OF THIN SOLID WINGS OF ARBITRARY PLAN FORM
. WITH PARTICULAR REFERENCE TO DELTA WINGS !

By Manvusrn Steiv, J. Epwarp ANpBRSON, and JorN M. HepeereETH

SUMMARY

The structural analysis of arbitrary solid cantilever wings by
small-deflection thin-plate theory is reduced to the solution of
linear ordinary differential equations by the assumption -that
the chordwise deflections at any spanwise station may be ex-
pressed in the form of @ power series in which the coefficients are
Junctions of the spanwise coordinate. If the series is limited to
the first two and three terms (that s, if linear and parabolic
chordwise deflections, respectively, are assumed), the differential
equations for the coefficients are solved exactly for umiformly
loaded solid delta wings of constant thickness and of symmetrical
double-wedge airfoil section with constant thickness ratio. For
cases for which exact solutions to the differential equations
cannot be oblained, a numerical procedure is derived. Experi-
mental deflection and stress data for constant-thickness delia-
plate specimens of 46° and 60° sweep are presented and are
found to compare favorably with the present theory.

INTRODUCTION

One of the present trends in the development of high-speed
airplanes and missiles is toward the use of thin low-aspect-
ratio wings. The structural analysis of these wings often
cannot be based on beam theory since the structural defor-
mations may vary considerably from those of a beam and,
indeed, may more closely approach those of a plate. In
cases where the wing construction is solid or nearly solid the
use of plate theory in the analysis is particularly valid, and
it is this type of wing which is considered in the present
report.

Exact solutions to the partial-differential equation of plate
theory" are not readily obtained, especially for plates of
arbitrary shape and loading; however, & number of approxi-
mate solutions to specific problems on cantilever plates have
appeared in the literature (see, for example, refs. 1 to 7).
Of the approaches used in these references, only the one in
references 6 and 7 is readily applicable to plates of arbitrary
plan form, thickness distribution, and load distribution; thus
it is the most useful one for the analysis of actual wings.

In reference 6 the cantilever-plate problem is simplified by
the assumption that the deformations of the plate in the
chordwise direction (parallel to the root) are linear. By
minimizing the potential energy of the plate, the partial-
differential equation of plate theory is replaced by two

simultaneous ordinary differential equations for the spanwise
variations of the bending deflection and twist. Inreference 7
the same ordinary differential equations are obtained in a
different manner. Refinement of the analysis by inclusion
of the effect of parabolic, cubie, or higher-order chordwise
camber terms is indicated in reference 6, and as the order of
refinement is increased & corresponding increase in the num-
ber of ordinary differential equations is obtained.

In the present report, which is an extension of reference 8,
a general set of ordinary differential equations is presented
which may be used to obtain any desired degree of approxi-
mation to the deflection of the plate. These equations are
solved exactly for several cases of delta plates under uniform
load first by considering linear chordwise deformation only
and second by including the effect of parabolic chordwise
camber. Comparisons are drawn between the stresses and
deflections computed from the equations of each approxi-
mation and also with some experimental results.

The differential equations presented contain coefficients
that depend on the plan form and stiffness distribution of the
plate and on the loading. In this report, the plates con-
sidered in detail have coefficients such that the differential
equations can be solved exactly; however, in cases for which
exact solutions cannot be obtained a numerical procedure
must be used. One such procedure is derived and its
accuracy is demonstrated.

SYMBOLS
l length of plate measured perpendicular to Toot
¢ root chord of plate )
D lateral load per unit area, positive in 2-
direction
t local thickness of plate
(. average thickness of plate
3
D local flexural stiffness, —1—2(%—[,5
D flexural stiffness based on average thickness,
_Et® _
12(1—4%)
B modulus of elasticity of material
PR Poisson’s ratio
w " deflection of plate, positive in z-direction
B, Y, 2 coordinates defined in figure 1

1 Suparsedes NACA TN 2621, “Deflection and Stress Analysis of Thin Solid Wings of Arbitrary Plan Form With Particular Reference to Delta Wings” by Manuel Steln, J. Edward

Anderson, and John M, Hedgepeth, 1952,
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Fraure 1.—Coordinate system used in the present analysis for a canti-
lIever plate of arbitrary shape with arbitrary thickness variation.

©n function of =, coefficient in power series for

N
deflection w=> 0) ea(x)y™
nm=

c1(z), es(x) functions defining plan form (gee fig. 1)

o variable obtained by transformation a:1=1—£l
Oz, Oy normal stresses

Tay shear stress

I maximum principal stress

A aspect-ratio parameter, -«‘j /% 1—p)

RESULTS

The derivation of the general set of ;rdina.ry differential
equations is given in appendix A.. The general procedure
outlined in reference 6 is followed; that is, the deflection
of the plate w is expanded into a power series in % the chord-
wise coordinate with coefficients which are functions of =
the spanwise coordinate (see fig. 1)

w=op2)+ (@)Y Te:@y*+ - . . Ton@y" M

. Equation (1) is substituted into the expression for the po-
tential energy of the plate-load combination which is in
turn minimized by the calculus of variations with respect
to each of the coefficients ¢,. The results of the variational
procedure appear as N1 simultaneous differential equa-
tions with the coefficients ¢, as unknowns.

By taking a sufficient number of terms in the expansion
of w, the resulting differential equations can be used to ob-
tain any desired degree of accuracy i the solution for the
deflections of any given cantilever plate subjected to an
arbitrary lateral load. Of most interest, perhaps, are the
particular cases for N=1 and N=2, which are obtained
from_ the general set of equations and are simplified in
appendix A. The case for N=1 (also derived in refs. 6
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and 7) includes linear chordwise deflections, and the case for
N=2 takes into account parabolic chordwise curvature.
Although for most practical problems the solution by the
parabolic theory should be adequate, cases might exist in
which cubic, quartic, or even higher-order chordwise terms
should be included, depending on the convergence of the
series for the configuration considered.

The particular equations for N=1 and N=2 are used to
determine the deflections and stresses of the following can-
tilever plates subjected to uniform Iateral load:

(1) A 45° delte plate of uniform thickness

(2) A 60° delta plate of uniform thickness

(8) A 45° delta plate of symmetrical double-wedge airfoil
section with constant thickmess ratio

Fortunately, for these configurations, the solution can be
carried out exactly by both the linear and parabolic theories,
and the details of these exact solutions are included in
appendix B. In general, however, exact solutions cannot
be obtained and some numerical method- must be used.
One such method, based on replacing derivatives by their
first-order-approximation difference forms, is derived in
appendix C. :

A summary of the results for the three particular problems
is shown in figures 2 to 11., Deflections obtained by the
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Ficure 2.—Deflections of a 45° delta plate of uniform thickness under
uniform load.
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linear theory and the parabolic theory for the three con-
figurations are compared in figures 2, 3, and 4. Stresses
obtained by the linear theory and the parabolic theory
for the three configurations are compared in figures 5, 6,
and 7. Where available, experimental deflections  and
stresses are also shown in these figures. The details of the
procedure used to obtain the experimental deflections of
the 45° and 60° uniform-thickness plates and the experi-
mental stresses in the 45° uniform-thickness plate are con-
tained in appendix D ; whereas the experimental root stresses
for the 60° uniform-thickness plate were obtained from
reference 8. Figures 8 to 11 present the comparison be-
tween deflections and stresses computed from the exact
golutions of the differential equations and those computed
from the numerical solutions of the same equations.

DISCUSSION

The results shown in figures 2 and 3 indicate that, with
regard to deflections, either the linear theory or the parabolic
theory is adequate for the case of a constant-thickness delta
plate subjected to a uniform load, the comparison being some-
what better for the 60° plate than for the 45° plate. If
accurate slopes in the chordwise direction (angle of attack)
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F1gure 3.—Deflections of a 60° delta plate of uniform_thickness under
uniform load.
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are desired, however, the parabolic theory must be used
because the error in the angle of attack as computed by the
linear theory is as much as 30 percent (see figs. 2 and 3).
The appreciable anticlastic curvature, evidenced by the
experimental results of figures 2 and 3, may be important
aerodynamically and is, of course, not taken into account by
the linear theory.

The apparent convergence of the aforementioned series
in the case of the double-wedgesection plate (see fig. 4)
implies that the linear theory is adequate for this case. The
lack of chordwise curvature in the result obtained by the
parabolic theory is attributable to the fact that the natural
tendency of the plate to have anticlastic curvature is canceled
by the opposite tendency of the thin edges to bend down
under the load. Unfortunately, no experimental results
are available for this configuration.

In figure 4 the plate stiffness D in the nondimensional
parameter wD /pl is the local value of D at a point where
the thickness is equal to the average thickness of the plate
as a whole. Thus the results of figure 4 are comparable
with the results of figure 2 on an equal-weight basis. It
can be seen that the deflections of the double-wedge-section,
constant-thickness-ratio plate are everywhere less than
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Fraure 4.—Deflections of a 45° delta plate of symmetrical double-
wedge airfoil section and constant thickness ratio under uniform load,
D= Lla
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those of the uniform-thickness plate although they increase
rapidly near the tip. This curling-up or singularity in slope
at the tip is a result of using a small-deflection theory and
probably would not be so marked in an actual case.

The stress results for the 45° and 60° uniform-thickness
delta plates indicate that both the linear and the parabolic
theories are adequate and that the parabolic theory is better
than the linear theory only near the root. Itshould be noted
that, although the maximum principal stress over a large
part of the 45° plate is plotted in figure 5, only the stresses
normal to the root along the line %=0.0087 of the 60° plate
are plotted in figure 6 since only these stresses are given in
reference 8. (The maximum principal stress and the stress
normal to the root are theoretically equal at the root since
the root shear stress is zero.)

Experimental data are lacking for the double-wedge-section
delta plate and, therefore, only theoretical stresses are shown
in figure 7. As in the case of deflections, the results obtained
from the linear theory and those obtained from the parabolic
theory are almost coincident, the difference being greatest
near the root. Figure 7 has also been plotted so that the
results are directly comparable with those for the 45°
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FiGuRE 5.—Maximum principal stresses in a 45° delta plate of uniform
thickness under uniform load.
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uniform-thickness plate in figure 5 on an equal-weight
basis. As can be expected, the double-wedge-section,
constant-thickness-ratio plate is a better design structurally;
the stresses in the double-wedge-section plate are everywhere
smaller and are almost constant in the spanwise direction.

The theoretical results in figures 2 to 7 have been obtained
from exact solutions of the differential equations of the
linear and parabolic theories. In order to test the reliability
of the numerical method derived in appendix C, the differ-
ential equations were also solved numerically. The results
shown in figures 8 and 9 indicate that the agreement is good
between the numerical solution in which five equal intervals
were used and the exact solution of the differential equations
for the case of the 45° uniform-thickness plate. The same
good agreement can be expected in other cases where the
thickness and load distributions are not too erratic and where
the plate stiffness does not go to zero at the tip—that is,
when no singularities appear at the tip.
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a 60° delta plate of uniform thickness under uniform load.
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Since the efficacy of the numerical method depends on
how well parabolic arcs fit the various functions between
stations, serious error can result from blind application. An
example of the seriousness of these errors and of the manner
in. which they can be remedied is shown in figures 10 and 11.
In these figures a comparison is made between exact and
numerical results obtained on the 45° double-wedge-section,
constant-thickness-ratio plate. As can be expected, the
five-station numerical solution fails to follow the exact solu-
tion in the neighborhood of the singularity at the tip. Since
the region of trouble is localized at the tip, a reasonable
remedy would be to decrease the spacing of the station points
near the tip. This decrease in spacing may be accomplished
either by using a greater number of equally spaced stations
or by using unequally spaced stations crowded near the tip.
The increase in accuracy obtained by increasing the namber
of equally spaced station points to ten is shown in figures
10 and 11.

CONCLUDING REMARKS

The general method presented herein for finding deflec-
tions and stresses of solid or nearly solid wings is, in principle,
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Fraurs 7.~—Maximum principal stress in a 45° delta plate of symmet-
rieal double-wedge airfoil section and constant thickness ratio under
uniférm load.
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capable of yielding arbitrarily accurate results for any con-
figuration. It is seen that, for the examples considered,
only the first two or three terms in the series expansion need
be congidered to obtain adequate accuracy. In addition,
for most practical plate-like tvings with clamped roots the
first two or three terms will probably be adequate, although
problems may exist wherein more terms are needed.

The numerical procedure, derived for application in cases
where exact solutions cannot be obtained, gives good agree-
ment when compared with exact solutions if enough stations
are taken along the span. The necessary number of stations
is dependent on the type of thickness and loading distribution
considered, five equally spaced stations being enough for
the uniform-thickness delta wing subjected to uniform
loading and ten being necessary for the double-wedge-section,
constant-thickness-ratio delta wing subjected to uniform
loading.

LANGLEY AERONAUTICAL LABORATORY,
NatroNaL ApvisorY CoMMITTEE FOR AERONA‘UTICS
Laverey Fierp, V., November 80, 1951.
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Figure 9.—Numerical and exact solutions of the differential equations
(obtained by assuming linear chordwise deflections) for the maximum
principal stresses along the free edges of a 45° delta plate of uniform
thickness under uniform load.
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Figure 11.—Numerical and exact solutions of the differential equa-
tions (obtained by assuming linear chordwise deflections) for the

maximum principal stress along the line y=£(1-—-:l£) of g 45° delta
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APPENDIX A
DERIVATION OF DIFFERENTIAL EQUATIONS

The structure-considered herein is a thin, elastic, isotropie,
cantilever plate of arbitrary plan form and slowly varying
thickness subjected to distributed lateral load (see fig. 1).
By assuming that the deflection of the plate can be repre-
sented by o power series in the chordwise coordinate and

by applying the minimum-potential-energy principle, a set

of ordinary differential equations in the spanwise coordinate
is obtained from which the coefficients of the power series
may be determined. First the general set of equations is
derived; then the particular equations for the cases of linear
chordwise deflections and parabolic chordwise deflections are
deduced from the general set and simplified. :

General equations.—The potential energy of the system
under consideration is

possi o 7 P58+ G5

23 %g’ %?"H(l #) (aa; ayy] P(z,y)«v} dydz (Al)
in which
o D Bz, y)I°
(@,y)= =120 =49

and p(:v,y) is the distributed latera.l load.
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The assumption is made that the deflection w.can be represented by the power series
N .
=2 ex(@)y" ‘ (A2)
Substitution of this expression for w into equation (A1) gives ) .

1 N N .
Potential enel‘gY':J; dz {% E E [am+n+1¢m"¢nu+mn (m—1) (n—1) Anin-3Pm Pt

m=0 n=0
N
2un ('n'— l)a'u+u-1¢m”€°n+2(l —F)mna'u+u—1¢m,¢n'] '_'ﬂz-b‘: pn+1§0n} (A3)
in which .
@) .

o=[ 2 Deaw =y =12 ... 2N+1)

c &)
e | o

Pr= fcl © 2,9y 'y r=1,2,...N+1)

and the primes denote differentiation with respect to .
Minimization of the potential energy by means of the calculus of variations gives

3(Potential energy)=0

1 1 N N ) ,
=J; dzx {5 >, ZE' [Crntnt1(Pn80x" F0n" 80n" ) +mn(m—1) (R—1)@min-3(Pmdea+@adom)+

mml nm=

N N
21—‘72'(71'— l)a'm+n—l(‘?m”6§9n+?’n8¢ﬂ”) + 2(1 - I-")m'na'm+n—l(¢m,5‘x°u, +‘Pu,5€0n,)] —g Pas1 5&0,‘}

Integrating by parts and collecting terms results in

4 N N ‘
0=J; dz g d¢n {mzo [(a/m+n+1‘Pm")”+l"m (m_ 1) (a’m+n—1‘Pm)"_ 2 (1 —F‘) mn (am+n—1¢m’)’+l-‘n (n'_ 1) a‘m+u—-1‘Pm”+
= = \

N N 1 (N N
mn (m_ 1) (n— 1) Qa3 ‘Pn]_pn+1} + {’E Son’ mEno [am+ﬂ+l¢m”+ﬂm (m_' 1) am+n—1€°m]}°'— {?;__‘,D 8¢n mE_O [(a'm+n+1‘Prn”)I+
- 1 N
pm (M —1) @ayn-10m)—2 (1 —p) MAGnia—10n'] }0 | (A5)
Everywhere in the region of the plate, except at the boundary =0, the variation of w is arbitrary. At =0 the
cantilever boundary conditions .
ow
. V=30
yield
0a(0)=1¢,"(0)=0 n=0,1;...N) (A6)

and therefore the variation in these quantities must also be zero at =0.
Equation (A5) is then satisfied if, in addition to equation (A6),

N .
mz_o[(am+n+l¢m”)”t+ pm(m—1) (@ myn—10m)" — 2(1— F‘)mn(am-l-n—l‘xpm,)l +pnn— Danin—10x"+

M(m—1) (n—1)Cmtn—3Pm)=Dnt1 (n=0,1,...N) (A7)
;?_-\Zlo[am-l-n+1¢nll+l-‘m(m—l)am+n—199m]:-l=0 (n=0,1,...N) (A8)

and ‘
go[(a'm+n+l‘l’m’)1+l-"m(m—1) (@ain-10m) —2(1—p)MNGn10-10m"Tza1=0 (n=0,1,...N) (A9)

Equations (A7) form a set of N1 simultaneous ordinary differential eqﬁations for the functions gs(z). The functions ¢,
are completely determined by these differential equations and the boundary conditions (A6), (A8), and (A9). '
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Particular case of ‘linear chordwise deflections.—If
N=1, the deflection function becomes

w=go+Yye (A10)

a linear function in the chordwise direction, where ¢, is the
bending deflection and ¢, is the twist. Equations (A7)
become

(al%,,)',—'l- (@%,,),I=Pl

(@maed)+ (ae)’) —2(1—p) (me)") =p2

(A11)
(A12)

The root boundary conditions, given by equation (AS),
become

a0) =g’ ) =e:(0) =/ (0)=0 (A13)
The tip boundary conditions, given by equations (A8) and
(A9), become

(@100’ + 201" 21 =0 (A14)

(e’ +a3¢,") 2m1=0 (A15)

(@) + (@) Jomr=0 (A16)
(@) + @) —2(1 =Wt leer=0  (ALD)

- Equations (A11) to (A17) are the differential equations and
corresponding boundary conditions presented in reference
6 (if only distributed load is considered) where the symbols
TV and 6 are used instead of ¢, and ¢y, respectively.

If equation (All) is integrated twice and the boundary
conditions (A14) and (A16) are used,

1 1 i
o' =2 g2 [y das A19

Substitution of ¢’/ into equations (A12), (A15), and (A17)
gives

(Bupr"Y"~2(1— ) @Y =pu— (2 f ' f o da:’)” (A19)

(bltpl"),.. ;—_-,0 (A?:O)
[(biey') —2(1—p)a101 ]y =0 (A21)
in which
P!
bl=(13"-%i1

If equation (A19) is integrated once and the boundary
condition (A21) is used,

I 1 H 4
ey~ 20— wap’=— [ s do—(2 [pas) @ep)

The differential equation (A22) is & second-order differential
equationin ¢,’. The twist ¢, and then the bending deflection
o are obtained by solving equations (A22) and (A18), respec~
tively, by applying the boundary conditions (A13) and (A20).

Particular case of parabolic chordwise deflections.—The
effect of parabolic chordwise camber may be included by
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letting V=2 in the general power series (eq. (A2)). If N=2,

the deflection function becomes

w=ey+yor+9 e

Here ¢, represents the spanwise distribution of parabolic
chordwise camber. For this case the differential equations
(A7) become

(@100")" F(@apr”)" + (@) +20(a192) " =p1
(@200")" + (@s01") " + (Gug2”) "+2#(awz)’”'—
2(1—w(@e!) +2(ae)=p: (A24)
(@30”)" + (@401 "+ (aspa”) " +2ul100" +azer” -+ aaps” +

(A23)

(@302)"1—4(1—p) [(@201) +2(as0s) 1+ d102=ps  (A25)
with the boundary conditions .
20(0) =gy (0) =¢1(0) =¢," (0) =¢2(0)=¢;" (0) =0 (A26)
(" + e + 003" +2p0:05) 22 1=0 (A27)
(az00” + 31" + " +2u020) 2= v=0 (A28)
(@a0” + 401"+ asps” +200502) 27 =0 (A29)
[(@1¢0") 4 (@21”) + (a¢2”) " +211(01602) Tz 1=0  (A30)
[(a200") "+ (@ar™) + (@ugps”) +21(az03) —
2(1—p) (@’ +20205) )z i=0 (A31)

[(@apo™) + (aaer) + (@s02") +-2u(as02) —
4(1—p) (@201 +2a302")]:a1=0 (A32)

If equation (A23) is integrated twice and the boundary
conditions (A27) and (A30) are used,

L. DO B _]:flfl 2 .
Aol s 2;upg+al . ) P dz* (A33)

Substitution of ¢” into the remaining differential equations
and boundary conditions results in

(B1et”)" +(b30s”)" —2(1—p) [(@1¢1") +2(a2¢2")']

1 ri 4
=pa—(‘—l—2 f f 1 d:c”) (A34)
ay Jz Jzx

(baen”)"+(bspd) —4(1 —p) [(@201) +2(as¢s) 1+ 4(1— ') @102

1l . (a3 ([ 2\
=P3—‘2#J;L P dz*— E“LLPL dx) (A335)

(b101” F b22”) zm1=0 (A36)
[Gue") + (beps”) —2(1—p) (11" +20205 ) s1=0  (A37)
(B2 3" ) 2m1=0 _ (A38)
[(Bags”)’ + (Bags”) —4(1— 1) (@ses’ +2a3¢2)]s=1=0  (A39)

10y =01’ (0)=¢:2(0) =g’ (0)=0 (A40)
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in which

If equation (A34) is integrated and the boundary condition
(A37) is used,

(0re") - (dsp") —2(1—p) (@101 +202¢5")

13 a 1 rl ’
- f s d:c—-(—(-l—’ f n da;=) (A41)
T 1 k4 X

Thus ¢, and ¢, are obtained by solving equations (A35) and .

(A41) with the boundary conditions (A36), (A38), (A39), and
(A40). Subsequently, ¢, can be obtained by solving equa-
tion (A33) with the boundary conditions ¢p{0)==¢,’(0)=0.
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Stresses.—After the approximate deflection of the plate
is determined from equations (A18) and (A22) or from equa-~
tions (A33), (A35), and (A41), the extreme-fiber stresses may
be calculated from the well-known equations of thin-plate
theory, which are (sée, for example, ref. 9):

~ 6D /o*w o*w
=7 (oo 3p

6D /3w d*w
v \ o H o

_6(1—p)D 'w
TR 0z Oy

The maximum principal stress ¢ at any point in the plate
can be determined from

o’=-o-’—-;o-—' + %: V(oz— o)+ 47572



APPENDIX B

EXACT SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SOME SPECIFIC DELTA-PLATE PROBLEMS

The differential equations of appendix A for linear and
parabolic chordwise deflections are solved exactly for uni-
formly loaded delta plates of constant thickness and of sym-
metrical double-wedge airfoil section with constant thickness
ratio. The equations for deflections obtained by the linear
theory are presented in terms of the aspect-ratio parameter
M for both kinds of delta plates. The equations for deflec-
tions obtained by the parabolic theory are presented for

=1 and g with u=% for the constant-thickness delta plate

and for —g =1, also with p.=%: for the delta plate of symmet-

rical double-wedge airfoil section with constant thickness
ratio.

If the z-axis is passed through the edge perpendicular to
the root and the substitution :c1=1—3;- is made, the differen-
tial equations are clearly of the homogeneous type for which
the solutions are of the form z;7, where v is a constant. For

the configurations considered, the functions that define the -
plan form (gee fig. 1) are then. ¢;(z)=0 and ¢;(z)=cz1, where ¢

is the root chord. In all the equations of this appendix the
primes denote differentiation with respect to the new inde-
pendent variable ;.

DELTA PLATE OF UNIFORM THICENESS UNDER UNIFORM LOAD
Since the stiffness D is a constant for uniform-thickness

plates, the coefficients in the differential equations (see eq.
(A4)) become

Cw=—— 21" (B1a)
bimay— 2= oy (B1b)
R T ®1d)

Pu=%i—n z" (Ble)

Solution for linear chordwise deflections.—If the co-
efficients given by equations (B1) are substituted into equa-~
tions (A22) and (Al18) and the independent variable is

changed to a;1=1——% the following equations for linear

chordwise deflections result:

4
(’.1713(,‘01”),‘—’16)\23:1(,’01'=—2 —g—lc 2713 (B2)
@ =—§ $1<P1"+6D z? ®B3)

where ‘
L3
A=—q/5 0—8)

The boundary conditions to be used with these equations are
obtained from equations (A13) and (A20) and are

eo(D=¢'()=e(1)=¢"(1)=0 B4)
@01 )z m0=0 3B5)
" “The general solution of equation (B2) is
' Ayt Agpy -1l 2 B
?1 _Alxly _I_Ag:vl 71 4(1_2h2) Do (B6)
where
y=+/1+1622

and A4; and A are arbitrary constants. Since A?is inherently
positive, the boundary condition (B5) requires that .4;=0.
One integration of equation (B6) and the application of the
conditions ¢1(1)=¢:’ (1)=0 yields

1 pl‘ 2717—1 51713‘—1
P I—2n Dc( ¥y > B7)
If equation (B3) is solved for ¢, with the conditions
@o(1)=g¢y’ (1)=0, the result is
y i 1—z
M=gD I :zv [9 (5—41%) (1 21— ‘>—
— +1
r—1 <1—a:1 Lo 217 )] BS8)

Substitution of equations (B7) and (B8) into the equation
W=y +Yor

gives the expression for the deflection w of the plate under
the assumption of linear chordwise deflections.

Solution for parabolic chordwise deflections.—If the co-
efficients given by equations (B1) are substituted into equa-
tions (A41), (A35), and (A33) and the independent variable

is again changed to a:1=1—-:§: the following equations for

523
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parabolic chordwise deflections result:

(zPe ) + (zrtcps”)' —1 6N (2101 2170 ) =—2 %l;
(B9)

(o) s (oo ) 163 | oY+ @lon) |+
15 3

B10)

64,4
3)\

¢ c? l
e =5 931901 —:—,’- z,%pd -2ul“<pa+p xé B11)

4
1+# 501 2= < +2#)\ pl 3313

.The boundary conditions to be used with these equations are
eo(D=a/'(D=01()=e’'(D)=e:(1)=¢'(1)=0 (B12)

(1'13901"+$1"C¢2”)n=0=: 0 B13)
1 16 5 ’t
2t o 2ifeps =0 B14)
15 Z1=0

4
[(ml‘m")”r%% @ifeps) —162* <a:12¢1'+§ :vl”cgo,')l =
| B15)

The homogeneous solutions of the simultaneous equations
(B9) and (B10) are of the form

o= Az
pa=Bz,;7!

Substitution of these expressions into the homogeneous parts
of equations (B9) and (B10) leads to the following charac-
teristic equation from which A may be determined:

76—6(1+16>\2)«,4+[320 (4+%> >\4+480>\2+9]¢—
4 [1280 i—jL_—Z 20480 (4-:—%) )\‘+96A’—|—1:|=0
(B16)

and gives the following relationship between 4 and B:

et [0 o

The particular solutions for uniform loading are given by

901'=Ap$1712
. (‘93=Bp$12
where )
3P'+1 2—p 2
4l T N 2T ML
=1
Pyt (2)3—1))“—(8)\2— ani—1) 2
A ~ (@M=Dt 14+ax \
1 1—n ol
Br=—1 D&

ig i—i—ﬁ (2)3— DM (8A—1)(dA2—1)
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The general solution is the sum of the homogeneous solu-
tions and the particular integral

[]
¢1’=1121 A:ﬁ’l"" —1+Aﬂx12

[
=2, Byz, 1By, B17)
n=1 :
where the values v, are the six roots of the characteristic
equation (B16) and the coefficients A, and B, are the co-
efficients corresponding to each of these roots.- After inte-
gration ¢; becomes ’

m—zA o '+A +A

B18)
The general solution for ¢, from equation (B11) is found
to be

¢0=’§1 05117‘+1+072514+ 0«951"]‘07 (B].g)

where, for n=1, 2,. . . 6,

c

_:= ‘ Vn—
Cn ’Yn('Yn+ 1) { 2

and

Lactg] D=2+ ]3]

. 2¢ 2uX pl
O3] 4t (1+225) B~

The coefficients A4; to As, A, C,, and C, must be determined

by the boundary conditions (B12) to (B15).
A complete set of coefficients is given in the following table
for delta plates with Poisson’s ratio u equal to 1/3 and with

)\=%=1 and g Deflection curves plotted from these

results are shown in figures 2 and 3 in which the 45° plate

3

corresponds to %=1 and the 60° plate corresponds to %=—3—~

De
Tm Am p.—ll B--p—l.'

A=] km}f_f A=l )‘HLE Aml )\m}gj Aesl An.‘?:

1| 27084 | 156711 0.7378 | 0.09632 [—0.3133 |—0.1022 |—0.0283L [—0.
2 4.9437 1 3.6347 ) .02411 307 | — —.4313 003074 01347
3.1 8.3818 03827 |~—.1766 | — . 07379 . 002317
4(—2.7034 |—1..5671 ] 0 0 0 0 0
5 |—4.9437 |—8.6347 | 0 0 0 0 0 0
8 |—8.8516 (—4.7258 | 0 0 0 0 0 0
| 2 emceem |, 8000 |~—. 2003 . 3500 4507 04167 . 004032
" O (RPN R, —. 01557 |~=. 02924 | cceccacs | cmccaas —. 07162 | —.08364
r 06608 . 00602

‘Substitution of equations (B17), (B18), and (B19) into the

equation

w=ge+yer1+Ves

gives the expression for the deflection w of the plate under the
assumption of parabolic chordwise deflection.
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DELTA PLATE OF SYMMETRICAL DOUBLE-WEDGE AIRFOIL SECTION WITH
CONSTANT THICKNESS RATIO UNDER UNIFORM LOAD

For a delta plate of symmetrical double-wedge - airfoil

section with a constant thickness ratio the thickness is a

funection of # and ¥ and is given by the following equations:

(A18) for linear chordwise deflections may be solved for ¢
and ¢,. The steps in the solution are the same in form as
those for the uniform-thickness plate and the resulting
equations are

3
cx — ¥ )
t= 6,y 2 (ogyg —2—‘ =20 L _I‘3 +log, 21 %l— (B21)
| c
t="01,4 (ml—%) E"‘—‘Sg/St::cl) and -
where 7, is the average thickness, From these expressions 1 90 1 g 2 2_
for the thickness the stiffiness can be found and the coeffi- Q=5 5 3 1 I +1—z
cients in the differential equations become —I7 3\ 7%
27Dc _,
a,= 1 .
— plt
27D¢c? 9+ (1:1 lOg, 371+1'—x1) = (B22)
=—3 z,8 ,Yz___
9Dc? where -
=g o I
')’=J(§) +80)\3
81Dc*
= 0 21 . )
8 Solution for parabolic chordwise deflections.—By use of
2673Dc® # (B20) the coefficients given by equations (B20), equations (A41),
®="1480 (A35), and (A33) for parabolic chordwise deflections may be
. solved for o1, @3 and ¢o. The steps in the solution are
bl=9D ¢ z,8 again the same in form as those for the uniform-thickness
80 plate and the resulting general espressions for ¢i, ¢;, and
91_3'04 @Yo are
ba=‘_—‘ x17 3
80 .
5. 2618Dc° or=27 Aa ==+ 4, log,m (B23)
¥="22400 L)
P =pc" Fod 6 S 1
A= ) ¢3=21 B.z,"2+B, o B24)
N=
Solution for linear chordwise deflections.—By use of the - ) . .
cocfficients given by equations (B20), equations (A22) and po=>) Co2," 2 +C 2, log, 21 +Cpx:+C: (B25)
. Nnm=]
where the exponents v, are the roots of the characteristic equation
25 AN[871/7 ., 25 49\ 256 _, 25‘>L320 14u ‘] ( ~28 2)?
(’y —_ —80%) m(’y —T) (‘y’—-z—-) 3 A (’)’2 ry =1 3 1__” A ‘)’2 Y 80X +
[% (VE_%?)_zooxf ~0 (B26)

Tor n=1,2,...6, A,, By, and C, are related by

y*—————sov

Ax

(v—a) (=

(+5)-s0v] ©

R e 1o 7>+5W}B}
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For uniform load the coefficients in the particular integrals of equa.tions B23), B24), and (B25) are

871+1024x2+320 1te L ni—16 (5+ 2 w) (10A24-1)

10 pit
A,—10 pf
27 De (2002+1) §11-+1024x2+320 H’“ —120(16324-1) (10A1)
. 2uN
" 15(16M-+1)—2(20N*+1) (5-1- ,)
B, 40 p

871 1+p.

27 De* (902+1) S54102402+320 758 M) 120 (16X +1) 10X+ 1)

c

_ 8 2 pl
| C’,,—-EA,,—Ec’(l—}- )B e
The coefficients 4, to 4,, 4,, C,, and C; are again determined by the boundary conditions (A26), (A36), (A38), and (A39) lin
which the coefficients given by equations (B20) are substituted.
For Poisson’s ratio x equal to = L and A= l—-l the solution of the characteristic equation (B26) leads to two realvalues and

3
two pairs of complex conjugate values for v. The identity

i

2% =2,° cos (b log, 21) +-12,* sin (b log, 2;)

was therefore used to transform the terms involving the complex conjugate values into real form. If%=1 and p=%y the

golution is

= chg 0.0040702,3%7—0.004363z,5 % cos (2:825 log, z;) +0.0068932,°% sin (2.825 log, z,)+0.000294 ;}-]
1

¢1=-—-— [—-0 003896z,**7+0.002134x,°- cos (2.825 log, 1) —O0. 006381:1:19 9% sin (2.825 log, ;) -0.01794 log, 2,--0. 001763]

goo—% 0.0007715z,*#7—0.0000708z,"-" cos (2.825 log, 1) -0. 001234,1°9% sin (2.825 log, =)+

- 0.03331z; log, 9:1—0.040963:1+0.04026]



APPENDIX C

NUMERICAL PROCEDURE FOR SOLVING DIFFERENTIAL EQUATIONS

In cases where the equations of the present theory cannot
be solved exactly & numerical method must be used. In
this appendix, equations (A19) and equations (A34) and
(A35) are set up in difference form for numerical solution.
Initially the assumption is made that the functions involved
in the differential equations are continuous and nonsingular.
In this case, first and second derivatives can be expressed by
the standard difference forms

( yﬂ+—'—yn-——

where ¢ is the distance between equally spaced station points.

In the following development five equally spaced span-
wise stations are used; however, the extension to & different
number of stations can be readily made.

First, consider equation (A19) resulting from the linear
theory

(g™ —2(1— 1) (rer’y —pg—( [ [(puta) 42) =0,

Because of the nature of the tip boundary conditions for
this equation, it can be conveniently put in the form

T'=q (C1)

Where
T=ba") —2(1—paro’

In finding the difference equation equivalent to equation
(C1), the quantity (bie,”)’ is found in matrix form; from
this expression is subtracted the matrix equivalent of
2(1—p)a1¢,; the resulting expression for T'is multiplied by
a differentiating matrix; and the product is equated to the
right-hand side.

The quantity (bie,’")’ at the half-stations can be expressed in matrix form as follows:

1”0 1 —2 1

o1 ‘ 1 —2
1

¢1”a =e_g 1

601”3

4

Y1 4 L

P1-1
1 @10
(C2)

where the second subscript denotes the station point, the subscript at the root station being 0 and at the tip 5. The

root boundary conditions are now applied ; namely,

#1(0)

=0=0p

[

ot (O)=0=247211

2¢

Thus, after the values of ¢;p=0 and ¢, ;= are substituted, equation (C2) becomes

(Pl”o [_ 2

%//1 —92 1
' 1

501”2 =? 1 —2
‘Pl”a 1
§01”4 B

f1

D12

1 ©13
—2 1 o1
1 =2 11 |es

527



528

REPORT 1131—NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

Therefore,
(bml”)o Fblﬁ aur 2 ] Y1
G11™n bu —2 1 P12
Bioe=3|  be 12 1 e (©3)
(bltpl”)a bis 1 -2 1 P14
G L b L 12 1w
One of the tip boundary conditions is .
(b!‘Pl”)z- 1=0=(b:¢1")s
Thus, ] .
(blfplﬂ);/z —1 1 (61901”)0
(b1¢1”):,us —1 1 (bl‘h”)l
(61901”)1'5/2 =% —1 1 (G117)2 (C4)
(bm”);m —1 1 [1(G1e1")s
(blsol");/x —1 (bl¢1”)4
The matrix equivalent for the second term of 7' is .
(e N1m O11p ] 1 on
(@101)3p2 Q30 ‘ —1 1 P12
2(1—m)| (@101 )sp =M 1,52 -1 1 P13
(@101 )i Qe —1 1 Pu
(@101 )or (1/1,9n_J i ~1 1_1|en
Therefore T' becomes
Tip -1 1 b1o - 2
Tip -1 1 bt —2 1
Tyn|={ —1 1 b 12 1 —~
Tope -1 1 bis 1 -2 1
Top —1 bl 1 -2 1
01,15 1 on
Q,3p -1 1 P12
) 2(1—:“) aysre - - —1 P13 (Cs)
Q1 - 1 2N
1, =1 1l

The right—liund side of equation (C1) can now be equated to the derivative of equation (C5); thus,

In

13
qu4

In order to obtain g5, the boundary condition

-1 1
1 —1 1
€ -1 1
-1 1
T=0

Tip
Tape
Tape
Trr
Tor

at z=[ must be used. In other words, T goes from T at station 4%’(0 0 at station 5. A straight line drawn between
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these two points would have the slope —2%’—’- The value of g5 is considered to be this slope; therefore,
du —1 1 n Tlﬁ
Q12 1 —1 1 Tsﬂ
g13 =_6- - 1 1 Tsp
Qu —1 1| [T7p
qis/2 L ' —111Top
or
n 1 -2 1 blo 2
le 1 —2 1 bu —2
ql3 = ;11 1 -2 1 bm 1 —2 1 —_
qu 1 —2 b|3 1 -2 1
Q162 1 b; 1 -2 1
—1 1 a1 . 1
) —1 ’ 1 ay,3n —1 1
M 1 1 ’ 1 1
& — a,5n -
—1 1 Q1,12 —1 1
—1 a0 —1

If the matrix multiplication is carried out, the difference equivalent of equation (C1) finally becomes

In fu
qr2 P12
0 |={z101-252 Dy} o
. Qs - P14
Q15/2 P15
where
’-2610+4bll+b12 —2bll—2bl2 blS Ny
~2b;,—2by;  bu-t4butbyy  —2b13—2bs bis
[01]= bm _2bl2_2bl3 blﬂ+4613+b14 _2613_"_2‘b!4 bl(
b13 _2bl3_2b14 bl3+4b14 —2b14
- bl4 _2bl( b“ -
T —a1,1p— W, 1,372 7]
ayn3n — Q32— 01,5/ a5z
[Di]= as, sz —, 521,12 Q1,72
(LR T — 12— Q02 Qiep
_ | a1, op —aypp]
In order to determine ¢, from ¢y, use must be made of equation (A18)
= | =k [ pudar 2

or, by use of the boundary condition «,(0)=¢,"{0)==0,

z 'z l 1 z *z s ' 2
Po= J=1 f pidat— —= o' dz
. 0Jo UJs Js 0Jo 1
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P15

(C6)

(o))
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In matrix form equatien (C7) becomes
1/2
1/2
1/2
1/2
1/2

a 1/as

1/ay
1/ay

et

o
e
I
[ -

e s T e N SR S N
[ -
p—d

P02
Coa| =
P
Pos

(@sfao
(111/ al) 1

1/2
1/2
1/2
1/2
11012

11
1 11

- R
o e
I S A

1
11
11

1/ays
1/(1«]

1 (az/an)s
(as/ar)s
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11 11 17971 1 1
111 1 11
1 11 1
11
, 1
2
-2 .1
1—2 1
1 -2 1
(G 1 -2

et e

1

17 |pu
1| pe
1|{p1s
11|pu
P12

o1
P12
P13
P14 )
P15

(C8)

Thus, if the values of ¢; (which cen be determined numerically or analytically according to preference and feasibility) are

known, the values of ¢, can be found by solving equation (C6) and the values of g, in turn by means of equation (C8).

The foregoing development applies to the case where only linear chordwise deformations are allowed. A similar pro-
cedure is followed in expressing the differential equations pertaining to the parabolic theory in difference form; only the

results are shown herein.

The matrix equivalent to equations (A34) and (A35) is

v

In r Ten

Qi . : 12

g | (20-258 g 1 Lie-tS8 g .,

Qe P14

Q152 . 15

dn - en

4= : ' o

6 | |20-2058 g | o290 g |l

qu ‘ 4(1—p)[E] P

@sf2l L . i

where
buot4bm+bpe  —2b;—2b bu
~2bu—2bsy  but4bustb,  —2bu—2by Bas
[Cl= b —2b,3—2b,3  bagt4bngtbay  —2bu—20yy
bus —2b,5— 20y bat4ba
bll —2614
—On 12,312 T3
Ax,312 305 Qn, 518

[(D.]= A, 512 Q53— An, 72 Qu,113

Q112 137 Un, 012

Un, 013

b
—2b
bn-l

A, 012
—n,9

(C9)
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an

Qg

[E]=

531

Qs
a

and ¢; and q; are the right-hand sides of equations (A34) and (A35), respectively; that is,

1 ri 4
s [ )
1Jz Jz
1 ri s 1 rl ”n
N Ty
zJsx 0 Jz Jz

With ¢, and ¢ known, ¢, can be obtained by use of equation (A33)

"lkalo

It should be noted that, as can be expected, the matrix
equations (C6) and (C8) are merely special cases of equations
(C9) and (C10), respectively. In addition, the square
matrices in equations (C6) and (C9) are symmetric, a result
that is consistent with the fact that the differential equations
under consideration are self-adjoint. )

In the beginning of this appendix the assumption was made
that the functions involved in the differential equations are
continuous and nonsingular, The difference solution, how-
ever, may be adequate for some cases in which this assump-
tion is not strictly correct. For instance, the defléctions of
2 plate with a discontinuous stiffness distribution could con-
ceivably be not very different from the deflections of a plate

P 1 [1/2 _( 1 1 1 1 17§11 1 1 17|pn
e |1 1 12 1 1Jau 111 1 111 1{|pe
es| |1 1 1 12 1 1 ¢ 1/as 11 1 11 1tllps |—
on 1 111 1/2 1 1 1 1/ag 11 1 1]|pu
woil L1 1 1 1 1J11/2 1 1 1 1] [ 1/ay ] L 1L 1 |pisf2
™ (aa/ay)o _F 2 Tlen
(@afa), -2 1 o
(2ft1)s 1 -2 1 P31 —
(@a/ar)s 1-2 1 Pu
! ol 12 11|
" (2s/a1)o ' T' 2 7 va1 e
(@afa): -2 1 P en
(as/ar)s 1-2 1 Po| —2p€|on (C10)
(@s/ar)s 1 -2 1 N 2N
| (@sfa)ed L 1—2  11|es P2

with a continuous stiffness distribution closely approximating
the discontinuous distribution except in the neighborhood of
the discontinuity. The results yielded by the difference solu-
tion in this case would be those associated with the continuous
stiffness distribution. The number of stations may have to
be increased, however, in order to minimize the inaccuracy
introduced by the discontinuity or, in other cases, by a
singularity. The case of the symmetrical double-wedge air-
foil section, constant-thickness-ratio delta plate, discussed
in the body of this report, is an example of a treatment of a
singularity. In this case, although the solution is singular,
adequate accuracy is obtained by the difference solution if
ten equal intervals are used.



APPENDIX D
DEFLECTION AND STRESS EXPERIMENTS ON SOME TRIANGULAR CANTILEVER PLATES

Test specimens.—The specimens tested were: (1) a 45°
right-triangular plate clamped along one leg and (2) a 60°
right-triangular plate clamped along the longer leg. Each
specimen, cut from 245-T4 aluminum-alloy sheet of 0.250-

inch thickness, had a length perpendicular to the clamped

edge of 30 inches.

Method of testing.—Figure 12, a photograph of the test
setup, shows the methods of clamping, loading, and measure-
ment of deflections. A 1,000,000-pound clamping load (held
constant during the test) was applied to the root area of each
specimen and a uniform load of 0.204 psi was applied by

2-inch washers giving 2 tip deflection in each case of approx-
imately $ inch.

The deflections were measured by dial gages placed at the
points indicated in figures 2 and 3.

Stresses were obtained from the 45° specimen only. On
this specimen, 13 resistance-wire rosette strain gages were
placed at the points indicated in figure 5. The plate was
loaded with 2-inch washers in four increments of 0.0847 psi
per increment and the maximum tip deflection was 1.13
inches. Readings of all the strain gages were recorded at
each increment of loading.

Analysis and discussion of data.—The deflection w was
plotted in figures 2 and 3 in terms of the nondimensional

Figure 12.—Deflection test setup of the 45° delta plate under uniform
load.
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parameter wD/pli, in which the elastic constants were taken
a8 £=10.6X10° psi and p=%—- It was found that the dial-

gage forces reduced the tip deflection of the plate by approx-
imately 2 percent; however, since this ervor is of the same
order of magnitude as that in the material properties and
from other sources, no corrections are made in the results
presented.

The readings of each of the 39 individual strain gages were
plotted against load, and the slope of each of the resulting
linear curves was taken as the average strain per unit load
of the individual gage. The principal stresses were then
caleulated and plotted in figure 5 in terms of the nondimen-
sional parameter of*/pl2.
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