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DEFLECTION AND STRESS ANALYSIS
. WITH PARTICULAR

OF THIN SOLID WINGS OF ARBITRARY PLAN FORM
REFERENCE TO DELTA WINGS 1

By MANUELSmrN,J. EDWARDANDEESON,and JOHNM. H~DQDPDTH

SUMMARY

TIMstructuralanalw”s of arbitrarvsolid cantileverwiws bV
‘ smallde$ection thin-plate kory is kduced to the sol&i& of

linear ordinary d~er~”a-? egwztwrw by t?w asswnpbionthat
tk chordwise dejections al any spanunke station may be w
prtzwedin t&fonn of a power ssries in which the coe@ient.s are
junctions of i%espanwise @ordinate. If h seria is limited to
tile$rst two and three terms (that is, if linear and parabolic
clurdm”sedejlectiqwj re.spectwely,are a-wwmed),tke di~erentia.1
equationsfor the coe~wts are solved exactly for uniformly
loadedsolid deltawings of constantthicknessand of qpmn.ei%cu..?
double+oedgeaitfoii section with constantthi%nem ratio. For
ca.stxfor which ewe-t solti”ow to the difcrenM equutwm
cannot be obiai%dj a numerical procedure is derived. Ezperi-
m-cntd dz$ection and stws duhzjor comt57vXhick7ws defta-
piate specimens of 46° and 60° s-uwp are presented and are
,found to comparefacorably with the prcwnt theqv.

INTRODUCTION

One of the present trends in the development of high-speed
airplanes and missiles is toward the use of thin low-aspec&
ratio wings. The structural analysis of thwe wings often
cannot be based on beam theory since the sticti @or-
mations may vary considerably from those of a beam and,
indeed, may more closely approach those of a plate. In
cases where the wing construction is solid or nearly solid the
use of plate theory in the analysis is particularly valid, and
it is this type of wing which is considered in the pr=ent
report.

Exact solutions to the partial-differential equation of plate
theory- are not readily obtained, especially for plates of
arbitrary shape and loading; however, a number of approxi-
mde solutions to specific problems on cantilever plates have
appeared in the literature (see, for example, refs. 1 to 7).
Of tho approaches used in these references, only the one in
references 6 and 7 is readiIy applicable to plates of arbitiary
plan form, thickness distribution, and load distribution; thus
it is the most useful one for the analysis of actual wings.

In reference 6 the cantilever-plate problem is simplified by
the assumption that the deformations of the plate in the
chordwiso direction (parallel to the root) are linear. By
minimizing the potential energy of the plate, the partial-
ditlerentitd equation of plate theory is replaced by two

simultaneous ordinary differential equations for the sprmwise
variations of the bending deflection and twist. In reference 7
the same ordinary differential equations he obtained in rL
d.ifkrent manner. Refiement of the analysis by inclusion
of the effect of parabolic, cubic, or higher-order chordwise
cmnber terms is indicated in reference 6, and as the order of
refinement is increased a corresponding increase in the num-
ber of ordinary differential equations is obtained.

k the present report, which is an extension of reference 6,
a general set of ordinary ditlerential equations is presented
which may be used to obtain any desired degree of approxi-
mation to the deflection of the plate. These equations are
solved exactly for several cases of delta plates under uniform
load first by considering linear chordwise deformation only
and second by including the effect of parabolic chordwise
camber. Comparisons are drawn between the stress= and
deflections computed from the equations of each approxi-
mation and also with some experimental results.

The dillerential equations presented contain coefficients
that depend on the plan form and stiffness distribution of the
plate ,and on the loading. In this report, @e plates con-
sidered in detail have coefficients such that the differential
equations can be solved exactly; however, in oases for which
exact solutions cannot be obtained a numerical procedure
must be used. One such procedure is derived and its
accuracy is demonstrated.

SYMBOLS

1
c
P

t

flu

D

E
P“
w
,X, y, z

length of plate measured p&pendicukr to-root
root chord of plate ‘
lateral load per unit area, positive in z- “

direction
local thicknew of plate -
average thicknes of plate

flexural stifluesa based on average thiclinms,

mod&s “of elasticity of material
Pois90n’s ratio
deflection of plate, positive in z-direction
coordinates ddned in figure 1

t Supawdes NAOA TN MM,“DeflectIonand Stress AmIysls of TbIn Solid WlngBof Arbltmry FM Form Wltb Partkmhr Rakenra to Delta Wings”by Manuel Stein, J. Edward
Anderson,ond John M. Hedgewtb, 19S2.
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FIGUREI.—Coordinate system used in the p~t analysisfor a canti-
lever pIataof arbitmry shape with .arbitmry thickness variation.

% function of z, coefficient in

deflection w=#O pa(z)y”

c1(z), C@ functions deiining plan form

power series for

(see fig. 1)

variable obtained by transformation ZI=1 —$

normal stres9es
shear stress
maximum principal stress

aspeck-atio parameter,
w

RESULTS

The derivation of the general set of ‘&dinmy differential
equations is given in appendix A. The general procedure
outlined in reference 6 is followed; that is, the deflection
of the plate w is expanded into a power seriesin y the chord-
wise coordinate with coefficients which are functions of z
the spwwise coordinate (see fig. 1)

w=m(z)+.w(z)?/+ *(aW2+ . . .. +W(Z)YN (1)

Equation (1) is “substituted into the expression for the po-
tential energy of the plate-load combination which is in
turn minimized by the calculus of variations with respect
to each of the coefficients 9=. The results of the variational
procedure appear as iV+l simultaneous differential equa-
tions with the coefficients P. as unknowns.

By taking a su5cient number of terms in the expansion
of w, the resulting diilerential equations can be used to ob-
tain any desired degree of accuracy in the solution for the
deflections of any given cantilever plate subjected to an
arbitrary lateral load. Of most interest, perhaps, are the
particular cases for N= 1 and N=2, which are obtained
from. the general set of equations and are simplified in
appendix A. The case for N= 1 (also derived in refs. 6

amd7) includes linear chordwise deflections, and the case for
N=2 takes into account parabolic chordwise curvature.
Although for most practical problems the solution by the
parabolic theory should be adequate, cases might exist in
which cubic, quartic, or even higher-order chordw!se terms
should be included, depending on- the convergence of tho
seriesfor the configuration considered.

The particular equations for N= 1 and N= 2 are used to
determine the deflections and stresses of the following can-
tilever platea subjected to uniform lateral load:

(1) A 45° delta plate of uniform thickncm
(2) A 60° deI@ plate of uniform thickness
(3) A 45° delta plate of symmetrical double-wedge airfoil

section with constant thiclmes9ratio
l?ortunately, for these configurations, the solution can be

carried out exactly by both the linear and parabolic theories,
and the details of these exact solutions are included in
appedix B. In general, however, exact solutions cannot
be obtained and some numerical method. must be used.
One such method, based on replacing derivativea by their
firs&order-approximation ditlerence forms, is derived in
appqndix C.

A summarv of the results for the three ptiticular problems
I is shown in “figures 2 ta 11., Deflectio& obtained by the
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I?IGUEE2.—Deflectioneof a 45° deltaplateof uniformtbiokrweunder
uniformload.
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linear theory and the parabolic theory for the &ree con-
figurations are compared in figures 2, 3, and 4. Stresses
obtained by the linear theory and the parabolic theory
for the three configurations are compared in figures 5, 6,
and 7. Where ~vailable, experimental deflections. and
stresses are also shown in these figures. The details of the
procedure used to obtain the experimental deflections of
the 45° and 60° uniform-thiclmees plates and the experi-
mental stresses in the 45° uniform-thickness plate are con-
tained in appendix D; whereas the experimental root stresses
for the 60° uniform-thiclmess plate Were obtained from
reference 8. l?igures 8 to 11 present the comparison be-
tween deflections and stresses computed from the exact
solutions of the diilerential equations and those computed
from the numerical solutions of the same equations.

DISCUSSION

The results shown in figures 2 and 3 indicate that, with
regard to deflections, either the linear theory or the parabolic
theory is adequate for the case of a constantAhickness delta
plate subjected to a uniform load, the comparison being some-
whtit better for the 60° plate than for the 45° plate. If
nccumte slopes in the chordwise direction (angle of attack)

’07.vl I I
‘~Lo i---- c-----l

r‘v ,
Y.-—--.

,06
-----

1

L

.-
--

. x(

.04

Is+ .6

Experiment

71
0 —0— Uneor

\.. P— }I%mbolic ‘Mr”P IIy

03rRTt-
.01

1&

L I
0 .2 .4 .6 .8

y/c

I?mmm 3.—Defleotioneof a 60° delta plate of uniform.thiokna under
uniform load.

are desired, however, tie parabolic theory must be used
because the error in the angle of attack as computed by the
linear theory is as much as 30 percent (see figs. 2 and 3).
The appreciable anticlastic curvature, evidenced by the
experimental results of figures 2 and 3, may be important
aerodynamically and is, of course, not taken into account by
the linear theory.

The apparent convergence of the aforementioned series
h the case of the double-wedge-section plate (see fig. 4)
implies that the linear theory is adequate for this case. The
lack of chordwise curvature in the result obtained by, the
parabolic theory is attributable to the fact that the natural
tendency of the plate to have anticlastic curvature is canceled
by the opposite tendency of the thin edges to bend down
under” the load. Unfortunately, no experimental results
are available for this configuration.

Ii figure 4 the ‘plate stiffness ~ in the nondimensional
parameter w~/pF is the local value of D at a point where
the thicknes9 is equal to the average thicknes9 of the plate
as a whole. Thus the results of figure 4 are comparable
with the results of figure 2 on an equal-weight basis. It
can be seen that the deflections of the double-wedge-section,
constantAhiclmem-ratio plate are .everywhere less than
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I?mum 4.-Deflections of a 45° delta plate of symmetrical double
wecke airfoil section and constant thiokness ratio under uniform load+
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those of the uniform-thickness plate although they increase
rapidly near the tip. This curling-up or singularity in slope
at the tip is a result of using a small-deflection theory and
probably would not be so marked in an actual case.

The stress results for the 45° and 60° uniform-thiclmess
delta plates indicate that both the linear and the parabolic
theories are adequate and that the parabolic theory is better
than the linear theory only near the root. It should be noted
that, although the maximum principal stress over a largb
part of the 45° plate is plotted in figure 5, only the stresses

normal to the root along the line $=0.0087 of the 60° plate

are plotted in figure 6 since only these stresses are given in
reference S. (The maximum principal stress and the stress
normal to the root are theoretically equal at the root since
the root shear stress is zero.)

Experimental data arelacking for the double-wedge-section
delta plate and, therefore, only theoretical stressesare shown
in fiawe 7. &in the case of deflections, the results obtained
from the linear theory and those obtained from the parabolic
theory are almost coincident, the diilerence being greatest
near the root. ~igure 7 has also been pIotted so that the
results are directly comparable with those for the 45°.

Uniform-tticknws

AERONAUTICS

plate in figure 5 on an equal-weight
basis. As can be- espected,- the double-we~ge-sect[on,
constimk?hiclmess-ratio plate is a better design structumlly;
the stressesin the double-wedge-section plate me everywhere
smaller and are almost constant in the spamvise direction.

The theoretical results in figures 2 to 7 have been obtainod
from react solutions of the differential equations of the
linear and parabolic theories. In order to test the reliability
of the numericsilmethod derived in appendix C, the differ-
ential equations were also solved numerically. The results
shown in figures 8 and 9 indicab that the ~greement is good
between the numeric.d solution in which five equal intervals
were used and the exact solution of the differential equations
for the case of the 45° uniform-thickness plate. The samo
good agreement can be expected in other cases where the
thickness and load distributions are not too erratic anclwhore
the plate stiffness does not go to zero at the tip—that is,
when no singularities appear at the tip.

2.4

20 ‘\

1.6 ‘“

0.

12

%f2
“~

.8

I-----’l

T
\ F

Y

1

< 1

\

\ x

\

— PomMic

.4

o

-.40
.2 .4

y/c .=
.[

.

\o

+

\

\
o

\

)

( )
I?murm 6.—Normal-stress distribution near the root at ~=0.00S7 ofl?xGtmE5.—Maiirnum prinoipals~ in a 45° delta plate of uniform
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Since the efficacy of the numerical method depends on
how well parabolic arcs fit the various functions between
stmtions,serious error can result from blind apphation. An
example of the seriousnessof these errors and of the manner
in which they can be remedied is shown in figures 10 and 11.
In these iigures n comparison is made between exact and
numericnl results obtained on the 45° double-wedge-section,
constant-thickness-ratio plate. As can be expected, the
five-station numerical soIution fails to follow the exact solu-
tion in the neighborhood of the singubmity at tie tip. Since
the region of trouble is locr$ized at the tip, a reasonable
remedy wouId be to decrease the spac~m of the station points
near the tip. This decrease in spacing maybe accomplkhed
either by using a greater number of equally spaced stations
or by using unequally spaced stations crowded near the tip.
The increase in accuracy obtained by increasing the ntiber
of equrdly spaced station points to ten is shown in figures
10 and 11.

CONCLUDINGREMARKS

The general method presented herein for flmling deflec-
tions and’stiesses of solid or nearly solid wings is, in principle,
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FIGUnE7.—~Iaximum prfnciprd stref.9in a 46° delta plate of symmet-

rical double-wedge airfoil section and constant thickness ratio under
uniform load.

capable of yield@ arbitrarily
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accurate results for any con-
Eguration. It is seen that, for the examples considered,
only the &t two or three terms in the series expansion need
be considered to obtain adequate accuracy. In addition,
for most practical plate-like N@s with clamped roots the
first two or three terms will probably be adequate, although
problems may exist wherein more terms are needed.

The numerical prccedure, derived for application in cases I
where exact solntions cannot be obtained, gives good agree-
ment w-hencompamd with exact solutions if enough stations
are taken along the span. The necessuy number of stations
is dependent on the type of thickness and loading distribution
considered, five equally spaced stations being enough for
the uniform-thickness delta wing subjected to uniform
load@ and ten being necessary for the double-wedge-section,
constant-thickness-ratio delta w&u subjected to uniform
loading.

LmGmY AERONAUTICALLARORATORT,
NATIONALADVISORYCoarmmm FORAERONA~lcs,

LmQmY J?IELD,VA., November30,1961.
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l?mum 8.—Numerical and esact solutions of the differential equations
for the deflections of the free edges of a 45° delta plate of uniform
tbicfaw+s under uniform load.
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Fmmm9.—Nuroericaland er.aot solutions of the differentii equations
(obtained by amuming linear ehordwim deflections) for the maximum
principal stresses along the free edges of a 4S0 delta plate of uniform
thiokness under UnifOITII load.

x/1
FIGI% 10.—_Numericaland exact solutions of the differentird equations

(obtained by assuming linear chordwise deflections) for the d@m-
tions along the free edges of a 45° delta plate of symmetrical double-
wedge k-foil section and constant thiokness ratio under uniform load,

.
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FIGURE Il.—Numerical and exaot solutions of the differential equa-
tions (obtied by, assuming linear ohordwise deflections) for the

()masirmun principal stress along the line II=i l—~ of a 45° delta

plate of symmetrical double-wedge airfoil ~ctiori and constant
thiokness ratio under uniform load.

APPENDIX A

DERIVATIONOF DIFFERENTIALEQUATIONS

The structurewonsidered herein is a thin, elaatic, isohopk,

cantilever plate of arbitrary plan form and slowly varying
thickness subjected to distributed lateral load (see fig. 1).
By assuming that the deflection of the plate ‘~ be repre-
sented by a power series in the chordwise coordinate and
by applying the minimum-potential-energ principle, a set
of ordimuy diilerential equations in the spanwise coordinate
is obtained from which the coefficients of the power series
may be determined. First the generil set of equatiom is
derived; then the particular equations for the cases of lineax
chordwise deflections and parabolic chordwise deflections are
deduced from the general set and simplified.

I General equationa.—The potential energy of the system
under consideration is .

in which
E[t(x,y)]3

W/)==

} and p(z,y) is the distributed lateral load.

. .
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The assumption is made that the deflection w.can be represented by the power series

Substitution of this expression for w into equation (Al) gives 1

in which

Jq=,::D(z,y)y’-’dy (T=1,2, .’. . 2N+1)

p,=J,;:p(z,y)y’-ldy (T=1,2, ‘. . . N+l) 1

(A2)

(A3)

(A4)

and the primes denote d.iilerentiationwith respeot to z.
Wnimization of the potential energy by means of the calculus of variations gives

3(Potential energy) =0

Everywhere in the region of the plate, =cept at the boundary z=O, the variation of w is arbitrary. At z= O the
cantilever boundaq conditions .

.
t)w=—=

‘azo
yield

$%(o)= %’(0)= o (n= O,l; . . .iV) (A6)

and therefore th~ variation in these quantiti~ must also be zero at z= O.
Equation (A5) is then satisfied if, in addition to equation (A6),

.

~o[(am+n+lp=?”,+pm(m–U (fh.+8-ld”-Xl –~)mn(am+n-lp=?’ +~n(n– l)am+.-lqm”+

mn(m —1) (n— l)am+m_3pm]=p.+l (n=O,l, . . .lV) (A7)

5 [am~.~lq=’’+~m(m– l)amtn-lq~]=.Z=O (7L=0 ,1,. . .37) (As)
m-o

and

S[(am+.+l~m~'+~m(~-l)(a=+=-~9J'-2(l-~)mnam+=,-~9m~z-*=o(n=O,l, . . .lV) (A9)
m-O

Equations (A7) forma set of ~+1 simultaneous ordinary differential equations for the functions p.(z). The functions p.,
are completely determined by these differential equations and the boundary conditions (A6), (As), ahd (A9).
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Particular case of linear chordwise
JV= 1, tbe deflection function becomes

W=$oo+y$q
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deflections.-If

(A1O)

a linear function in the chordwim direction, where ~ is the
bending deflection and q, is the twist. Equations (A7)
become

((z’~’’)’’+(q)’’) ’’=p, (All)

(a,~’’)”+ (%PI’’)’’–2P)–P) (aim’)’=p, (A12)

The root boundary conditions, given by equation (A6),
become

ffo(o)=~’(o) =p~(o)=pl’(o)=o (AS3)

The tip boundary conditions, given by equations (As) and
(A9), become

(a,~’’+Q~’f)z.,=o (A14)

(ml’’+wl’’)*2=o (A15)

[(sit%’9’+(wl’’)’l..2=o (A16)

[Ok@o’’)’+(W/:)’ —2(1—@a~~’J=. J=o (A17)

Equmtions (Al 1) to [A17) are the differential equations and
corresponding boundary conditions preaenkd in reference
6 (if only distributed load is considered) where the symbols
Wand dme used instead of % and W,respectively.

If equation (All) is integrated twice and the boundary
conditions (A14) apd (A16) are used,

(A18)

Substitution of W“ into equations (A12), (AM), and (A17)
gives

(b,#)”- 2(1 –p) (al@l’)’=p2
-(%L@” ‘A1’)

(b,ql’’)*,=o (A20)

[(b,fotfy —2(1—P)al~’]_l=0 (A21)

in which

If equation (A19) is integrated once and the boundary
condition (A21) is used,

(blp,’~’ —2(1—p)alql’=
-L’P’’X-(%U’’’X’)’ ‘A”)

The differential equation (A22) is a second-order differential
equation in ql’. The twist pi and then the bending deflection
POrumobtained by solving equations (A22) and (A18), respec-
tively, by applying the boundary conditions (A13) and (A20).

Particular case of parabolic ohordwise deflections.-The
effect of parabolic chordwise camber may be included by

letting N=2 in the general power series (eq. (A2)). If ~=2,
the deflection function becomes.

Here q~ represents the spamvise distribution of parabolic
chordwise camber. For this case the differential equations
(A7) become

(alw”)ti+ (&PI’’)”+ (%w”)w+2~(a1wY’=pl (A23)

(Q-w%”)”+ (awl’’)”+ (wPa”)”+a@2P2)”–

2(1–p)[(al$o,’) ’+2(GF??’)’l=;2 (A24)

(W%’’)”+ (~4Pl”)”+ (%@”) ”+2P[~lw”+Gw”+%n”+

(QPZ)’’]-4(l-P)[ (GP<)’+2(aS@a’)’ ]+4Um=PS (A25)

with the boundary conditions

w(O)=w’(0) =~(0) =P,’(0)=PJO)=W’(0) =0 (A26)

(a,W”+%w”+@m’’+2pal*)Z ,=0 (A27)

(wO”+a-34h”+a4ti” +M7-2w&-l=o (Am)

(%w”+a49fl+~~”+2ww)e1=o (A29)

[(al%”)’+ (%m”)’+ (%W”)’+2@,@)’lz.,=0 (A30)

[(%9”)’+ (Q3PI”)’+ (a4w”)’+2@2~)’-

2(1–p) (a@,’ +2%$#)]al=o (A31)

[(%%”)’+ (Wl”)’+ (asPJ”)’+%@M?2)’–

4(1–P) (Gp,’+2%~’)],.r=O (A32)

If equation (A23) is integrated twice and the boundary
conditions (A27) and (A30) are used,

Substitution of ~“ into the remaining differential equations
and boundary conditions results in

“’-(wbw ‘A34)

“’-2’J’I’’d(21J2~Jdz’Yz’Y‘A35)
(b,w’’+b,w”)z.,=O (A36)

[(blwfl)’+ (b~q”)’ —2(1—p) ((z@l’+2Q2q’)]=.J=o (A37)

(bz~’’+ba~’’)~z=o (A’S).
[(b,plfl)’+ (b,wfl)’ —4(1—P) (aw,’+%lw?l’)]~z=o (A39)

PI(0) =W’(0)=P2(0)=PZ’ (0)=0 (A40)
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in which

h=+

b2=a4–~

,

If equation (A34) is integrated and the boundary condition
(A37) is used,

(hwq’+(k?t”)’ –z(l.–p) ((zlq’+2@w’)

‘-J2’’’(21ZJZZ2Y’’Z2Y‘A4’)
Thus ~ and ~ are obtained by solving equations (A35) and

(A41) with the boundary conditions (A36), (A38), (A39), and
(A40). Subsequently, q, can be obtained by solving equa-
tion (A33) with the boundary conditions w(O)=m’(0) =0. I

Stresses.-Afte.r the approximate deflection of the plate-.
iEdetemninedbm equations (A18) and (A22) or from equa-
tions (A33), (A35), and (A41), the drerne-fiber stressesmay
be calculated fim the welhlmown equations of thin-plata
theory, which are (see, for example, ref. 9):

~=’ 6D &lo
— t= ( )

~,+P $2

The maximum principal stre9s u at any point in the plMe
can be determined from
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APPEND~ B

EXACI’SOLUTIONSOF DIFFERENTIALEQUATIONS

The diiTerentialequations of appendix A for linear and
parabolic chordwise deflections are solved exactly for uni-
formly loaded delta plates of constant tbicknees and of sym-
metrical double-wedge airfoil section with constant thiclmess
ratio. The equationa for deflections obtained by the linear
theory me presented in terms of’ the mpecbratio parameter
~ for both kinds of delta plates. Tbe equations for deflec-
tions obtained by the parabolic theory are presented for

4“”~= 1 and ~ with I.L=+for the constant-thickness delta plate

and for ~= 1, also with P=$ for the delta plate of Symmeh

rical double-wedge airfoil section with constant thickness
ratio.

If the x-axis is passed through the edge perpendicular to

the root and the substitution XI= 1—~ k made, the differen-

tial equations are ckwrly of the homogeneous type for which
the solutions are of the form ZIT,where Y is a cons-t. For
the configurations considered, the functions that defke the
plan form (see iig. 1) are then c1(z) =0 and G(Z)=CEI,where c
is the root chord, In all the equations of this appendix the
primes denote differentiation with respect ~o the new inde-
pendent variable m.

DELTAPLATEOFUNIFOEMTHICKNESSUNDERUNIPORMLOAD

Since the stiffness ~ is a constant for uniform-thickness
plmtes,the coefficients in the ditlerential equations (see eq.
(A4)) become

@la)

@lb)

(131C)

4Dc5
b3=a,–~=~ X15 (Bid)

(Ble)

Solution for linear ohordwise deflections.-E the co-
efficients given by equations (B 1) are substituted into equa-
tions @22) and (A18) and the independent variable is

changed to xl= 1—~~ the following equations for linear

FOR SOME SPECIFICDELTA-PLATEPROBLEMS

chordwise deflections result:

(z,’@l”)’ —16h%l~’=- ,2g -$13 (B2)

pl’
‘i”= –$ “~”+m “2 (133)

&here

“ ‘=:6

The boundary conditions to be used with these equations are
obtained from equations (A13) and (A20) and are

@(l)= @’(l) =pl(l)=n’(l)=o &4)

(Zl%l%,-o=o @5)

The general solution of equation @2) is

2’
fq’=A@!lY-1+44@ 1-Y-l—

pl~
4(l~2h~ ~ (B6)

where

7=-

and Al and ~ are arbitrary constants. Since A2is inherently
positive, the bounda~ condition (335) requires that A2= O.
One integration of equation (B6) and the application of the
conditions w(1) = PI’(1) =0 yields

If equation (133) is solved for ~ with the conditions
w(l)= w’(1) =0, the readt is

(2+ l—xl_
1 — Z17+1

‘Y 7+1 )1
Substitution of equations (337)and @38)

@8)

into the equation

givis the expression for the deflection w of the plate under
the assumption of linear chordwise deflections.

Solution for parabolio ohordwise defleations.-If the co-
efficients given by equations (B1) are substituted into equa-
tions (A41), (A35), and (A33) and the independent variable

is again changed to Z1= 1—~~ the following equations for

523
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paraboLicchordwise deflections result:

(3%%1’9’+(Z1’W2”Y – 16X2(Z,WI’+XI’CW’)= – 2 ~ xl’

(B9)

. The boundary conditions to be used with these equations are

9J(l)=PJ(l)=91(Q =w’(l)=@(Q=w’(l)=o (B12)

(Q&’’+zl’cd’ko=o (1313)

( 16
xl%l’’+fi m5@2

It
)

=0
21=0

(B14)

The homogeneous solutions of the simultaneous equations
@9) and (B1O) are of the form

~2=Bx17-1

Substitution of these expressionsinto the homogeneous parts
of equations (J39) and @lO) leads to the following charac-
teristic equation horn which h maybe determined:

~6-6(1+16’~’4+P20@+=5k’+480’2+’l’”-
[

4 1280 %’6+’o@+aA4+’6’2+11=0
@16)

and gives the following relationship between A. and B:

The particular solutions for uniform loading are given by

~1’=APx12

q’=Bnxl’
where .

3P+1 ~4_2 ~x2+l

1
4—

l—p
%‘P=z 8 ~ (2~L 1)~~—(8X2—1)(4~2– 1)

The general solution is the sum of the homogeneous solu-
tions and the particular integral ‘

p,=~, B%X,7.‘1+ BPX12 (B17)

where the values 7* are the si~ roots of the characteristic
equation @16) and the coefficients A. and BS me the co-
efficients corresponding to each of these roots. - After inte-
gration pl becomes

The general solution for % from equation (B1l) is found
to be

6

Po=nZJ fizly”+l+ CPZ14+Cgxl+ 0, (B19)

where, for n=l, 2, . . . 6,

and

The coefficients Al to Ao, A., 0., and C’,must be determined
by the boundary conditions (3312) to (B15).

A complete set of coefficients is given in the following table
for delta plates %ith Poisson’s ratio Mequal to 1/3 and with

A– Z– 1 and $. Deflection curves plotted from these
c

results are shown in figures 2 and 3 in which the 46° plato

~dcorresponds to {=1 and the 60° plate corresponds to ~=170

I I I ,

27034 L5371 O.i?.m
: ‘.W7

j

:% -0.’lss -o. Iml -6. -1 -(l=
3.6347 .WI -.am9 –.4313 .am74

% a ale ‘ma .Cw47 -. 17e8 -. .07m .mwso .W23[7
: -&J ~; =7 g o 0

: 8 i’ o 0
6 -& 8316-4.7269 0 0 0 0 0 0
P ------ –---– –, ~ ---

-. Cmr44..:%. ..:5T-
.04107

q ----- ------ –. 0M37
r

-: Ol& -: pJ
-.-—- ------- ------- -. . . ..- . . . . . ..- --.e.--

1 I [ 1 1 I I I I

‘Substitutiori of equations (B17), @lS), and (B19) into the
equation

W= ffo+y$ol+gfu

gives the expressionfor the deflection w of the plate under the
assumption of parabolic ehordwise deflection.
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DELTA PLATE OF SYMBiETEICALDOUSLE-WEDGE AIRFOILSECTION WITH
CONSTANT THICKNESS FtATIO UNDER UNIFOEM LOAD

For a delta plate of symmetrical double-wedge. airfoil
section with a constant tbiclmes ratio the thickmm is a
function of x and y and is given by the follow@ equations:

where tdsis the rtverage thickness. From these expressions
for the thickness the stiilness can be found and the coeffi-
cients in the differential equations become

@20)

Solution for linear chordtise deflections .—By use of the
coefficients given by equations @320), equations (A22) and

(AI8) ,for linear ohordwise deflections may be solved for PI
and PO. The steps in the solution are the same in form as
those for the uniform-thiclmess plate m-d the resulting
equations are

and

where

Solution for parabolic chordwise deflections,-By use of
the coefficients given by equations @20), equationa (A41),
(A35), and (A33) for parabolic chordwise deflections maybe
Aolved for W, W, and PO. The steps in the solution are
again the mine in form as those for the uniform-thiolmess
plate and the resulting general expressions for w, m, and
p, are

(3324)

6

foo=~ cnzlq”-; +C,zl log. X,+cqzl+c, (B2q
n-l

where the exponents 7. are the roots of the charahmistic equation

(~-?-’”’’)[%(+%v%v% (~-2)+%*A41-~(’’-8082Y+Y+
- [w-:)-’oo’(r=o’26)

3?orn=l, 2, . ..’ 6, An, Ba, rmd On axe related by

—~—80h~ ~ ~

3’=-(’-:)[i-:)(’+~)-’o”ly
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l?or uniform load the coefficients in the particukm integmds of equations (B23), @24), and (J32Oare

i o pld
~+1024ti+320 ~ X4–16 (5+* A’) (10A2+1)

A,=— ~
—

27 ‘c (20 X’+1)
(

~+1024X’~320 ~ k’)–120(16X’+1) (10k2+l)

B,=40 Pi+ ( 2%715(16 A2+l)–2(20x’+1) 5+—

z ‘Z’ (20x2+l) &+ 1024 X2+320 ~ X4)– 120 (16A’+1) (1OA2+1)

The coefficients A, toa, ~, C,,and 0, are agahi detemnined by the boundary conditions (A26), (A36), (A38), and (A39) [in
which the coefficients given by equations (B20) are substituted.

For Poisson’s ratio ~ equal to ~ and x=;= 1, the solution of the characteristic equation (B26) leads to two real~valuesnnd

two pairs of complex conjugati values for ~. The identity ,

Zp =Cq”cm (b log.%) 2%1= sin (b log. q)

was therefore used to transform the terms involving the complex conjugate values into real form. If ~= 1 anti p=3) the
1

solution is .

[
‘~4 o.oo4070z~

‘i=r8 13w7—0.004363z1sm5 COS (2:825 log, Xl)+0.006893xlsm6sin (2.825 log, xl)+0.000294 ~

@

[
90’6 sin (2.825 log’ xl)+ 0.01794log, Z1+0.001763—0.003896z~w+0.002134z~ .0’5COS(2.825 log, xl)—0.006381zl-

*l=DC 1
[

-=$ o ooo7715ztA,

D“
—0.000070&110mscos (2.825]ogqZl) +0.00 i234z11~”0’5sin (2.825 log. Zl)+

1“0.03331xl10g,X,–0.04096XI+0.04026

.



APPENDIX c

NUMERICALPROCEDUREFOR SOLVTNGDIFFERENTIALEQUATIONS

In casea where the equations of the present theory cannot
be solved exactly a numerical method must be used. k
this appendix, equations (A19) and equations (A34) and
(A36) me set up in ditlerence form for numerical solution.
Initially the resumption is made that the functions involved
in the differential equations are continuous and nonsinguhw.
In this case, tit and second derivatives a be expressed by
the standard ditTerenceforms

where e is the distrmcebetween equally spaced station points.
In the following development five equally spaced span-

wise stations are used; however, the extension to a diflerent
number of strdions can be readily made. .

J?irst, consider equation (AI9) resulting from the linear
theofy

Because of the nature of the tip boundary conditions for
this equation, it can be conveniently put in the form

.T’=q, (cl)

where ‘

T=(blP,m)’-2(l-P) alw’

In tiding the difference equation equivalent to equation
(Cl), the quantity (6NA7’ is found in matrix form; horn
this expression is subtracted the matrix equivalent of
2(1 –p)a,pl’; the resulting expression for T is multiplied by
a ditlerentiating matrix; and the product is equated to the
righbhand side:

The quantity (bl~<’)’ at the half-stations can be expressed in matrix form as follows:

91”0

Pl”l

p1Jf2=;

$91”3

$71”4

‘1 –2 1

1
n-

1–21 WIO

1 –2 1 %1

1 —2 1 %’

1 –2 1 $@

,

where the second subscript denotes the station point, the subscript
root bounda~ conditions are now applied; namely,

$ol(o)=o=qlo

(C2)

at the root station being O and at the tip 5. The

P1’(o)=o=~ll—Pl_l 26

Thus, after the values of mo=O ~d pl-l=w are substi~ted, equation (C2) becomes .

$m”o

[

2

yl”l —2 1
1~~2 =2 1–21

P1H3 1—21

$%1’4 1 –2 .1-

4%1

P12

P13

P14

k916

527
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Therefore,

One of the tip boundary conditions is .

(k%%. 2=0= (h%”).

Thus,

(b1q”)j2 –1 1

(blm”);,,

[1
–11

(kl%la =: –1 1

‘ (b,~”);p —1 1

(&w’% ‘ –1

The matrix equivalent for the second term of T is .

2(1—/.!)

Therefore T becomes

(b,q,”), ‘

(b,%”),

(bm”h

(blq,”),

(blql”),

“a’1.lp

‘ I 1
1 911

al,3n —1 1 912
al,6n –1 1 $%

a’l,7L? —1 1 914

. %9 “ ‘ —1 1 p,~

(03)

(C4)

‘2

–2 1

1 —2 1

1-

,
1 –2’1

1 –2 1

The righhhand side of equation (Cl) can now be equated to the derivative’ of equation (C5); thus,

!lU

!fU=?

gls ~

@4

In order to obt@n gM, the boundary condition

—1 1

—1 1

–1 1

–1 1

T=o

at x=1 must be used. In other words, T goes from Tgn at station ~ to O at station 5. A straight line drawn between
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2Tw~these two pointe would have the slope ——. The value of g,bis considered to be this slope; therefore,E

or

!lll
t

!Z12
1’

93 = ‘ ;4

!?14

qlG12 t

‘1 —2

1

1

–2 1

1 —2

1

!Z1l

[

–1 1

912 –1 1

g13 =: –1 1

fl14 –1 I

qlsp –1

bu

b12

b13“1[
2

—2

1

13,

1

9—. 1

1 –2 1

1 —~ 1.

2(1—Y)
2

—

–1 1

.1[”

al,Ifl .1

–1,1 al,afl –1 1

—1 1 al,5B –1 1

–1 1. al,7n —1 1

–1 al,ga –1

If the matrix multiplication is carried out, the diilerence equivalent of equation (Cl) finally becomes

where

[

%o+4L+b]~ —2b11—2b1z b12

—2b11—2bn b1,+4Z)n+bn –2,b,,-2bls b13

[C,]= bn —2b1s—2b1a b1,+4bls+b,A —2b1s-2.bl~ b,4

b,3 —2b,3—2b14 b,3+4b,J —2b,,

r—al,lfl-al, $fl al,SB

1:
al,Sn ‘a],sfl-o~sp al,S[2

[DJ= a,,SD —ti,6~-al,7~ %,7/2

% lt. - —a1,7~—al,gn al,OR

al,9P —aLgn

In order to determine ~ from p,, use must be made of equation (A18)

1

Qo’f=— SS;1%1.1mdd—~ PI”

or, by use of the bound~ condition w(O) =W’ (0) =0,

1

529
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In matrix form equation (07) becomes

QOI

Q%

$%3 =~4

%34

933

“1

1

1

1

,1

1

1

“1

1

1

1

1

1

1

1

1

1

1

1

1

1[ 1[

1/2 (@@l)o

11 1/2 1 (dd
111 1/2 1 1 (~al)j ~

1111 1/2111 (%/%);

’111
11

1

11

11

11

11

1)

‘2

L1 1 1 1 lJL1/2 1 1 1 lJL (dfl’1).

‘11111-

1111

111

11

1.

–2.1

1 –2 1

1 –2 1

1 –2

pll

Pu
Pla

P14

P1G12

(us)

Thus, if the values of q, (whi~h can be determined numerically or analytically according to preference and feasibility) are
known, the values of p, can be found by solving~equation (c6) and the values of POin turn by means of equotion (c8).

The foregoing development applies to the case where only linear chordwise deformations are allowed. A similar pro-
cedure k followed in expressing the differential equations pertaining to the parabolic theory in difference form; only the
results me shown herein. ,

The matrix equivalent to equations (A34) and (A35) is

‘2
=

2

where

~bw+4bn1+bti –2bn1–2bti , bti

$%1 .

Pll

Q13

$%4 .

%6

WI

m
#

$%

*4

$%%

1

1.[CA= bd —2bnr2bn3 be+4bti+baJ —2bm—2bti bad

bti —2be—2bti bti+4bad —2bti

b.4 —@4 bm J

[

—%1/9-%3/7 %3/’2

%3D —%3f!2-a’n,5fl %.SP

[DJ= %.6/2 —%6B—%713 %7/9 ~

%7/3 —%7/2-%9/3 an,m

%OB —%9 J

8

..

(C9)
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[El=

and ql and qaare the righhhand sides of equations ~.

%1

au

h

a14

aK

L34) and (A35), respectively; that is,

With p, rmd q’ known, q, can be obtained by use of equation (A33)

1/2

1/2 1

1/2 1 1
1/’ 111

1/21111.

aJaJo

Odd

(%J&)2

(%!/4)8

1

(a2/aJ4

(%/%)0

(ddl

0t3hh

bald

(%/%)4

b

‘2
—’ 1

1 –2 1

1 –2

1

1

‘–2

[

2

–2 1

1–2 1

I 1–2 1

L

It should be noted that, as can be expected, the matrix
equmtions(C6) and (C8) are merely special cases of equations
(C9) and (C1O), respectively. In addition, the square
matrices in equations (C6) and (C9) are symmetric, a result
that is consistent with the fact that the differential equations
under consideration me self-adjoint.

.

In the beginning of this appendix the assumption was made
that the functions involved in the diilerential equations are
continuous and nonsingular. The diilerence solution, how-
ever, m~y be adequate for some cases in which this assump-
tion is not stictly coqrect. For instance, the deflections of
a plate with a discont”muousstillness distribution could con-
ceivably be not very diflerent from the deflections of a plate

1 —2

1.

‘11111

1111

111

11

1!1
w

W2

%% —

914

%%

1
%1

4?22

$% —

$%4

1 *

531

(Clo)

with a continuous stiffness distribution closely approximating
the discontinuous distribution except in the neighborhood of
the discontinuity. The resultsyielded by the &%erencesolu-
tion in this case wodd be those associatedwith the continuous
stiffness distribution. The number of stations may have to
be increased, however, in order to minimize the inaccuracy
introduced by the discontinuity or, in other cases, by a
singularity. The case of the symmetrical double-wedge air-
foil section, constan~tbickness-ratio delta plate, discussed
in the body of this report, is an example of a treatment of a
singuls+ity. In this case, although the solution is singular,
adequate accuracy is obtained by the d.iilerence solution if
ten equal intervals are used.

.

.

.
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APPEND12i D

DEFLECTION AND STRESS EXPERIMENTS

Test specimens.-The specimens tested were: (1) a 45°
righ&trianguIm plate clamped along one leg and (2) a 60°
righktriangular plate clamped along the longer leg. Each
specimen, cut from 24S-T4 aluminum-alloy sheet of 0.250-
inch thickness, had a lergth perpendicular b the clamped
edge of 30 inches.

Method of testing.-llgure 12, a photograph of the test
setup, shows the methods of clamping, loading, and measure-
ment of deflections. A l,OOOjOOO-poundclamping load (held
constant during the test) was applied to the root area of each
specimen and a uniform load of 0.204 psi was applied by
2-inch washers giving a tip deflection in each case of approx-
imately ~ inch. .

The deflections were measured by dial gages placed at the
points indicated in figures 2 and 3.

stresses were obtained from the 45° SpeCimehonly. on
this specimen, 13 resistance-wire rosette strain gagea were
placed at the points indicated in figure 5. The plate was
loaded with 2-inch wmhem in fo~ increments of 0.0847 psi
per increment and the masimum tip deflection was 1.13
inches. Red.ings of all the strain gages were recorded at
each increment of loading

Analysis and discussion of data.—The deflection w was
plotted in figures 2 and 3 in terms of the nondimensional

FIGURE 12.—Deilection test setup of the 45° dcdta plate undkr uniform
load.
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parameter wD/pll, in which the elastic constants wore taken
.

as E= 10.6X108 psi and K=$. It was found that the dinl-

gage forces reduced the tip deflection of the plot; by approx-
imately 2 percent; however, since this error is of the mmo
order of magnitude as that in the material properties ond
from other sources, no corrections are made in tho results
presented.

The ~eadingsof each of the 39 individual strain gages wore
plotted against load, and the slope of each of the resulting
linear curves was taken as the average strain per unit load
of the individual gage. The principal stresses were then
calculated and plotted in figure 5 in terms of the nondimen-
sional parameter 0#/pP.
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