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GENERAL THEORY OF AIRFOIL SECTIONS HAVING

PRESSURE DISTRIBUTION

By H. Jmrm ALLEN

ARBITRARY SHAPE OR

SUMMARY

In this report a iheoq of thin airfoils of small camber is
dereloped which permits either the rehwity distribution cor-
responding to a given ai@il shapej or the airfoil shape corre-
sponding to a giren cekity distribution to be calculated. T7w
procedures to be employed in the8eeakulation~are outlined and
illustratedwith suitable examples.

INTRODUCTION

Before the advent of the low-drag and high+-iticaLspeed
airfoils, the shapes of airfoil sections having desirable aero-
dynamic characteristics were found by the pnrdy empirical
method of testing families of related prcdles. The pressure
distribution o-ier any of these shapes could be calcukted by
any of a number of methods, but notably by the method
of references 1 and 2.

Subsequently, experimental and theoretical investigations,
on the one haod, of the laminar boundary layer and the
phenomenon of transition and, on the other, of the comprw-
sion shock -ivavepromoted a better understanding of the fac-
tors tiecting the drag of airfoils. It became apparent that
the control of the aerodynamic characteristics of airfoiIs
was to be found in the control of the pressure or velocity
distribution. Hence, in the design of an airfoil having certain
desirable aerodynamic characteristics, the “inverse” prob-
lem of find~ the shape of an airfoil which would promote a
specified wlocity distribution over its surface became of
considerable importance.

One notable method has been advanced (reference 3) for
solving this inverm problem. However, this method is
intricate and laborious to employ.

In this report a new method, which has been used for
the past several years in the design of a large number of low-
&g and high -criticaI-compatibility -speed airfoils, is
presented. This method, which is comparatively rapid and
easily applied, may be wed to solve either the direct or the
more important inverse problem. Illustrative exampks me
included.

THEORY

It is shown in rekmce 4 that in a determination of the
pressure distribution over a cambered airfoil the effects of the
camber and the thickness distribution may be considered
independently. SpecMcaUy, it is shown that the induced
velocity at any point on the cambered airfoil may be found

by superposing the induced velocity at the point due to the
vorte~ system; which may be considered to replace the mean
camber line, and that at the point due ta the source-sink
system, which maybe considered to replaoe the “base profiIe.”
The base profle of the airfoil is the profile if the camber were
removed and the resulting symmetrical airfoil set at zero
a.ngle of attack. In the airfoil theory of this report it is
convenient to consider separately the base protie and the
mean camber line which together make up a given airfoil.

CAMBZR-LINE THEORY

Glauert (reference 5) has considered the problem of the
mean camber Iine which, in a more convenient form for cal-
culation and extended so as to include the theory of the strut
as weII as airfoiI mean camber lines, is given in the following:

Vt

FIGCEEL-Diogram of meiuicamb?r he.

Consider the mean cuber line shown in figure 1. If the
camber is small, the velocity induced at a point P(%,ya) on
the mesmcamber Iine by a vortex at any other point P$c,yJ on
this liue is approzimateIy ihat whioh would be induced at
the point on the z-axis P(zO,O)by the same vortex at the

point P(z, O). If the vortez strength at any point is # dn

the velocity induced at any point on the camber line due to
all the vortices distributed along the oamber line is
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and is perpenclicu~arto the x-axis. The flow direction close
to the umber line must be paraUel to the surface of the
camber line so that if the angle a between the z-axis and the
flow direction of the undisturbed stream is small, then

where VOis the velocity of the undisturbed stream.
It is convenient ti ;ntroduce the new

such that

r=;(1—Cos e) 1
q=; (1—COSeo)

dx=~ sin odd !

where c is the airfoiI chord, Assuming

(2)

coordinate 6 for z

(3)

the distribution of
vorticity 01’ (where the prescript o indi&tes that this circu-
lation applies to amairfofl of zero thickness) along the z-axis is

g=2vo (.l.’ cot; L9+AO”tan ~ d+ &A. sin M
)

(4)
1

Then

[
‘or dz=cVo 2t{ (l+COS O)+&” (1–COS t?)
x

1+$ A.. sinn6sin6 d% (5)

Writing sin no sin d=; [COS(n–l) f?-cos (n+ 1)8], then

from equations (l), (2), (3), and (5) the slope at L90may be
obtained from

d~% s{“ Ao’ (l+COS 6)+4” (1–cOS 8)—~=—
m:,

—..
CosI!?3-cos e

~ $ An [COS(n–l)”e–cos @/+1) e]
+ Cos @o

-}

de—Cos 6

It is shown in reference 5 that

so that equation (6) becomes for the slope at 8

(6)

(7)

(8)

.

The coe%lcients are given by

The lift force may be found from

OL=J d~r
‘PVo ~ dx

o

(9)

= CpV$
H

“ AO’(I+COS 19)+kiofl(l-cos t?)
0

1+5A. sin no sin o de
1

(=Ucp !702 /40’+Aoff ++ Al)
so that the lift coefficient is

(
~l=zr &’+A;’ +;, Al

)
(lo)

According to theoretical hydrodynamics, in an inviscid
fluid a strut section with a rounded traili~lgedge should ex-
pedience”no net lift at any angle of ,athwk so thrttin this We

(11)

(12]

In thi case of an airfoil wherein the trailing wlge is shnrp,
the “Kutta condition” must bo satisfied (i. c., tho flow must
leave the trailing edge smoothly). To tittnin this tho
vorticity at the trailing edge rnus~bo zero, which requires
that 4“=0. So the coefficients become

(13)

It will be noted that for airfoiIs
only Ao’ and 4’ vnry with the

only J&’ rmd for struts
anglQ of rd.luck. Tho

.
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coficients A, are independent of the angje of attack and
are functions of the mean cambdine shape ordy.

Denote by ~P the difference at x between the upper and
lower surface pressure coeilicients, PL—PM. (The pressure
coefficient is the pressure in terms of g, the stream dynamic
pressure.) Then, from the KuttaJoukowski theorem of Iift,

(14)

so that, from equation (4],

(
0P=4 .~ cot ~ 6+4” tan; 6+jjAm sin ntJ

)
(15)

1

It has been found convenient in the past to denote that
part of the chordwise Liftdistribution which is in ma=titude
independent of the. angle of attack and in form dependent
s&I-y upon the camberline shape, aa the basic Iift distri-
bution; and that which is in magnitude variable with the
angle of attitck and in form independent of the mean camber-
hne shape, as the additional Iift distribution. (These
concepts first appeared in reference 6 and were later used
in the development of the methods of references 7 and 8.)
Hence, ‘for the Mnitesimally thin airfofl or strut the addi-
tional Iift distribution is given by

(~P==4 &’ cot ~ 8+A” tan $9
-)

(16)

and the basic, by
m

~Pa=4>x sin nfl (17)
1

It is convenient to consider the basic lift distribution only
as characteristic of a given camberXne shape since the
additional distribution may be modified at will by a change
in the angle of attack and so, at some angle, must be zero.
The angle of attack at which the magnitude of the additional
distribution is zero for an airfoil is calkd the ideal angle at
(references 6 and 9}, and is given by

(18)

The ordinates of the mean camber line corresponding to the
case when the additiomd distribution is zero, denoted by v=*,
are related to the ordinates y. by

Ycb y. x~=~—~ at

and so
dy.b dyc~=~—a,

From equations (8) and (17), then

dycb
~=~= 00s nfl

and
*=%X Sh &

1

(19)

(20)

(21)
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and the coefficients are given by
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Using equations (21) and (22), the chordwise Iist“distribu-
tion corresponding to a given mean camber line or the mean
camber Iine corresponding to a given chordwisc Iift distribu-
tion can be found. The calculations tiII in the general case

be very lengthy so tlmt it is desirable to replace the Fourier
expansions by integral expressions, as was done in the d+
veIopment of the method of reference 1. To this end, the
eqmssion for the Fourier coefficients giveu by equation
(22) can be substituted in equations (21). At 80then

sin nf3~cos n6=* [sin n(f?+do)—sin 7L(t?-60)]

sin ?-dC!os?lBo=* [sin Y@’+eo) +Sin n(f?-(%)]

and further

. .
so that substitution gives

de

In the Iimit, the second integrals in the above rdations
become zero so that the equations may be written as

When either function is known in simple algebraic form,
it is sometimes convenient to express these integrak as
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follows: From known trigonometricrelations, equations (24)
may be written

PObol
J

Tdwb sin O&
‘=- o a Cos6–COS e~x

$ J

1

(25)
1 r J’, tin t?dd= —_

x ml) X cos 9—COS e.

which may be useful if the functions under the integrals are
expressed as simple functions of 19.

When the functions are expressed in terms of x, the follow-
ing forms, obtained by substituting the relations of z with e
given by equation (3), are sometimes useful:

dycb
P~cO b~

J

+m=a

T
dx

‘—; o (x—LriJJx(c-x)

d!icbo 1

s

‘ oPbdx
7X’=; , 4(X–%)

(26)

The second equation has been used to determine the shape
of a variety of camber lines, notably the type “ a“ mean
camber lines (reference 9) used with the more common low-
&ag and high~ritical<ompressibility-speed airfoik

Unlcss the algebraic expressions for ~, or dyJdx are very
simpk, the direct integrations using equations (25) and (26)
are not convenient w that, in general, it is desirable to per-
form the integratioha numerically using equations (24).

The computation may be shortened considerably by use
of the following mathematical device:

r“e)cO’(~)d=-r’(2r-’)‘ot(wd’
Hence, equations (24) may be written

(27)

These integrals may be evaluated numerically by the method
of reference 1 which is given in Appendix A of this report.

In the preceding theory it was assumed that the airfoil
was of infinitesimal thickness., hence. the velocity at each
eIementaI vortex along the camber line was taken to be the
free-stream velocity VO. For airfoils of finite thickness, tbe
velocity clifferasomewhat from VO. A better approximation
is to assume that the velocity at each vortex is the velocity
.on the surface of the base profile at the same station. Hence,

the effect-of airfoil thickness will be to chango the local lift
at z to approximately

(28)

where Irf is the local velocity on tho bme profile at z, The
calculation of I’r is considered later in this report.

m-.
c

Fw.rnu 2.–Additional lift dktiibution for NACA 0012alrfuJ.L

x
T

FIGURE3.–.4ddft!onal Hft dfskfbutIon for NACAU118drfdL

Values of PJcU calculated by equation (28) for the NACA
0012 and 0018 airfoils am showu in figures 2 ad 3, rcspcr.
tively, along with the values given by the mctbwl of rtJfer-
ence 7 which were obtained by interpolation of mpminuwt fil
pressure”distributions. Shown dotted are the tluxnwtical
values ~~cl= for [ho infinitesimally thin airfoil obtained
from equation (16) and given in table I. In figure 4 the
calculated and experimental basic lift distributions for tho
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FiIiCRE4.—B3sIcliftcWrIbution for NACA M-215Iow-tirag .sfrfoU.

a=O.5 mean camber Iine of the AIACA 35-215 airfoil are
shown. It is evident from these figures that equation (28)
gives a close second approximation to the due of P.

The basic Iift codicient becomes

“~=lk’(w%). ‘2’)
and the quarter<hord moment coefficient k

‘=’d4=LWM$-:)’@
(30)

It is obviously inconsistent to make the approximate
velocity correction to the lift distribution (equation (28))
and not to the velocity ratio ti/T70in equation (2]. Ho-w-
ever, the correction to the Iift distribution accounts for
nearly au the discrepancies between the calculated and EY-
perimental results so that the additiomd computational dif-

FIGGU5.—DfwamofIm?#?PIWflk.
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ficulties associated with a further improvement of the theory
are not considered to be justfied.

BASE-PROPILE THEOUY

The problem of determining the veIotity distribution over
a given base protie or the base profi~ewhich wilI promote a
given velocity distribution over its surface may be treated
in a manner analogous to that of the mean-camber-line
theory.

Consider the base profile shown in figure 5. If the thick-
ness is d, the velocity induced at a point P (ro,y~) on
the surface of the profile by a fluid source or sink at the point
P(z,O) is approximately that which wouId “be induced at the
point P(zO,O)by this source or sink. If the source strength
at a point z is (dQ/dr)d.r, then, the velocity induced by all
sources or sinks distributed along the x-mis will be

(31)

The source strength can be related to the shape in the
foLIowingapproximatee manner: If the profle is thin, the w-
locity at-the suiface does not dHer materially from the free-
stream velocity To, and hence the flow velocity within the
protie due to the sources and sinks is as a first approxi-
mation ~“O. Within the profile the difference between the
quantity of fluid flowirg at z+dx and z is the amount sup-
plied by the source contained within this interval, hence

2“=2T”O(’,+*’’)-’T’”
so

and so equation (31) become approximately - .

(32)

(33)

Replacing x by the t?coordinate defied by equation (3)
and assuming that the slope of the pro~e is given by

then by analogy with the aimdar development in the mean
camber-Iine theory

fi=Bo’-Bo”–~ B. cos nf3 (35)
1

and

BO’– JBo”=~ “$ doTOTO

J
B==– ~ o“~o cos n8 d9 I(36}

i
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The condition tlmt the trailing edge shall close is given by

Substituting the sIope M given by equation (34) and inte-
grating, it is found that

BO’+BO’’+:B1=O (37)

It is of interest to
.BO’and BD” equal to

Hence

~

note that setting”all~coeflicientsexcept
zero then requires

&“= –&’

which becomes after integration,

y=cBO’ Sine
or

Y=2CB’JW
This is the equation of an ellipse~f thickness

t=2cB0’

The induced velocity from equation (35]

+O=2B0’=:

so that adding this induced velocity to

is

the stream velocity
VO, the ratio ‘of the local velocity ‘at any station x to the
stream velocity is found to be

(38)

Again, if all coafllcients except BO’and BI are set equal to
zero, then from

Hence

which becomes,

equation (37)

B,= –’B;

aftel integration,

cBo’
v-=~ sin 6 (l+COS 6)

or

‘=2’B’(’-W
This is the approximate equation for a thin Joukowaki base
profile of thickness

,.

The induced velocity from equation (35) is then

&= B{(l+’ COS d) ‘Mw’c)l
Hence, the ratio of the local to stream wlority

;=’+MW-’6)I
is

(39)
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FIGURE7.–Theoretical m’IoeIty distribution orcr JoukowMMewolllw

The velocity distribution for ihc elliptic btise profdc as
calculated by equation (38), and for W* Joukowski base
profile as calculated by equation (39) is shown in figures 6
and 7, respectively, along with tlworeticrdly correct velocity
distributions as calculated from potcmtial tlwory. It is .wcn
that the approximate velocity distdmt ions arc satisfactory
except in the region w-herethe sIopc dyJdx hxomcs infinik
This was ta be e-xpected since the assumptions made in fhc
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dewJopment of the theory in effect require that dy@r be
small. Inaccuracies due to such infinite sIopes may be
avoided by the following device: It is evident from equations
~34) and (35) that superposition is permissible in regard to
both base-profile shapes and the correspcmcling induced
velocities. Hence the method may be used to find the
change in shape corresponding to a specified change in veloc-
ity distribution or, inversely, the change in velocit~ distribu-
tion corresponding to a specified change in shape from some
“reference base profile.” If this reference base protie is one
properly chosen so as to have the same slope characteristics
at the leading ancl trailing edges as has the profik under con-
sideration, then the Bo’ and .BO”co&Ecienta in the series to
represent such changes can be made zero since no-ivslope
differences need never become infinite. For example, for an
airfoil with rounded leading edge and pointed trailing edge,
the Joukowki base profile having the s~e leading-edge
radius may be used as the reference base profile; for a strut
with rounded Ieading and trailing edges, the elliptic base
profile having the same leading- and t.railing+dge radii may
be used as the reference base profile. Letting Ay, and Au
represent the change in shape and veloci@, respectively, then
equations (34) and (35) become

(40)

and the coefficients are

or (41). .

Since BO’ and BO” have been set equal to zero, then from
equation (37) the.coeflicienttB1 must RLSObe zero.

When i~ k desired to find the change in the relocity dis-
tribution corresponding to same given change @ shape, the
giren change in shap~if so chosen that d(Ay,)/cZx is not
infinite at the leading and trailing edges—automatically sat-
isfies the condition that the coefEcients Be’, l?o”, and B1 are
zero. However, when it is desired to iind the change in b~
profile shape corresponding to a given change in the velocity
distribution, the change in velocity distribution must be so
chosen that

and
J~~d6=0

J

“Au
— CosM9= o

0 Vo !

(42)

if the velocity distribution chosen is to correspond to a red
base profile.

As shown in the preceding theory of the mean camber line,
the sine and cosine seriescan be replaced by the integral rela-
tions which are generally superior for purposes of computa-
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tiom Where the change in shape or velocity distribution is
known as a relatively simple trigonometric function in 6, it.—
“Bso”ruetimesconvenient to use the equationa

d(Ay~

J
SiD ede.— _

dx ‘–: O’~ COS t?-COS 80

and
Aro 1 Jro?(AYJ sin Ode— .—
v~ a- ~ 7 Cos e—cos f?@

..-—

(43)

When the change in shape or velocity distribution is
known as a relatively simple fuction of Z, then it is some-
times convenient to use the equations

(44)

In the general case when the equations for Ai)/Vo and
d(Ayt)/dx are complex or unknown, the most useful forma
of the equationa are

(45)

These integrals can be evaluated numerictiy by the
method gi-ren in Appendix A.

APPLICATIONS OF THE METHOD

TKB CALCULATION OF THE VZLOCITY DISTRIB~ON OVER A GIVEN AIR-
FOIL SECTION

In this section the procedure to be followed to calculate
the velocity distribution over a given airfoil section is
presented, and the calculation of the wdocity distribution
over the NACA 4412 airfoil section is used as an example.

The procedure may be summarized as foIIo-iva:The ordi-
nates of the base profile are obtained from the airfoil ordi-
nates by removing the camber. The velocity distribution
ovw the base proiile is found by adding to the know-nvelocity
distribution over some reference base profile having the same
leading-edge radius, the change in the velocity distribution
due to a change in ahape from the reference to the gimm
base profle. Next, the ordinates of the camber line are
obtained from the nirfoiI”ordinatea by removing the fhicknes.
The chorchise Iift distribution over this Mnitesimally
thin camber line is calculated and corrected for the effect
of t.hicknes. Finally, the effect of camber is combined with
the velocity distribution over the base profile to give the
velocity distribution over the given airfofl section.
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From the known airfoil section, the ordinates yf, the
nose radius of the base profle r~X./c, and the ordinates of
the mean camber line VJC are determined for some or all
of the standard stations x/c Metedin table V. In the general
case this may be done graphically from a large plot of the
airfoil, taking care to measure the base-profile ordinates
perpendicular to the mean camber Iine at each station. AU
modern NACA conventional and Iow-dmg airfoils are
formed from specified base profiles and mean camber lines,
and the ordinates or equations for the ordinates can be found
in NACA reports. For the NACA 4412 airfoil, the ordinate
of the base protie (i. c., the NACA 0012) and the equation
for the ordinates of the camber line are given in reference 10.

The base-profde velocity distribution is cahmlated as
follows: A reference base profile having approximately the
same nose radius is chosen from the Joukowski profiles listed
in table II. The thickness ratio of a Joukowski profile
having tbe leading-edge radius ?’L.13.is

(51)

For the IVACA 4412, ttw leading-edge radius is 0.0158c,
the proper thickness ratio for the Joukowaki base profile is
then 0.1155. It is sufliciently exact and more convenient
to use the Joukowski section with t/c= O.12. The difference
between the ordinates of the given and reference profile is
found from

(52)

and listed as in table III. These dfierence ordinates are
plotted as a function of z/c, as in figure 8, and the elopes
graphically determine. These slopes are plotted as func-
tions of 0 in radians (fig. 9) with the slopes at f?= Oancl 8=7
arbitrarily set equal to zero. Then the ordinates and slopes
at the proper 6 stations given in the Appendix A for the
numerical integration of equation (45) are found and listed
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FIGIJRE8.-D1flercnca ordinates for brxa profile of NACA 4412afrfoll stcfkm ws furwtkn
Qfqc.

in table IV. (Note that the value of the ordinate n[ station
r+8 must be taken as the vrdue nt ~—6 hut with opposite
sign.) If the curve of figure 9 is fair, the ‘r20-point” method
of integration, used in tho example, is sufllciently exnct.
The integration is performed as illustrabxl in Appmdix A.
The resulting vplues of Ao/vO me plott,cd as a fuuction of
x/c using the conversion table V, Rml the values at the staml-
ard stations, taken from this curw, are listwl as in ttiblc 111.
The velocity distribution over tlw base profiIe is found from

(53)

where the values of ~7,/170are those for tho rcferencc profile
given in table II. For comparison, t-besecalcul~tml wducs
have been plotted in figure 10 to an Gxpanded scale of
V,/Vo along with those determined by tlw ~mcthod~of
reference 1.
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FIGCILE10.–Telodty distribution av’erNACA MU W pmlile.

The chord-wiselift distribution is caIcuIated, in general, as
folIows: From a curve of the meag<amber-line ordinates as
a function of z/c, the slopes are determined and plotted as a
function of 8. From this graph, tbe ordinates and slopes are
determined at the proper 8 stations given in Appendk A
for the numerical integration of equation (.27). (The
dues of ordinates at station r+19 must be taken as the
same in sign and magnitude as the values at station T—8.]
The integration is performed to obtain the value of #B.

For the mean camber line of the NACA 4412 airfoil,
because the equation of the shape is given in element~
functions of z/c, the procedure may be simpMed. From the
leading edge to z/c=o.4

and from x/c= 0.4 to x/c= 1.0

(It is to be noted that if ~P, is found from the integraI
equations (25), (26), or (27), regardless of whether ycaor y,
ia used in the calculation, the additional distribution vi-ilInot
appear in the final answer.) Differentiation gives

0<:<0.4

0.4<:< 1.0

Wug equation (3), these may be written in terms of 6 as

dy. - 1
~=~ (Cos 8–0.2) ; O< I?<COS-’(O.2]

dyc 1
~=~ (Cos 8–0.2) ; COS-1(0.2)<8<T

These relations could be employed directly in equation (25}
and the lift distribution obtained. The existence of the
singular point, however, makes the algebra tedious.

To employ the numerical method of integration, the slopes
dld$ (dyJdx), WY be obtained by differentiation of the
above.

d dye ;
()

— =—&rlefidx4

d dyc
()

— =—kcadx9.

U&g the above equations,

o<e<cos-’(o.2)

COS-1(0.2)<O<T

the ordinates and slopes of the
curve of dy~dz as a function of 6 can be calculated directly
for the proper 6 stations used in the numerical integration.
(table W) and the integration performed. The values of
GP~are then plotted as functions of x/c @g. 11) and the
values obtained for the sttmdard stations. These values
apply to an airfoil of infhitesimal thickness, and the VSIUES
must be corrected to correspond to the airfoil of bite thick-
ness (lot. cit. equation (28)) by use of the equation (table
VH)

(54)

o .1 .2 .3 .4 5 .6 .7 .8 .9 10
=

.%-

FIG~E 11.<dcrlblted bdC lift dhtdbdhl for2JACA MU EkfOnSWtiOU.
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These values are also plotted as in figure 11. The basic or
ideal list coefficient is then determined from an integration
of the plot of pb as a function of ~/c,

The additional distribution can be calculated by finding
fi]st the values of ~= for ~,= of unity from

-1’=(H)(2)Pa(oc2=– (55)

using the values of (@~Ocl=) from table I. This function is
plotted and the integral cl~(~,~= 1) is determined. Then the
additional distribution is found from- ,

Pa
()

P=(oc,d=I)
c= ‘c/fl(ocl==l) (56)

as in table VII, - ‘“ - -
The chordwise Iift distribution corresponding to a lift

coefficient c1can be found from
P=

()
P= P*+(cl–ctJ ~-

a
(57)

The velocity distribution over the airfoil may be found by
superposition method of reference 4. The upper and lower
surffice velocity distributions, respectively, are

and

In table VIII, the

77. Vf . P/4
TU’T@vo

(58)

%%%

velocitydistribution calculations for
the NACA 4412 at c~=O.7!2are given. The calculated values

o .[ .2 .3 .4 .5 .6- .7” .6 .9 Lo
x
F

Fmurm 12.-vol0cIty distribution over NACA 4412nirM smtion at CFO 72

I

I

()62

0
~
c

FIGURE12.-Velocity distribution over NACA 4412akfoli Mrtton at cr=2.05.

of (V/Vo]2 are plotted in figure 12 along with the cnlculalcd
values obtained by the method of reference 1. Also shwn
for comparison in the solid curve arc expcrimmtal values
obtained by interpolation of the experiment.alpressure dis-
tributions of reference 11.

In figure 13 arc shown tho calculated values of (1”/1’0)~fur
lJACA4412 at c1=2.05 m dctermid by the method of tllk
report and of reference 1.

The procedure to be followed to calculntc the velocity die-
tiibution over a strut section having a rounded tmiling edge
is the same as that for the airfoil, except that the refwenco
profile must be one hfiving both n rounded hwiing and
trailing edge. The ellip~ic sections given in table 1.X me
recommended for use as base profiles in iheso cases. StruL
sections arc usually not cambered, so thtit the prrwedmwto
be followed for cmnbered strut swtions is only of mcadcrnic
interest and is accordingly not considered hure. It IWLy,
however, be desirable to calcidate the velocity distribution
over a strut section at some rmglc of td.tackother tlmn zero.
In this case, the value of OP.is calcultitwi from

or
(0P==2CX cot ; e—tan ; e

)

I

“[h1–2;

“5=2” flq)

and the lift distribution from
.?7.

()Pa= g ,P=

(59)

((30)
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With this lift distribution the integrated value of the lift
coefficient may not be zero as required by the potential
theory. A small shift of the distribution would allow this
requirement to be met, but such a refinement is not justifkl
in view of the fact that for real fluids, as a result of the fluid
viscosity, this requirement is not. actually fuMIled. IJsing
the vahe of P=, the -relocity distribution over the strut is
found from equations (58).

THE CALCULATION OF SHAPE OF A?4 AIRFOIL SECTION COBEESFOXTWNG
TO A GIVEN VELOCITY DISTRIBUTION

In this section the procedure to be folIovied to calculate
the airfoil section shape corresponding to a desired velocity
distribution is presented. To demonstrate the general pro-
cedure to be employed in the calculation of an airfoil shape
corresponding to a desired ~elocity distribution, the shape
of a “semi-lo wdrag” airfoil over which the mwximumvelocity
occurs near the ~eadingedge on the upper surface and at the
midchord location on the lower surface is used as a first
e.mmple. As a second example, the specific calculation of
airfoti shapes havi~w a ‘~doubkoof” type velocity distribu-
tion is considered.

It should be noted at. the outset that the shape of a two-
dimeusiomd body corresponding to some desired velocity
distribution may not represent a real Qirfoilsection which is
both “closed” and pointed at the trailing edge. As a con-
sequence the desired ~elocity distribution can be considered
only as a “tit choice” and must. be modfied, if neceesmy,
to satisfy these conditions. The procedure employed in ad-
justing the &aired velocity distribution and calculating the
shape of the corresponding airfoil is as follows: From the
desired airfofl velocity distribution, the corresponding ve-
locity distribution over the base profile is found by averaging
the upper and lower surface velocities at each chordwiae sta-
tion. This distribution is examined to detemine whether
it corresponds to a resd profle and adjusted, if necessary, to
satisfy this requirement. The base-profile shape corre-
spond~~ to this adjusted velocity distribution is calculated.
The airfoil velocity distribution is bdly adjusted, if re-
quired, to take into account the mod~cations made to the
originaI base-prde -relocity distribution. The chordwise
lift distribution is determined from this adjusted diatriiu-
tion. Then the chordwise Mt. distribution for the airfoiI

with the thicknes removed is determined and the mean
camber-line shape calculated. The calculated mean camber-
liue and base-profle shapes are then combined to give the
wirfoiI section shape corresponding to the finally adjusted
velocity distribution. In the example of the semi-low-drag
airfoil, these steps are considered in detail.

Example I

(a) First choice
In general, a dssired veIocity distribution mill be one laid

out to some specified ideal Iift coefficient, although it ti
ordy be required that the quarter-chord moment coefficient
not be objectionably large. This, as will be seen later, al-
lows the lift coefl?icientto be varied within a reMively huge
range without affecting the desired characteristics of the
relocity distribution. Hence, under these conditions the ad-

justment to a particular ideal lift may be easily made after
the b~profd-shape calculation is completed, provided the
first choice of the velocity distribution is one ha-ring a lift
coefficient within a few tenths of that desired. .

In practicalityall cas- it is required that the shape corre-
sponding to some desired velocit.y distribution be one having
a specified thickness ratio. This requirement-together
with the requirement, discussed previoualy, that the desired
velocity distribution corresponds to that. for a reaI airfoiI
section which is both closed and pointed at the trailing
edg~complicat es the problem since it is not apparent from
the velocity distrhtion whether these requirements are
MtlIled. These complicating diEEculties can and must
largerly be eliminated by choosing the veIocity distribution
w-isely. Reference to known veIocity distributions over
existing airfoils having nearly the same thickness ratios and
similar velocity distributions with that desired will aid in
this choice.

Suppose, for emmple, that the semi-lowdrag airfoil, u~d
for ilhmtration, is to have a low ideal lift coefficient- and a
ma.xirnumthickwss equal to 14 percent of the chord, with
an upper surface -relocity distribution similar to that for a
Joukowski base profile and a lower surface velocity distribu-
tion simiIar to that for an AT-MM 65-series low-drag base
protlle. It is to be expected under these conditions that
reference to the velocit.y dktribution over a Joukmvslii base
profile for which t/c= O.14, and o~er an A’ACA 65+14 base
profile w-illaid in the choice of the desired velocity distribu-
tion. In figure 14, the velocity distributions for these airfoils

1.3
II I I I I

I II

:2 I m r r ,
[1 .4 1 -. .-

.9

1 I 1 I I I I I I

L —z for A4WA 65-0[4 sectim ---: --------~
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are shown. The velocity distribution for the Joukowski sec-
tion was taken directly from table H of thii report. The
NACA 65,2-016 is listed in reference 9, and the approximate
velocity for the NACA 65-014, plMd in figure 14, was ob-
tained using the approximate relation

()VJ
Vo 0.14=I+W2)o.uA

Based on the foregoing consideration, a choice is made of
the desired upper and lower surface velocity distributions,
designated (VJVO)I and (V1/VO)l,respectively, as in figure
14. The base-profile velocity distribution (V,/~’70)1shown in
the figure is the average of these (1oc. cit, equation (58)). The
subsoript 1k used to denote that these velocity diatributi~ns
are a ‘Yirat trial.”

Having decided upon the desired velocity distribution, the
shape of the base profile is then determined as follomi: A
reference base profile which has nearly the same leading-edge
radius as the airfoil to be derived i.. selected from the Jou-
kowski base profiles listed in table II. The airfoil to be
derived in the example will clearly have a leading-edge radius
approximately midway between that for the Joukowski base
prdle, for which t/c= 0,14, and the NACA 65-014. The
leading-edge radius of the Joukowski base profile is

‘Lie”– 1.185 ~;~=O.02322

For the NACA 65,2-016 from reference 9

‘+=0.01704

.iz

.0.!

.U4

Q .&i

-.02

-.03

-.04

so for the NACA 65-014, aincc tho leading-cdgo radius of any
airfoil vm% as the square of the thickncas ratio,

The airfoil b
edge radius

()‘y=o.o1704 p; ‘=0.01305
.

be found will have approximately

‘i”= 0”01305~0’02322 =0.0181c

The Joulsowskibase profile for which t/c=O.12 has nearly this
radius (0.01706) and so is used as tlw reference p~ofilo in t]]is
example.

The. difference between the desired and Joukowski l.mse-
profile velocity distributions is found from (t.abloX)

(62)

and the vahms of (Av/Vo)l cos 6aro calculated using the vrducs
of the cosines given h the conversion ttiblo V. Then both
(AD/Vo)land (Ao/Vo)l cm 8 aro plotted as functions of @
(fig. 1$).
(b) Adjustment of&t choice

In order that the de&d velocity distribution will rep-
resent a red airfoil which closes and has a sharp trailing cdg~~,
it is required that the relations (1oc. cit. equations (42))

be satisfied.

e

FIQLZE ld.–DiLTemnca vebdt y dlstributi~ for &eml-lowdrag 8MoC.
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In the example, numerical integration of the curves of
@re 15 givw

H )O“.; ,dd= +0.0046

R )fJ e.,
COS edti= —0.0077

It is clear that if the wdues of (Au/~~)l are decreased over

the range ~ x<o<r, the integrak will both be nearer zero.

This suggests that as a second trial, the difference Telocity
distribution (A#), shown in figure 15 will more nearly
satisfy the integral equations (63) and at the same time will
not destroy the desired characteristics of the given -relocity
distribution. In this case

S()~’ ~ do= –0.0034
0. a

H )

“ AD
0V02

cos9d0=-o.oo12

The conditions of equtit.ions(63] are very newly satisfied..
The conditions may be satistled completely by sIightly
translating and rotating the second trial of M/l”o. %smning
that a amidl incrament-

‘(%)=’’+’’(=-’)
be added to the distribution (Ao/V&, since

~“A@’)dfl=rk,

and

lww’se’’=’”
then making

~,=0.0034
—=0.0011

T

the velocity distribution

%=(%)a+’(ti)

(64)

(65)

(66)

wiI1completely satisfy the equations (63) as required.
In table X, the values of

() ()A ~ =0.0011+0.0006 &

are given and the di&rence velocity distribution &J/VOis
caIcuMed, using equation (66). These values twe plotted
as a function of 6 in figure 15. (The vaIue at 6=0 is
arbitrarily made zero.)
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(c) CaJctiation of base-profile ordinates
The ordinates and slopes of the Ao/Vo curve at the

proper 6 stations given in ilppendi~ A for the numerical
integration of equation (45) are found and listed, as in
table XI. (Note that the wdue of the ordinate at station
T+6 is equaI in sign and magnitude to the wdue at r—t?.)
The integration is performed, and- the resulting ,values of
d(Ay,J/dz are plotted as functions of J#c(fig. 16) and integrated ___

o
z
z

FIGIXE 16.-HIxM M the bise pro!lk cmdinateafor the aemMowdr8g eJrfoIL

to give the values of AyJe at. the desired standard stations.
The ordinates of the base profiIe are then found, as in table
X, from

which corresponds to the velocity distribution

v, v,
~=~+~$

o)

(67)

(6s)

It is fortuitous that in this example the matimum thick-
ness was precisely 14 percent of the chord as desired. Ih
the e-rent that the final thiclmess wwe tl and that the desired
thiclmess were h, the ordinates and velocity distribution,
respectively, for.. the. base prdle of thickness & could be
obtained from the equation

and the approximate equation

(%)a=1+*[(3)l-’l

(69)

(70) ‘
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(d) Final adjustment
Before the caIcuhttion of the shape of the mean camber

line corresponding ta the given lift distribution is undertaken,
it wilI be necessary to revise the lift distribution correspond-
ing to the first trial of the given distribution so as ti take
into account the effect of the changes made to the ~riginal
base-profiIo velocity distribution to make that veIocity
distribution represent a real profile. This may be done

/.3

1.2

1.I
v
To

10

,. 9

.8D .,
2 .3 .4 .5 .6 .7 .8 9 /0

FIGURE17.–Veloclty distribution for scrni-low-dragairfoil.

graphically on the plot of the corrected bas~profle velocity
distribution.

For ~xample, in the case of the senilow-drag airfoil used
for illustration, the upper surface velocity distribution, to be
similar to the Joukowski type of velocity distribution, must
be nearly straight from the stations z/c=O.2 to 1.0, as seen
in figure 17. The base-profile velocity distribution must be
a mean between the upper and lower surface velocity dis-
tributions; hence, when the upper surface distribution has
been chosen. the lower surface distribution is determined

(fig. 1?).. The vcdocity distribution over the upper ami
lower surface of the leading-edge section (O<z/c<O.2) is
then suitably chosen so that the bawprofilc (,listrihu[ion is
the mean. The basic chordwisc lift distribution is related
to the upper and lower surface velocity dietrihutions by
(Ioc. cit. equations (58)).

(71)

(e) Calculation of mean camber-line ordinfbtcs
A’crw in the calculation of the mcun camber-line slmlw

(table XII), the basic lift distribution corrc.spondhg to
zero profile tlhicknee9OPbmust be used. From equation (54)

so that this distribution cm be obt.ainwl (Ijrwily from

(72)

(73)

To deter&ine the mean camber-lim shap[t which will
promote this lift distribution, the procedure is as follows:
Tho value of ~P,/4 is plotted m a function of 0 (f%. 18).
The ordinates and slopes at the propw 8 slutions given in
Appendk A for the numerical integration of cquatiol~ (27)
are found (table XIII) and thc integration pcrfwnml,
(NTOt@that the valuo of ,P,/4 fit station 7r+0 i9 cqunl in
magnitude but opposite in si&n ta tht at r— t?). Thu

remdting values of dyCJdx are ploth!d us a function of z/c
(fig. 19) and the values of y,, obtained by integration.

The resulting mean camber line is at tho ideal angle of
attack (the angle of attwk for which the whlitiomd lif(
distribution is zero) rind hcmwj unless the ideal angle is
zero, the trailing edge is either Mow or abovo the J/c tmis.
Ordinates of camber lines arc generally spwified wilh {IN
extremities of the camber lino on the Zp axis find dcsignntcd
by the conventional symbol y..

The ideal angle of attack is simply

“=e)=,..o-??)=,c=l.o
and

l/._~Cb
;–y+; a,

and

$$.~+ai 1

(74]

(75)

**:

,,, ...;’ !



GENERAL THEORY OF AIRFOIL SECTIONS HAVING AllBITRARY SHAPE OR PRESSURE DISTRIBUTION 729

6

FIWRE 18.-Qnsrter WC IIft dlstr!butio~ .P#4forwm&Iowdrag &foil,

ir
F

FIaCBE 19.-Slopes ot the mean camber llrw ordbMte9for the s!xJ.&bw-dtagafrfofl.

In the case of the semi-low-drag airfoiI used for the
example

%=+0.01233 rr&ms=0.706°

and the values of y~c and dyJix listed in table XII are
obtained from the equations

dy. dycb
~=x+0.01233

W@ these dues of y~c and dy@x along with the pre-
viously determined vtdues of yJe, the ordinates of the airfoil
can be ca.hdated, as shown in table =V for the semi-low-
drag airfoiI used as an example, from

where

()
~=t.an-l ~

The resulting airfoil is shown in figure 20.

(76)

.
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cc
F

FIGURE20.-&mi-lowlraR ahfo!l.

The chordwise basic lift distribution over the airfoil is
found from

(77)

and is pIotted and integrated to give the baeic (or ideal) lift
coefficient. For this semi-low-drag airfoil, the basic lift dis-
tribution was plotted and the value of the basic lift coefficient
was found by integration to be

cl~=O.0489

The velocity distribution over this semi-low-drag airfoil
was calculated by the method of reference I at this value of
the lift coefficient. The results of this calculation are shown
in figure 17 to an enlarged scale of ~7/1”0for comparison with
the given (solid line) distribution. It is seen that the
agreement is close.

If it is desired to calculate the velocity distribution at a
value of the lift coefficient other than the basic Iift coefficient,
hheprocedure to be followed is that given under the heading
entitled Applications of the Method.

in the preceding analysis it was tacitly assumed that the
lift and quarter-chord moment coefficients corresponding to
the finally adjustod velocity distribution were those desired.
It is clem that in the final adjustment these coefBcients couhl
have been adjusted by changing the upper and lower velocity
distributions, taking care only to keep the average of these
equal to the base-profile velocity distribution. On the other
lmnd, since superposition of amber I.inesis always permis-
sible, such adjustments can be made at any time. There me,
of course, an infinite rmmber of adjustments possible, some
of which me particularly convenient. As an example, the
a= 1 type mean camber line (reference 9) w be conveniently
used LOadjust the lift or quarter-chord moment coefficient
of this semi-lowdrag airfoil; Since. the addition of this
crimberline simply shifts the upper and lower surface velocity
distributions up or down with respect to .Lhatof the base pro-
file, these adjustments do not disturb the desired chmacter-
istics of the velocity distriImtion.

To cite one example, suppose it is desired that the semi-
lowdrag airfoil be adjusted to an ideal lift coefficient of 0.4.
With this base profile the a= 1 type mean camber line for
OCl~of unity at~ins & lift co~cient C/a=1.080 (loc. cit.

.

equation (29)). The required lift cocfhkwt for this conlpo-
nent of the basic lift is

0.4000–0.0489=0.3511

so that if the mean camber-line ordinates of thu a= 1 typ~
for @l, of unity given in reference 9 me multiplied by

-=0.325.

and the resulting ordinates added to those in table .S11, n ncw
mean camber line for which cl~= 0.4 is obtaincd. These in
turn can be combined with the original ordinat~s of the I.mse
profile to give the corresponding airfoil ordinates.

As a second example, supposo it is desired that the scrni-
low-drag airfoil be adjusted to zero quarhuwhord-moment
coefficient. For the mean camber line given in table XII,
the quarter-chord-moment coefllcient is +0.0224. TIw u= 1
type mean camber Iine for ~1~ of unity attains n quartcr-
chord-moment coefficient of —0.2506, or, for c-c,,= —0.0224
the corresponding OC,*=O.0894 and clb=0.0!M5. ~IeIlcc,
zero quarter-chord-moment coefficient can I-wobtained by
combining the original mean camber line with an a= 1 type
camber line for which oclb=0.0894. The corresponding lmsic
lift coefficient is

cZ,=0.0489+0.0W5 =0.1454

In retrospect-, it can be seen that the more exacting the
characteristics of the desired velocity distribution, the more
attention must be given to the &at choice and iinal adjust-
ment of this distribution. In t.ho case of the semi-low-drug
airfoil used for illustration, it should bc quite cIear that had
the desired lift and moment characteristics both l.wcnslmci-
fied, the eflort required to obtain n satisfactory fus~.choice
and final adjusted velocity distribution would h considerably
increased. The possible variations in the choice of desired
veIocity distributions arc unlimitwl so that no general rules
can be laid down for the special treatment required in each
and every case. Facility in the use of this method for tlw
inverse problem can be acquired only through cxpcricncc.
Example II

Experimental studies of a large number of low-drag nir-
foils have been made in which the t’fleetsof various modifJcQ-
tions in pressure distribution were dchmuincd. Airfoils
having pressure-distribution characteristics like that of tlm
series 3-and 6 low-drag airfoils were found to be Mmitcly
superior in most respects. The sorncwha~ dccrmsing buL
nearly constant favorable prmsure gradients whirh occur
over the forward pmt of such airfoils, from the nose sccLion--
where severe gradients due to the neccsmry rounded kwhng
edge occm-to the minimum pressure point, arc dcairaldc.
This allows relatively large additional lift incrcrncnts to hc
added, as weu as some waviness of surfaco to be tolerated,
without such additional ML or waviness promoting locrIl
adverse pressure gradients and so ‘~prernaturc” transition
to -turbulent flow in the favorable gradient region. Thu



GENERAL THEORY OF AIRFOIL SECTION19 EAYUNQ

nearly constant adverse gradient back of minimum pressure
has been found to be influential in increasing the critical
boundary-layer Reynolds number at the transition point
with given surface conditions, and so increasing the upper
limit of the Reynolds number range for lowest drag co-
efficients.

Airfoils similar to the NACA series 3, 4, and 6 low-drag
airfoils are obtained by superposing the ordinates of a base-
profile shape which promotes a double-roof form of veIocity
distribution on the ordinates of an appropriate Joukomki
base protie. The problem of finding the shape correspond-
ing to the double-roof velocity distribution, although it -ivas
SOIWIXIoriginally for the NACA series 3 lo-iv-dragairfoils and
series 4 high-critical-compresslMity-speed airfoils by use
of the numerical method (equation (45) ), is a rather im-
portant example of one -which may be solved by integration
using the trigonometric expressions for the velocity distri-
bution in equation (43). In trigonometric form, the equa-
tions for the double-roof velocity distribution are

~=kl+k~ COS 6 O<e<em

I (7s)
~=kz+k. COS 9 O=<t?<r
o

vihere d corresponds the point z and 8= corresponds to the
minimum pressure point zm.

The conditions that the value of AtI/Vomust be the same
in either equation at.8= and that the equations (42) be sat-
isfied require that

where ~ is the elope of the velocity curve between x/c= Oand
XIC=XJC; that is,

(a x/c= XJC -(%)Xfc= o8=
z~c

(80]

The corresponding shape of the base profile which will pro-
mote this velocity dist~ibution is

Ay 8_=-
C.!

-sine.sine (1—cos L9Cos e.)

—(COS e=–cos 8)%
sin ; (0=+(1)

sin ; (8=+?)

cos e. ti e.+r—e.

(81]

where the verticaI bars indicate the absolute due. In
table XV, the veIocity distribution and ordinates of the
double-roof base profle which may be superimposed on
other base proflks are given.
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For those double-roof base profi.Iesthe -due of Ao/vo is
not zero at z=O, so that it is obvioudy incorrect to super-
pose such base profiles on a reference base profile having an
infinite slope at the leading edge since for such reference
base profiles VJVO=O. Nevertheless, the -wlocity distri-
bution calcdated by superposition for such combined
protiIes is in reasonably satisfactory agreement with experi-
ment except in the immediate vicinity of the leading edge.

By combining these double-roof base profles with a
suitable reference base profle, a mu-iety of satisfactory low-
drag airfoils can be derived. ti example is the super-
position of a dotible-roof base profile for which x==O.4C
and 80.L=0.3059, and a double-roof base profile in -which
z== 0.7c and S0.T=0.1367 (table XV) on a JoukowskI base
protie for -which t/c=O. 10 (table II). A base profile results
which, when combined with a type a.= 0.4, co= 0.8201
mean camber Iine superposed on a type a=0.71 co= —0.5513
mean camber line gives an. airfofl for vihich t/c= 0.14 and
which has an upper-surface velocity distribution similar in
form to that of the ATACA 64-series low-drag airfoil and a
lovrer-surface velocity distribution similar in form to the
AIACA 67-series lewd.rag airfoil. This airfoiI, the velocity
distribution for which is ahowo to an expanded scale of
J71~70by the solid-line cu.we in figure 21, is completely satis-

FIG~Z 21—WIocit y distribution o- a low-drag aIrfoUhming minb.uumPmsmrc u 0.4c
cmmom surfaceand 0.7con Iower surface.
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factory except for the fact that the. nose radius is unneces-
sarily small so that the maximum lift coefficient may be
adversely aflected. One way in which this diiliculty may
be alleviated to some extmt is to add the increment Ay~
normal to the surface of the reference base profde rather
than normal to the z-axis so that the ordinates are given by

(82)

where dy,/dxis the sIope of the smface of the reference base
profile at the station under consideration. This procedure
is hardly justifiable, however.

A very satisfactory method for improving the shape at
the leading edge is to caJculatethe velocity distribution over
the base profde carefully by the method of reference 1.
Then, by using the ~aphical method of reference 12, a
change in shape of “the base profile and the corresponding
change in the velocity distribution may be found by trird
which wti allow an increas~ in the leading-edge radius that
will not promote a “bump” in the velocity distribution near
the leading edge.

DISCUSSIONAND CONCLUSIONS

In the theoretical development. of the method of this
report a number of simplifying assumptions were made in
order to f&ilitate the r.na.thematicd treatment, some of
which are clearly contrary to fact. The method of refcrence 1
by comparison would appear exact. However, two assiunp-
tions common to the development of both methods are
that the fluid is incompressible and nonviscous. The fiat
is justifiable if the velocities are.everywhere negligibly small
in comparison with the velocity of sound. The second can
never be considered strictly justifiable although in the usual
Reynolds number range the error is smaI1. It ahould be
noted, however, that in the uauaI case, as may be seen in
figure 12, the inaccuracy of the method of thisreport resulting
from all tho other assumptions except that concerning the
viscosity of the fluid (and compressibility when it is impor-
tant) is small as compared with the inaccuracies of both
methods resulting from the neglect of the effects of viscosity
(and compressibility).

Concerning the method of reference 1, it has been found
that the eocond approximation for the value .of Eshould be
~mployed in the calculation if the base profile under con-
sideration difTwsmarkedly from the Joukowski base profile,

as is the case with a rmmbw of lowdrag airfoils, particularly
for thitk sections or for those sections with the minimum
pressurepoint fur back along the chord. Tho inadequacy of
the iirst approximation is not very evident in figuro 21,
wherein the velocity distribution as calculated by k method
of reference 1 using both the firsttand second approxima-
tions is shown for comparison with the method of this report,
since the maximum thickness is fairly fur forward and the
airfoiI is relatively thin.

The ~tisfactory application of the methods of this report
rests on a thorough understanding of the limitations ou the _
pririciple of superposition as it tipplics to the mean camber
lixii and the base profiIe. In the theory of the mmn camber
line it was assumed that the camlwr, as v@l as the slopo of
the camber hne, was smaI1. Hence, superposition of mean
camber Mea or of lift distributions should be permissible
for all usual ciunber lines, provided the camber or lift is
small. Experiment has shown that for usual numn enmbcr
lines calculations based on this method am in good agree-
ment with experiment, provided the basic lift corff’cicnt is
less than unity, but that even up to basic lift cocff[ricnts of
two the agreement is ftiir. In tho lhw-y of tho baso profilo
it was assumed, in cflect, tlmt the slope of the surface is small.
At the leading edge of an airf&~ section and at the hwiing
and trailing edges of a strut section, the slope of the profile
is infinite so that, as was shown for the Joukowski and cllil)tic
base profiles, the method of this report cannot bo used di-
rectly to determine the velocity distribution or ahapo of such
bodies. Rather, the method must bo used to dctmrnino the
change in velocity distribution or sh~pc corresponding lo
some specitled change in ahapo or velocity distribution,
respectively. This chugc can represent a m~rkcd rdt.wn-
tion in shape at aII points except thu leading and trailing
edges.

Again, in the theory of the base profile, it wis assumed that
the profile is thin. Experiments have imiicuted that lhc
method is satisfactory for all airfoils of usual thickness (up
to thickness-chord ratios of 0.18) and even rcasonaldy satis-
factory in tho case of an airfoil htiving a thirlmess-cllord
ratio of 0.25 (NACA 46-125).

AMES hRONAUTICAL LABORATORY,

NATiOkAL ADV-iSORY COMMITTEZ FOR ./iERONAUTICS,

MOFFETT FIELD, CALIF.



APPENDIX A

NUMERICALINTEGRATIONMETHODS

A numerical evaluation of the integral

is given in the appendix of reference 1.
A “20-point” acdution is

(.7lZ=aD ~ ,+al(F1–F.l)+aa(F~ –F.2)+

ag(FQ—.F-J

where F1 is the value of F at 60+~0

-—————

F, is the value of F at. 60+n~~

(n=l,–1, 2,:2. . . 9,–9)

d(? d
a, (9

is the value of ~ at e=eo

and the coefficient are
ao=O.lOOO aE=0.0503
al=0.3473 U6=0.0366
az=0.1572 a7=0.0281
aa=0.0996 a*= O.0163
a4=0.0691 aO=O.0080

. . +

The vidue of Ae/~~ for O=4r/10 given in table IT’ for the
~NACA4412 base profile, for example, is obtained in the fol-
lowing cyclic form:

At,~..
1, [

0.1000(+0.0138)

+0.3473(+0.0283–0.0192)

+0.1572(+0.0178–0.0006)

+0.0996(–0.0044+0.0397)

+0.0691(–0.0406+0)

+0.0503(–0.0901–0.0397)

+0.0366(0+0.0006)

+0.0281(+0.0901+0.0192)

+0.0163(+0.0406+0.0283)

1+0.00S0(+0.0044 +0.0283) =–0.0059

A more accurate “40-point” solution is

E=60 (dT# +MF,-F.-,) + ih(F’rF-,)+ . . .+ bl,(F1,–F_,,)o
s4?slo7-5~7

where now

F, is the value of F at @o+&
———L——

F= is the value of F nt t?o+~

(n=l, –1, 2, –2, . ..19. –19)

dF
()

~ is the value of $ at e=do
o

and the coefficients are given by

bo=o.05000 b,,= O.02503
b,= O.34906 b,,= 0.02139
ba=0.16129 i5M=0.01819
b,=o.lo514 b,a=0.01532
b,=o.07735 6,,=0.01273
b,= O.06057 b,6=0.01036
b8=0.04918 b,@=0.00814
b,= O.04087 b,T=0.00599
b,= O.03444 bm=0.00395
b,=o.02929 b,g=0.00197

The 40-point solution need be employed onIy when the
function F changes more or less abruptIy vi-ithx/c.
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TABLE L-CALCULATED VALUES OF ADDITIONAL TJI?T

COEFFICIENT DISTRIBUTION : FOR INFINITESI-
●

MALLY THIN AIRFOILS

d–
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&l= rsin O ‘z x
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.mi
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TABLE 11.-SURFACE ORDINATES AND VELOCITIES. FOR JOUKOWSIiI .J3ASE PROF1 LES

t/c-o.04 t/e-o.os t/c-o.iB t/c-o.lo 4C=0.12f/c-o.02

J’*1C I VJVQ ,?/. I T’/T;gdc M
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TABLE 111.—BASEPROFILE VELOCITY-DISTRIBUTION
CALCULATION FOR NACA 4412 AIRFOIL. SECTION

TABLE IV.-INTEGR.4TION CALCULATION OF &J/12 FOR
NACA 4412 BASE 1’ROFILE
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TABLE V.-COORDINATE CONVERSION TABLE TABLE VH.-ME.4N-C.4MBER-LINE LIFT DISTRIBUTION
CALCULATION FOR NACA 4412 AIRFOIL SECTIOX
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FOR NACA 4412 AIRFOIL SECTION AT c~=O.72
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TABLE fI.—INTEGRATION CALCULATION OF
NACA 4412 31EAN CAMBER LINE
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TABLE IX—SURFACE ORDINATES AND VELOCITIES FOR ELLIPTIC BASE PROFILES

t/c-o.04 t/c-o.cd
c

tfc- 0.09 qc.=o.lo l/cmo.12t/c-o.02 ljc-o.14
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TABLE X.—BASE PROFILE ORDINATE CALCULATION FOR SEMI-LOW-DRAG AIR FOIL
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TABI,E XI.—IlfTItGRATION CALCLTLATION OF W
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TABLE XI-.-ORDINATES AND VELOCITY DISTRIBUTIONS FOR “DOUBLELROOF” BASE PROFILES
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