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GENERAL THEORY OF AIRFOIL SECTIONS HAVING ARBITRARY SHAPE OR
PRESSURE DISTRIBUTION

By H. Jurian Arnreny

SUMMARY

In this report a theory of thin airfoils of small camber ts
developed which permits either the velocity distribution cor-
responding to a given airfoil shape, or the airfoil shape corre-
sponding to a giren velocity distribution fo be calculated. The
procedures to be employed in these calculations are outlined and
illustrated with suitable examples.

INTRODUCTION

Before the advent of the low-drag and high-critical-speed
airfoils, the shapes of airfoil sections having desirable aero-
dynamic characteristics were found by the purely empirical
method of testing families of related profiles. The pressure
distribution over any of these shapes could be celculated by
any of a number of methods, but notably by the method
of references 1 and 2.

Subsequently, experimental and theoretical investigations,
on the one hand, of the laminar boundary layer and the
phenomenon of transition and, on the other, of the compres-
sion shock wave promoted a better understanding of the fac-
tors affecting the drag of airfoils. It became apparent that
the control of the aerodynamic characteristics of airfoils
was to be found in the control of the pressure or velocity
distribution. Hence, in the design of an airfoil having certain
desirable aerodynamic characteristics, the “inverse’” prob-
lem of finding the shape of an airfoil which would promote a
specified velocity distribution over its surface became of
considerable importance.

One notable method has been advanced (reference 3) for
solving this inverse problem. However, this method is
intricate and laborious to employ.

In this report & new method, which has been used for
the past several years in the design of a large number of low-
drag and high-critical-compressibility -speed airfoils, is
presented. This method, which is comparatively rapid and
easily epplied, may be used to solve either the direct or the
more important inverse problem. Illustrative examples are

included.
THEORY

It is shown in reference 4 that in a determination of the
pressure distribution over a cambered airfoil the effects of the
camber and the thickness distribution may be considered
independently. Specifically, it is shown that the induced
velocity at any point on the cambered airfoil may be found

by superposing the induced velocity at the point due to the
vortex system, which may be considered to replace the mean
camber line, and that at the point due to the source-sink
system, which may be considered to replace the “‘base profile.”
The base profile of the airfoil is the profile if the camber were
removed and the resulting symmetrical airfoil set at zero
angle of attack. In the airfoil theory of this report it is
convenient to consider separately the base profile and the
mean camber line which together make up a given airfoil.

CAMBER-LINE THEORY
Glauert (reference 5) has considered the problem of the
mean camber line which, in a more convenient form for cal-

culation and extended so as to include the theory of the strut
as well as airfoil mean camber lines, is given in the following:
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FIGURE 1.—Diagram of mean camber fine.

Consider the mean camber line shown in figure 1. If the
camber is small, the velocity induced at a point P(x,y,) on
the mean camber line by a vortex at any other point P(z,y.) on
this line is approximately that which would be induced at
the point on the z-axis P(zy,0) by the same vortex at the
point P(z,0). I the vortex strength at any point is % dr
the velocity induced at any point on the camber line due to
gll the vortices distributed along the camber line is

ar
e 3= 4z
e 0
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and is perpendicular to the z-axis. The flow direction close
to the camber line must be parallel to the surface of the
camber line so that if the angle o between the z-axis and the
flow direction of the undisturbed stream is small, then

%—%—a (2)

where V, is the velocity of the undisturbed stream.
It is convenient to introduce the new coordinate ¢ for =z
such that

x=§ {1—cos 6)

a:o=§ (1—cos 6) (3)
dx=% sin 6 df

where ¢ is the airfoil chord. Assuming the distribution of
vorticity o' (where the prescript , indicates that this circu-
lation applies to an airfoil of zero thickness) along the z-axis is
AT o1 ’
%—-ﬂ Ay cot 5 6+Ao tan - B—I- ZA sin 16
Then

%—- da:_cV,, [Au (14-cos )+ A" (1—cos 6)
+33 4, sin 16 sin a] a9 (5)

%[cos (n—1) 6—cos (n+1) 8], then

from equations (1), (2), (3), and (5) the slope at 6, may be
obtained from

Writing sin nf sin 6=

cos fp—cos 8 -

@Yo 1 f)A (1+cos 6)+4,' (1—cos 6)
ar“—;;ﬁ{ ;

%$ Ay [cos (n—1) 6—cos (n+1) 6]

+ €08 f;—cos 8 do (6)
It is shown in reference 5 that
*  cosnf ___sin né, L
J; cos f—cos 6, =1 sin 8, @
so that equation (6) becomes for the slope at 8
Wer o Ay 4 47 +35 Ancosnd
dr % 0 o “An cos (8)

The coefficients are given by
, _1(dy.
a—Aa +Ag”—;ﬁ CZI_ dG
A,.=g f' %y"‘ cos nfde
T Jo &
The lift force may be found from
¢ o, ol
L= [ oV: 45 ds
=cp Vo’j;' [Ao’(l +cos 8)+.4,7(1—cos 6)
+Zu) A, sin 18 sin 6] de
1
=xcp Vo' (Ao' +4," +% Al)
go that the lift coefficient is
ei=2r (A +A +5 4) (10)

According to theoretical hydrodynamics, in an inviseid
fluid a strut scction with a rounded trailing edge should ex-
petience no net lift at any angle of attack so that in this case

A =—1 A=A (1)
whence the relations (9) become
Ay ——[ ———f (l+cos 0)d0]
Ag" ——— ——f e (1008 a)de] (12)
,.—; c%a cos nf df

In the case of an airfoil wherein the trailing edge is sharp,
the “Kutta condition” must be satisfied (i. e., the flow must
leave the ftrailing edge smoothly). To attain this the
vorticity at the trailing edge must be zero, which requires
that 4,"/=0. So the coeflicients become

I 2
af=a—2[" Yo do
A= (13)
"’f
It will be noted that for airfoils only A4y and for struts
only A, and Ay’ vary with the angle of atlack. The

£ cos 18 db
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coefficients A, are independent of the angle of attack and
are functions of the mean camber-line shape only.

Denote by (P the difference at x between the upper and
lower surface pressure coefficients, P;—P,. (The pressure
coefficient is the pressure in terms of ¢, the stream dynamic
pressure.) Then, from the Kutta-Joukowski theorem of Lift,

» dyT
P‘oji?

q

P= o (14

bty

so that, from equation (4),
P=4 (s’ cot Lo+ 457 tan L 0+ 304, sin na) (15)
- < T

It has been found convenient in the past to denote that
part of the chordwise lift distribution which is in magnitude
independent of the_angle of attack and in form dependent
solely upon the camberline shape, as the basic lift distri-
bution; and that which is in magnitude variable with the
angle of attack and in form independent of the mean camber-
line shape, as the additional lift distribution. (These
concepts first appeared in reference 6 and were later used
in the development of the methods of references 7 and 8.)
Hence, for the infinitesimally thin airfoil or strut the addi-
tionel lift distribution is given by

Po=4 (A" cot L 9+a,” tan 3 e) (16)
and the basie, by
oPy=434, sin 28 (17)
1

It is convenient to consider the basic lift distribution only
as characteristic of a given camberline shape since the
additional distribution may be modified at will by a change
in the angle of attack and so, at some angle, must be zero.
The angle of attack at which the magnitude of the additional
distribution is zero for an airfoil is called the ideal angle «;
(references 6 and 9), and is given by

== lf e g (18)

The ordinates of the mean camber line corresponding to the
case when the additional distribution is zero, denoted by ¥.,,
are related to the ordinates . by

et o
and so
dy.
o %—a; (20)
From equations (8) and (17), then
dyc”—-iA, cos ng
1
and 21

=i‘,A. sin 78
1

and the coefficients are given by

A —2f y'cos né da—§ , °P“smna de (22)

4

Using equations (21) and (22), the chordwise list distribu-
tion corresponding to a given mean camber line or the mean
camber line corresponding to a given chordwise lift distribu-
tion can be found. The caleulations will in the general case
be very lengthy so that it is desirable to replace the Fourier
expansions by integral expressions, as was done in the de-
velopment of the method of reference 1. To this end, the
expression for the Fourier coefficients given by equation
(22) can be substituted in equations {(21). At 6, then

oP 5 2~ dycb 2 .
—4-=; o YI— ; s né, cos néd da
and p (23)
yc
b“ 2f uP"Es:.n 1 cos n, df
Nov,
sin nf, cos -na=l [sin n(0+6,)—sin n(6—8;)]
sin né cos ne.,— [sin n(ﬂ-[—eo)-l-sm n(0—8,)]
and further

cos (2n+1) (gize")
2 sin (-GH:TG“)
o (155) o (58] -

1 pedy., | €0 (.2n—[—1) (6_290) cos (2n+1) (6_2%) J
ﬁf“ C2N ("—"I_,—”") " n (";”" ’

Zﬂ sin n(846,) =1 cot (8:{:90)_
3 2 2

so that substitution gives

uPl":]jm ——f dyc"
4 e

an

ot 35 () e ()]0

1 Pa cos (2n-+1) (%)_Lcos (2n+1) (6_26") i

iy ! e—ao)
2

or 4 &n (%03)

In the limit, the second integrals in the above relations
become zero so that the equations may be written as
T or ¢

o () ()]
St [ Lo (e ()]

When either function is known in simple algebraic form,
it is sometimes convenient to express these integrals as

Py 1 dyc,
I
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follows: From known trignometric relatmns, equations (24)
may be written

oPoy 1 (e, sin 6dd
4 o dx cos —cos 6,
(25)
sin 6d8

‘13;_»9__1 f’ﬁ

- 4 cos 8—cos 8,

which may be useful if the functions under the integrals are
expressed as simple functions of 6.

When the funetions are expressed in terms of z, the follow-
ing forms, obtained by substituting the relations of » with 8
given by equation (3), are sometimes useful:

P y"’ 77 Vaale—)
0 n‘,
0 (&— %)Vw(c— (26)
dycb“ 1 ¢ QPadx
dxr 0 4(x—x)

The second equation has been used to determine the shape
of a variety of camber lines, notably the type ‘“a’* mean
camber lines (reference 9) used with the more common low-
drag and high-critical-compressibility-speed airfoils.

Unless the algebraic expressions for (P, or dy./dx are very
simple, the direct integrations using equations (25) and (26)
are not convenient so that, in general, it is desirable to per-
form the integrations numerically using eguations (24).

The computation may be shortened considerably by use
of the following mathematical device:

"£(6) cot 8100 gge — f(2xr—8) cot 60— g
0 2 . 2

Hence, equations (24) may be written

DP Do_ g dyf-‘p 0— 00 3
4 27!' 0 )d0
. dyto _ dycb)
deﬁnmg <—d5)r+d— 75‘ -
> 27)

@Yoy, L (,P,, (e 90) @,
d =

defining (g—") <°P) .

These integrals may be evaluated numerically by the method
of reference 1 which is given in Appendix A of this report.

In the preceding theory it was assumed thaet the airfoil
was of infinitesimal thickness, hence. the velocity at each
elemental vortex along the camber line was taken to be the
free-stream velocity V,. For airfoils of finite thickness, tbe
velocity differs somewhat from 1. A better approximation
is to assume that the velocity at each vortex is the velocity
.on the surface of the base profile at the same station. Hence,
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the effect-of airfoil thickness will be to change the Iocal lift
at z to approximately

v
P=P(#) 28
PP, (28)
where V' is the local velocity on the base profile at 2. The
calcula.tlon of V,is considered later in this report.
8
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Figung 2.—Additional lift distribution for NACA 0012 airfoll,
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F1oURE 3.—Additional Iift distribution for NACA 0018 alrfoll.

Values of P,/c;; calculated by equation (28) for the NACA
0012 and 0018 airfoils are shown in figures 2 and 3, respee-
tively, along with the values given by the method of refer-
ence 7 which were obtained by interpolation of experimental
pressure distributions. Shown dotted are the theoretiecal
values oP./e;. for the infinitesimally thin airfoil obtained
from equation (16) and given in table I. In figure 4 the

calculated and experimental basic lift distributions for the
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a=0.5 mean camber line of the NACA 35-215 airfoil are
shown. It is evident from these figures that equetion (28)
gives a close second approximation to the value of P.

The basic lift coefficient becomes

1 r
cw=JyoB(#)2() @)
and the quarter-chord moment coefficient is
1 "7 1
e [BHEDE) @

It is obviously inconsistent to make the approximate
velocity correction to the lift distribution (equation (28))
and not to the velocity ratio /¥, in equation (2). How-
ever, the correction to the lift distribution accounts for
nearly all the discrepancies between the calculated and ex-
perimental results so that the additional computational dif-

e
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Ficrre 5.—Diogram of base profile,
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ficulties associated with a further improvement of the theory
are not considered to be justified.

BASE-PROFILE THEORY

The problem of determining the velocity distribution over
a given base profile or the base profile which will promote a
given velocity distribution over its surface mey be treated
in a manner analogous to that of the mean-camber-line
theory. )

Consider the base profile shown in figure 5. If the thick-
ness is small, the velocity induced at a point P (20,5.) on
the surface of the profile by a fluid source or sink at the point
P(z,0) is approximately that which would be induced at the
point P(z,,0) by this source or sink. If the source strength.
at a point z is (dQ/dx)dr, then, the velocity induced by all
sources or sinks distributed along the z-axis will be

aQ
¢ dr dx
Q 1'0—3.‘

U(%)_Z_ (31)
The source strength can be related to the shape in the
following approximate manner: If the profile is thin, the ve-
locity at the surface does not differ materially from the free-
stream veloeity V,, and hence the flow velocity within the
profile due to the sources and sinks is as a first approxi-
mation V,. Within the profile the difference between the
quantity of fluid flowing at r+dx and z is the amount sup-
plied by the source contained within this interval, hence

%%d;wﬂ <J,+ d.r)—"Voy:

9 _ov, e (32)
and so equation (31) become approximately
dy;
e o dr
2z 1 (edz (33)

e ®Jo 0o—2

Replacmg r by the 8 coordinate defined by equation (3)
and assuming that the slope of the profile is given by

dy.

E—Bg cot —6-[—Bo” tan 5 8+Z}B sin no (34)

then by snsalogy with the similar development in the mean

camber-line theory

T’T,;=Bo'—30"—$ B, cos nf (35)
and
By—By =L Yi,de
(36}

B.=—gf -If;cos né do
T JO Iu
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The condition that the trailing edge shall close is given by

3 . 'é_y_{r _
j; dy;—fo o dz=0

Substituting the slope as given by equation (34) and inte-
grating, it is found that

B+ By -+ Bi=0 37)

It is of interest to note that setting all_coefficients except
By’ and By’ equal to zero then requires

Bofl= — Bol
Hence

‘—:}/—‘—Bu (cotée tan = 0)

which becomes after integration,

y=¢By sin

r fE (1%
y=2CBo JC(I C)

This is the equation of an ellipse of thickness

or

t= 2030’

The induced velocity from equation (35) is

2 _opst
VO_ZBO e
so that adding this induced velocity to the stream velocity

Vo, the ratio of the local velocity at any station z to the
stream velocity is found to be

T;,—== 1 -[-— (38)

Again, if all coefficients except By and B, are set equal to
zero, then from equation (37)

B 1= 2Bo’
Hence

———Bo' (cob = 0—2 sin 0)
which becomes, aftet integration,

y=@ sin 6 (1-cos §)

o\t [z

This is the approximate equation for a thin Joukowski base
profile of thickness

or

_ 343 Bye
=T
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The induced velocity from equation (35) is then

=By (142 eos e)_gl‘% (tE) [3—4 (%)]

Hence, the ratio of the local to stream velocity is
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F1GURE 6.—Theoretleal velocity distributien over clliptie base profiles.
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F16urg 7.—Theoretical veloclty distribution over Joukowski Lase profiles.

The velocity distribution for the elliptic base profile as
calculated by equation (38), and for the Joukowski Dbase
profile as calculated by equation (39) is shown in figures ¢
and 7, respectively, along with theoretically correct velocity
distributions as calculated from potential theory. It is scen
that the approximate velocity distributions are satisfactory
except in the region where the slope dy./dx becomes infinite.
This was to be expected since the assumptions made in the
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development of the theory in effect require that dy./dx be
small. Inaccuracies due to such infinite slopes may be
avoided by the following device: It is evident from equations
(34) and (35) that superposition is permissible in regard to
both base-profile shapes and the corresponding induced
velocities. Hence the method may be used to find the
change in shape corresponding to a specified change in veloc-
ity distribution or, inversely, the change in velocity distribu-
tion corresponding to a specified changs in shape from some
“reference base profile.”” If this reference base profile is one
properly chosen so as to have the same slope characteristics
at the leading and trailing edges &s has the profile under con-
sideration, then the By’ and B,/ coefficients in the series to
represent such changes can be made zero since now slope
differences need never become infinite. For example, for an
airfoil with rounded leading edge and pointed trailing edge,
the Joukowski base profile baving the same leading-edge
radius may be used as the reference base profile; for a strut
with rounded leading and trailing edges, the elliptic base
profile having the same leading- and trailing-edge radii may
be used as the reference base profile. Letting Ay; and Av
represent the change in shape and velocity, respectively, then
equations (34) and (85) become

d—(sg‘l=§;‘, B, sin nd

(40)
—,z—;- E B, cos né
and the coefficients gre
2 (- d(Ay.) .
- J; —a-x— s né d3
or (41)

2 '~ Ap
B.——-;_J; Vocosnﬂa’e

Since By’ and By’ have been set equal to zero, then from
equation (37) the coefficient B; must also be zero.

When it is desired to find the change in the veloeity dis-
tribution corresponding to some given change in shape, the
given change in shape—if so chosen that d(Ay,)/dr is not
infinite at the leading and trailing edges—automatically sat-
isfies the condition that the coefficients By", By’/, and B, are
zero. However, when it is desired to find the change in base-
profile shape corresponding to a given change in the velocity
distribution, the change in velocity distribution must be so

chosen that
f "A2 =0
o Vo
and (42)

" Ap
J; v, cos §d8=0

if the velocity distribution chosen is to correspond to a real
base profile.

As shown in the preceding theory of the mean camber line,
the sine and cosine series can be replaced by the integral rele-
tions which are generally superior for purposes of computa-

721

tion. Where the change in shape or velocity distribution is
known as a relatively simple trigonometric function in 6, it
is sometimes convenient fo use the equations

d(Ay,o) ___1_ * Ar  sin 6,48
dr ¢ Vocos 8—cos 6,
and (43)
Any_1 (~d(Ay,) _ sin 6d8
Vo o dr cosf—cossf,

When the change in shape or velocity distribution is
known as a relatively simple funection of x, then it is some-
times convenient to use the equations

Ap
d(Aylo) 1 < ﬁ 3 Io(c—l'o)
de 7 Jo (T—%0) z2(c—2)
(44)
d(A'.Ut)d
Ay _ 1 (T dx ™
Vo =xJo z—x

In the general case when .the equations for A/}, and
d{Ay.)/dx are complex or unknown, the most useful forms
of the equations are

@Ay 1 = Av (a a.,) a, A
dr  2r Jg
defin ( -(%)
€ g T?O r+0— T/.’1.? r—§

Arg bd(Ay,) 0t<(9 60)) da,
",o 21‘

i [1520] 4321,

These integrals can be evaluated numerically by the
method given in Appendix A.

v

(45)

APPLICATIONS OF THE METHOD

THE CALCULATION OF THE YELOCITY DISTRIBUTION OYER A GIVEN AIR.
FOIL SECTION

In this section the procedure to be followed to calculate
the velocity distribution over a given airfoil section is
presented, and the calculation of the velocity distribution
over the NACA 4412 airfoil section is used as an example.

The procedure may be summarized as follows: The ordi-
nates of the base profile are obtained from the airfoil ordi-
nates by removing the camber. The velocity distribution
over the base profile is found by adding to the known velocity
distribution over some reference base profile having the same
leading-edge radius, the change in the veloeity distribution
due to & change in shape from the reference to the given
base profile. Next, the ordinates of the camber line are
obtained from the airfoil ordinates by removing the thickness.
The chordwise lift distribution over this infinitesimally
thin camber line is eslculated and corrected for the effect
of thickness. Finally, the effect of camber is combined with
the velocity distribution over the base profile to give the
velocity distribution over the given airfoil section.
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From the known airfoil section, the ordinates y., the
nose radius of the base profile 7,z /¢, and the ordinates of
the mean camber line y,/c are determined for some or all
of the standard stations z/c listed in table V. In the general
case this may be done graphically from a large plot of the
airfoil, taking care to measure the base-profile ordinates
perpendicular to the mean camber line at each station. All
modern NACA conventional and Jow-drag airfoils are
formed from specified base profiles and mean camber lines,
and the ordinates or equations for the ordinates can be found
in NACA reports. For the NACA 4412 airfoil, the ordinate
of the base profile (i. e., the NACA 0012) and the equation
for the ordinates of the camber line are given in reference 10.

The base-profile velocity distribution is celculated as
follows: A reference base profile having approximately the
same nose radius is chosen from the Joukowski profiles listed
in table II. The thickness ratio of a Joukowski profile
having the leading-edge radius 7, z, is

i_ Tr.p.
- =0.9184 /2. (51)

For the NACA 4412, the leading-edge radius is 0.0158¢,
the proper thickness ratio for the Joukowski base profile is
then 0.1155. It is sufficiently exact and more convenient
to use the Joukowski section with #/e=0.12. The difference
between the ordinates of the given and refersnce profile is
found from

%:E—'—& .
¢ ¢ c (52)

and listed as in table III. These difference ordinates are
plotted as a function of zfe, as in figure 8, and the slopes
graphically determine. These slopes are plotted as func-
tiops of 4 in radians (fig. 9) with the slopes at =0 and ==
arbitrarily set equal to zero. Then the ordinates and slopes

at-the proper @ stations givep in the Appendix A for the .

numerical integration of equation (45) are found and listed
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F1avRE 8.—Difference ordinates for basa profile of NACA 4412 alrfoil sectfon as 8 functlon
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in table IV. (Note that the value of the ordinate at siation
#+0 must be taken as the value at #—8 but with opposite
sign.) If the curve of figure 9 is fair, the “20-point” method
of integration, used in the example, is sufficiently exaet.
The integration is performed as illustrated in Appendix A.
The resulting values of As/V, are plotied as a function of
z/e using the conversion table V, and the values at the stand-
ard stations, taken from this curve, are listed as in table ITL
The velocity distribution over the base profile is found from
7.V,
where the values of V,/V; are those for the reference profile
given in table II. For comparison, these calculated values
have been plotted in figure 10 to an expanded scale of
V,/Vy along with those determined by the lmothodf of
reference 1.
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The chordwise lift distribution is calculated, in general, as
follows: From & curve of the mean-camber-line ordinates as
a function of z/c, the slopes are determined and plotted as a
function of 6. From this graph, the ordinates and slopes are
determined at the proper 6 stations given in Appendix A
for the numerical integration of equation (27). (The
values of ordinates at station x+6 must be taken as the
same in sign and magnitude as the values at station =—8.)
The integration is performed to obtain the value of (P,.

For the mean camber line of the NACA 4412 sgirfoil,
because the equation of the shape is given in elementary
functions of z/e, the procedure may be simplified. From the
leading edge to z/c=0.4

tifost-()]

and from zfc=0.4 to zfc=1.0

(It is to be noted that if (P, is found from the integral
equations (25), (26), or (27), regardless of whether ¥, or .
is used in the calculation, the additional distribution will not
appear in the final answer.) Differentiation gives

Ye=ilos2 ()}
%:% [0.8—-2 (%)]f .

0<§<o;4

o.4<§<1.0

Using equation (3), these may be written in terms of 4 as

d dye.

Iz (COa 0—0.2); 0<6<c0s71(0.2)

%3—15=§ (cos 6—0.2);

cos1{0.2)<e<x

These relations could be employed directly in equation (25}
and the lift distribution obtained. The existence of the
singular point, however, makes the algebra tedious.

To employ the numerical method of integration, the slopes
d/dé (dy./dz), mpy be obtained by differentiation of the
above.

g‘ izz: %sina 0<6<cos™(0.2)
10 A P

Using the above equations, the ordinates and slopes of the
curve of dy./dr as & function of # can be calculated directly
for the proper 8 stations used in the numerical integration
(table VI) and the integration performed. The values of
oPy are then plotted as functions of zfc (fizg. 11) and the
values obtained for the standard stations. These values
apply to an airfoil of infinitesimal thickness, and the values
must be corrected to correspond to the airfoil of finite thick-
ness (loc. eit. equation (28)) by use of the equation (table
YI1)

P,=(% Py (54)
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FicrzrE 11.—Calcnlated basie lift dlstribution for NACA 4412 slrfofl section.
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These values are also plotted as in figure 11. The basic or
ideal list coeflicient is then determined from an integration
of the plot of P, as a function of z/c.

The additional distribution can be calculated by finding
first the values of P, for ¢, of unity from

Pa(oc;¢=1)— )(ocl)

using the values of (4P./oc;,) from table I. This function is
plotted and the integral ¢; (;¢;,,=1) is determined. Then the

(55)

additional distribution is found from - .
P\  Poleci,=1) -
7)- =D (56)

as in table VIL
The chordwise lift distribution corresponding to a lift
coefficient ¢; can be found from

P=P,+(ci—t4,) (i—j) (57)

The velocity distribution over the airfoil may be found by
superposition method of reference 4. . The upper and lower
surface velocity distributions, respectively, are

Va V. Pl
VO V ifi()

_V, P
VvV,

In table VIII, the velocity-distribution calculations for

and (58)

the NACA 4412 8t ¢;=0.72 are given. The calculated values
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FIGURE 12.—Velocity distribution over NACA 4412 nirfoll section at /=0 72.
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FIGURE 13.—Velocity distribution over NACA 4412 alrfoll saction at cr—=2.05,

of (V/V,)? are plotted in figure 12 along with the calculated
values obtained by the method of reference 1. Also shown
for comparison in the solid curve are experimental values
obtained by interpolation of the experimental pressure dis-
tributions of reference 11.

In figure 13 are shown the calculated values of (17/17) for
NACA 4412 at ¢;=2.05 as determined by the method of this
report and of reference 1.

The procedure to be followed to caleulate the veloeity dis-
tribution over a strut section having a rounded trailing edge
is the same as that for the airfoil, except that the referenco
profile must be one having both a rounded leading and
trailing edge. The elliptic sections given in table IX are
recommended for use as base profiles in these cases. Strul
sections are usually not cambered, so that the procedure to
be followed for cambered strut sections is only of academie
interest and is accordingly not considered here. It may,
however, be desirable to calculate the velocity distribution
over a strut section at some angle of attack other than zero.
In this case, the value of (P, is calculated from

QP =% ((,ot. 6—tan ~e)2

or
: 1—2%’ (59)
c c,
and the lift distribution from
r=(¥1).p
a— VO L a ) (60)
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With this lift distribution the integrated value of the lift
coefficient may not be zero as required by the potential
theory. A small shift of the distribution would allow this
requirement to be met, but such a refinement is not justified
in view of the fact that for real fluids, as a result of the fluid
viscosity, this requirement is not actually fulfilied. Using
the value of P,, the veloecity distribution over the strut is
found from equations (58).

THE CALCULATION OF SHAPE OF AN AIRFOIL SECTION CORRESFONDING
TO A GIVEN YELOCITY DISTRIBUTION

In this section the procedure to be followed to calculate
the airfoil section shape corresponding to a desired velocity
distribution is presented. To demonstrate the general pro-
cedure to be employed in the calculation of an airfoil shape
corresponding to & desired velocity distribution, the shape
of a “‘semi-low-drag’’ eirfoil over which the maximum velocity
oceurs near the leading edge on the upper surface and at the
midchord location on the lower surface is used as a first
example. As a second example, the specific calculation of
airfoil shapes having a “double-roof” type velocity distribu-
tion is considered.

It should be noted at the outset that the shape of a two-
dimensional body corresponding to some desired velocity
distribution may not represent & real airfoil section which is
both “closed” and pointed at the trailing edge. As a con-
sequence the desired velocity distribution can be considered
only as a ‘“first choice” and must be modified, if necessary,
to satisfy these conditions. The procedure employed in ad-
justing the desired velocity distribution and calculating the
shape of the corresponding sirfoil is as follows: From the
desired airfoil velocity distribution, the corresponding ve-
locity distribution over the base profile is found by averaging
the upper and lower surface velocities at each chordwise sta-
tion. This distribution is examined to determine whether
it corresponds to a real profile and adjusted, if necessary, to
satisfy this requirement. The base-profile shape corre-
sponding to this adjusted velocity distribution is calculated.
The airfoil velocity distribution is finally adjusted, if re-
quired, to take into account the modifications made to the
original base-profile velocity distribution. The chordwise
lift distribution is determined from this adjusted distribu-
tion. Then the chordwise lift distribution for the airfoil
with the thickness removed is determined and the mesan
camber-line shape calculated. The celeulated mean camber-
line and base-profile shapes are then combined to give the
airfoil section shape corresponding to the finally adjusted
velocity distribution. In the example of the semi-low-drag
airfoil, these steps are considered in detail.

Example I
() First choice

In general, a desired velocity distribution will be one laid
out to some specified ideal lift coefficient, although it will
only be required that the quarter-chord moment coefficient
not be objectionably large. This, as will be seen later, al-
Tows the lift coefficient to be varied within a relatively large
range without affecting the desired characteristics of the
velocity distribution. Hence, under these conditions the ad-
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justment to a particular ideal lift may be easily made after
the base-profile-shape calculation is completed, provided the
first choice of the velocity distribution is one having a lift
coefficient within a few tenths of that desired.

In practically all cases it is required that the shape corre-
sponding to some desired velocity distribution be one having
s specified thickness ratio. This requirement—together
with the requirement, discussed previously, that the desired
velocity distribution corresponds to that for a real airfoil
section which is both closed and pointed at the trailing
edge—complicates the problem since it is not apparent from
the velocity distribution whether these requirements are
fulfilled. These complicating difficulties can and must
largerly be eliminated by choosing the velocity distribution
wisely. Reference to known velocity distributions over
existing airfoils having nearly the same thickness ratios and
similar velocity distributions with that desired will aid in
this choice. _

Suppose, for exaraple, that the semi-low-drag airfoil, used
for fllustration, is to have a low ideal lift coefficient and a
maximum thickness equal to 14 percent of the chord, with
an upper surface velocity distribution similar to that for a
Joukowski base profile and a lower surface velocity distribu-
tion similar to that for an NACA 65-series low-drag base
profile. It is to be expected under these conditions that
reference to the velocity distribution over a Joukowski base
profile for which #/¢=0.14, and over an NACA 65-014 base
profile will aid in the choice of the desired velocity distribu-
tion. Infigure 14, the velocity distributions for these airfoils
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F1GURE 14.—Preliminary velocity distribution over the semi-low-drag airfofl.
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are shown. The velocity distribution for the Joukowski sec-
tion was taken directly from table Il of this report. The
- NACA 65,2-016 is listed in reference 9, and the approximate
velocity for the NACA 65-014, plotted in figure 14, was ob-
tained using the approximate relation

36 L (Fho 1]

Based on the foregoing consideration, a choice is made of
the desired upper and lower surface velocity distributions,
designated (V./Vy): and (Vi Vi), respectively, as in ﬁgure
14. The base-profile velocity distribution (V,/V;), shown in
the figure is the average of these (loc. cit. equation (58)). The
subscript , is used to denote that these velocity distributions
are g ‘“‘first trial.”

Having decided upon the desired velocity distribution, the
shape of the base profile is then determined as follows: A

(‘70 014

reference base profile which has nearly the same leading-edge

radius as the airfoil fo be derived is selected from the Jou-
kowski base profiles listed in table II. The airfoil to be
derived in the example will clearly have a leading-edge radius
approximately midway between that for the Joukowski base
profile, for which #/c=0.14, and the NACA 65-014. The
leading-edge radius of the Joukowski base profile is

2
o2 _ 1185 (%) —=0.02322
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so for the NACA. 65-014, since the leading-edge radius of any
airfoil varies as the square of the thickness ratio,

0.14\?
0.16

T'Lx

=0.01704 =0.01305

The airfoil to be found will have approximately the leading-
edge radius
rs.s._ 0.01305+0.02322
c 2

=0.0181

The Joukowski base profile for which #/¢=0.12 has nearly this
radius (0.01706) and so is used ag the reference profilo in this
example.

The. difference between the desired and Joukowski base-
profile velocity distributions is found from (table X)

()(’v")m

and the values of (A»/V}), cos 6 are calculated using the values
of the cosines given ia the conversion table V. Then both
(arfVg), and (AwfV)y); cos 6 are plotted as functions of 6
(fig. 18).
(b) Adjustment of first choice

In order that the desired vclocity distribution will rep-
resent a real airfoil which closes and has a sharp trailing edge,
it is required that the relations (loc. cit. equations (42))

(62)

TAv

o Vi de=0
63
For the NACA 65,2-016 from reference 9 'Av )
Tom.
e =0.01704 be satisfied.
B
x — (AD, (3
0—(Av/%j; \ .
05 &— (Av/Y, .
Xx--'(4p/Vo ), cos 8 3]
o---(Av/Vo); cos 8 k! :
.04 +
@ .03 / 1< ‘;
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Froure 15,—Difference velocity distribution for semi-low-drag airfof),
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In the example, numerical integration of the curves of

figure 15 gives
L Al‘
J; ( If,(‘)lde_+o.oo4=ﬁ

J:(%’) cos 6df=—0.0077
0./1

Itis clear that if the values of (As/V7}); are decreased over
r<6<r, the integrals will both be nearer zero.

This suggests that as a second trial, the difference velocity
distribution (Ap/17). shown in figure 15 will more nearly
satisfy the integral equations (63) and at the same time will
not destroy the desired characteristics of the given velocity
distribution. In this case

f( )de_—o 0034

f A”) cos 6df=—0.0012

the range 5

‘7

The conditions of equations (63) are very nearly satisfied..

The conditions may be satisfied completely by slightly

translating and rotating the second trial of Ap/1%. Assuming
that & small increment
Ar
(7 =k1+k,<’2£—a) (64)
be added to the distribution (A/V7)s, sinece
T (Av
J; A T'_,o) d0=‘l'k1
an (65)
T (A
j; A (T,%) cos 6 do =2k,
ther making
x
and
k=222 _ 00006
the velocity distribution
Av  [Ap Ap
#-(7) e (%) )

will completely satisfy the equations (63) as required.
In table X, the values of

A A—,")=o.oo11+o.0006 (5—0)
T 2

are given and the difference velocity distribution A»/V; is
calculated, using equation (66). These values are plotted
as a function of 8 in figure 15. (The value at 6=0 is
arbitrarily made zero.)

(¢) Celeulation of base-profile ordinates

The ordinates and slopes of the Ap/V, curve at the
proper 6 stations given in Appendix A for the numerical
integration of equation (45) are found and listed, as in
table XI. (Note that the value of the ordinate at station
x4-6 is equal in s1gn and magnitude to the value at r—0.)
The integration is performed, and the resulting values of
d(Ay.)/dx are plotted as functions of xfe (fig.16) and mtegrated
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FIGURE 16.—Slope of the base profile ordinates for the semi-low-drag afrfoll.

to give the values of Ay /e at the desired standard stations.
The ordinates of the base profile are then found, as in table
X, from

Y _Yr ﬁl_'
c e + P (67)
which corresponds to the velocity distribution
Vf_ Tff Ap
v-v () (68)

It is fortuitous that in this example the maximum thick-
ness was precisely 14 percent of the chord as desired. In
the event that the final thickness were #, and that the desired
thickness were %, the ordinates and velocity distribution,
respectively, for .the base profile of thickness # could be
obtained from the equation

(?J:)z tz ?/z) (69)
and the approximate equation
@] o
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(d) Final adjustment

Before the calculation of the shape of the mean camber
line corresponding to the given lift distribution is undertaken,
it will be necessary to revise the lift. distribution correspond-
ing to the first trial of the given distribution so as to take
into account the effect of the changes made to the original
base-profile velocity distribution to meke that velocity
distribution represent a real profile. This may be done

TT 1T T 1T 1 1T I 111
0 Given upper surfoce velocity
s Sistribution, ViV, ]
A4 Vy——Lower surface velocity -
12 <t distribution VifV, -
. £ l~=-—F8iven base profile velocity
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Fi1GURE 17.—Velocity distribution for semi-low-drag alrfoil.

graphically on the plot of the corrected base-profile velocity
distribution.

For example, in the case of the semi-low-drag airfoil used
for illustration, the upper surface velacity distribution, to be
similar to the Joukowski type of velocity distribution, must
be nearly straight from the stations z/¢=0.2 to 1.0, as seen
in figure 17. The base-profile velocity distribution must be
a mean between the upper and lower surface velocity dis-
tributions; hence, when the upper surface distribution has
been chosen. the lower surface distribution is determined

(ig. 17). The velocity distribution over the upper and
lower surface of the leading-edge section (0<{x/e<0.2) is
then suitably chosen so that the base-profile distribution is
the mean. The basi¢ chordwise lift distribution is related
to the upper and lower surface velocity distributions by
(loc. cit. equations (58)).

_r P,./4_

o ViVe
V Vv, Pyt (71)
Vo To W

{e) Calculatlon of mean camber-line ordinates

Now in the calculation of the mean camber-line shape
(table XII), the basic lift distribution corresponding to
zero profile thickness P, must be used. Irom equation (54)

oPv= P - (72)

. . h »-
Vyf |% 0

so that this distribution can be obtained directly from

,_2< ——«) (73)

To determine the mean camber-line shape which will
promote this lift distribution, the procedure is as follows:
The value of P,/4 is plotted as a function of ¢ (fig. 18).
The ordinates and slopes at the proper @ stations given in
Appendix A for the numerical integration of equation (27)
are found (table XIII) and the integration performed.
(Note that the value of (P,/4 at station =+ is cqual in
magnitude but opposite in sign to that at =—#8).- The
resulting values of dy./dz are plotted as a function of z/c
(fig. 19) and the values of ¥, oblained by integration.

The resulting mean camber line is at the ideal angle of
attack (the angle of attack for which the additional lift
distribution is zero) and hence, unless the ideal angle is
zero, the trailing edge is either below or above the xfc axis.
Ordinates of camber lines are generally specified with the
extremities of the camber line on the /¢ axis and designated
by the conventional symbol y..

The ideal angle of attack is simply

).%)
a (c zfe=0 C / z,emi0 (74)

Ye Yo,z
and (75)

i

and
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Firavre 10.—8lopes of the mean camber line ordinates for tl}e semi-low-drag alrfofl,

_The_resulting airfoil is shown in figure 20,
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In the case of the semi-low-drag airfoil used for the
O7A exemple
J ay=-+0.01233 radians=0.706°
08 and the values of ¢ and dy./dx listed in table XII are
o5 obtained from the equations
Ye_Yo z
.04 \\ ¢ ¢ +0.01233 .
| d
03 dyc_ ycb
\ 35—-75'1‘0.01233
.02
Using these values of 7 /e and dy./dx along with the pre-
o viously determined values of ¥./e, the ordinates of the airfoil
=8| can be calculated, as shown in table XTIV for the semi-low-
dyorg \\ 1 drag airfoil used as an example, from
da
/ ~
e Tu T _ Y
) Vi ¢ ¢ ¢ omf
—'02 \ Yu_Ye i ¥
v_Yei Yt
\ 7 e —p T CosB
=03 : /
L 2 Y.
~04 // p c+ 5 Sin 8
\ /
=05 Yi_Ye Y:
c ¢ ¢ o8B J
Bl A ) where
_ 1 . dly‘
T 2 3 4 & & 7 8 9 0 B=tan I(E)
&
c
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The chordwise basic lift distribution over the airfoil is
found from

r
Pb=on(%¥‘;) (77)

and is plotted and integrated to give the basic (or ideal) lift
coefficient. For this semi-low-drag airfoil, the basic lift dis-
tribution was plotted and the value of the basic lift coefficient
was found by integration to be

¢1,=0.0489

The velocity distribution over this semi-low-drag airfoil
was calculated by the method of reference 1 at this value of
the Iift coefficient. The results of this calculation are shown
in figure 17 to an enlarged scale of V/V), for comparison with
the given (solid line) distribution. It is seen that the
agreement is close.

If it is desired to calculate the velocity distribution at a
value of the lift cocfficient other than the basic lift coefficient,
the procedure to be followed is that given under the heading
entitled Applications of the Method.

1n the preceding analysis it was tacitly assumed that the
lift and quarter-chord moment coefficients corresponding to
the finally adjusted velocity distribution were those desired.
It is clear that in the final adjustment these coeflicients could
have been adjusted by changing the upper and lower velocity
distributions, taking care only to keep the average of these
equal to the base-profile velocity distribution. On the other
hand, since superposition of camber lines is always permis-
sible, such adjustments can be made at any time. There are,
of course, an infinite number of adjustments possible, some
of which are particularly convenient. As an example, the
a=1 type mean camber line (reference ) can be conveniently
used to adjust the lift or quarter-chord moment coefficient
of this semi-low-drag airfoil. Since.the addition of this
camber line simply shifts the upper and lower surface velocity
distributions up or down with respect to_that of the base pro-
file, these adjustments do not disturb the desired character-
istics of the velocity distribution.

To cite one example, suppose it is desired that the semi-
low-drag airfoil be adjusted to an ideal lift coefficient of 0.4.
With this base profile the ¢=1 type mean camber line for
o¢;, of unity attains a lift coefficient ¢,,=1.080 (loc. cit.
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equation (29)). The required lift coeflicient for this compo-
nent of the basie lift is

0.4000—0.0489=0.3511

so that if the mean camber-line ordinates of the a=1 {ype
for ,¢;, of unity given in reference 9 are multiplied by

0.3511
1.080

=0.325

and the resulting ordinates added to those in table XII, a new
mean camber line for which ¢;,=0.4 is obtained. These in
turn can be combined with the original ordinates of the base
profile to give the corresponding airfoil ordinates.

As a second example, suppose it is desired that the semi-
low-drag airfoil be adjusted to zero quarter-chord-moment
coefficient. For the mean camber line given in table XII,
the quarter-chord-moment coefficient is +0.0224. The ¢=1
type mean camber line for 4¢; of unity attains a quarter-
chord-moment coefficient of —0.2508, or, for ¢y, =—0.0224
the corresponding ¢6;,=0.0894 and ¢,=0.0965. Ience,
zero quarter-chord-moment coeflicient can be obtained by
combining the original mean camber line with an a=1 type
camber line for which ¢¢,=0.0894. The corresponding basic
lift coefficient is

¢;,=0.0489+40.0065=0.145¢

In retrospect, it can be scen that the more exacting the
characteristics of the desired velocily distribution, the more
attention must be given to the firsi e¢hoice and final adjust-
ment of this distribution. In the case of the semi-low-drag
airfoil used for illustration, it should be quite clear that had
the desired lift and moment characteristics both been speei-
fied, the effort required to obtain a satisfactory first choice
and final adjusted veloeity distribution would be considerably
increased. The possible variations in the choice of desired
velocity distributions are unlimited so thal no general rules
can be laid down for the special treatment required in cach
and every case. Facility in the use of this method for the
inverse problem can be acquired only through experience.
Example IT

Experimental studies of a large number of low-drag air-
foils have been made in which the effects of various modifica-
tions in pressure distribution were determined. Airfoils
having pressure-distribution characteristics like that of the
series 3 and 6 low-drag airfoils were found to be definitely
superior in most respects. The somewhat decreasing but
nearly constant favorable pressure gradients which occur
over the forward part of such airfoils, from the nose section~—
where severe gradients due to the necessary rounded leading
edge occur—to the minimum pressure point, are desirable.
This allows relatively large additional lift increments to be
added, as well as some waviness of surface to be tolerated,
without such additional lift or waviness promoting loeal
adverse pressure gradients and so “premature” transition
to-turbulent flow in the favorable gradient region. The
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nearly constant adverse gradient back of minimum pressure
has been found to be influentiel in increasing the critical
boundary-layer Reynolds number at the transition point
with given surface conditions, and so increasing the upper
limit of the Reynolds number range for lowest drag co-
efficients.

Airfoils similar to the NACA series 3, 4, and 6 low-drag
airfoils are obtained by superposing the ordinates of a base-
profile shape which promotes a double-roof form of velocity
distribution on the ordinates of an appropriate Joukowski
base profile. The problem of finding the shape correspond-
ing to the double-roof velocity distribution, although it was
solved originally for the NACA series 3 low-drag airfoils and
series 4 high-critical-compressibility-speed eairfoils by use
of the numerical method (equation (45) }, is a rather im-
portant example of one which may be solved by integration
using the trigonometric expressions for the velocity distri-
bution in equation (43). In trigonometric form, the equa-
tions for the double-roof velocity distribution are

™ —R1+kg cos § 0<0< b
(78)
T —Ic;—l—h cos 8 <0<
where @ corresponds the point x and 6, corresponds to the
minimum pressure point .

The conditions that the value of A#/V, must be the same
in either equation at 8, and that the equations (42) be sat-
isfied require that

3 __8[sin On+ (r—08y) cOS Oy A
19| "COS O S Opt7—0Onn
8
kg='—’§
. - 79
p=5] S Om— b COS Om (79)
¥ 9} cos 0, sin O+ x—8
Fo—S] _cosba SiN Om—0x
7 921 00S O SIN O+ 7—0n )

where s is the slope of the velocity curve between z/e=0 and
r/c=anfc; that is,
(%) -(%)
zle=xzufc * Y xfe=0
TmfC
The corresponding shape of the base profile which will pro-
mote this veloeity distribution is

g= (80)

sin @, sin @ (1—cos & cos 0x)

sin ; (01-0)

—_— 81
sin% (6.a—8) (1)

—{cos fx—cos §)%n

AY_

[

ool w

€OS O SIN Ot 7—0n

where the vertical bars indicate the absolute velue. In
table XV, the velocity distribution and ordinstes of the
double-roof base profile which may be superimposed on
other base profiles are given.
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For those double-roof base profiles the value of AzfV} is
not zero at »=0, so that it is cbviously incorrect to super-
pose such base profiles on a reference base profile having an
infinite slope at the leading edge since for such reference
base profiles V,/V;=0. Nevertheless, the velocity distri-
bution ealculated by superposition for such combined
profiles is in reasonably satisfactory agreement with experi-
ment except in the immediate vicinity of the leading edge.

By combining these double-roof base profiles with a
suitable reference base profile, a variety of satisfactory low-
drag eairfoils can be derived. An example is the super-

position of & double-roof base profile for which xx=04¢

and £,=0.3059, and a double-roof base profile in which
rn=0.7¢ and 8,,=0.1367 (table XV) on & Joukowski base
profile for which #/e=0.10 (table II). A base profile results
which, when combined with a type =04, ¢;,=0.8201
mean camber line superposed on & type ¢=0.7, ¢=—0.5513
mean camber line gives an airfoil for which #/c=0.14 and
which has an upper-surface velocity distribution similar in
form to that of the NACA 64-series low-drag airfoil and a
lower-surface velocity distribution similar in form to the
NACA 67-series low-drag airfoil. This airfoil, the velocity
distribution for which is shown to an expanded scale of
V}V, by the solid-line curve in figure 21, is completely satis-

sl
jf: \\\\
/.7“!’ //\{‘
| 7 X

\
L2 3
f \
i
‘ i)
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{ | x——— Coleulation by mefhod of reference !/ u.s'mg
T the first approximation of €
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FIGTRE 21.—Velocity distribution over a low-drag sirfoll having minimum pressure at 0.4 ¢
oni upper surface and 0.7¢ on Jower surface.
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factory except for the fact that the. nose radius is unneces-
sarily small so that the maximum lift coefficient may be
adversely affected. One way in which this difficulty may
be alleviated to some extent is to add the increment Ay,
normal to the surface of the reference base profile rather
than normal to the z-axis so thet the ordinates are given by

y:=yr+Ay:‘/ 1+(—%”g )’ (82)

where dy,/dx is the slope of the surface of the reference base
profile at the station under consideration. This procedure
is hardly justifiable, however,

A very satisfactory method for improving the shape at
the leading edge is to calculate the velocity distribution over
the base profile carefully by the method of reference 1.
Then, by using the graphical method of reference 12, a
change in shepe of the base profile and the corresponding
change in the velocity distribution may be found by trial
which will allow an increass in the leading-edge radius that
will not promote a ‘“bump” in the velocity distribution near
the leading edge.

DISCUSSION AND CONCLUSIONS

In the theoretical development of the method of this
report a number of simplifying assumptions were made in
order to facilitate the mathematicel treatment, some of
which are clearly contrary to fact. The method of reference 1
by comparison would appear exact. However, two assump-
tions common to the development of both methods are
that the fluid is incompressible and nonviscous. The frst
is justifiable if the velocities are everywhere negligibly small
in comparison with the velocity of sound. The second can
never be considered strictly justifiable although in the usual
Reynolds number range the error is small. It should be
noted, however, that in the usual case, as may be seen in
figure 12, the inaccuracy of the method of this report resulting
from all the other assumptions except that concerning the
viscosity of the fluid (and compressibility when it is impor-
tant) is' smell as compared with the inaccuracies of both
methods resulting from the neglect of the effects of viscosity
(and compressibility).

Concerning the method of reference 1, it has been found
that the second approximation for the value of ¢ should be
employed in the calculation if the base profile under con-
sideration differs markedly from the Joukowski base profile,
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as is the case with a number of low-drag airfoils, particularly
for thick sections or for those sections with the minimum
pressure point far back along the chord. The inadequacy of
the first approximation is not very evident in figure 21,
wherein the velocity distribution as calculated by the method
of reference 1 using both the first and second approxima-
tions is shown for comparison with the method of this report,
gince the maximum thickness is fairly far forward and the
airfoil is relatively thin.

The satisfactory application of the methods of this report
rests on & thorough understanding of the limitations on the
prineciple of superposition as it applies to the mean camber
line and the base profile. In the theory of the mean ecamber
line it was assumed that the camber, as well as the slope of
the camber line, was small. IHence, superposition of mean
camber lines or of lift distributions should be permissible
for all usual camber lines, provided the camber or lift is
small. Experiment has shown that for usual mean camber
lines calculations based on this method are in good agree-
ment with experiment, provided the basic lift coefficient is
less than unity, but that even up te basic lift coefficients of
two the agreement is fair. In tho theory of the base profile
it was assumed, in effect, that the slope of the surface is small.
At the leading edge of an airfoil section and at the leading
and trailing edges of a strut section, the slope of the profile
is infinite so that, as was shown for the Joukowski and elliptic
base profiles, the method of this report cannot be used di-
rectly to determine the veloeity distribution or shapo of such
bodies. Rather, the method must be used to determine {he
change in velocity distribution or shape corresponding Lo
some specified change in shape or velocity distribution,
respectively. This change can represent a marked altera-
tion in shape at all points except the leading and trailing
edges. : .

Again, in the theory of the base profile, it was assumed that
the profile is thin. Experiments have indicated that the
method is satisfactory for all airfoils of usual thickness (up
to thickness-chord ratios of 0.18) and even reasonably satis-
factory in the case of an airfoil having a thickness-chord
ratio of 0.25 (NACA 45-125).

AmEs AERONAUTICAL LABORATORY,
Narionar Apvisory COMMITTEE FOR AERONAUTICS,
MorrerT FI1ELD, CALIP.



APPENDIX A

NUMERICAL INTEGRATION METHODS

A numerical evaluation of the integral

1 L 0—8,
—E-J; F eot 5 de

is given in the appendix of reference 1.
A “20-point’’ solution is

E=a, (%g")o‘[—al(Fx—F—x)"['as(Fz—F—z)+ R
ag(Fy—F_,)
where F, is the value of F at fy+—

nx

F, is the value of F at §, 10

. 9,—9)

a is the value of dF at 6=26,
das /, de

(rn=1,—1,2,—2 ..

where now

and the coefficients are given by

F, is the value of F at 80-[—%

F,is the value of F at 8,

(n=1) -1, 27

nx
20

—2,...19,—19)

(%g is the value -of%g’at 6=90.
]

be=0.05000 b1=0.02503
b,=0.34906 6,,=0.02139
b;=0.16129 b12=0.01819
63=0.10514 bm=0.01532
b4=0.07735 614=0.01273
bs=0.06057 b1;=0.01036
bg= 0.04918 bm= 0.00814
b,=0.04087 b1;=0.00599
by=0.03444 b13=0.00395
b,=0.02929 by=0.00197

and the coeflicients are

a,=0.1000 a5=0.0503
a,=0.3473 ag=0.0366
a.=0.1572 a;=0.0281
a;=0.0996 a;=0.0163
a;=0.0691 a,==0.0080

The value of Ar/V for 6=4=/10 given in table IV for the
NACA 4412 base profile, for example, is obtained in the fol-
lowing cyeclic form:

‘%—f’=—[ 0.1000(~+0.0138)
1]

+0.3473(+40.0283—0.0192)
+0.1572(+0.0178—0.0006)

4 0.0996(—0.00444-0.0397)
+0.0691(—0.04064-0)
+0.0503(—0.0901—0.0397)
+0.0366(010.0006)
+0.0281(+0.090140.0192)
+0.0163(+0.04060.0283)
-+0.0080(+0.0044-} 0.0283):|=— 0.0059

A more accurate “40-point’’ solution is

E=ba (%')o'l'bl(Fx—F—l) +61(F2—F—z)+- . -‘[‘bm(Fw_F—-w)

843107—50—17

The 40-point solution need be employed only when the
function F changes more or less abruptly with z/e.

REFERENCES

1. Theodorsen, T., and Garrick, I. E.: General Potential Theory of
Arbitrary Wing Sections. NACA Rep. No. 452, 1933.

2. Theodorsen, Theodore: Theory of Wing Sections of Arbitrary
Shape. NACA Rep. No. 411, 1931.

3. Betz, A.: Modification of Wing-Section Shape to Assure & Pre-
determined Change in Pressure Distribution. NACA TM
No. 767, 1935.

4, Allen, H. Julian: A Simplified Method for the Caleulation of Air-
foil Pressure Distribution. NACA TN No. 708, 1839.

5. Glauert, H.: The Elements of Aerofoil and Airscrew Theory.
The University Press (Cambridge), 1926, pp. 87-93.

6. Theodorsen, Theodore: On the Theory of Wing Sections with Par-
ticular Reference to the Lift Distribution. NACA Rep. No.
383, 1931.

7. Jacobs, Eastman N., and Rhode, R. V.: Airfoil Section Character-
istics as Applied to the Prediction of Air Forces and Their
Distribution on Wings. NACA Rep. No. 631, 1938.

8. Allen, H. Julian: Csaleulation of the Chordwise Load Distribution
over Airfoil Sections with Plain, Split, or Serially Hinged
Trailing-Edge Flaps. NACA Rep. No. 634, 1938. !

9. Abbofi, Ira H., von Doenhoff, Albert E., and Stivers, Louis S., Jr.:
Summary of Airfoil Data. NACA Rep. No. 824, 1945.

10. Jacobs, Eastman N., Ward, Kenneth E., and Pinkerton, Robert M.:
The Characteristics of 78 Related Airfoil Sections from Tests
in the Variable-Density Wind Tunnel. NACA Rep. No. 460,
1933.

11. Pinkerton, Robert M.: Calculated and Measured Pressure Distri-
butions over the Midspan Seection of the N. A. C. A. 4412 Air-
foil. NACA Rep. No. 563, 1936.

12. Jones, Robert T., and Cohen, Doris: A Graphical Method of
Determining Pressure Distribution in Two-Dimensional Flow.
NACA Rep. No. 722, 1941.

733



734 REPORT NO. 833—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE 1L—CALCULATED VALUES OF ADDITIONAL LIFT
COEFFICIENT DISTRIBUTION % FOR INFINITESI-

L
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TABLE II.—SURFACE ORDINATES AND VELQCITIES FOR JOUKOWSKI BASE PROFILES
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TABLE IX—SURFACE ORDINATES AND VELOCITIES FOR ELLIPTIC BASE PROFILES

BASE PRQOFILE OF SEMI-LOW-DRAG AIRFOIL
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. 050 . 004359 1.Q181 . 008718. L 0385 . 013077 1. 0520 . 017436 1. 0866 0217956 10773 020153 1.0871 . 030513 1. 0052
075 . 006268 1.0194 010538 1. 0378 . 015803 1. 0551 . (21071 1.0711 . 1. 0850 . 031607 1. 0998 . 036875 1L.112g
. 100 . 006000 1. 0196 012000 }':0386 . 018000 1. 0608 . 024000 L0740 . 030000 1.0904 . 035000 1.1059 . 042000 L 1206
. 160 . 007141 1.0168 014283 0392 (21424 1. 0582 . 028560 1.0767 . 035707 L. 048 042849 1.1123 049990 1,1204
. 200 . 008000 1. 0180 016000 1. 0305 . 024000 1. 0589 . 032000 L0781 . 040000 1. 0009 . 048000 1,118% . 050000 1, 1338
. 250 . 008080 1.0109 . 017321 10397 . 035081 1.0804 . 034641 1.0788 . 043301 1.0082 . 051082 1. 1173 . 080822 1, 1303
.300 . 0600165 1.0109 .01 10308 . 027466 1. 0628 . 036681 1.0763 . 043828 1. 0989 . 054901 11185 . 064168 1,137
. 360 . 009539 L0200 010079 1.0309 . 028618 1. 0628 . (38158 1.0797 . 047607 1. 0085 . 057236 1L.1192 . 068778 1, 1379
. 400 . 009708 1.0200 019508 1.0400 . 020304 1. 0509 .030102 1.0709 . 1. 0088 . 068788 L1197 . 0GR5S6 1, 1395
. 450 . 005950 1.0200 016000 10400 . 029850 1. 0600 . 039800 1.0800 . 040740 1.0900 . 052000 11100 . 062049 1.2302
. 500 . 010000 1.0200 L0400 . 030000 1. 0600 . 040000 1.0800 . 050000 1. 1000 . 060000 1. 1200 . 070000 L1400
. 850 . 000950 1. 0200 019900 10400 . 020850 1. 0000 . 039800 1. 0800 . (40748 L 0999 . 050690 1.1199 . 063669 1.1309
. 600 . 009 1.0200 . 019508 L. 0400 . (20304 1. 0699 . 039192 1079 . 048690 1. 0008 . 038788 1. 1197 . 004556 1, 1395
. 650 . 009539 1. 0200 . 019079 1. (300 . (28818 1.0598 . (381588 L o707 047697 1. 0305 . 057238 1.1192 . 060778 1, 1350
700 . 000166 1. 0199 . 018330 10308 . 027496 1.0506 . 036861 1.0793 . 045826 1.0080 . 054001 1.1185 .m 1.1379
750 . 008880 1. 0199 . 017821 L0397 . 0256081 10504 . 034641 1.0788 . 043301 1.0082 . 051562 1.1173 . 1. 1363
. 800 . 008000 1.0190 . 016000 L 0305 . 024000 1. 05680 . 032000 1. 0781 . 040000 1. 0009 1.1155 . 050000 1,1338
. 850 . 007141 1.0198 . 014283 1. 0392 . 021424 1.0682 (28896 L0787 . 036707 1048 (42840 11123 « 40900 1. 1204
002 . 0068000 1.0196 . 012000 1.(385 . 018000 L 0660 024000 1. 0740 . 1. 0004 . 036000 1.1059 . 042000 1. 1206
. 050 . (04359 1.0191 . 008718 1. 0365 . 013077 L, (520 017436 1. 0656 . 021795 1.0773 . (26183 1.0871 . 030512 1,0952
1. 000 0 ) 1] 0 4] 4] ] 0 Q 1}
TL.B. ""‘—0.00@0 "’"'-_-rr"‘-QNDSO TL.E. }1"‘-0.0118’.) TL.X. rr"'—ﬂ.00320 1L.x -'”'-a.cmoo fL.l._TT.l._a_mm L l._r_r.!._u' 00950
e [4 [ ¢ - 4 (4 4 4 [4 < [4 ¢
TABLE X.—BASE PROFILE ORDINATE CALCULATION FOR SEMI-LOW-DRAG AIRFOIL
) ar)
e | (VAVOn | VdVe |(@Van| Cose | \Va/ifo b o) ovas | \Vo/r | Ay | Ay | Vave | awe | wie wfe
Cos @ Cos o *
0 0 [ ] 1.000 1} 0 ¢ 0. 0020 (0020) | © )] 0
.0125 . 964 10026 —. 039 . —.038 2241 -, 0300 —. 0380 .0019 —. 0371 . 9635 ] 02007 02007
. 0250 1.082 11228 —. 041 . 950 —.039 .3176 —. 0410 —. 0390 .00I8 —. 0302 1.0834 . 00004 02780 02790
. 0600 1.159 1.1916 —.038 .80 —.032 . 4610 —. 0350 —.0323 .0018 -—. 0341 1.1605 . 00027 . 03785 .822
.0760 1,183 1.2151 —. 030 .850 —.028 . 5548 —. 0304 —. 0288 .0017 —.0287 1.1864 . 00084 . 04430 04354
. 1000 1.198 L —.025 » —.020 . 8435 —. 0248 —. 0198 -0017 —.0231 L1978 . 00161 . 04058 .058120
. 1500 1.201 1.2154 —. 014 . —.010 7084 -.0137 —. 0088 .0018 —.0121 1. 2033 . . 03587 .05010
. 2000 1,199 L 2019 —. 008 .00 —.002 . 9273 - 0027 —.0018 0018 -2 L2007 00573 . 05002 <0GA74
. 3000 1.186 L 1668 019 - 300 .008 1.15093 .0191 . 0078 . 0014 0205 1.1873 .01032 . 05038 . 06063
. 4000 1,169 L 124 .41 . 200 . 1.3604 0410 . 0082 .0012 L0422 L1708 01439 . 05462 . 0689
. 5000 1, 16L 10898 .Q61 0 1. 5708 .0610 0 L0011 <0821 1. 1617 0 . H649 06253
. 6000 1.093 1.0511 . 045 —. 200 —. 009 1.7722 L0440 —. 0088 -0010 0460 1.0961 01401 . 03649 05110
. 700 1.041 1.0135 027 —. 400 —.0lL 1. 0823 0246 --. 0008 . 0008 0253 1.0338 .01132 02562 . 03604
. 8000 L9038 . §7689 .009 —. 500 --. 005 2. 2143 0047 —.0028 . 0007 . (084 .0823 . 00691 -01401 .02182
. 5000 .932 .8116 —. 010 —. 500 008 2. 4081 —.0154 .0128 - 0006 —. 0149 « 9287 00271 .00 . 00830
. 9800 . 003 .9248 —.019 —. 900 017 2, 6906 —.0260 0284 0004 —. 0258 . 8987 . 00100 . . 00303
1. 0000 870 8072 —.028 | —1.000 .028 3.1416 —. 0380 .0380 . 0002 —. 0378 . 8694 [] 0 0
Al r \ T J d(A!/:) s
TABLE XI.—INTEGRATION CALCULATION OF - FOR




GENERAL THEORY OF AIRFOIL SECTIONS .HAVING ARBITRARY SHAPE OR PRESSURE DISTRIBUTION

TABLE XII—MEAN-CAMBER-LINE-ORDINATE CALCULATION FOR SEMI-LOW-DRAG AIRFOIL

Ve Vi P v LY e, ¥e dr,
e 10 w oFs T 8 T P c & c &
)] 0 0 4 ] [1] 0 0 4] 0.0632 0 0.0755
.0125 . 8897 .9412 .0970 02426 2241 . 9655 0937 . 00086 0002 - 00100 .0825
.0250 1.1296 1.0371 .1850 . (4825 3176 1.0834 L2004 .00173 .0712 . 00204 . 0535
. 0500 12242 1.0968 . 2648 . 063:0 4510 1. 1605 . 2057 - 00341 .0592 .00403 0715
0750 1.2579 1. 1149 . 2860 07150 5548 1. 1864 3393 00454 .0320 - 00646 48
. 1000 1,.2:08 1.1243 .2030 .07325 . 6435 1. 1976 .370¢ . 00508 .0LI3 . 00630 0238
. 1500 12710 1.1355 .glﬂ . 00775 .T854 1. 2033 3261 00494 | —.Q148 006879 | —.0025
. 2000 1.2504 1.1421 2318 . 05888 903 L. 2007 2817 00372 | —. 00618 | —.0207
. 3000 1. 2202 L1544 .1316 03290 | 1.1593 1. 1878 1662 | —. 00082 | —. 00268 | —. 0438
. 4000 L1719 1.1684 . 0050 00135 | 1.3694 L1708 0059 | —.00689 | —. —. 00178 | —.0440
. 5000 L1211 1.1823 — 1224 | —.03060 | L &8 1.1817 —. 1410 -2 | — —.00606 | —. 0202
. 6000 LQ718 1.1206 —. 0080 —. 02450 L7222 1.0%1 —. 1074 —. 01328 —. - 007 .
7000 L0204 L0572 —.07 —. 01840 1.9823 1.0388 —. 085 —. 01871 a —_ 0123
. 8000 Rl .9948 —-.490 | —.01225 | 2 2ii3 .9523 —.048F | —.01347 0044 —. 00380 0167
. 9000 . 9205 038 —. 0246 | —.00815 ] 2.4081 . 9287 —. 228 | —.0129) . 0064 —. 00181 0187
. 9500 . 8057 . 9018 —.0122 | —.00305 | 26808 3987 —. 0110 | —. 01259 . 0081 —. 00058 L0184
1. 0000 . . 8664 M) 8.1416 .86%4 4] —.01233 0037 0 0160
TABLE XIII.—INTEGRATION CALCULATION FOR JMEAN TABLE XIV.—CALCULATION OF ORDINATES OF SEMI-LOYW-
CAMBER LINE OF SEMI-LOW-DRAG AIRFOQIL DRAG AIRFOIL
B 1] ¥ ¥e Is e 11 n
P oF d /P ¥y zle e ¢ ¢ Sne | Teost ¢ 3 c [ c
3 a ( £ ) dr
] (1} a [} 0
1] .. 125{ 02007 -00165 | .02000 | .0Q100 | .QIOSS [ .Q2100 | .01415 } —.01900
=10 - (455 L0244 025 [ 02790 -00282 | .0280 | .00204 | .022688 | .02984 |' .02732 | —.02576
2x10 0734 . 0055 .05 .03822 00273 | .03812 | . JOE727 | L0406 | L08278 | —.03409
0 0575 - 2061 075 ] 04554 . 430 T 00846 ] 07208 | 05095 | L0702 [ —.04003
ix/10 . (0189 - 3455 .1 05120 -00121 | .O5LIS | .00630 | .00870 | .Q6748 | .10121 | —.04488
0 —~. 0308 - 5000 -15 .05040 | —.00015 | 05040 | .00630 ¢ 15015 | .0661Q | .14085 [ —.05261
Gx/10 —~.0212 . 6545 .2 06474 | —.00134 | .06473 | .00618 | 20134 . 1] .19868 | —.05855
7=f10 —. 0128 .T039 .3 06968 | —. . 00258 | .30302 | . 20603 | —.08674
8xf10 -. 0059 <945 .4 06801 | —. . —. 00178 | 40303 | .06708 | .39697 [ —.O7
{10 -~. 0010 .56 ] 00283 | —.00127 | .06282 (—.00508 | .50127 | .05776 | .49873 [ —.067
T 1. 0000 .6 05140 .00000 | .O5L40 t—.00686 | .50901 | 04854 | .60009 | —.057
1I=xf10 ). 1K S R I S, .7 . 03694 00045 | . —. 00508 | .699556 | 03186 | . - 04202
12x10 )L S R I [, 8 .02182 .00036 | .02182 [—.00360 | .79964 [ .01822 | .80036 [ —.02542
13xf10 )1, T U IO S .9 . 00830 .00016 | .00830 }—.00181 | .89934 | . 9 | .Q0016 | —.01011
14x/10 .0213 ———— .85 00303 .G0008 | .00303 |—. JHE0E | L 5] 95006 | —. 1
152’10 . 0306 —— LG [} a [ 0 1.00000 1. 00000 ¢
1 16x/10 —0I8 | el | o | aeee-
17xf10 0578 | eccemm ] mmmceoe b oo
18x/10 ~ 084 | coeoe | e ] o .
16=/10 — M58 [ ceieee | e | oaeeme
2x 0 | e ) o | emeeeo
TABLE XV.—ORDINATES AND VELOCITY DISTRIBUTIONS FOR “DQOUBLE-RQOF” BASE PROFILES
Im Im Im T Tm Tw o Tu Tm_
- =0.2 c -3 ¢ 0.4 s (.5 c =06 z -{.7 A =0.8 c 0.9
P
= -
Fav | Lo A yat] by Pt &r i) Ar it Ay Aar Ay Ar Ar A
T i) cs 3] [ L) o R ac W & T 3¢ i =* 3y
0 Lﬁt ] —0.10498¢ | 0 —0.136122 | O —0.161039 | 0 ~0.181690¢ { 0 —0.100224 [ 0 —0.214382 | @ —0 227671 0 —{0. 230455
.0 .000435 | —.092483 | .000503 | —. 123622 | .00065) | —. 148530 | .000588 [ —.169100 | .000618 | —. 1867 000842 | —. 201882 | .000662 | —.215171 | .000680 | —.326055
025 | .001210 | —.07 -001404 | —. 111122 | 001542 | —. 136030 | .Q0IB48 | — 001732 | —. 174224 | .001801 | ~. 180382 | .001859 | —. 1 .001909 | —. 214455
.08 003301 | —. 054984 . —.086122 | 004271 | —. 111039 | .004576 | —. 181690 | _OMMSIS | —. 140224 | .008017 | —. 164352 .005184 | —. I70671 | . —.. 188455
L0758 | .005820 | —.029085 | .00691% | —.081122 | .007672 | —.058039 | .008248 [ —. 1 008701 | — 104024 | | ~. 136382 | .0003%4 ) —. 1 002648 | —. 164455
) .008503 | —. 004984 | .010336 | —. 036122 | .QII1540 | —. 001030 | . —. 081680 | .Q131 —. 009224 | .013742 | —. 114382 | .0I4228 | —.127671 | .014848 | —. 139455
.18 014240 045016 | 17583 .0I3878 [ .020156 | —.011039 | .021892 [ —. 081690 | . —. 040224 | . ~—. 064382 | .0253I8 | —. 07767 .026104 | —. 080455
.20 . 019003 005018 | . . 063878 .029348 .033061 | .032189 . 018310 03407 . 000776 .03619¢ | ~—.014382 037814 | —. 0276z . (035618 | —. 030455
.25 021278 .086715 [ .08231I8 113878 | .038427 .08896L | .Q42718 068310 | . 050776 | . .035618 | . 0507 .022329 | . 052573 . 010546
.30 022122 073414 | Q37348 .163878 | .046564 . 135901 | .052985 .118310 | . 05651 100776 | 061181 .085618 | .064141 .072329 | . 086622 - 060548
.36 022087 . 070113 . (030419 . 147008 . 053040 . 188061 062402 . 168310 . 048680 . 150776 . 073517 .135018 | .077433 . 122329 | . 080897 - 110548
.40 021421 .081812 [ 030267 . 130132 | 058533 . 233001 | .070673 -218310 | . 018920 200776 | 085216 JISG6I8 | . i 172320 | 091448 . 160546
.45 020277 .053512 | .03818 .113258 . 058791 L9149 | LOTETOT . 268310 . OBT760 -] . 095661 . 235618 - H . 222329 107521 210546
.50 . 018768 045211 | . 035433 .096388 | .056405 .179338 | . Q7057 -318310 | . 094601 800776 | . 104097 . 285618 | .113040 272320 | 119560 260546
.55 . 016978 . 036810 . 032351 079612 | .052327 149524 | L OUGTOT . 265310 . 085602 35076 . 112067 . 335618 . 122137 .322329 | . 130171 .3105468
.80 . 014958 025600 | .028767 .062639 | .(047056 9012 | 070673 218310 | .098170 400776 | .116358 .385618 | .129028 372820 | . 138907 - 360546
.63 012856 020309 | (24800 045786 | .040058 030300 [ .062402 .168310 | .090468 .316918 | .116810 435818 | .133044 .422929 | . 145237 . 410548
.70 .010648 .012008 | .020648 . 034374 060087 | .052988 . 118310 | .0:850¢ 233060 | .111260 .485618 | .133258 472320 | .145456 1605468
.78 . 003707 [ .018402 .012020 [ 027421 .030275 | 042716 .088310 | .064448 149202 | 095767 .337454 | . 128169 . 522320 | . 147739 - 510546
.80 .006254 | —.004504 | .012214 [ —. 004853 | .020520 .0004683 | .032189 018310 | 049221 065344 | .073193 . . 114466 . . 141608 . 560546
.85 .004203 | —.012895 | .008232 [ —. 021727 | .013880 | —.020350 | .021892 | —. 031690 | .033S03 | —. 018614 | .052712 041124 | .085778 27152 | (127612 . 810546
.80 .002362 | —.021195 | .004637 | —. 039600 | .007S44 | —. 050162 | .012445 | —. 081690 | .010354 } —. 102373 | .030625 | —. 107 .051782 | —. 030024 | .000082 . 860546
.925 1 .001558 [ —.025348 | .00B06L | —.047036 | .005188 | —. 0740608 | .005246 | —. 012368 | —.144302 | .0204S8 [ ~. 181122 Q85114 | —. 180813 | . 072464 . 205183
.95 -000S8I | —. (020466 | .00L693 | —.065473 | .002ST3 | —.088974 | .0045/6 | —. 131690 | .007163 | —.186231 § .011468 | —. 255206 [ .018886 | —. 231201 | . 043071 | —. 250179
975 | .000300 | —.083847 | . —.063900 | .001033 | —.103580 | .001648 | —. . —. 228160 | . 61 | —.320287 [ .007291 | —. 481780 | . 016368 | —. %
L9878 .000LI0 | —. 085722 | .000217 | — 068128 | . —.111333 | .000588 | —.169190 | .CO0924 | —. 240124 001490 | —. . 002622 | —.557083 | .008074 [ —. 933222
Lo {0 —. 0877 [} —.0T2346 1 0 - S | 0 —.181890 | O - - 09 - 1] —1. 160004
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