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CRITICAL COMPRESWVE STRESS FOR OUTSTANDING FLANGES

By EUCiENnE. LURDQUISTand ELBBIDG~Z STOWEU
.

SUMMA13Y

A chart h prewtdtd for the-duesof the coeji%ient in
th formula for th &al compre4rtI drew at which
buckling may be t@eded iO OCOUTin 0Ut8taT14@jh@?8.
The8e jZange8 are jat rectangular pktee 8upporM along
#h foaded edge8, euppwted and elu.dicallyredrained ali~
one tdmde.d e@e, atifiee along fha other unloaded edge.

5% mathematicalderivatimw of the formulas required
for the co7Mwdi4m of th.9chart am given.

INTRODUCTION

In the design of str-ed+kiq structures for aircraft
as well as in the design of compression members, it is
desirable to know the compressive stress at which
btickling occurs. b practice the structure is usuilly
so imperfeet or so eccentrically loaded that lateraI
deflection stints with the beghmhg’of loading. When
hteral deflection starts with the beginning of loading,
however, there is ususlIy a very, prcmounced increase in
deflection at the critical compressive stress for which
buckling would have occurred had the struoture been
perfectly straight and centrally loadecL The evacua-
tion of this critical compressive stress for a flat plate,
with certain conditions of edge support, is discussed
in this paper.

When a fiat pMe is loaded b wmpr-ion, the two
loaded edges are either simply supported or r=trained in
some mwmer. If the two uri!oaded edges %re not sup-
ported, the plate is considered to be a cohunn. When
one, or both, mdoaded edgea are also supported or
restrained in some manner, the critical compressive
stress is greatiy increased over that for the plate es a
cdnnn. That the compressive stress@ increased when
one, or both, edgea ~ supported or restrained in some
manner has been recognkd for yearn. Beoause of the
importance of the edge conditions, formulas bssed on
the assumption that each edge of the plate is fre~
simply supported, or &ed have been employed in
design. (See the summa ry of these formukis given in
reference 1.) .

A study of the theory and the more reliable test
data on the buckling of plate elements in shssed-skin
structures end compression members revealed the nece

sity for a more meful consideration of the edge condi-
tiona of plates than has been previoudy attempted.
Accordingly studies were made of the oritica.1 compres-
sive stress for I-, Z-, ohannel, smd rectangular-tube
sections in which proper consideration was given ta the
interaction between the individual puts of the cross
seetion. (See references Z, .3, and 4.) In ord~ to
make the results of the work more gmerdy applicable,
studies were also made of the basic ~Iate ekments that
comprise these sectiorm All the design oharts resulting
tim this investigation were made avaihble in 1938.
The combination of the present paper with referenoea
2, 3,4, and 5 is a more oompIete presentation of all this
materiat.

The basic eIeraent treated in this paper is a plate
simply supported along the loaded edges, supported and
eIssticaUy restrained against rotation alongoneurdoaded
edge and free along the remaining unloaded edge. This . -
b=ic element is representative of the oukhnding flange
on the I-, Z-, and channel-motion columns. In reference
5 is treated tie basic element representative of the webs
of these sections with elastic r@mint along. both

UnIoaded edgea.
The mathematical derivations required for the invmti-

gation of the present paper are given in appendixes A
and B. The results of practical use me given in the
body of the paper.

EVALUATION OF CRITICAL STRESS

Within the elastio range.-Within the elastic range
in which the effeotive modulus of elasticity is Young’s
modulus, the critical comprtxaive stress f.for a thin

flatrectmgubr plate is express.ed as (refmence 6, p. 331,
equation (214))

(1)

where
k

E
t

P
b

nondimemional caeflicimt that depends upon condi-
tions of edge restraint and shape of plate

Ypung’s modulus
thickn- of p~ate
Poisson’s ratio
width of plate
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Beyond the elastio range,-When” the pla@ is
stressed in compression beyond the elastic range, the
effective modulus of ehsticity for the plate is less than
Young’fl moduhs. If a single, over-all effective plate
modilus @is substituted for Young’s modulus l?,. the
critical stress, when the material of the plate is loaded
beyond the elastic range, can be obtained from equa-
tion (1). The mmdhnensional coefficient ~ has h value
that ha between zero and unity and is determined by
the stress. For stresses within the elastic range, ~=1,
For a more complete discussion and detition of q, see
reference 2. ‘

If @ie substituted for lZin equation (1), the resulting
equation cannot be directly salved for jc~, If the
equation is tivided by ~, however, j ,,/V is given directly
by the geometrical dimensions of the plate, Young’s
modulus l?, and Poisson’s ratio p. Thus

(2)

For a given material, the relationship betweenj., and

j,,/~ tends to be fied by the compressive stress-strain

42

38

.$34
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curve. ‘His relationship is discussed in reference Z,
where it is shown how probable relationships between
j,, andj,,/~ are obtained from the column curve of the
material because cohunn curves are more readily avail-
able than compressive stmiss-strain curves. The qu~
tion is, therefore, what c@nn formula should be used?
Equations (8) and (9) of reference 7 define column curves
that kpply when the material jkst satisfies tho mini-
mum requirements of Navy Department Specification
46A9a for 24S-T aluminum alloy. The relationships
between j,, @dj,,/q for t& MUMare given in references
2, 3, and 4 and in figure 1 of thiz paper.

The 24S-T material delivered under specitlcation
46A9a almost always has properties that are better
than the minimum required properties. The relation-
ships between f,, and j,Jq for the average 2@-T
material delivered are given in figure 2. This figure
has been prepared in @e rmmner described in reference
2, the eohunn curves for average 24S-T material as
given in reference 8 being used.

Fw~ similar to 1 and 2 of this paper may ho pre-
pared for any material. The engineer using this paper
must therefore decide whether the computation should
be based on minimum required material properties or
average material properties,

Regardless of whether figure 1 or 2 is used, if tho
restraint against the rotation of the flange at its base is
near zero and I/b is greater than approximately 2.5,

+ be used,it is recommended that the curye ~=

For ‘d other values of the restraint, the curve

~xehould be satisfactory. In &urcs 1 and 2 theq=
4

difkmt equations involving r merely id edify difTerent
curves that result from the relationships indicat~.

The value of r is ~/E, the ratio of the effective column

modulus for bending failure at the stressj.~ to Young’s
moduhm

When the restraint agaimt the rotation approaches

T+&
zero, the v=—

2
curve is recommended in recognition
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FIGURE2.–VarMon off- with fd for 24S-T aluminum blb of bvaw prowtlet.
7(WheDf#q<16.7kF4sq tn., q-l and f,,- ah.)

of the fact that the resistance of the plate .@mcnk to
buckling arjsea largely from their torsiord rigidity.
The two curves recommended to show the relationship
betweajc, andj,,/~ should be used until future experi-
mental data indicate that diflerent curves should IJU
used,

EVALUATION OF k

, The value of jJv at which buckhng occurs is given
by equation (2), in which all of the quantities are known
except the value of tho coefEcient k. The valuca of
k can be obtained from figure 3; iigure 3(b) is a portion
of figure 3(a) plotted to a larger scale. In this cl)art,
&is plotted against the ratio of “\he half wave length to
the width X/bfor diflcrent values of a parameter q
termed the “restrtint” coefikient. (III refercnco 9
I!rayer and March refer b e as the %xity” cocflicient.
Ih this paper 6is called the restraint codlkient to avoid
mdusion with the &ity coefficient c for columns.)
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TWim”

The restraint ooefficimt c depends upon the re~ative
stiilness of the plate and the restraining ekmut aIong
the side edge of the plate. The Simpl=t conception
of c is obtained when the restraining element, or stiff-
ness, is assumed to be replaced by an ekistic medium
in which rotation at one point does not influence rota-
tion at another point. For this type of restmining
medium along the edge of the plate,

‘ 4sQb
within the elastic range, c=—

D
(3)

4sQb
beyond the ehwtic range, ●== (4)

where I

So stifh.esper unit length of ehstic restraining medium
or moment required to rotate a unit length of

.—.

elastic medium through one-fourth radian

D flexud rigidity of plate, per unit length [12::.91
z coeflkient h allow for a decrease in D due to the

application of stresses beyond the ehstic nmge

hasmuch es ~ is a function of stress, its value for
24S-T material can be obtained from @n-e 4 or 5,
depending upon whether minimum require@ propertih - .-
or average properties are being used. The ytdues of
rl, ra, sndrgakog ivain figur~4~dtioocur ia
appendix A. .
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If& is zero, e is also zero and the condition of simple
support, or zero r&ra.int, is obtained. If & is infinite,
~ is also infinite and the condition of a fixed edge or of
infinite restraint is’ obtained. Therefore a variation of
e from zero to infinity will cover all powible conditions
of restraint at-the side edge of the plate.

Figure 3 shows that for each value of c there is a
value of X/bfor which k is a minimum. Strictly, a
whole number m of half wave lengths h must exist in the
length of the platca. Hence

~_ a
b> ““ “

(5)

Thus, to read a value of k from figure 3, it is necessary
to substitute m= 1, 2, 3, etc. “m equation (5) untd a
value for A/bis obtained that gives the smallest value
of k in @re 3. ThM smallest value of k is the one
to be used in equations (1) or (2). This general p-
cedure will always give the correct value of k for use in
equations (1) or (2) regardless of whether or got SO,

and hence e, is a function of the half wave length k
For the special cgse.@ w~ch &, Wd hqggg ~,.& inde-

pendent of tlm half wave length k, the general procedure
described for obtaining a value for k can be used to
construct a new chart, with the abscissa ~)b replaced
bya/b. This new chart is given in figure tl.

When SO, and hence e, varies with x or h/b,figuie 6
should not be used, but the general procedure as
applied tn figure 3 should be usad to obtain the correct
value of k for equations (1) and (2).

EVALUATIONOF So AND e

Before it is possible to determine k from figure
3 or 6, it is necessary first to ewduati the restraint

coefficient e. The value of & to be substituted in
equation (3) or (4) will depend upon tho charactcristh
of the structural member or members that provide tho
restraint. In this paper it is assumed that tho restraint
is provided by a specially defined elastic restraining
medium. As a result of this assumption, it has been
possible to derive the general chart of figure 3, which
is independent of the structure that provides tho
restraint.

The basic property of the elastic-restraining medium
is that rotation at one point of the medium dots not
affect rotation at another point of the medium. In
many practicaI p“roblema the elastic restraint is pr-
ovided by a stiflener, a plate, or some other structure for
which rotation at one point affects rotation at another
point. Consequently, the evaluation of So in any
given problem must take into account the effect of this
interaction within the elastic restraining structure.

The formula for & to be used in any given problem
will depend upon the type of structural member that
provides the restraint. Because this entire subject of
restraint supplied to the side edge of a pkte has been
rather superficially treated in the literature, it is being
made the subject of a series of papers by tho NACA,
the first of which is reference 10.

LANGLEYMEMORIALAERONAUTICALLABORATORY,
NATIONALADVSSORYCOAiMITTEEFORAERONAUTICS,

LANGLEYFIELD, VA., March lb, 1941.
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APPENDIX A

SOLUTION BY DIFl?EFtEWMAL EQUATION

The procedure for obtaining the critical stress of a
pIate uniformly compressed tdong two opposite, simply
supported edges is given in reference 6 (p. 337). In
this method, which was also used by Dunn in reference
11, the critical stress is found by scdving the ditlmimtial
equation expressing the equ~rium of the buckled
plate. The same method is applied in this paper to the
case in which an elastic restraint against rotation is
present along one unIoaded edge of the plate while the
other UnIoaded edge remains free to deflect and to
rotate. For generahty, the ehwtic restraint is assumed
to arise from an ehstic medium distributed along the
unloaded edge; this medium has the basic property that
rotation at one point within it does not influence the
rotation at any othh point.

F~ure 7 shows the coordinate system md the plate
dimensions. The differential wpation for the equilib-
rium of a plate ehrmnt is

where
j uniformly distributed compressive stress
t thicknws of plate
u) deflection normal to plate
z Iongitudmal coordinate in direction of applied stress
D flexursl rigidity of plate, per unit length
y transverse coordinate across width of plate
rl, r~, and ~s coefficients equal to or 1sss than unity

In equation (A-1) the term jt(Z%@&) is concerned
with the extend forces on the plate that cause buck-
ling; whereas the term

—
% )

rl~+2T’’a$&@+&$

is concerned with the interred resistance of the plate to
buckhng. The terms invohi@ TI and rt in equation
(A-1) are concerned with the longitudinal and the
h-ansverse bending, respectively; whereas the term
invoIving Tzis concerned principally with the tarsicnal
stitlness. The caefliciente 71, 7*, and T* allow for the
change in the magnitude of the various terms as the
plate is stressed beyond the elastic range. In the
elastic range, rl=~z=ra= 1.

The loaded edges are simply supported and are not
displaced in the direction w. Of the several forms

-2 x

FIGVE67.-OutstandIra tkuge under edgE compmsIori.

of the general solution of equation (A–1) the following
form was selected as appropriate for tlis prcblem:_ . _~ __‘=”

( @c&q S? ‘-
~+cAhy+Gcos ~ + 4w= c1Cosh ~

P
(A-2)

where

and

(A-5) =

Equation (A–2) satisfies the boundary conditions at
the Ioaded edges and gives real vaIu=. for both Q and fl
near the buckling stress J =f~~.

117
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The values of the coticienb 01, C*, O*, and (74a~
to be found from the boundary conditions along the side
edges of the plate. The value of k, the half wave length
of the buckle pattern, is found from the condition thal
there must bean intigrrd nmnber of half wave lengths in
the length a of the pla@; thus

(A-6)

where m=l, 2, 3, etc.
In ~he elastic range, where rl=r~=ra= ], the values

The solution given by equation (A-2)
satisfy the boundary conditions of no

(A-7)

“(i+-j

Wa9 selected to
dektion and

simple support (no moment) along the loaded edges.
The boundary conditions along the unloaded side edges
have also to be sati&d. The boundary conditions
along the unloaded side edges are:

(?0),.,=0 (A-9)

‘(%+’29,=0=4%0‘A-’”’
( w) )D ‘$+P= ,-b=0

[
D 9+(2–P) #w]” *=O (A-12)

(A-n)

where & is the stifTnass per unit length of the eIastic
restraining medium or the moment required to rotate a
unit length of the medium through one-fourth radian.

From equations (A-9) and (A-IO) are obtained

c,= ‘~p(w’,+m (A-13)

c,=–— ~; ~(ac9+ f3c4) (A-14)

where
4&b

●=— ,
D

(A-15]

From equations (A-1 1) and (A-12) are obta~ed

[
C, p sinh a+ mTd(p cosh a+g cos P)1
{–Cqsin fl-~,(p cosh a+q cos P) 1=0 (A-16)

where
(A-18)

CO~’11’EE FOR AERONAUTICS

g=r+(:) (A-19)

The buckled form of equilibrium of the plate is
obtained when the determinant formed by the caef?i-
cienta of ds and Gin equations (A-16) and (A-17) equals
zero .

Thus,
(&+&)@B tih a cos P–da coah a sin P)

+e[@+flall msh a cos F+2pgaP
+(p’il%W) fi a fi Bl=o (A-20]

This equation establiahea the critical comprwsive Btrm
for an outstanding flange elastically restrained against
rotation at one unloaded aide edge. Thus equation
(A-2o) was used to establish the exact values of k
given in table 1.

The candition of simple support (no restraint) along
the supported edge is described by ~=0. For this
gpeciaI case, the problem is b find the smallest vrdue of
h#O that will satisfy equation (A-20) when e=O. A
:onvenient method for determining this vahe of k is
first to solve for c:

(d+/Y) @’19SiIIha 00s /3-q’s cosh a sin ~)
‘=–(p’+@a13cCShacos ~+2pga/3+@@-@+) ‘ZmhaSm@

(A-2I)

When c=O, either

cP+/3’=o (A-22)
m

ps~ti aces fi-$acosh ash @=O (A-23)
m

(@+@)aB mah a cm fl+2pqa13

+ (IW-~@ ~ a sin 6= w (!-24)

Equation (A–22) is true only if k= O, which can be
rue only if the compressive stressj is zero, Equation
~A-24) applica only if k= ~, which can be true only if
he compressive stress j is infinite. (20nscquentiy if a
inite value of k# Ofor which C= O exists, equation (A-23)
nust be satisfied.

The special case of a fied side edge (infiite restraint
along the supported edge) ig described by c= w.
Iquation (A–21) shows that, if c= w, either

a?+f%m (A-25)

m

Pab rnnh a cos fl-$a cosh a sin ~=~ (A-26)

m

(@+d)a/3 msh a cm ~+z~afi

+(#@-@@ aid a sin ~=0 (A-27)

~quation (A-25) is true only for k= ~, which can be
true only if the compressive stress j is infinite. Equa-
~ion (A–26) cannot be true for a finito value of k.
Hence if a finite value of k for which c== exists,
equation (A–27) must be satisfied.



APPENDIX B

SOLUTION BY ENERGY METHOD

Because the exact scdution of the dMerential equation
given in appendix A does not lend itself to a direct
calculation of k as in the case of the energy method of
solution, an energy aalution “was made to aid in the
construction of the chart of figure 3. The energy
method givea approximate values fork, the accuracy of
which depends upon how closeIy the resumed deflection
surface describes the true deflection surface.

The energy method as applied to the calculation of
critical compressive stress is given in reference 6 (p. 327).
The plate ia stable when (Vl+ ~?J> Tad unsttible when
(~”1+ 17J<T, where T is the work done by compressive
forces on the plate, ~1 is the strain energy in the plate,
and l; is the strain energy in the elastic restraining
medium along one side edge of the plate. The critical
stress is obtained from the condition of neutral stability:

Z’=T”*+T-2 (B-1)

If w is the deflection uormal to the plate at any
point x, v in the plane of the plate shown in figure
7 and & is the stiffness per unit Iength of the elastic
restraining medium or moment required to rotate a unit
length of elastic medium through onc-fo@.h radian,
then T, 1‘1,and l; are given by the following equations
(see reference 6, equations(199)and (201) and reference,
equation (73)):

(B-2)

“’=?’J3K%’LF“+)
In order to evaluate T, ~rl, and I’z, it is necessary

to assume a deflected surface w consistent with the
boundary conditions. These boundary conditions at

‘IIlsmo-a. s

the<side edges of
of &we 7,

the plate are, in the coordinate system __----

(W)p,=o (B-5)

(B-7)

When buckling occurs, a restraining moment .yill be _ _
apphd to the plate along the edge y= O; the magnitude
of the moment vidl depend upon the stihs of the
elastic restrainin g medium. If the elastic medium
offers no restraint against rotation, this moment will be —
zero and the plate wiU swing about the edge y= O, as -a-

bout a hinge. h this case the plate will remain essen-
tially fht across its width. On the other hand, if the
elastic mediti offers infinite restraint against rotation,
the plate will not rotate along the edge v=O and the
plate wll deflect across its width into a shape similar
to that for a cantilever beam. For any rwd.raint of the
elastic medium between zero and infinity the deflection
curve acroes the width of the plate is taken as the sum
of the straight line and the cantileverdefleotion curve.
In the direction of the length the usual sine curve
indic%ted ‘by the solution of the dif7erentiaI equation ia
used. Thus the deflection surface assumed for the
plate is, in the coordinate system of figure 7,

where A and B are arbitrary deflection amplitudes and
al= —4.963, %=9.852, and ag= —9.778. These values
of al, az, and a: were selected by taking the. proportion
of two deflection curves that gave the Iowest critioal
compressive stress for a fixed-edge ff~ge for which
p=O.3. These two deflection curves were for a canti-
lever beam with lateral uniform load and for a IateraI
load proportional toy.

The condition I?=(I represents the case of a simply
119
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supported or hinged edge at y=O. The case of A=O
represents the condition of. a clamped edge at y=O.
The ratio .AIB is therefore a measure of edge restraint
and is related to the restraint coefficient e through the
boundary condition given in equation @6). Sub-
stitution of w as given by equation (B-9) in equation
(B-6) giVSS

where, by detition, “. .

‘=42

(B-lo)

(B-11)

Substitution of the value of B as given in expression
(B-1O) in the deflection equation (B-9) gives

(B-12)
Equation (B-12) shows how the shape of the deflection
surface is affected by the restraint coefficient ~. This
equation is used in the evaluation of VI, Vfi,and T.
Thus.

(B-15)

where

( )
Cl=$ ;+~+%++ =0.23694

–#+a,+G+aJ=o.79546c~—

.

G=~(6+%1+4~+3as) =0.89395

/

)+80a,+20%+36a,a, +12a#* =0.56712

C7=$(5 +9al+8az+7G+4a?+ 7%ag+ 6a@

+3aJ+5a,a,+2al) =0,19736

C8=W,=–2.3168

c)=aa%4=4.0982

It ispermiasi ble to substitute the values of T, 1-1,
and Vi as given by equations (B-14) to (B-16) in
equation (B-1) only when the applied stress $ has its
critical valuejc~. After this substitution it is found that

(B-16)

where

Equation (B-17) was used to calculati the vakw
of k listed in the columns designated (a) of table I.
With these values of k as a guide, a number of correct
values of k were obtained by satisfying equation (A–20)
of appendix A. In this manner the er&rs in k as
given by equation (B-17) were established at isolated
points. From this knowledge of the errors, correctiorie
were made to all the values of k given in columns (a)
of table I. These corrected.mlues of .k, which are
recommended, are listed in the columns designated (b)
of table K The recommended values of k were used
in the construction of tigures 3 and 6.
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cValnes obtabmd from the energy method.
* Recommended valna.
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